diff --git "a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py" "b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py" new file mode 100644--- /dev/null +++ "b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py" @@ -0,0 +1,5314 @@ +# mypy: ignore-errors + +r"""Importing this file must **not** initialize CUDA context. test_distributed +relies on this assumption to properly run. This means that when this is imported +no CUDA calls shall be made, including torch.cuda.device_count(), etc. + +torch.testing._internal.common_cuda.py can freely initialize CUDA context when imported. +""" + +import argparse +import contextlib +import copy +import ctypes +import errno +import functools +import gc +import hashlib +import inspect +import io +import json +import logging +import math +import operator +import os +import platform +import random +import re +import shutil +import signal +import socket +import subprocess +import sys +import tempfile +import threading +import time +import types +import unittest +import warnings +from collections.abc import Mapping, Sequence +from contextlib import closing, contextmanager +from copy import deepcopy +from dataclasses import dataclass +from enum import Enum +from functools import partial, wraps +from itertools import product, chain +from pathlib import Path +from statistics import mean +from typing import ( + Any, + Callable, + Dict, + Iterable, + Iterator, + List, + Optional, + Tuple, + Type, + TypeVar, + Union, +) +from unittest.mock import MagicMock + +import expecttest +import numpy as np + +import __main__ # type: ignore[import] +import torch +import torch.backends.cudnn +import torch.backends.mkl +import torch.backends.mps +import torch.backends.xnnpack +import torch.cuda +from torch import Tensor +from torch._C import ScriptDict, ScriptList # type: ignore[attr-defined] +from torch._dynamo.trace_rules import _as_posix_path +from torch._utils_internal import get_writable_path +from torch.nn import ( + ModuleDict, + ModuleList, + ParameterDict, + ParameterList, + Sequential, +) +from torch.onnx import ( + register_custom_op_symbolic, + unregister_custom_op_symbolic, +) +from torch.testing import make_tensor +from torch.testing._comparison import ( + BooleanPair, + NonePair, + NumberPair, + Pair, + TensorLikePair, +) +from torch.testing._comparison import not_close_error_metas +from torch.testing._internal.common_dtype import get_all_dtypes +from torch.utils._import_utils import _check_module_exists +import torch.utils._pytree as pytree +try: + import pytest + has_pytest = True +except ImportError: + has_pytest = False + + +MI300_ARCH = ("gfx940", "gfx941", "gfx942") + + +def freeze_rng_state(*args, **kwargs): + return torch.testing._utils.freeze_rng_state(*args, **kwargs) + + +# Class to keep track of test flags configurable by environment variables. +# Flags set here are intended to be read-only and should not be modified after +# definition. +# TODO: Expand this class to handle abritrary settings in addition to boolean flags? +class TestEnvironment: + # Set of env vars to set for the repro command that is output on test failure. + # Specifically, this includes env vars that are set to non-default values and + # are not implied. Maps from env var name -> value (int) + repro_env_vars: dict = {} + + # Defines a flag usable throughout the test suite, determining its value by querying + # the specified environment variable. + # + # Args: + # name (str): The name of the flag. A global variable with this name will be set + # for convenient access throughout the test suite. + # env_var (str): The name of the primary environment variable from which to + # determine the value of this flag. If this is None or the environment variable + # is unset, the default value will be used unless otherwise implied (see + # implied_by_fn). Default: None + # default (bool): The default value to use for the flag if unset by the environment + # variable and unimplied. Default: False + # include_in_repro (bool): Indicates whether this flag should be included in the + # repro command that is output on test failure (i.e. whether it is possibly + # relevant to reproducing the test failure). Default: True + # enabled_fn (Callable): Callable returning whether the flag should be enabled + # given the environment variable value and the default value. Default: Lambda + # requiring "0" to disable if on by default OR "1" to enable if off by default. + # implied_by_fn (Callable): Thunk returning a bool to imply this flag as enabled + # by something outside of its primary environment variable setting. For example, + # this can be useful if the value of another environment variable implies the flag + # as enabled. Default: Lambda returning False to indicate no implications. + @staticmethod + def def_flag( + name, + env_var=None, + default=False, + include_in_repro=True, + enabled_fn=lambda env_var_val, default: ( + (env_var_val != "0") if default else (env_var_val == "1")), + implied_by_fn=lambda: False, + ): + enabled = default + if env_var is not None: + env_var_val = os.getenv(env_var) + enabled = enabled_fn(env_var_val, default) + implied = implied_by_fn() + enabled = enabled or implied + if include_in_repro and (env_var is not None) and (enabled != default) and not implied: + TestEnvironment.repro_env_vars[env_var] = env_var_val + + # export flag globally for convenience + assert name not in globals(), f"duplicate definition of flag '{name}'" + globals()[name] = enabled + return enabled + + # Defines a setting usable throughout the test suite, determining its value by querying + # the specified environment variable. This differs from a flag in that it's not restricted + # to a boolean value. + # + # Args: + # name (str): The name of the setting. A global variable with this name will be set + # for convenient access throughout the test suite. + # env_var (str): The name of the primary environment variable from which to + # determine the value of this setting. If this is None or the environment variable + # is unset, the default value will be used. Default: None + # default (Any): The default value to use for the setting if unset by the environment + # variable. Default: None + # include_in_repro (bool): Indicates whether this setting should be included in the + # repro command that is output on test failure (i.e. whether it is possibly + # relevant to reproducing the test failure). Default: True + # parse_fn (Callable): Callable parsing the env var string. Default value just uses + # the string itself. + @staticmethod + def def_setting( + name, + env_var=None, + default=None, + include_in_repro=True, + parse_fn=lambda maybe_val_str: maybe_val_str, + ): + value = default if env_var is None else os.getenv(env_var) + value = parse_fn(value) + if include_in_repro and (value != default): + TestEnvironment.repro_env_vars[env_var] = value + + # export setting globally for convenience + assert name not in globals(), f"duplicate definition of setting '{name}'" + globals()[name] = value + return value + + # Returns a string prefix usable to set environment variables for any test + # settings that should be explicitly set to match this instantiation of the + # test suite. + # Example: "PYTORCH_TEST_WITH_ASAN=1 PYTORCH_TEST_WITH_ROCM=1" + @staticmethod + def repro_env_var_prefix() -> str: + return " ".join([f"{env_var}={value}" + for env_var, value in TestEnvironment.repro_env_vars.items()]) + + +log = logging.getLogger(__name__) +torch.backends.disable_global_flags() + +FILE_SCHEMA = "file://" +if sys.platform == 'win32': + FILE_SCHEMA = "file:///" + +# NB: This flag differs semantically from others in that setting the env var to any +# non-empty value will cause it to be true: +# CI=1, CI="true", CI=0, etc. all set the flag to be true. +# CI= and an unset CI set the flag to be false. +# GitHub sets the value to CI="true" to enable it. +IS_CI: bool = TestEnvironment.def_flag( + "IS_CI", + env_var="CI", + include_in_repro=False, + enabled_fn=lambda env_var_value, _: bool(env_var_value), +) +IS_SANDCASTLE: bool = TestEnvironment.def_flag( + "IS_SANDCASTLE", + env_var="SANDCASTLE", + implied_by_fn=lambda: os.getenv("TW_JOB_USER") == "sandcastle", + include_in_repro=False, +) + +_is_fbcode_default = ( + hasattr(torch._utils_internal, "IS_FBSOURCE") and + torch._utils_internal.IS_FBSOURCE +) + +IS_FBCODE: bool = TestEnvironment.def_flag( + "IS_FBCODE", + env_var="PYTORCH_TEST_FBCODE", + default=_is_fbcode_default, + include_in_repro=False, +) +IS_REMOTE_GPU: bool = TestEnvironment.def_flag( + "IS_REMOTE_GPU", + env_var="PYTORCH_TEST_REMOTE_GPU", + include_in_repro=False, +) + +DISABLE_RUNNING_SCRIPT_CHK: bool = TestEnvironment.def_flag( + "DISABLE_RUNNING_SCRIPT_CHK", + env_var="PYTORCH_DISABLE_RUNNING_SCRIPT_CHK", + include_in_repro=False, +) +# NB: enabled by default unless in an fbcode context. +PRINT_REPRO_ON_FAILURE: bool = TestEnvironment.def_flag( + "PRINT_REPRO_ON_FAILURE", + env_var="PYTORCH_PRINT_REPRO_ON_FAILURE", + default=(not IS_FBCODE), + include_in_repro=False, +) + +# possibly restrict OpInfo tests to a single sample input +OPINFO_SAMPLE_INPUT_INDEX: Optional[int] = TestEnvironment.def_setting( + "OPINFO_SAMPLE_INPUT_INDEX", + env_var="PYTORCH_OPINFO_SAMPLE_INPUT_INDEX", + default=None, + # Don't include the env var value in the repro command because the info will + # be queried from the tracked sample input instead + include_in_repro=False, + parse_fn=lambda val: None if val is None else int(val), +) + +DEFAULT_DISABLED_TESTS_FILE = '.pytorch-disabled-tests.json' +DEFAULT_SLOW_TESTS_FILE = 'slow_tests.json' + +disabled_tests_dict = {} +slow_tests_dict = {} + +def maybe_load_json(filename): + if os.path.isfile(filename): + with open(filename) as fp: + return json.load(fp) + log.warning("Attempted to load json file '%s' but it does not exist.", filename) + return {} + +# set them here in case the tests are running in a subprocess that doesn't call run_tests +if os.getenv("SLOW_TESTS_FILE", ""): + slow_tests_dict = maybe_load_json(os.getenv("SLOW_TESTS_FILE", "")) +if os.getenv("DISABLED_TESTS_FILE", ""): + disabled_tests_dict = maybe_load_json(os.getenv("DISABLED_TESTS_FILE", "")) + +NATIVE_DEVICES = ('cpu', 'cuda', 'xpu', 'meta', torch._C._get_privateuse1_backend_name()) + +check_names = ['orin', 'concord', 'galen', 'xavier', 'nano', 'jetson', 'tegra'] +IS_JETSON = any(name in platform.platform() for name in check_names) + +def gcIfJetson(fn): + # Irregular Jetson host/device memory setup requires cleanup to avoid tests being killed + @functools.wraps(fn) + def wrapper(*args, **kwargs): + if IS_JETSON: + gc.collect() + torch.cuda.empty_cache() + fn(*args, **kwargs) + return wrapper + +# Tries to extract the current test function by crawling the stack. +# If unsuccessful, return None. +def extract_test_fn() -> Optional[Callable]: + try: + stack = inspect.stack() + for frame_info in stack: + frame = frame_info.frame + if "self" not in frame.f_locals: + continue + self_val = frame.f_locals["self"] + if isinstance(self_val, unittest.TestCase): + test_id = self_val.id() + test_name = test_id.split('.')[2] + test_fn = getattr(self_val, test_name).__func__ + return test_fn + except Exception: + pass + return None + +# Contains tracked input data useful for debugging purposes +@dataclass +class TrackedInput: + index: int + val: Any + type_desc: str + +# Attempt to pull out tracked input information from the test function. +# A TrackedInputIter is used to insert this information. +def get_tracked_input() -> Optional[TrackedInput]: + test_fn = extract_test_fn() + if test_fn is None: + return None + if not hasattr(test_fn, "tracked_input"): + return None + return test_fn.tracked_input + +def clear_tracked_input(): + test_fn = extract_test_fn() + if test_fn is None: + return + if not hasattr(test_fn, "tracked_input"): + return None + test_fn.tracked_input = None + +# Wraps an iterator and tracks the most recent value the iterator produces +# for debugging purposes. Tracked values are stored on the test function. +class TrackedInputIter: + def __init__(self, child_iter, input_type_desc, + callback=lambda x: x, set_seed=True, restrict_to_index=None): + self.child_iter = enumerate(child_iter) + # Input type describes the things we're tracking (e.g. "sample input", "error input"). + self.input_type_desc = input_type_desc + # Callback is run on each iterated thing to get the thing to track. + self.callback = callback + self.test_fn = extract_test_fn() + # Indicates whether the random seed should be set before each call to the iterator + self.set_seed = set_seed + # Indicates that iteration should be restricted to only the provided index. + # If None, no restriction is done + self.restrict_to_index = restrict_to_index + + def __iter__(self): + return self + + def __next__(self): + while True: + if self.set_seed: + # use a test-name-specific hash for the seed if possible + seed = ( + int.from_bytes(hashlib.sha256( + self.test_fn.__qualname__.encode("utf-8")).digest()[:4], 'little') + if self.test_fn is not None else SEED + ) + set_rng_seed(seed) + + # allow StopIteration to bubble up + input_idx, input_val = next(self.child_iter) + if (self.restrict_to_index is None) or (input_idx == self.restrict_to_index): + break + + self._set_tracked_input( + TrackedInput( + index=input_idx, val=self.callback(input_val), type_desc=self.input_type_desc + ) + ) + return input_val + + def _set_tracked_input(self, tracked_input: TrackedInput): + if self.test_fn is None: + return + if not hasattr(self.test_fn, "tracked_input"): + return + self.test_fn.tracked_input = tracked_input + +class _TestParametrizer: + """ + Decorator class for parametrizing a test function, yielding a set of new tests spawned + from the original generic test, each specialized for a specific set of test inputs. For + example, parametrizing a test across the set of ops will result in a test function per op. + + The decision of how to parametrize / what to parametrize over is intended to be implemented + by each derived class. + + In the details, the decorator adds a 'parametrize_fn' property to the test function. This function + is intended to be called later by one of: + * Device-specific test instantiation via instantiate_device_type_tests(). Note that for this + case there is no need to explicitly parametrize over device type, as that is handled separately. + * Device-agnostic parametrized test instantiation via instantiate_parametrized_tests(). + + If the decorator is applied to a test function that already has a 'parametrize_fn' property, a new + composite 'parametrize_fn' will be created that generates tests with the product of the parameters + generated by the old and new parametrize_fns. This allows for convenient composability of decorators. + """ + def _parametrize_test(self, test, generic_cls, device_cls): + """ + Parametrizes the given test function across whatever dimension is specified by the derived class. + Tests can be parametrized over any arbitrary dimension or combination of dimensions, such as all + ops, all modules, or all ops + their associated dtypes. + + Args: + test (fn): Test function to parametrize over + generic_cls (class): Generic test class object containing tests (e.g. TestFoo) + device_cls (class): Device-specialized test class object (e.g. TestFooCPU); set to None + if the tests are not part of a device-specific set + + Returns: + Generator object returning 4-tuples of: + test (fn): Parametrized test function; must support a device arg and args for any params + test_name (str): Parametrized suffix for the test (e.g. opname_int64); will be appended to + the base name of the test + param_kwargs (dict): Param kwargs to pass to the test (e.g. {'op': 'add', 'dtype': torch.int64}) + decorator_fn (callable): Callable[[Dict], List] for list of decorators to apply given param_kwargs + """ + raise NotImplementedError + + def __call__(self, fn): + if hasattr(fn, 'parametrize_fn'): + # Do composition with the product of args. + old_parametrize_fn = fn.parametrize_fn + new_parametrize_fn = self._parametrize_test + fn.parametrize_fn = compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn) + else: + fn.parametrize_fn = self._parametrize_test + return fn + + +def compose_parametrize_fns(old_parametrize_fn, new_parametrize_fn): + """ + Returns a parametrize_fn that parametrizes over the product of the parameters handled + by the given parametrize_fns. Each given parametrize_fn should each have the signature + f(test, generic_cls, device_cls). + + The test names will be a combination of the names produced by the parametrize_fns in + "_" order. This order is done to match intuition for constructed names + when composing multiple decorators; the names will be built in top to bottom order when stacking + parametrization decorators. + + Args: + old_parametrize_fn (callable) - First parametrize_fn to compose. + new_parametrize_fn (callable) - Second parametrize_fn to compose. + """ + + def composite_fn(test, generic_cls, device_cls, + old_parametrize_fn=old_parametrize_fn, + new_parametrize_fn=new_parametrize_fn): + old_tests = list(old_parametrize_fn(test, generic_cls, device_cls)) + for (old_test, old_test_name, old_param_kwargs, old_dec_fn) in old_tests: + for (new_test, new_test_name, new_param_kwargs, new_dec_fn) in \ + new_parametrize_fn(old_test, generic_cls, device_cls): + redundant_params = set(old_param_kwargs.keys()).intersection(new_param_kwargs.keys()) + if redundant_params: + raise RuntimeError('Parametrization over the same parameter by multiple parametrization ' + f'decorators is not supported. For test "{test.__name__}", the following parameters ' + f'are handled multiple times: {redundant_params}') + full_param_kwargs = {**old_param_kwargs, **new_param_kwargs} + merged_test_name = '{}{}{}'.format(new_test_name, + '_' if old_test_name != '' and new_test_name != '' else '', + old_test_name) + + def merged_decorator_fn(param_kwargs, old_dec_fn=old_dec_fn, new_dec_fn=new_dec_fn): + return list(old_dec_fn(param_kwargs)) + list(new_dec_fn(param_kwargs)) + + yield (new_test, merged_test_name, full_param_kwargs, merged_decorator_fn) + + return composite_fn + + +def instantiate_parametrized_tests(generic_cls): + """ + Instantiates tests that have been decorated with a parametrize_fn. This is generally performed by a + decorator subclass of _TestParametrizer. The generic test will be replaced on the test class by + parametrized tests with specialized names. This should be used instead of + instantiate_device_type_tests() if the test class contains device-agnostic tests. + + You can also use it as a class decorator. E.g. + + ``` + @instantiate_parametrized_tests + class TestFoo(TestCase): + ... + ``` + + Args: + generic_cls (class): Generic test class object containing tests (e.g. TestFoo) + """ + for attr_name in tuple(dir(generic_cls)): + class_attr = getattr(generic_cls, attr_name) + if not hasattr(class_attr, 'parametrize_fn'): + continue + + # Remove the generic test from the test class. + delattr(generic_cls, attr_name) + + # Add parametrized tests to the test class. + def instantiate_test_helper(cls, name, test, param_kwargs): + @wraps(test) + def instantiated_test(self, param_kwargs=param_kwargs): + test(self, **param_kwargs) + + assert not hasattr(generic_cls, name), f"Redefinition of test {name}" + setattr(generic_cls, name, instantiated_test) + + for (test, test_suffix, param_kwargs, decorator_fn) in class_attr.parametrize_fn( + class_attr, generic_cls=generic_cls, device_cls=None): + full_name = f'{test.__name__}_{test_suffix}' + + # Apply decorators based on full param kwargs. + for decorator in decorator_fn(param_kwargs): + test = decorator(test) + + instantiate_test_helper(cls=generic_cls, name=full_name, test=test, param_kwargs=param_kwargs) + return generic_cls + + +class subtest: + """ + Explicit subtest case for use with test parametrization. + Allows for explicit naming of individual subtest cases as well as applying + decorators to the parametrized test. + + Args: + arg_values (iterable): Iterable of arg values (e.g. range(10)) or + tuples of arg values (e.g. [(1, 2), (3, 4)]). + name (str): Optional name to use for the test. + decorators (iterable): Iterable of decorators to apply to the generated test. + """ + __slots__ = ['arg_values', 'name', 'decorators'] + + def __init__(self, arg_values, name=None, decorators=None): + self.arg_values = arg_values + self.name = name + self.decorators = decorators if decorators else [] + + +class parametrize(_TestParametrizer): + """ + Decorator for applying generic test parametrizations. + + The interface for this decorator is modeled after `@pytest.mark.parametrize`. + Basic usage between this decorator and pytest's is identical. The first argument + should be a string containing comma-separated names of parameters for the test, and + the second argument should be an iterable returning values or tuples of values for + the case of multiple parameters. + + Beyond this basic usage, the decorator provides some additional functionality that + pytest does not. + + 1. Parametrized tests end up as generated test functions on unittest test classes. + Since this differs from how pytest works, this decorator takes on the additional + responsibility of naming these test functions. The default test names consists of + the test's base name followed by each parameter name + value (e.g. "test_bar_x_1_y_foo"), + but custom names can be defined using `name_fn` or the `subtest` structure (see below). + + 2. The decorator specially handles parameter values of type `subtest`, which allows for + more fine-grained control over both test naming and test execution. In particular, it can + be used to tag subtests with explicit test names or apply arbitrary decorators (see examples + below). + + Examples:: + + @parametrize("x", range(5)) + def test_foo(self, x): + ... + + @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')]) + def test_bar(self, x, y): + ... + + @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')], + name_fn=lambda x, y: '{}_{}'.format(x, y)) + def test_bar_custom_names(self, x, y): + ... + + @parametrize("x, y", [subtest((1, 2), name='double'), + subtest((1, 3), name='triple', decorators=[unittest.expectedFailure]), + subtest((1, 4), name='quadruple')]) + def test_baz(self, x, y): + ... + + To actually instantiate the parametrized tests, one of instantiate_parametrized_tests() or + instantiate_device_type_tests() should be called. The former is intended for test classes + that contain device-agnostic tests, while the latter should be used for test classes that + contain device-specific tests. Both support arbitrary parametrizations using the decorator. + + Args: + arg_str (str): String of arg names separate by commas (e.g. "x,y"). + arg_values (iterable): Iterable of arg values (e.g. range(10)) or + tuples of arg values (e.g. [(1, 2), (3, 4)]). + name_fn (Callable): Optional function that takes in parameters and returns subtest name. + """ + def __init__(self, arg_str, arg_values, name_fn=None): + self.arg_names: List[str] = [s.strip() for s in arg_str.split(',') if s != ''] + self.arg_values = arg_values + self.name_fn = name_fn + + def _formatted_str_repr(self, idx, name, value): + """ Returns a string representation for the given arg that is suitable for use in test function names. """ + if isinstance(value, torch.dtype): + return dtype_name(value) + elif isinstance(value, torch.device): + return str(value) + # Can't use isinstance as it would cause a circular import + elif type(value).__name__ in {'OpInfo', 'ModuleInfo'}: + return value.formatted_name + elif isinstance(value, (int, float, str)): + return f"{name}_{str(value).replace('.', '_')}" + else: + return f"{name}{idx}" + + def _default_subtest_name(self, idx, values): + return '_'.join([self._formatted_str_repr(idx, a, v) for a, v in zip(self.arg_names, values)]) + + def _get_subtest_name(self, idx, values, explicit_name=None): + if explicit_name: + subtest_name = explicit_name + elif self.name_fn: + subtest_name = self.name_fn(*values) + else: + subtest_name = self._default_subtest_name(idx, values) + return subtest_name + + def _parametrize_test(self, test, generic_cls, device_cls): + if len(self.arg_names) == 0: + # No additional parameters needed for the test. + test_name = '' + yield (test, test_name, {}, lambda _: []) + else: + # Each "values" item is expected to be either: + # * A tuple of values with one for each arg. For a single arg, a single item is expected. + # * A subtest instance with arg_values matching the previous. + values = check_exhausted_iterator = object() + for idx, values in enumerate(self.arg_values): + maybe_name = None + + decorators = [] + if isinstance(values, subtest): + sub = values + values = sub.arg_values + maybe_name = sub.name + + @wraps(test) + def test_wrapper(*args, **kwargs): + return test(*args, **kwargs) + + decorators = sub.decorators + gen_test = test_wrapper + else: + gen_test = test + + values = list(values) if len(self.arg_names) > 1 else [values] + if len(values) != len(self.arg_names): + raise RuntimeError(f'Expected # values == # arg names, but got: {len(values)} ' + f'values and {len(self.arg_names)} names for test "{test.__name__}"') + + param_kwargs = dict(zip(self.arg_names, values)) + + test_name = self._get_subtest_name(idx, values, explicit_name=maybe_name) + + def decorator_fn(_, decorators=decorators): + return decorators + + yield (gen_test, test_name, param_kwargs, decorator_fn) + + if values is check_exhausted_iterator: + raise ValueError(f'{test}: An empty arg_values was passed to @parametrize. ' + 'Note that this may result from reuse of a generator.') + + +class decorateIf(_TestParametrizer): + """ + Decorator for applying parameter-specific conditional decoration. + Composes with other test parametrizers (e.g. @modules, @ops, @parametrize, etc.). + + Examples:: + + @decorateIf(unittest.skip, lambda params: params["x"] == 2) + @parametrize("x", range(5)) + def test_foo(self, x): + ... + + @parametrize("x,y", [(1, 'foo'), (2, 'bar'), (3, 'baz')]) + @decorateIf( + unittest.expectedFailure, + lambda params: params["x"] == 3 and params["y"] == "baz" + ) + def test_bar(self, x, y): + ... + + @decorateIf( + unittest.expectedFailure, + lambda params: params["op"].name == "add" and params["dtype"] == torch.float16 + ) + @ops(op_db) + def test_op_foo(self, device, dtype, op): + ... + + @decorateIf( + unittest.skip, + lambda params: params["module_info"].module_cls is torch.nn.Linear and \ + params["device"] == "cpu" + ) + @modules(module_db) + def test_module_foo(self, device, dtype, module_info): + ... + + Args: + decorator: Test decorator to apply if the predicate is satisfied. + predicate_fn (Callable): Function taking in a dict of params and returning a boolean + indicating whether the decorator should be applied or not. + """ + def __init__(self, decorator, predicate_fn): + self.decorator = decorator + self.predicate_fn = predicate_fn + + def _parametrize_test(self, test, generic_cls, device_cls): + + # Leave test as-is and return the appropriate decorator_fn. + def decorator_fn(params, decorator=self.decorator, predicate_fn=self.predicate_fn): + if predicate_fn(params): + return [decorator] + else: + return [] + + @wraps(test) + def test_wrapper(*args, **kwargs): + return test(*args, **kwargs) + + test_name = '' + yield (test_wrapper, test_name, {}, decorator_fn) + + +class ProfilingMode(Enum): + LEGACY = 1 + SIMPLE = 2 + PROFILING = 3 + +def cppProfilingFlagsToProfilingMode(): + old_prof_exec_state = torch._C._jit_set_profiling_executor(True) + old_prof_mode_state = torch._C._get_graph_executor_optimize(True) + torch._C._jit_set_profiling_executor(old_prof_exec_state) + torch._C._get_graph_executor_optimize(old_prof_mode_state) + + if old_prof_exec_state: + if old_prof_mode_state: + return ProfilingMode.PROFILING + else: + return ProfilingMode.SIMPLE + else: + return ProfilingMode.LEGACY + +@contextmanager +def enable_profiling_mode_for_profiling_tests(): + if GRAPH_EXECUTOR == ProfilingMode.PROFILING: + old_prof_exec_state = torch._C._jit_set_profiling_executor(True) + old_prof_mode_state = torch._C._get_graph_executor_optimize(True) + try: + yield + finally: + if GRAPH_EXECUTOR == ProfilingMode.PROFILING: + torch._C._jit_set_profiling_executor(old_prof_exec_state) + torch._C._get_graph_executor_optimize(old_prof_mode_state) + +@contextmanager +def enable_profiling_mode(): + old_prof_exec_state = torch._C._jit_set_profiling_executor(True) + old_prof_mode_state = torch._C._get_graph_executor_optimize(True) + try: + yield + finally: + torch._C._jit_set_profiling_executor(old_prof_exec_state) + torch._C._get_graph_executor_optimize(old_prof_mode_state) + +@contextmanager +def num_profiled_runs(num_runs): + old_num_runs = torch._C._jit_set_num_profiled_runs(num_runs) + try: + yield + finally: + torch._C._jit_set_num_profiled_runs(old_num_runs) + +func_call = torch._C.ScriptFunction.__call__ +meth_call = torch._C.ScriptMethod.__call__ + +def prof_callable(callable, *args, **kwargs): + if 'profile_and_replay' in kwargs: + del kwargs['profile_and_replay'] + if GRAPH_EXECUTOR == ProfilingMode.PROFILING: + with enable_profiling_mode_for_profiling_tests(): + callable(*args, **kwargs) + return callable(*args, **kwargs) + + return callable(*args, **kwargs) + +def prof_func_call(*args, **kwargs): + return prof_callable(func_call, *args, **kwargs) + +def prof_meth_call(*args, **kwargs): + return prof_callable(meth_call, *args, **kwargs) + +torch._C.ScriptFunction.__call__ = prof_func_call # type: ignore[method-assign] +torch._C.ScriptMethod.__call__ = prof_meth_call # type: ignore[method-assign] + +def _get_test_report_path(): + # allow users to override the test file location. We need this + # because the distributed tests run the same test file multiple + # times with different configurations. + override = os.environ.get('TEST_REPORT_SOURCE_OVERRIDE') + test_source = override if override is not None else 'python-unittest' + return os.path.join('test-reports', test_source) + +is_running_via_run_test = "run_test.py" in getattr(__main__, "__file__", "") +parser = argparse.ArgumentParser(add_help=not is_running_via_run_test, allow_abbrev=False) +parser.add_argument('--subprocess', action='store_true', + help='whether to run each test in a subprocess') +parser.add_argument('--seed', type=int, default=1234) +parser.add_argument('--accept', action='store_true') +parser.add_argument('--jit-executor', '--jit_executor', type=str) +parser.add_argument('--repeat', type=int, default=1) +parser.add_argument('--test-bailouts', '--test_bailouts', action='store_true') +parser.add_argument('--use-pytest', action='store_true') +parser.add_argument('--save-xml', nargs='?', type=str, + const=_get_test_report_path(), + default=_get_test_report_path() if IS_CI else None) +parser.add_argument('--discover-tests', action='store_true') +parser.add_argument('--log-suffix', type=str, default="") +parser.add_argument('--run-parallel', type=int, default=1) +parser.add_argument('--import-slow-tests', type=str, nargs='?', const=DEFAULT_SLOW_TESTS_FILE) +parser.add_argument('--import-disabled-tests', type=str, nargs='?', const=DEFAULT_DISABLED_TESTS_FILE) +parser.add_argument('--rerun-disabled-tests', action='store_true') +parser.add_argument('--pytest-single-test', type=str, nargs=1) +if sys.version_info >= (3, 9): + parser.add_argument('--showlocals', action=argparse.BooleanOptionalAction, default=False) +else: + parser.add_argument('--showlocals', action='store_true', default=False) + parser.add_argument('--no-showlocals', dest='showlocals', action='store_false') + +# Only run when -h or --help flag is active to display both unittest and parser help messages. +def run_unittest_help(argv): + unittest.main(argv=argv) + +if '-h' in sys.argv or '--help' in sys.argv: + help_thread = threading.Thread(target=run_unittest_help, args=(sys.argv,)) + help_thread.start() + help_thread.join() + +args, remaining = parser.parse_known_args() +if args.jit_executor == 'legacy': + GRAPH_EXECUTOR = ProfilingMode.LEGACY +elif args.jit_executor == 'profiling': + GRAPH_EXECUTOR = ProfilingMode.PROFILING +elif args.jit_executor == 'simple': + GRAPH_EXECUTOR = ProfilingMode.SIMPLE +else: + # infer flags based on the default settings + GRAPH_EXECUTOR = cppProfilingFlagsToProfilingMode() + +RERUN_DISABLED_TESTS = args.rerun_disabled_tests + +SLOW_TESTS_FILE = args.import_slow_tests +DISABLED_TESTS_FILE = args.import_disabled_tests +LOG_SUFFIX = args.log_suffix +RUN_PARALLEL = args.run_parallel +TEST_BAILOUTS = args.test_bailouts +USE_PYTEST = args.use_pytest +PYTEST_SINGLE_TEST = args.pytest_single_test +TEST_DISCOVER = args.discover_tests +TEST_IN_SUBPROCESS = args.subprocess +TEST_SAVE_XML = args.save_xml +REPEAT_COUNT = args.repeat +SEED = args.seed +SHOWLOCALS = args.showlocals +if not getattr(expecttest, "ACCEPT", False): + expecttest.ACCEPT = args.accept +UNITTEST_ARGS = [sys.argv[0]] + remaining +torch.manual_seed(SEED) + +# CI Prefix path used only on CI environment +CI_TEST_PREFIX = str(Path(os.getcwd())) +CI_PT_ROOT = str(Path(os.getcwd()).parent) +CI_FUNCTORCH_ROOT = str(os.path.join(Path(os.getcwd()).parent, "functorch")) + +def wait_for_process(p, timeout=None): + try: + return p.wait(timeout=timeout) + except KeyboardInterrupt: + # Give `p` a chance to handle KeyboardInterrupt. Without this, + # `pytest` can't print errors it collected so far upon KeyboardInterrupt. + exit_status = p.wait(timeout=5) + if exit_status is not None: + return exit_status + else: + p.kill() + raise + except subprocess.TimeoutExpired: + # send SIGINT to give pytest a chance to make xml + p.send_signal(signal.SIGINT) + exit_status = None + try: + exit_status = p.wait(timeout=5) + # try to handle the case where p.wait(timeout=5) times out as well as + # otherwise the wait() call in the finally block can potentially hang + except subprocess.TimeoutExpired: + pass + if exit_status is not None: + return exit_status + else: + p.kill() + raise + except: # noqa: B001,E722, copied from python core library + p.kill() + raise + finally: + # Always call p.wait() to ensure exit + p.wait() + +def shell(command, cwd=None, env=None, stdout=None, stderr=None, timeout=None): + sys.stdout.flush() + sys.stderr.flush() + # The following cool snippet is copied from Py3 core library subprocess.call + # only the with + # 1. `except KeyboardInterrupt` block added for SIGINT handling. + # 2. In Py2, subprocess.Popen doesn't return a context manager, so we do + # `p.wait()` in a `final` block for the code to be portable. + # + # https://github.com/python/cpython/blob/71b6c1af727fbe13525fb734568057d78cea33f3/Lib/subprocess.py#L309-L323 + assert not isinstance(command, str), "Command to shell should be a list or tuple of tokens" + p = subprocess.Popen(command, universal_newlines=True, cwd=cwd, env=env, stdout=stdout, stderr=stderr) + return wait_for_process(p, timeout=timeout) + + +def retry_shell( + command, + cwd=None, + env=None, + stdout=None, + stderr=None, + timeout=None, + retries=1, + was_rerun=False, +) -> Tuple[int, bool]: + # Returns exicode + whether it was rerun + assert ( + retries >= 0 + ), f"Expecting non negative number for number of retries, got {retries}" + try: + exit_code = shell( + command, cwd=cwd, env=env, stdout=stdout, stderr=stderr, timeout=timeout + ) + if exit_code == 0 or retries == 0: + return exit_code, was_rerun + print( + f"Got exit code {exit_code}, retrying (retries left={retries})", + file=stdout, + flush=True, + ) + except subprocess.TimeoutExpired: + if retries == 0: + print( + f"Command took >{timeout // 60}min, returning 124", + file=stdout, + flush=True, + ) + return 124, was_rerun + print( + f"Command took >{timeout // 60}min, retrying (retries left={retries})", + file=stdout, + flush=True, + ) + return retry_shell( + command, + cwd=cwd, + env=env, + stdout=stdout, + stderr=stderr, + timeout=timeout, + retries=retries - 1, + was_rerun=True, + ) + + +def discover_test_cases_recursively(suite_or_case): + if isinstance(suite_or_case, unittest.TestCase): + return [suite_or_case] + rc = [] + for element in suite_or_case: + print(element) + rc.extend(discover_test_cases_recursively(element)) + return rc + +def get_test_names(test_cases): + return ['.'.join(case.id().split('.')[-2:]) for case in test_cases] + +def _print_test_names(): + suite = unittest.TestLoader().loadTestsFromModule(__main__) + test_cases = discover_test_cases_recursively(suite) + for name in get_test_names(test_cases): + print(name) + +def chunk_list(lst, nchunks): + return [lst[i::nchunks] for i in range(nchunks)] + +# sanitize filename e.g., distributed/pipeline/sync/skip/test_api.py -> distributed.pipeline.sync.skip.test_api +def sanitize_test_filename(filename): + # inspect.getfile returns absolute path in some CI jobs, converting it to relative path if needed + if filename.startswith(CI_TEST_PREFIX): + filename = filename[len(CI_TEST_PREFIX) + 1:] + strip_py = re.sub(r'.py$', '', filename) + return re.sub('/', r'.', strip_py) + +def lint_test_case_extension(suite): + succeed = True + for test_case_or_suite in suite: + test_case = test_case_or_suite + if isinstance(test_case_or_suite, unittest.TestSuite): + first_test = test_case_or_suite._tests[0] if len(test_case_or_suite._tests) > 0 else None + if first_test is not None and isinstance(first_test, unittest.TestSuite): + return succeed and lint_test_case_extension(test_case_or_suite) + test_case = first_test + + if test_case is not None: + test_class = test_case.id().split('.', 1)[1].split('.')[0] + if not isinstance(test_case, TestCase): + err = "This test class should extend from torch.testing._internal.common_utils.TestCase but it doesn't." + print(f"{test_class} - failed. {err}") + succeed = False + return succeed + + +def get_report_path(argv=UNITTEST_ARGS, pytest=False): + test_filename = sanitize_test_filename(argv[0]) + test_report_path = TEST_SAVE_XML + LOG_SUFFIX + test_report_path = os.path.join(test_report_path, test_filename) + if pytest: + test_report_path = test_report_path.replace('python-unittest', 'python-pytest') + os.makedirs(test_report_path, exist_ok=True) + test_report_path = os.path.join(test_report_path, f"{test_filename}-{os.urandom(8).hex()}.xml") + return test_report_path + os.makedirs(test_report_path, exist_ok=True) + return test_report_path + + +def sanitize_pytest_xml(xml_file: str): + # pytext xml is different from unittext xml, this function makes pytest xml more similar to unittest xml + # consider somehow modifying the XML logger in conftest to do this instead + import xml.etree.ElementTree as ET + tree = ET.parse(xml_file) + for testcase in tree.iter('testcase'): + full_classname = testcase.attrib.get("classname") + if full_classname is None: + continue + # The test prefix is optional + regex_result = re.search(r"^(test\.)?(?P.*)\.(?P[^\.]*)$", full_classname) + if regex_result is None: + continue + classname = regex_result.group("classname") + file = regex_result.group("file").replace(".", "/") + testcase.set("classname", classname) + testcase.set("file", f"{file}.py") + tree.write(xml_file) + + +def get_pytest_test_cases(argv: List[str]) -> List[str]: + class TestCollectorPlugin: + def __init__(self) -> None: + self.tests = [] + + def pytest_collection_finish(self, session): + for item in session.items: + self.tests.append(session.config.cwd_relative_nodeid(item.nodeid)) + + test_collector_plugin = TestCollectorPlugin() + import pytest + pytest.main( + [arg for arg in argv if arg != '-vv'] + ['--collect-only', '-qq', '--use-main-module'], + plugins=[test_collector_plugin] + ) + return test_collector_plugin.tests + + +def run_tests(argv=UNITTEST_ARGS): + # import test files. + if SLOW_TESTS_FILE: + if os.path.exists(SLOW_TESTS_FILE): + with open(SLOW_TESTS_FILE) as fp: + global slow_tests_dict + slow_tests_dict = json.load(fp) + # use env vars so pytest-xdist subprocesses can still access them + os.environ['SLOW_TESTS_FILE'] = SLOW_TESTS_FILE + else: + warnings.warn(f'slow test file provided but not found: {SLOW_TESTS_FILE}') + if DISABLED_TESTS_FILE: + if os.path.exists(DISABLED_TESTS_FILE): + with open(DISABLED_TESTS_FILE) as fp: + global disabled_tests_dict + disabled_tests_dict = json.load(fp) + os.environ['DISABLED_TESTS_FILE'] = DISABLED_TESTS_FILE + else: + warnings.warn(f'disabled test file provided but not found: {DISABLED_TESTS_FILE}') + # Determine the test launch mechanism + if TEST_DISCOVER: + _print_test_names() + return + + # Before running the tests, lint to check that every test class extends from TestCase + suite = unittest.TestLoader().loadTestsFromModule(__main__) + if not lint_test_case_extension(suite): + sys.exit(1) + + if SHOWLOCALS: + argv = [ + argv[0], + *(["--showlocals", "--tb=long", "--color=yes"] if USE_PYTEST else ["--locals"]), + *argv[1:], + ] + + if TEST_IN_SUBPROCESS: + other_args = [] + if DISABLED_TESTS_FILE: + other_args.append("--import-disabled-tests") + if SLOW_TESTS_FILE: + other_args.append("--import-slow-tests") + if USE_PYTEST: + other_args.append("--use-pytest") + if RERUN_DISABLED_TESTS: + other_args.append("--rerun-disabled-tests") + if TEST_SAVE_XML: + other_args += ['--save-xml', args.save_xml] + + test_cases = ( + get_pytest_test_cases(argv) if USE_PYTEST else + [case.id().split('.', 1)[1] for case in discover_test_cases_recursively(suite)] + ) + + failed_tests = [] + + for test_case_full_name in test_cases: + + cmd = ( + [sys.executable] + [argv[0]] + other_args + argv[1:] + + (["--pytest-single-test"] if USE_PYTEST else []) + + [test_case_full_name] + ) + string_cmd = " ".join(cmd) + + timeout = None if RERUN_DISABLED_TESTS else 15 * 60 + + exitcode, _ = retry_shell(cmd, timeout=timeout, retries=0 if RERUN_DISABLED_TESTS else 1) + + if exitcode != 0: + # This is sort of hacky, but add on relevant env variables for distributed tests. + if 'TestDistBackendWithSpawn' in test_case_full_name: + backend = os.environ.get("BACKEND", "") + world_size = os.environ.get("WORLD_SIZE", "") + env_prefix = f"BACKEND={backend} WORLD_SIZE={world_size}" + string_cmd = env_prefix + " " + string_cmd + # Log the command to reproduce the failure. + print(f"Test exited with non-zero exitcode {exitcode}. Command to reproduce: {string_cmd}") + failed_tests.append(test_case_full_name) + + assert len(failed_tests) == 0, "{} unit test(s) failed:\n\t{}".format( + len(failed_tests), '\n\t'.join(failed_tests)) + + elif RUN_PARALLEL > 1: + test_cases = discover_test_cases_recursively(suite) + test_batches = chunk_list(get_test_names(test_cases), RUN_PARALLEL) + processes = [] + for i in range(RUN_PARALLEL): + command = [sys.executable] + argv + [f'--log-suffix=-shard-{i + 1}'] + test_batches[i] + processes.append(subprocess.Popen(command, universal_newlines=True)) + failed = False + for p in processes: + failed |= wait_for_process(p) != 0 + assert not failed, "Some test shards have failed" + elif USE_PYTEST: + pytest_args = argv + ["--use-main-module"] + if TEST_SAVE_XML: + test_report_path = get_report_path(pytest=True) + print(f'Test results will be stored in {test_report_path}') + pytest_args.append(f'--junit-xml-reruns={test_report_path}') + if PYTEST_SINGLE_TEST: + pytest_args = PYTEST_SINGLE_TEST + pytest_args[1:] + + import pytest + os.environ["NO_COLOR"] = "1" + exit_code = pytest.main(args=pytest_args) + if TEST_SAVE_XML: + sanitize_pytest_xml(test_report_path) + + if not RERUN_DISABLED_TESTS: + # exitcode of 5 means no tests were found, which happens since some test configs don't + # run tests from certain files + sys.exit(0 if exit_code == 5 else exit_code) + else: + # Only record the test report and always return a success code when running under rerun + # disabled tests mode + sys.exit(0) + elif TEST_SAVE_XML is not None: + # import here so that non-CI doesn't need xmlrunner installed + import xmlrunner # type: ignore[import] + from xmlrunner.result import _XMLTestResult # type: ignore[import] + + class XMLTestResultVerbose(_XMLTestResult): + """ + Adding verbosity to test outputs: + by default test summary prints 'skip', + but we want to also print the skip reason. + GH issue: https://github.com/pytorch/pytorch/issues/69014 + + This works with unittest_xml_reporting<=3.2.0,>=2.0.0 + (3.2.0 is latest at the moment) + """ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def addSkip(self, test, reason): + super().addSkip(test, reason) + for c in self.callback.__closure__: + if isinstance(c.cell_contents, str) and c.cell_contents == 'skip': + # this message is printed in test summary; + # it stands for `verbose_str` captured in the closure + c.cell_contents = f"skip: {reason}" + + def printErrors(self) -> None: + super().printErrors() + self.printErrorList("XPASS", self.unexpectedSuccesses) + test_report_path = get_report_path() + verbose = '--verbose' in argv or '-v' in argv + if verbose: + print(f'Test results will be stored in {test_report_path}') + unittest.main(argv=argv, testRunner=xmlrunner.XMLTestRunner( + output=test_report_path, + verbosity=2 if verbose else 1, + resultclass=XMLTestResultVerbose)) + elif REPEAT_COUNT > 1: + for _ in range(REPEAT_COUNT): + if not unittest.main(exit=False, argv=argv).result.wasSuccessful(): + sys.exit(-1) + else: + unittest.main(argv=argv) + +IS_LINUX = sys.platform == "linux" +IS_WINDOWS = sys.platform == "win32" +IS_MACOS = sys.platform == "darwin" +IS_PPC = platform.machine() == "ppc64le" +IS_X86 = platform.machine() in ('x86_64', 'i386') +IS_ARM64 = platform.machine() in ('arm64', 'aarch64') + +def is_avx512_vnni_supported(): + if sys.platform != 'linux': + return False + with open("/proc/cpuinfo", encoding="ascii") as f: + lines = f.read() + return "vnni" in lines + +IS_AVX512_VNNI_SUPPORTED = is_avx512_vnni_supported() + +if IS_WINDOWS: + @contextmanager + def TemporaryFileName(*args, **kwargs): + # Ideally we would like to not have to manually delete the file, but NamedTemporaryFile + # opens the file, and it cannot be opened multiple times in Windows. To support Windows, + # close the file after creation and try to remove it manually + if 'delete' in kwargs: + if kwargs['delete'] is not False: + raise UserWarning("only TemporaryFileName with delete=False is supported on Windows.") + else: + kwargs['delete'] = False + f = tempfile.NamedTemporaryFile(*args, **kwargs) + try: + f.close() + yield f.name + finally: + os.unlink(f.name) +else: + @contextmanager # noqa: T484 + def TemporaryFileName(*args, **kwargs): + with tempfile.NamedTemporaryFile(*args, **kwargs) as f: + yield f.name + +if IS_WINDOWS: + @contextmanager + def TemporaryDirectoryName(suffix=None): + # On Windows the directory created by TemporaryDirectory is likely to be removed prematurely, + # so we first create the directory using mkdtemp and then remove it manually + try: + dir_name = tempfile.mkdtemp(suffix=suffix) + yield dir_name + finally: + shutil.rmtree(dir_name) +else: + @contextmanager # noqa: T484 + def TemporaryDirectoryName(suffix=None): + with tempfile.TemporaryDirectory(suffix=suffix) as d: + yield d + + +def is_privateuse1_backend_available(): + privateuse1_backend_name = torch._C._get_privateuse1_backend_name() + privateuse1_backend_module = getattr(torch, privateuse1_backend_name, None) + return hasattr(privateuse1_backend_module, "is_available") and privateuse1_backend_module.is_available() + + +IS_FILESYSTEM_UTF8_ENCODING = sys.getfilesystemencoding() == 'utf-8' + +TEST_NUMPY = _check_module_exists('numpy') +TEST_FAIRSEQ = _check_module_exists('fairseq') +TEST_SCIPY = _check_module_exists('scipy') +TEST_MKL = torch.backends.mkl.is_available() +TEST_MPS = torch.backends.mps.is_available() +TEST_XPU = torch.xpu.is_available() +TEST_HPU = True if (hasattr(torch, "hpu") and torch.hpu.is_available()) else False +TEST_CUDA = torch.cuda.is_available() +custom_device_mod = getattr(torch, torch._C._get_privateuse1_backend_name(), None) +TEST_PRIVATEUSE1 = is_privateuse1_backend_available() +TEST_PRIVATEUSE1_DEVICE_TYPE = torch._C._get_privateuse1_backend_name() +TEST_NUMBA = _check_module_exists('numba') +TEST_TRANSFORMERS = _check_module_exists('transformers') +TEST_DILL = _check_module_exists('dill') + +TEST_LIBROSA = _check_module_exists('librosa') and not IS_ARM64 + +TEST_OPT_EINSUM = _check_module_exists('opt_einsum') + +TEST_Z3 = _check_module_exists('z3') + +def split_if_not_empty(x: str): + return x.split(",") if len(x) != 0 else [] + +NOTEST_CPU = "cpu" in split_if_not_empty(os.getenv('PYTORCH_TESTING_DEVICE_EXCEPT_FOR', '')) + +skipIfNoDill = unittest.skipIf(not TEST_DILL, "no dill") + + +# Python 2.7 doesn't have spawn +NO_MULTIPROCESSING_SPAWN: bool = TestEnvironment.def_flag( + "NO_MULTIPROCESSING_SPAWN", + env_var="NO_MULTIPROCESSING_SPAWN", +) +TEST_WITH_ASAN: bool = TestEnvironment.def_flag( + "TEST_WITH_ASAN", + env_var="PYTORCH_TEST_WITH_ASAN", +) +TEST_WITH_DEV_DBG_ASAN: bool = TestEnvironment.def_flag( + "TEST_WITH_DEV_DBG_ASAN", + env_var="PYTORCH_TEST_WITH_DEV_DBG_ASAN", +) +TEST_WITH_TSAN: bool = TestEnvironment.def_flag( + "TEST_WITH_TSAN", + env_var="PYTORCH_TEST_WITH_TSAN", +) +TEST_WITH_UBSAN: bool = TestEnvironment.def_flag( + "TEST_WITH_UBSAN", + env_var="PYTORCH_TEST_WITH_UBSAN", +) +TEST_WITH_ROCM: bool = TestEnvironment.def_flag( + "TEST_WITH_ROCM", + env_var="PYTORCH_TEST_WITH_ROCM", +) + +# TODO: Remove PYTORCH_MIOPEN_SUGGEST_NHWC once ROCm officially supports NHWC in MIOpen +# See #64427 +TEST_WITH_MIOPEN_SUGGEST_NHWC = os.getenv('PYTORCH_MIOPEN_SUGGEST_NHWC', '0') == '1' +# Enables tests that are slow to run (disabled by default) +TEST_WITH_SLOW: bool = TestEnvironment.def_flag( + "TEST_WITH_SLOW", + env_var="PYTORCH_TEST_WITH_SLOW", +) + +# Disables non-slow tests (these tests enabled by default) +# This is usually used in conjunction with TEST_WITH_SLOW to +# run *only* slow tests. (I could have done an enum, but +# it felt a little awkward. +TEST_SKIP_FAST: bool = TestEnvironment.def_flag( + "TEST_SKIP_FAST", + env_var="PYTORCH_TEST_SKIP_FAST", +) + +# Enables crossref tests, in addition to standard tests which +# are being run. crossref tests work by installing a torch +# function mode that runs extra compute alongside the regular +# computation that happens with the test. After both computations +# are done, we cross-reference them (thus the name) to check for +# correction, before throwing out the extra compute and proceeding +# as we had before. By default, we don't run these tests. +TEST_WITH_CROSSREF: bool = TestEnvironment.def_flag( + "TEST_WITH_CROSSREF", + env_var="PYTORCH_TEST_WITH_CROSSREF", +) + +TEST_SKIP_CUDAGRAPH: bool = TestEnvironment.def_flag( + "TEST_SKIP_CUDAGRAPH", + env_var="PYTORCH_TEST_SKIP_CUDAGRAPH", +) +TEST_CUDA_GRAPH = TEST_CUDA and (not TEST_SKIP_CUDAGRAPH) and ( + (torch.version.cuda and int(torch.version.cuda.split(".")[0]) >= 11) or + (torch.version.hip and float(".".join(torch.version.hip.split(".")[0:2])) >= 5.3) +) + +TEST_CUDA_CUDSS = TEST_CUDA and (torch.version.cuda and int(torch.version.cuda.split(".")[0]) >= 12) + +def allocator_option_enabled_fn(allocator_config, _, option): + if allocator_config is None: + return False + allocator_config = allocator_config.split(',') if ',' in allocator_config else [allocator_config] + mapping = dict([var.split(':') for var in allocator_config]) + + if option in mapping and mapping[option] == 'True': + return True + else: + return False + +EXPANDABLE_SEGMENTS: bool = TestEnvironment.def_flag( + "EXPANDABLE_SEGMENTS", + env_var="PYTORCH_CUDA_ALLOC_CONF", + enabled_fn=functools.partial(allocator_option_enabled_fn, option='expandable_segments'), +) + +if TEST_CUDA and 'NUM_PARALLEL_PROCS' in os.environ: + num_procs = int(os.getenv("NUM_PARALLEL_PROCS", "2")) + gb_available = torch.cuda.mem_get_info()[1] / 2 ** 30 + # other libraries take up about a little under 1 GB of space per process + torch.cuda.set_per_process_memory_fraction(round((gb_available - num_procs * .85) / gb_available / num_procs, 2)) + +requires_cuda = unittest.skipUnless(torch.cuda.is_available(), "Requires CUDA") + +def skipIfCrossRef(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_WITH_CROSSREF: + raise unittest.SkipTest("test doesn't currently with crossref") + else: + fn(*args, **kwargs) + return wrapper + +class CrossRefMode(torch.overrides.TorchFunctionMode): + def __torch_function__(self, func, types, args=(), kwargs=None): + kwargs = kwargs or {} + r = func(*args, **kwargs) + return r + +# Run PyTorch tests with TorchDynamo +TEST_WITH_TORCHINDUCTOR: bool = TestEnvironment.def_flag( + "TEST_WITH_TORCHINDUCTOR", + env_var="PYTORCH_TEST_WITH_INDUCTOR", +) +# AOT_EAGER not tested in ci, useful for debugging +TEST_WITH_AOT_EAGER: bool = TestEnvironment.def_flag( + "TEST_WITH_AOT_EAGER", + env_var="PYTORCH_TEST_WITH_AOT_EAGER", +) +TEST_WITH_TORCHDYNAMO: bool = TestEnvironment.def_flag( + "TEST_WITH_TORCHDYNAMO", + env_var="PYTORCH_TEST_WITH_DYNAMO", + implied_by_fn=lambda: TEST_WITH_TORCHINDUCTOR or TEST_WITH_AOT_EAGER, +) + +if TEST_WITH_TORCHDYNAMO: + import torch._dynamo + # Do not spend time on helper functions that are called with different inputs + torch._dynamo.config.accumulated_cache_size_limit = 64 + # Do not log compilation metrics from unit tests + torch._dynamo.config.log_compilation_metrics = False + if TEST_WITH_TORCHINDUCTOR: + import torch._inductor.config + torch._inductor.config.fallback_random = True + + +def xpassIfTorchDynamo(func): + return func if TEST_WITH_TORCHDYNAMO else unittest.expectedFailure(func) + + +def xfailIfTorchDynamo(func): + return unittest.expectedFailure(func) if TEST_WITH_TORCHDYNAMO else func + + +def skipIfTorchDynamo(msg="test doesn't currently work with dynamo"): + """ + Usage: + @skipIfTorchDynamo(msg) + def test_blah(self): + ... + """ + assert isinstance(msg, str), "Are you using skipIfTorchDynamo correctly?" + + def decorator(fn): + if not isinstance(fn, type): + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_WITH_TORCHDYNAMO: + raise unittest.SkipTest(msg) + else: + fn(*args, **kwargs) + return wrapper + + assert isinstance(fn, type) + if TEST_WITH_TORCHDYNAMO: + fn.__unittest_skip__ = True + fn.__unittest_skip_why__ = msg + + return fn + + return decorator + +def skipIfTorchInductor(msg="test doesn't currently work with torchinductor", + condition=TEST_WITH_TORCHINDUCTOR): + def decorator(fn): + if not isinstance(fn, type): + @wraps(fn) + def wrapper(*args, **kwargs): + if condition: + raise unittest.SkipTest(msg) + else: + fn(*args, **kwargs) + return wrapper + + assert isinstance(fn, type) + if condition: + fn.__unittest_skip__ = True + fn.__unittest_skip_why__ = msg + + return fn + + return decorator + +def serialTest(condition=True): + """ + Decorator for running tests serially. Requires pytest + """ + def decorator(fn): + if has_pytest and condition: + return pytest.mark.serial(fn) + return fn + return decorator + +def unMarkDynamoStrictTest(cls=None): + def decorator(cls): + cls.dynamo_strict = False + return cls + + if cls is None: + return decorator + else: + return decorator(cls) + + +def markDynamoStrictTest(cls_or_func=None, nopython=False): + """ + Marks the test as 'strict'. In strict mode, we reset before and after the + test, and run without suppress errors. + + Args: + - nopython: if we should run torch._dynamo.optimize with nopython={True/False}. + """ + def decorator(cls_or_func): + if inspect.isclass(cls_or_func): + cls_or_func.dynamo_strict = True + cls_or_func.dynamo_strict_nopython = nopython + return cls_or_func + + fn = cls_or_func + + @wraps(fn) + def wrapper(*args, **kwargs): + torch._dynamo.reset() + with unittest.mock.patch("torch._dynamo.config.suppress_errors", False): + fn(*args, **kwargs) + torch._dynamo.reset() + return wrapper + + if cls_or_func is None: + return decorator + else: + return decorator(cls_or_func) + + +def skipRocmIfTorchInductor(msg="test doesn't currently work with torchinductor on the ROCm stack"): + return skipIfTorchInductor(msg=msg, condition=TEST_WITH_ROCM and TEST_WITH_TORCHINDUCTOR) + +def skipIfLegacyJitExecutor(msg="test doesn't currently work with legacy JIT executor"): + def decorator(fn): + if not isinstance(fn, type): + @wraps(fn) + def wrapper(*args, **kwargs): + if GRAPH_EXECUTOR == ProfilingMode.LEGACY: + raise unittest.SkipTest(msg) + else: + fn(*args, **kwargs) + return wrapper + + assert isinstance(fn, type) + if GRAPH_EXECUTOR == ProfilingMode.LEGACY: + fn.__unittest_skip__ = True + fn.__unittest_skip_why__ = msg + + return fn + + + return decorator + + +# Run PyTorch tests with translation validation on. +TEST_WITH_TV = os.getenv('PYTORCH_TEST_WITH_TV') == '1' + +if TEST_WITH_TV: + torch.fx.experimental._config.translation_validation = True + +# Some tests take too long when dynamic_shapes is combined with +# translation_validation. Whenever that happens, we solve that by +# disabling translation_validation. +def disable_translation_validation_if_dynamic_shapes(fn): + @functools.wraps(fn) + def wrapper(*args, **kwargs): + if torch._dynamo.config.dynamic_shapes: + # Turning TV off due to high latency on dynamic shapes. + torch.fx.experimental._config.translation_validation = False + return fn(*args, **kwargs) + return wrapper + + +# Determine whether to enable cuda memory leak check. +# CUDA mem leak check is expensive and thus we don't want to execute it on every +# test case / configuration. +# If this is True then CUDA memory leak checks are skipped. If this is false +# then CUDA memory leak checks are performed. +# See: https://github.com/pytorch/pytorch/pull/59402#issuecomment-858811135 +TEST_CUDA_MEM_LEAK_CHECK: bool = TestEnvironment.def_flag( + "TEST_CUDA_MEM_LEAK_CHECK", + env_var="PYTORCH_TEST_CUDA_MEM_LEAK_CHECK", +) + + +# Dict of NumPy dtype -> torch dtype (when the correspondence exists) +numpy_to_torch_dtype_dict = { + np.bool_ : torch.bool, + np.uint8 : torch.uint8, + np.uint16 : torch.uint16, + np.uint32 : torch.uint32, + np.uint64 : torch.uint64, + np.int8 : torch.int8, + np.int16 : torch.int16, + np.int32 : torch.int32, + np.int64 : torch.int64, + np.float16 : torch.float16, + np.float32 : torch.float32, + np.float64 : torch.float64, + np.complex64 : torch.complex64, + np.complex128 : torch.complex128 +} + + +# numpy dtypes like np.float64 are not instances, but rather classes. This leads to rather absurd cases like +# np.float64 != np.dtype("float64") but np.float64 == np.dtype("float64").type. +# Especially when checking against a reference we can't be sure which variant we get, so we simply try both. +def numpy_to_torch_dtype(np_dtype): + try: + return numpy_to_torch_dtype_dict[np_dtype] + except KeyError: + return numpy_to_torch_dtype_dict[np_dtype.type] + + +def has_corresponding_torch_dtype(np_dtype): + try: + numpy_to_torch_dtype(np_dtype) + return True + except KeyError: + return False + + +if IS_WINDOWS: + # Size of `np.intc` is platform defined. + # It is returned by functions like `bitwise_not`. + # On Windows `int` is 32-bit + # https://docs.microsoft.com/en-us/cpp/cpp/data-type-ranges?view=msvc-160 + numpy_to_torch_dtype_dict[np.intc] = torch.int + +# Dict of torch dtype -> NumPy dtype +torch_to_numpy_dtype_dict = {value : key for (key, value) in numpy_to_torch_dtype_dict.items()} +torch_to_numpy_dtype_dict.update({ + torch.bfloat16: np.float32, + torch.complex32: np.complex64 +}) + +def skipIfNNModuleInlined( + msg="test doesn't currently work with nn module inlining", + condition=torch._dynamo.config.inline_inbuilt_nn_modules, +): + def decorator(fn): + if not isinstance(fn, type): + + @wraps(fn) + def wrapper(*args, **kwargs): + if condition: + raise unittest.SkipTest(msg) + else: + fn(*args, **kwargs) + + return wrapper + + assert isinstance(fn, type) + if condition: + fn.__unittest_skip__ = True + fn.__unittest_skip_why__ = msg + + return fn + + return decorator + +def skipIfRocm(func=None, *, msg="test doesn't currently work on the ROCm stack"): + def dec_fn(fn): + reason = f"skipIfRocm: {msg}" + + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_WITH_ROCM: + raise unittest.SkipTest(reason) + else: + return fn(*args, **kwargs) + return wrapper + if func: + return dec_fn(func) + return dec_fn + +def runOnRocm(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_WITH_ROCM: + fn(*args, **kwargs) + else: + raise unittest.SkipTest("test currently only works on the ROCm stack") + return wrapper + +def runOnRocmArch(arch: Tuple[str, ...]): + def dec_fn(fn): + @wraps(fn) + def wrap_fn(self, *args, **kwargs): + if TEST_WITH_ROCM: + prop = torch.cuda.get_device_properties(0) + if prop.gcnArchName.split(":")[0] not in arch: + reason = f"skipIfRocm: test only runs on {arch}" + raise unittest.SkipTest(reason) + return fn(self, *args, **kwargs) + return wrap_fn + return dec_fn + +def skipIfXpu(func=None, *, msg="test doesn't currently work on the XPU stack"): + def dec_fn(fn): + reason = f"skipIfXpu: {msg}" + + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_XPU: + raise unittest.SkipTest(reason) + else: + return fn(*args, **kwargs) + return wrapper + if func: + return dec_fn(func) + return dec_fn + +def skipIfMps(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_MPS: + raise unittest.SkipTest("test doesn't currently work with MPS") + else: + fn(*args, **kwargs) + return wrapper + +def skipIfHpu(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if TEST_HPU: + raise unittest.SkipTest("test doesn't currently work with HPU") + else: + fn(*args, **kwargs) + return wrapper + +# Skips a test on CUDA if ROCm is available and its version is lower than requested. +def skipIfRocmVersionLessThan(version=None): + def dec_fn(fn): + @wraps(fn) + def wrap_fn(self, *args, **kwargs): + if TEST_WITH_ROCM: + rocm_version = str(torch.version.hip) + rocm_version = rocm_version.split("-")[0] # ignore git sha + rocm_version_tuple = tuple(int(x) for x in rocm_version.split(".")) + if rocm_version_tuple is None or version is None or rocm_version_tuple < tuple(version): + reason = f"ROCm {rocm_version_tuple} is available but {version} required" + raise unittest.SkipTest(reason) + return fn(self, *args, **kwargs) + return wrap_fn + return dec_fn + +def skipIfNotMiopenSuggestNHWC(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if not TEST_WITH_MIOPEN_SUGGEST_NHWC: + raise unittest.SkipTest("test doesn't currently work without MIOpen NHWC activation") + else: + fn(*args, **kwargs) + return wrapper + +def skipIfWindows(func=None, *, msg="test doesn't currently work on the Windows stack"): + def dec_fn(fn): + reason = f"skipIfWindows: {msg}" + + @wraps(fn) + def wrapper(*args, **kwargs): + if IS_WINDOWS: # noqa: F821 + raise unittest.SkipTest(reason) + else: + return fn(*args, **kwargs) + return wrapper + if func: + return dec_fn(func) + return dec_fn + +# Reverts the linalg backend back to default to make sure potential failures in one +# test do not affect other tests +def setLinalgBackendsToDefaultFinally(fn): + @wraps(fn) + def _fn(*args, **kwargs): + _preferred_backend = torch.backends.cuda.preferred_linalg_library() + try: + fn(*args, **kwargs) + finally: + torch.backends.cuda.preferred_linalg_library(_preferred_backend) + return _fn + + +# Reverts the blas backend back to default to make sure potential failures in one +# test do not affect other tests +def setBlasBackendsToDefaultFinally(fn): + @wraps(fn) + def _fn(*args, **kwargs): + _preferred_backend = torch.backends.cuda.preferred_blas_library() + try: + fn(*args, **kwargs) + finally: + torch.backends.cuda.preferred_blas_library(_preferred_backend) + return _fn + + +# Context manager for setting deterministic flag and automatically +# resetting it to its original value +class DeterministicGuard: + def __init__(self, deterministic, *, warn_only=False, fill_uninitialized_memory=True): + self.deterministic = deterministic + self.warn_only = warn_only + self.fill_uninitialized_memory = fill_uninitialized_memory + + def __enter__(self): + self.deterministic_restore = torch.are_deterministic_algorithms_enabled() + self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled() + self.fill_uninitialized_memory_restore = torch.utils.deterministic.fill_uninitialized_memory + torch.use_deterministic_algorithms( + self.deterministic, + warn_only=self.warn_only) + torch.utils.deterministic.fill_uninitialized_memory = self.fill_uninitialized_memory + + def __exit__(self, exception_type, exception_value, traceback): + torch.use_deterministic_algorithms( + self.deterministic_restore, + warn_only=self.warn_only_restore) + torch.utils.deterministic.fill_uninitialized_memory = self.fill_uninitialized_memory_restore + +class AlwaysWarnTypedStorageRemoval: + def __init__(self, always_warn): + assert isinstance(always_warn, bool) + self.always_warn = always_warn + + def __enter__(self): + self.always_warn_restore = torch.storage._get_always_warn_typed_storage_removal() + torch.storage._set_always_warn_typed_storage_removal(self.always_warn) + + def __exit__(self, exception_type, exception_value, traceback): + torch.storage._set_always_warn_typed_storage_removal(self.always_warn_restore) + +# Context manager for setting cuda sync debug mode and reset it +# to original value +# we are not exposing it to the core because sync debug mode is +# global and thus not thread safe +class CudaSyncGuard: + def __init__(self, sync_debug_mode): + self.mode = sync_debug_mode + + def __enter__(self): + self.debug_mode_restore = torch.cuda.get_sync_debug_mode() + torch.cuda.set_sync_debug_mode(self.mode) + + def __exit__(self, exception_type, exception_value, traceback): + torch.cuda.set_sync_debug_mode(self.debug_mode_restore) + +# Context manager for setting torch.__future__.set_swap_module_params_on_conversion +# and automatically resetting it to its original value +class SwapTensorsGuard: + def __init__(self, use_swap_tensors): + self.use_swap_tensors = use_swap_tensors + + def __enter__(self): + self.swap_tensors_restore = torch.__future__.get_swap_module_params_on_conversion() + if self.use_swap_tensors is not None: + torch.__future__.set_swap_module_params_on_conversion(self.use_swap_tensors) + + def __exit__(self, exception_type, exception_value, traceback): + torch.__future__.set_swap_module_params_on_conversion(self.swap_tensors_restore) + +# This decorator can be used for API tests that call +# torch.use_deterministic_algorithms(). When the test is finished, it will +# restore the previous deterministic flag setting. +# +# If CUDA >= 10.2, this will set the environment variable +# CUBLAS_WORKSPACE_CONFIG=:4096:8 so that the error associated with that +# setting is not thrown during the test unless the test changes that variable +# on purpose. The previous CUBLAS_WORKSPACE_CONFIG setting will also be +# restored once the test is finished. +# +# Note that if a test requires CUDA to actually register the changed +# CUBLAS_WORKSPACE_CONFIG variable, a new subprocess must be created, because +# CUDA only checks the variable when the runtime initializes. Tests can be +# run inside a subprocess like so: +# +# import subprocess, sys, os +# script = ''' +# # Test code should go here +# ''' +# try: +# subprocess.check_output( +# [sys.executable, '-c', script], +# stderr=subprocess.STDOUT, +# cwd=os.path.dirname(os.path.realpath(__file__)), +# env=os.environ.copy()) +# except subprocess.CalledProcessError as e: +# error_message = e.output.decode('utf-8') +# # Handle exceptions raised by the subprocess here +# +def wrapDeterministicFlagAPITest(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + with DeterministicGuard( + torch.are_deterministic_algorithms_enabled(), + warn_only=torch.is_deterministic_algorithms_warn_only_enabled()): + class CuBLASConfigGuard: + cublas_var_name = 'CUBLAS_WORKSPACE_CONFIG' + + def __enter__(self): + self.is_cuda10_2_or_higher = ( + (torch.version.cuda is not None) + and ([int(x) for x in torch.version.cuda.split(".")] >= [10, 2])) + if self.is_cuda10_2_or_higher: + self.cublas_config_restore = os.environ.get(self.cublas_var_name) + os.environ[self.cublas_var_name] = ':4096:8' + + def __exit__(self, exception_type, exception_value, traceback): + if self.is_cuda10_2_or_higher: + cur_cublas_config = os.environ.get(self.cublas_var_name) + if self.cublas_config_restore is None: + if cur_cublas_config is not None: + del os.environ[self.cublas_var_name] + else: + os.environ[self.cublas_var_name] = self.cublas_config_restore + with CuBLASConfigGuard(): + fn(*args, **kwargs) + return wrapper + +# This decorator can be used for API tests that want to safely call +# torch.__future__.set_swap_module_params_on_conversion. `swap` can be set to +# True, False or None where None indicates that the context manager does not +# set the flag. When the test is finished, it will restore the previous swap +# flag setting. +def wrapSwapTensorsTest(swap=None): + def dec_fn(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + with SwapTensorsGuard(swap): + fn(*args, **kwargs) + return wrapper + return dec_fn + +# test parametrizer for swapping +class swap(_TestParametrizer): + def __init__(self, swap_values): + super().__init__() + self.swap_values = swap_values + + def _parametrize_test(self, test, generic_cls, device_cls): + for swap in self.swap_values: + yield wrapSwapTensorsTest(swap)(test), f'swap_{swap}', {}, lambda _: [] + +def skipIfCompiledWithoutNumpy(fn): + # Even if the numpy module is present, if `USE_NUMPY=0` is used during the + # build, numpy tests will fail + numpy_support = TEST_NUMPY + if numpy_support: + try: + # The numpy module is present, verify that PyTorch is compiled with + # numpy support + torch.from_numpy(np.array([2, 2])) + except RuntimeError: + numpy_support = False + + @wraps(fn) + def wrapper(*args, **kwargs): + if not numpy_support: + raise unittest.SkipTest("PyTorch was compiled without numpy support") + else: + fn(*args, **kwargs) + return wrapper + +def _test_function(fn, device): + def run_test_function(self): + return fn(self, device) + return run_test_function + +def skipIfNoXNNPACK(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if not torch.backends.xnnpack.enabled: + raise unittest.SkipTest('XNNPACK must be enabled for these tests. Please build with USE_XNNPACK=1.') + else: + fn(*args, **kwargs) + return wrapper + +def skipIfNoLapack(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if not torch._C.has_lapack: + raise unittest.SkipTest('PyTorch compiled without Lapack') + else: + fn(*args, **kwargs) + return wrapper + +def skipIfNotRegistered(op_name, message): + """Wraps the decorator to hide the import of the `core`. + + Args: + op_name: Check if this op is registered in `core._REGISTERED_OPERATORS`. + message: message to fail with. + + Usage: + @skipIfNotRegistered('MyOp', 'MyOp is not linked!') + This will check if 'MyOp' is in the caffe2.python.core + """ + return unittest.skip("Pytorch is compiled without Caffe2") + +def skipIfNoSciPy(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if not TEST_SCIPY: + raise unittest.SkipTest("test require SciPy, but SciPy not found") + else: + fn(*args, **kwargs) + return wrapper + +def skip_if_pytest(fn): + @wraps(fn) + def wrapped(*args, **kwargs): + if "PYTEST_CURRENT_TEST" in os.environ: + raise unittest.SkipTest("does not work under pytest") + return fn(*args, **kwargs) + + return wrapped + + +def slowTest(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + if not TEST_WITH_SLOW: + raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") + else: + fn(*args, **kwargs) + wrapper.__dict__['slow_test'] = True + return wrapper + + +def slowTestIf(condition): + return slowTest if condition else lambda fn: fn + + +def skipCUDAMemoryLeakCheckIf(condition): + def dec(fn): + if getattr(fn, '_do_cuda_memory_leak_check', True): # if current True + fn._do_cuda_memory_leak_check = not condition + return fn + return dec + +def skipCUDANonDefaultStreamIf(condition): + def dec(fn): + if getattr(fn, '_do_cuda_non_default_stream', True): # if current True + fn._do_cuda_non_default_stream = not condition + return fn + return dec + +def suppress_warnings(fn): + @wraps(fn) + def wrapper(*args, **kwargs): + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + fn(*args, **kwargs) + return wrapper + + +def to_gpu(obj, type_map=None): + if type_map is None: + type_map = {} + if isinstance(obj, torch.Tensor): + assert obj.is_leaf + t = type_map.get(obj.dtype, obj.dtype) + with torch.no_grad(): + res = obj.clone().to(dtype=t, device="cuda") + res.requires_grad = obj.requires_grad + return res + elif torch.is_storage(obj): + return obj.new().resize_(obj.size()).copy_(obj) + elif isinstance(obj, list): + return [to_gpu(o, type_map) for o in obj] + elif isinstance(obj, tuple): + return tuple(to_gpu(o, type_map) for o in obj) + else: + return deepcopy(obj) + + +def get_function_arglist(func): + return inspect.getfullargspec(func).args + + +def set_rng_seed(seed): + torch.manual_seed(seed) + random.seed(seed) + if TEST_NUMPY: + np.random.seed(seed) + + +@contextlib.contextmanager +def set_default_dtype(dtype): + saved_dtype = torch.get_default_dtype() + torch.set_default_dtype(dtype) + try: + yield + finally: + torch.set_default_dtype(saved_dtype) + +@contextlib.contextmanager +def set_default_tensor_type(tensor_type): + saved_tensor_type = torch.tensor([]).type() + torch.set_default_tensor_type(tensor_type) + try: + yield + finally: + torch.set_default_tensor_type(saved_tensor_type) + +def iter_indices(tensor): + if tensor.dim() == 0: + return range(0) + if tensor.dim() == 1: + return range(tensor.size(0)) + return product(*(range(s) for s in tensor.size())) + + +def is_iterable(obj): + try: + iter(obj) + return True + except TypeError: + return False + + +def is_iterable_of_tensors(iterable, include_empty=False): + """ Returns True if iterable is an iterable of tensors and False o.w. + + If the iterable is empty, the return value is :attr:`include_empty` + """ + # Tensor itself is iterable so we check this first + if isinstance(iterable, torch.Tensor): + return False + + try: + if len(iterable) == 0: + return include_empty + + for t in iter(iterable): + if not isinstance(t, torch.Tensor): + return False + + except TypeError as te: + return False + + return True + + +class CudaNonDefaultStream: + def __enter__(self): + # Before starting CUDA test save currently active streams on all + # CUDA devices and set new non default streams to all CUDA devices + # to ensure CUDA tests do not use default stream by mistake. + beforeDevice = torch.cuda.current_device() + self.beforeStreams = [] + for d in range(torch.cuda.device_count()): + self.beforeStreams.append(torch.cuda.current_stream(d)) + deviceStream = torch.cuda.Stream(device=d) + self.beforeStreams[-1].synchronize() + torch._C._cuda_setStream(stream_id=deviceStream.stream_id, + device_index=deviceStream.device_index, + device_type=deviceStream.device_type) + torch._C._cuda_setDevice(beforeDevice) + + def __exit__(self, exec_type, exec_value, traceback): + # After completing CUDA test load previously active streams on all + # CUDA devices. + beforeDevice = torch.cuda.current_device() + for d in range(torch.cuda.device_count()): + torch._C._cuda_setStream(stream_id=self.beforeStreams[d].stream_id, + device_index=self.beforeStreams[d].device_index, + device_type=self.beforeStreams[d].device_type) + torch._C._cuda_setDevice(beforeDevice) + +class CudaMemoryLeakCheck: + def __init__(self, testcase, name=None): + self.name = testcase.id() if name is None else name + self.testcase = testcase + + # initialize context & RNG to prevent false positive detections + # when the test is the first to initialize those + from torch.testing._internal.common_cuda import initialize_cuda_context_rng + initialize_cuda_context_rng() + + # Stores CUDA memory data provided by PyTorch's caching allocator and + # the CUDA driver. + # + # NOTE: The undocumented torch.cuda.mem_get_info() returns + # (#free bytes, #total bytes available) on the GPU + def __enter__(self): + self.caching_allocator_befores = [] + self.driver_befores = [] + + # Performs a gc if required (required if any CUDA memory is held) + num_devices = torch.cuda.device_count() + for i in range(num_devices): + caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) + # NOTE: gc is based exclusively on caching allocator memory + # because the driver will always have some bytes in use (context size?) + if caching_allocator_mem_allocated > 0: + gc.collect() + torch._C._cuda_clearCublasWorkspaces() + torch.cuda.empty_cache() + break + + # Acquires caching allocator and driver statistics before the test is run + for i in range(num_devices): + self.caching_allocator_befores.append(torch.cuda.memory_allocated(i)) + bytes_free, bytes_total = torch.cuda.mem_get_info(i) + driver_mem_allocated = bytes_total - bytes_free + self.driver_befores.append(driver_mem_allocated) + + def __exit__(self, exec_type, exec_value, traceback): + # Don't check for leaks if an exception was thrown + if exec_type is not None: + return + + # Compares caching allocator before/after statistics + # An increase in allocated memory is a discrepancy indicating a possible + # memory leak + discrepancy_detected = False + num_devices = torch.cuda.device_count() + for i in range(num_devices): + # avoid counting cublasWorkspace allocations + torch._C._cuda_clearCublasWorkspaces() + caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) + + if caching_allocator_mem_allocated > self.caching_allocator_befores[i]: + discrepancy_detected = True + break + + # Short-circuits if no discrepancy detected + if not discrepancy_detected: + return + + # Validates the discrepancy persists after garbage collection and + # is confirmed by the driver API + + # NOTE: driver API iscrepancies alone are ignored because with the jiterator + # some tests may permanently increase the CUDA context size and + # that will appear as a driver memory leak but is the expected behavior. + + # GCs and clears the cache + gc.collect() + torch.cuda.empty_cache() + + for i in range(num_devices): + + discrepancy_detected = True + + # Query memory multiple items to ensure leak was not transient + for n in range(3): + caching_allocator_mem_allocated = torch.cuda.memory_allocated(i) + bytes_free, bytes_total = torch.cuda.mem_get_info(i) + driver_mem_allocated = bytes_total - bytes_free + + caching_allocator_discrepancy = False + driver_discrepancy = False + + if caching_allocator_mem_allocated > self.caching_allocator_befores[i]: + caching_allocator_discrepancy = True + + if driver_mem_allocated > self.driver_befores[i]: + driver_discrepancy = True + + if not (caching_allocator_discrepancy or driver_discrepancy): + # Leak was false positive, exit loop + discrepancy_detected = False + break + + if not discrepancy_detected: + continue + + if caching_allocator_discrepancy and not driver_discrepancy: + # Just raises a warning if the leak is not validated by the + # driver API + # NOTE: this may be a problem with how the caching allocator collects its + # statistics or a leak too small to trigger the allocation of an + # additional block of memory by the CUDA driver + msg = ("CUDA caching allocator reports a memory leak not " + f"verified by the driver API in {self.name}! " + f"Caching allocator allocated memory was {self.caching_allocator_befores[i]} " + f"and is now reported as {caching_allocator_mem_allocated} " + f"on device {i}. " + f"CUDA driver allocated memory was {self.driver_befores[i]} and is now {driver_mem_allocated}.") + warnings.warn(msg) + elif caching_allocator_discrepancy and driver_discrepancy: + # A caching allocator discrepancy validated by the driver API is a + # failure (except on ROCm, see below) + msg = (f"CUDA driver API confirmed a leak in {self.name}! " + f"Caching allocator allocated memory was {self.caching_allocator_befores[i]} " + f"and is now reported as {caching_allocator_mem_allocated} " + f"on device {i}. " + f"CUDA driver allocated memory was {self.driver_befores[i]} and is now {driver_mem_allocated}.") + + raise RuntimeError(msg) + +@contextmanager +def skip_exception_type(exc_type): + try: + yield + except exc_type as e: + raise unittest.SkipTest(f"not implemented: {e}") from e + +@contextmanager +def print_repro_on_failure(repro_parts): + try: + yield + except unittest.SkipTest: + raise + except Exception as e: + # Get the index of the sample input that failed the test if possible. + sample_isolation_prefix = "" + tracked_input = getattr(e, "_tracked_input", None) + if tracked_input is not None: + sample_isolation_prefix = f"PYTORCH_OPINFO_SAMPLE_INPUT_INDEX={tracked_input.index}" + + repro_str = " ".join(filter(None, (sample_isolation_prefix, *repro_parts))) + repro_msg = f""" +To execute this test, run the following from the base repo dir: + {repro_str} + +This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0""" + + # NB: Hacking the exception args is the cleanest way I've found to append + # failure reproduction info without poisoning the stack trace. + if len(e.args) >= 1: + e.args = (f"{e.args[0]}\n{repro_msg}", *e.args[1:]) + raise + +# "min_satisfying_examples" setting has been deprecated in hypothesis +# 3.56.0 and removed in hypothesis 4.x +try: + import hypothesis + + def settings(*args, **kwargs): + if 'min_satisfying_examples' in kwargs and hypothesis.version.__version_info__ >= (3, 56, 0): + kwargs.pop('min_satisfying_examples') + return hypothesis.settings(*args, **kwargs) + + + hypothesis.settings.register_profile( + "pytorch_ci", + settings( + derandomize=True, + suppress_health_check=[hypothesis.HealthCheck.too_slow], + database=None, + max_examples=50, + verbosity=hypothesis.Verbosity.normal)) + hypothesis.settings.register_profile( + "dev", + settings( + suppress_health_check=[hypothesis.HealthCheck.too_slow], + database=None, + max_examples=10, + verbosity=hypothesis.Verbosity.normal)) + hypothesis.settings.register_profile( + "debug", + settings( + suppress_health_check=[hypothesis.HealthCheck.too_slow], + database=None, + max_examples=1000, + verbosity=hypothesis.Verbosity.verbose)) + + hypothesis.settings.load_profile( + "pytorch_ci" if IS_CI else os.getenv('PYTORCH_HYPOTHESIS_PROFILE', 'dev') + ) +except ImportError: + print('Fail to import hypothesis in common_utils, tests are not derandomized') + +# Used in check_if_enable to see if a test method should be disabled by an issue, +# sanitizes a test method name from appended suffixes by @dtypes parametrization. +# e.g., an issue with title "DISABLED test_bitwise_ops (__main__.TestBinaryUfuncs)" should +# disabled ALL parametrized test_bitwise_ops tests, such test_bitwise_ops_cuda_int32 +def remove_device_and_dtype_suffixes(test_name: str) -> str: + # import statement is localized to avoid circular dependency issues with common_device_type.py + from torch.testing._internal.common_device_type import get_device_type_test_bases + device_suffixes = [x.device_type for x in get_device_type_test_bases()] + dtype_suffixes = [str(dt)[len("torch."):] for dt in get_all_dtypes()] + + test_name_chunks = test_name.split("_") + if len(test_name_chunks) > 0 and test_name_chunks[-1] in dtype_suffixes: + if len(test_name_chunks) > 1 and test_name_chunks[-2] in device_suffixes: + return "_".join(test_name_chunks[0:-2]) + return "_".join(test_name_chunks[0:-1]) + return test_name + + +def check_if_enable(test: unittest.TestCase): + classname = str(test.__class__).split("'")[1].split(".")[-1] + sanitized_testname = remove_device_and_dtype_suffixes(test._testMethodName) + + def matches_test(target: str): + target_test_parts = target.split() + if len(target_test_parts) < 2: + # poorly formed target test name + return False + target_testname = target_test_parts[0] + target_classname = target_test_parts[1][1:-1].split(".")[-1] + # if test method name or its sanitized version exactly matches the disabled + # test method name AND allow non-parametrized suite names to disable + # parametrized ones (TestSuite disables TestSuiteCPU) + return classname.startswith(target_classname) and (target_testname in (test._testMethodName, sanitized_testname)) + + if any(matches_test(x) for x in slow_tests_dict.keys()): + getattr(test, test._testMethodName).__dict__['slow_test'] = True + if not TEST_WITH_SLOW: + raise unittest.SkipTest("test is slow; run with PYTORCH_TEST_WITH_SLOW to enable test") + + if not IS_SANDCASTLE: + should_skip = False + skip_msg = "" + + for disabled_test, (issue_url, platforms) in disabled_tests_dict.items(): + if matches_test(disabled_test): + platform_to_conditional: Dict = { + "mac": IS_MACOS, + "macos": IS_MACOS, + "win": IS_WINDOWS, + "windows": IS_WINDOWS, + "linux": IS_LINUX, + "rocm": TEST_WITH_ROCM, + "xpu": TEST_XPU, + "asan": TEST_WITH_ASAN, + "dynamo": TEST_WITH_TORCHDYNAMO, + "inductor": TEST_WITH_TORCHINDUCTOR, + "slow": TEST_WITH_SLOW, + } + + invalid_platforms = list(filter(lambda p: p not in platform_to_conditional, platforms)) + if len(invalid_platforms) > 0: + invalid_plats_str = ", ".join(invalid_platforms) + valid_plats = ", ".join(platform_to_conditional.keys()) + + print(f"Test {disabled_test} is disabled for some unrecognized ", + f"platforms: [{invalid_plats_str}]. Please edit issue {issue_url} to fix the platforms ", + 'assigned to this flaky test, changing "Platforms: ..." to a comma separated ', + f"subset of the following (or leave it blank to match all platforms): {valid_plats}") + + # Sanitize the platforms list so that we continue to disable the test for any valid platforms given + platforms = list(filter(lambda p: p in platform_to_conditional, platforms)) + + if platforms == [] or any(platform_to_conditional[platform] for platform in platforms): + should_skip = True + skip_msg = f"Test is disabled because an issue exists disabling it: {issue_url}" \ + f" for {'all' if platforms == [] else ''}platform(s) {', '.join(platforms)}. " \ + "If you're seeing this on your local machine and would like to enable this test, " \ + "please make sure CI is not set and you are not using the flag --import-disabled-tests." + break + + if should_skip and not RERUN_DISABLED_TESTS: + # Skip the disabled test when not running under --rerun-disabled-tests verification mode + raise unittest.SkipTest(skip_msg) + + if not should_skip and RERUN_DISABLED_TESTS: + skip_msg = "Test is enabled but --rerun-disabled-tests verification mode is set, so only" \ + " disabled tests are run" + raise unittest.SkipTest(skip_msg) + + if TEST_SKIP_FAST: + if hasattr(test, test._testMethodName) and not getattr(test, test._testMethodName).__dict__.get('slow_test', False): + raise unittest.SkipTest("test is fast; we disabled it with PYTORCH_TEST_SKIP_FAST") + + +# `TestCase.assertEqual` is very permissive and coerced the inputs into a format that could be compared. This is very +# convenient when writing tests, but not so much while reviewing them. By default, the comparison `Pair` framework of +# `torch.testing._comparison.are_equal`, used for example by the public testing function +# `torch.testing.assert_close`, is more strict. In order to use the same framework and thus reduce the divergence +# between internal and external comparison logic as much as possible, we define some "relaxed" pairs here. They only +# change the supported inputs, but the comparison logic is the same. +# TODO: Revisit the relaxed pairs and check how much work it is to fix the tests that would fail without the relaxation. + +class RelaxedBooleanPair(BooleanPair): + """Pair for boolean-like inputs. + + In contrast to the builtin :class:`BooleanPair`, this class also supports one input being a number or a single + element tensor-like. + """ + _supported_number_types = NumberPair(0, 0)._supported_types + + def _process_inputs(self, actual, expected, *, id): + # We require only one of the inputs of the inputs to be a boolean and the other can also be a boolean, a + # number, or a single element tensor or array, whereas in default BooleanPair both inputs have to be booleans. + tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray) + other_supported_types = (*self._supported_types, *self._supported_number_types, *tensor_or_array_types) + if not ( + (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types)) + or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types)) + ): + self._inputs_not_supported() + + return [self._to_bool(input, id=id) for input in (actual, expected)] + + def _to_bool(self, bool_like, *, id): + if isinstance(bool_like, np.number): + return bool(bool_like.item()) + elif type(bool_like) in self._supported_number_types: + return bool(bool_like) + elif isinstance(bool_like, (torch.Tensor, np.ndarray)): + numel = bool_like.numel() if isinstance(bool_like, torch.Tensor) else bool_like.size + if numel > 1: + self._fail( + ValueError, + f"Only single element tensor-likes can be compared against a boolean. " + f"Got {numel} elements instead.", + id=id + ) + + return bool(bool_like.item()) + else: + return super()._to_bool(bool_like, id=id) + + +class RelaxedNumberPair(NumberPair): + """Pair for number-like inputs. + + In contrast to the builtin :class:`NumberPair`, this class also supports one input being a single element + tensor-like or a :class:`enum.Enum`. (D)Type checks are disabled, meaning comparing 1 to 1.0 succeeds even when + ``check_dtype=True`` is passed. + + In addition, this class uses looser default tolerances for :class:`float` and :class:`complex` inputs. Also + supports overriding the absolute and relative tolerance through the ``@precisionOverride`` and + ``@toleranceOverride`` decorators. + """ + _TYPE_TO_DTYPE = { + int: torch.int64, + float: torch.float32, + complex: torch.complex64, + } + + def __init__( + self, actual, expected, *, rtol_override=0.0, atol_override=0.0, check_dtype=None, **other_parameters + ) -> None: + super().__init__(actual, expected, check_dtype=False, **other_parameters) + self.rtol = max(self.rtol, rtol_override) + self.atol = max(self.atol, atol_override) + + def _process_inputs(self, actual, expected, *, id): + # We require only one of the inputs of the inputs to be a number and the other can also be a number or a single + # element tensor or array, whereas in default NumberPair both inputs have to be numbers. + tensor_or_array_types: Tuple[Type, ...] = (torch.Tensor, np.ndarray) + other_supported_types = (*self._supported_types, *tensor_or_array_types) + if not ( + (isinstance(actual, self._supported_types) and isinstance(expected, other_supported_types)) + or (isinstance(expected, self._supported_types) and isinstance(actual, other_supported_types)) + ): + self._inputs_not_supported() + + return [self._to_number(input, id=id) for input in (actual, expected)] + + def _to_number(self, number_like, *, id): + if isinstance(number_like, (torch.Tensor, np.ndarray)): + numel = number_like.numel() if isinstance(number_like, torch.Tensor) else number_like.size + if numel > 1: + self._fail( + ValueError, + f"Only single element tensor-likes can be compared against a number. " + f"Got {numel} elements instead.", + id=id + ) + number = number_like.item() + if isinstance(number, bool): + number = int(number) + + return number + elif isinstance(number_like, Enum): + return int(number_like) # type: ignore[call-overload] + else: + return super()._to_number(number_like, id=id) + + +class TensorOrArrayPair(TensorLikePair): + """Pair for tensor-like inputs. + + On the one hand this class is stricter than the builtin :class:`TensorLikePair` since it only allows instances of + :class:`torch.Tensor` and :class:`numpy.ndarray` rather than allowing any tensor-like than can be converted into a + tensor. On the other hand this class is looser since it converts all inputs into tensors with no regard of their + relationship, e.g. comparing a :class:`torch.Tensor` to :class:`numpy.ndarray` is fine. + + In addition, this class supports overriding the absolute and relative tolerance through the ``@precisionOverride`` + and ``@toleranceOverride`` decorators. + """ + def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters): + super().__init__(actual, expected, **other_parameters) + self.rtol = max(self.rtol, rtol_override) + self.atol = max(self.atol, atol_override) + + def _process_inputs(self, actual, expected, *, id, allow_subclasses): + self._check_inputs_isinstance(actual, expected, cls=(torch.Tensor, np.ndarray)) + + actual, expected = (self._to_tensor(input) for input in (actual, expected)) + for tensor in (actual, expected): + self._check_supported(tensor, id=id) + return actual, expected + + +class TypedStoragePair(TensorLikePair): + """Pair for :class:`torch.storage.TypedStorage` inputs.""" + def __init__(self, actual, expected, *, rtol_override=0.0, atol_override=0.0, **other_parameters): + self._check_inputs_isinstance(actual, expected, cls=torch.storage.TypedStorage) + super().__init__(actual, expected, **other_parameters) + self.rtol = max(self.rtol, rtol_override) + self.atol = max(self.atol, atol_override) + + def _to_tensor(self, typed_storage): + return torch.tensor( + typed_storage._untyped_storage, + dtype={ + torch.quint8: torch.uint8, + torch.quint4x2: torch.uint8, + torch.quint2x4: torch.uint8, + torch.qint32: torch.int32, + torch.qint8: torch.int8 + }.get(typed_storage.dtype, typed_storage.dtype), + device=typed_storage.device, + ) + + +class UnittestPair(Pair): + """Fallback ABC pair that handles non-numeric inputs. + + To avoid recreating the mismatch messages of :meth:`unittest.TestCase.assertEqual`, this pair simply wraps it in + order to use it with the :class:`Pair` "framework" from :func:`are_equal`. + + Define the :attr:`UnittestPair.CLS` in a subclass to indicate which class(es) of the inputs the pair should support. + """ + CLS: Union[Type, Tuple[Type, ...]] + TYPE_NAME: Optional[str] = None + + def __init__(self, actual, expected, **other_parameters): + self._check_inputs_isinstance(actual, expected, cls=self.CLS) + super().__init__(actual, expected, **other_parameters) + + def compare(self): + test_case = unittest.TestCase() + + try: + return test_case.assertEqual(self.actual, self.expected) + except test_case.failureException as error: + msg = str(error) + + type_name = self.TYPE_NAME or (self.CLS if isinstance(self.CLS, type) else self.CLS[0]).__name__ + self._fail(AssertionError, f"{type_name.title()} comparison failed: {msg}") + + +class StringPair(UnittestPair): + CLS = (str, bytes) + TYPE_NAME = "string" + + +class SetPair(UnittestPair): + CLS = set + + +class TypePair(UnittestPair): + CLS = type + + +class ObjectPair(UnittestPair): + CLS = object + + +# This implements a variant of assertRaises/assertRaisesRegex where we first test +# if the exception is NotImplementedError, and if so just skip the test instead +# of failing it. +# +# This is implemented by inheriting from the (private) implementation of +# assertRaises from unittest.case, and slightly tweaking it for this new +# behavior. The year is 2021: this private class hierarchy hasn't changed since +# 2010, seems low risk to inherit from. +class AssertRaisesContextIgnoreNotImplementedError(unittest.case._AssertRaisesContext): + def __exit__(self, exc_type, exc_value, tb): + if exc_type is not None and issubclass(exc_type, NotImplementedError): + self.test_case.skipTest(f"not_implemented: {exc_value}") # type: ignore[attr-defined] + return super().__exit__(exc_type, exc_value, tb) + + +@contextmanager +def set_warn_always_context(new_val: bool): + old_val = torch.is_warn_always_enabled() + torch.set_warn_always(new_val) + try: + yield + finally: + torch.set_warn_always(old_val) + + +class NoTest: + # causes pytest to not recognize this class as a test + __test__ = False + + +class TestCase(expecttest.TestCase): + # NOTE: "precision" lets classes and generated tests set minimum + # atol values when comparing tensors. Used by @precisionOverride and @toleranceOverride, for + # example. + # NOTE: "rel_tol" lets classes and generated tests set minimum + # rtol values when comparing tensors. Used by @toleranceOverride, for example. + _precision: float = 0 + _rel_tol: float = 0 + + # Toggles whether to assert that `torch.get_default_dtype()` returns + # `torch.float` when `setUp` and `tearDown` are called. + _default_dtype_check_enabled: bool = False + + # Always use difflib to print diffs on multi line equality. + # Undocumented feature in unittest + _diffThreshold = sys.maxsize + maxDiff = None + + # checker to early terminate test suite if unrecoverable failure occurs. + def _should_stop_test_suite(self): + if torch.cuda.is_initialized(): + # CUDA device side error will cause subsequence test cases to fail. + # stop entire test suite if catches RuntimeError during torch.cuda.synchronize(). + try: + torch.cuda.synchronize() + except RuntimeError as rte: + print("TEST SUITE EARLY TERMINATION due to torch.cuda.synchronize() failure", file=sys.stderr) + print(str(rte), file=sys.stderr) + return True + return False + else: + return False + + @property + def precision(self) -> float: + return self._precision + + @precision.setter + def precision(self, prec: float) -> None: + self._precision = prec + + @property + def rel_tol(self) -> float: + return self._rel_tol + + @rel_tol.setter + def rel_tol(self, prec: float) -> None: + self._rel_tol = prec + + _do_cuda_memory_leak_check = False + _do_cuda_non_default_stream = False + + # When True, if a test case raises a NotImplementedError, instead of failing + # the test, skip it instead. + _ignore_not_implemented_error = False + + def __init__(self, method_name='runTest', methodName='runTest'): + # methodName is the correct naming in unittest and testslide uses keyword arguments. + # So we need to use both to 1) not break BC and, 2) support testslide. + if methodName != "runTest": + method_name = methodName + super().__init__(method_name) + + test_method = getattr(self, method_name, None) + if test_method is not None: + # Wraps the tested method if we should do CUDA memory check. + if TEST_CUDA_MEM_LEAK_CHECK: + self._do_cuda_memory_leak_check &= getattr(test_method, '_do_cuda_memory_leak_check', True) + # FIXME: figure out the flaky -1024 anti-leaks on windows. See #8044 + if self._do_cuda_memory_leak_check and not IS_WINDOWS: + self.wrap_with_cuda_policy(method_name, self.assertLeaksNoCudaTensors) + + # Wraps the tested method if we should enforce non default CUDA stream. + self._do_cuda_non_default_stream &= getattr(test_method, '_do_cuda_non_default_stream', True) + if self._do_cuda_non_default_stream and not IS_WINDOWS: + self.wrap_with_cuda_policy(method_name, self.enforceNonDefaultStream) + + if self._ignore_not_implemented_error: + self.wrap_with_policy(method_name, lambda: skip_exception_type(NotImplementedError)) + + if PRINT_REPRO_ON_FAILURE: + try: + def _get_rel_test_path(abs_test_path): + # Attempt to get relative path based on the "test" dir. + # In CI, the working dir is not guaranteed to be the base repo dir so + # we can't just compute relative path from that. + parts = Path(abs_test_path).parts + for i, part in enumerate(parts): + if part == "test": + base_dir = os.path.join(*parts[:i]) if i > 0 else '' + return os.path.relpath(abs_test_path, start=base_dir) + + # Can't determine containing dir; just return the test filename. + # The path isn't strictly correct but it's arguably better than nothing. + return os.path.split(abs_test_path)[1] + + # NB: In Python 3.8, the getfile() call will return a path relative + # to the working directory, so convert that to absolute. + abs_test_path = os.path.abspath(inspect.getfile(type(self))) + test_filename = _get_rel_test_path(abs_test_path) + class_name = type(self).__name__ + test_run_cmd = f"python {test_filename} {class_name}.{method_name}" + env_var_prefix = TestEnvironment.repro_env_var_prefix() + repro_parts = [env_var_prefix, test_run_cmd] + self.wrap_with_policy( + method_name, + lambda repro_parts=repro_parts: print_repro_on_failure(repro_parts)) + except Exception as e: + # Don't fail entirely if we can't get the test filename + log.info("could not print repro string", extra=str(e)) + + def assertLeaksNoCudaTensors(self, name=None): + name = self.id() if name is None else name + return CudaMemoryLeakCheck(self, name) + + def enforceNonDefaultStream(self): + return CudaNonDefaultStream() + + def _remove_ansi_escape(self, input): + # 7-bit C1 ANSI sequences + ansi_escape = re.compile(r''' + \x1B # ESC + (?: # 7-bit C1 Fe (except CSI) + [@-Z\\-_] + | # or [ for CSI, followed by a control sequence + \[ + [0-?]* # Parameter bytes + [ -/]* # Intermediate bytes + [@-~] # Final byte + ) + ''', re.VERBOSE) + return ansi_escape.sub('', input) + + def remove_comment_lines(self, input_string): + lines = input_string.split('\n') + filtered_lines = [line for line in lines if not line.strip().startswith('#')] + return '\n'.join(filtered_lines) + + def remove_empty_lines(self, input_string): + lines = input_string.split('\n') + filtered_lines = [line for line in lines if not line.strip() == ''] + return '\n'.join(filtered_lines) + + # ignore comments will ignore lines that starts with # after being stripped + def assertExpectedInline(self, actual, expect, skip=0, ignore_comments=False, ignore_empty_lines=False): + actual = actual if isinstance(actual, str) else str(actual) + actual = self._remove_ansi_escape(actual) + expect = self._remove_ansi_escape(expect) + if ignore_comments: + actual = self.remove_comment_lines(actual) + expect = self.remove_comment_lines(expect) + + if ignore_empty_lines: + actual = self.remove_empty_lines(actual) + expect = self.remove_empty_lines(expect) + + return super().assertExpectedInline(actual if isinstance(actual, str) else str(actual), expect, skip + 1) + + # Munges exceptions that internally contain stack traces, using munge_exc + def assertExpectedInlineMunged( + self, exc_type, callable, expect, *, suppress_suffix=True + ): + try: + callable() + except exc_type as e: + self.assertExpectedInline( + munge_exc(e, suppress_suffix=suppress_suffix, skip=1), expect, skip=1 + ) + return + self.fail(msg="Did not raise when expected to") + + def assertLogs(self, logger=None, level=None): + if logger is None: + logger = logging.getLogger("torch") + return super().assertLogs(logger, level) + + def assertNoLogs(self, logger=None, level=None): + if logger is None: + logger = logging.getLogger("torch") + return super().assertNoLogs(logger, level) + + def wrap_with_cuda_policy(self, method_name, policy): + test_method = getattr(self, method_name) + # the import below may initialize CUDA context, so we do it only if + # self._do_cuda_memory_leak_check or self._do_cuda_non_default_stream + # is True. + # TODO: sure looks like we unconditionally initialize the context here + # -- ezyang + from torch.testing._internal.common_cuda import TEST_CUDA + fullname = self.id().lower() # class_name.method_name + if TEST_CUDA and ('gpu' in fullname or 'cuda' in fullname): + setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) + + def wrap_with_policy(self, method_name, policy): + test_method = getattr(self, method_name) + setattr(self, method_name, self.wrap_method_with_policy(test_method, policy)) + + # A policy is a zero-argument function that returns a context manager. + # We don't take the context manager directly as it may be necessary to + # construct it once per test method + def wrap_method_with_policy(self, method, policy): + # Assumes that `method` is the tested function in `self`. + # NOTE: Python Exceptions (e.g., unittest.Skip) keeps objects in scope + # alive, so this cannot be done in setUp and tearDown because + # tearDown is run unconditionally no matter whether the test + # passes or not. For the same reason, we can't wrap the `method` + # call in try-finally and always do the check. + @wraps(method) + def wrapper(self, *args, **kwargs): + with policy(): + method(*args, **kwargs) + return types.MethodType(wrapper, self) + + def wrap_with_cuda_memory_check(self, method): + return self.wrap_method_with_policy(method, self.assertLeaksNoCudaTensors) + + def _run_custom(self, result=None): + using_unittest = isinstance(result, unittest.TestResult) + + super_run = super().run + test_cls = super_run.__self__ + + # Are we compiling? + compiled = TEST_WITH_TORCHDYNAMO or TEST_WITH_AOT_EAGER or TEST_WITH_TORCHINDUCTOR + # Is the class strict and compiling? + strict_default = False + should_reset_dynamo = False + if compiled: + try: + path = inspect.getfile(type(test_cls)) + full_path = os.path.abspath(path) + match = re.match(r".*/test/(.*).py", full_path) + if match is not None: + filename = match.group(1) + if TEST_WITH_TORCHINDUCTOR: + from .dynamo_test_failures import FIXME_inductor_non_strict + strict_default = filename not in FIXME_inductor_non_strict + + from .dynamo_test_failures import FIXME_inductor_dont_reset_dynamo + should_reset_dynamo = filename not in FIXME_inductor_dont_reset_dynamo + else: + strict_default = True + # inspect.getfile can fail with these + except (OSError, TypeError): + pass + if "STRICT_DEFAULT" in os.environ: + if os.environ["STRICT_DEFAULT"] == "1": + strict_default = True + + strict_mode = False + if compiled: + test_method = getattr(self, self._testMethodName) + if hasattr(test_method, "dynamo_strict"): + strict_mode = test_method.dynamo_strict + elif hasattr(test_cls, "dynamo_strict"): + strict_mode = test_cls.dynamo_strict + else: + strict_mode = strict_default + nopython = getattr(test_cls, "dynamo_strict_nopython", False) and compiled + + if strict_mode or should_reset_dynamo: + torch._dynamo.reset() + + # TODO: Remove this; this is grandfathered in because we suppressed errors + # on test suite previously + # When strict mode is False, suppress_errors is True + if compiled: + suppress_errors = not strict_mode + else: + suppress_errors = torch._dynamo.config.suppress_errors + with unittest.mock.patch("torch._dynamo.config.suppress_errors", suppress_errors): + if TEST_WITH_TORCHINDUCTOR: + super_run = torch._dynamo.optimize("inductor")(super_run) + elif TEST_WITH_AOT_EAGER: + super_run = torch._dynamo.optimize("aot_eager_decomp_partition")(super_run) + elif TEST_WITH_TORCHDYNAMO: + # TorchDynamo optimize annotation + # Assume eager-generated GraphModules will not error out. + # If we do, this is probably a Dynamo bug! + super_run = torch._dynamo.optimize("eager_noexcept", nopython=nopython)(super_run) + key = f"{self.__class__.__name__}.{self._testMethodName}" + from .dynamo_test_failures import dynamo_expected_failures, dynamo_skips + + def expect_failure(f, test_name): + @wraps(f) + def wrapper(*args, **kwargs): + try: + f(*args, **kwargs) + except BaseException as e: + self.skipTest(e) + raise RuntimeError(f"Unexpected success, please remove `test/dynamo_expected_failures/{test_name}`") + return wrapper + + if key in dynamo_expected_failures: + method = getattr(self, self._testMethodName) + setattr(self, self._testMethodName, expect_failure(method, key)) + + def ignore_failure(f, test_name): + @wraps(f) + def wrapper(*args, **kwargs): + try: + f(*args, **kwargs) + except BaseException as e: + self.skipTest(e) + method = getattr(self, self._testMethodName) + if getattr(method, "__unittest_expecting_failure__", False): + self.skipTest("unexpected success") + else: + self.skipTest(f"This test passed, maybe we can remove `test/dynamo_skips/{test_name}`") + return wrapper + + if key in dynamo_skips: + method = getattr(self, self._testMethodName) + setattr(self, self._testMethodName, ignore_failure(method, key)) + + super_run(result=result) + + if strict_mode or should_reset_dynamo: + torch._dynamo.reset() + + # Early terminate test if necessary. If using pytest, use the -x flag instead + if using_unittest and self._should_stop_test_suite(): + if result.wasSuccessful(): + case = TestCase() + if TEST_SAVE_XML is not None: + # This is a big hacky, XMLRunner modifies expected type from TestCase to TestInfo + # Create dummy TestInfo to record results correctly + from xmlrunner.result import _TestInfo # type: ignore[import] + case = _TestInfo(result, case) + case.output = _TestInfo.ERROR + case.elapsed_time = 0.0 + case.test_description = "TestSuiteEarlyFailure" + # This shouldn't really happen, but if does add fake failure + # For more details see https://github.com/pytorch/pytorch/issues/71973 + result.failures.append((case, "TestSuite execution was aborted early")) + assert result.wasSuccessful() is False + result.stop() + + + def run(self, result=None): + with contextlib.ExitStack() as stack: + if TEST_WITH_CROSSREF: + stack.enter_context(CrossRefMode()) + self._run_custom( + result=result, + ) + + def setUp(self): + check_if_enable(self) + set_rng_seed(SEED) + + # Save global check sparse tensor invariants state that can be + # restored from tearDown: + self._check_invariants = torch.sparse.check_sparse_tensor_invariants.is_enabled() + + # Enable invariant checks for all sparse tensors constructions + # including the unsafe ones. If this is not desired for some + # test case, use check_invariants=False optional argument to + # sparse tensor constructors or + # @torch.sparse.check_sparse_tensor_invariants(False) + # decorator to disable the invariant checks. + torch.sparse.check_sparse_tensor_invariants.enable() + + if self._default_dtype_check_enabled: + assert torch.get_default_dtype() == torch.float + + # attempt to reset some global state at the end of the test + self._prev_grad_state = torch.is_grad_enabled() + + def tearDown(self): + # There exists test cases that override TestCase.setUp + # definition, so we cannot assume that _check_invariants + # attribute is defined in general. + if hasattr(self, '_check_invariants'): + # Restore the global check sparse tensor invariants state + if self._check_invariants: + torch.sparse.check_sparse_tensor_invariants.enable() + else: + torch.sparse.check_sparse_tensor_invariants.disable() + + if self._default_dtype_check_enabled: + assert torch.get_default_dtype() == torch.float + + # attribute may not be defined, per above + if hasattr(self, '_prev_grad_state'): + torch.set_grad_enabled(self._prev_grad_state) + + @staticmethod + def _make_crow_indices(n_rows, n_cols, nnz, + *, device, dtype, random=True): + """Return crow_indices of a CSR tensor with size (n_rows, n_cols) and + the number of specified elements nnz. + + If random is True, the column counts of rows are in random + order. Otherwise, the column counts of rows are defined by the + used sampling method. + + Sampling method + --------------- + + The used sampling method was introduced in + https://pearu.github.io/csr_sampling.html, and here we give + only an overall description of the method. + + Notice that crow_indices can be defined as cumsum(counts) + where counts is a sequence of non-negative integers satisfying + the following conditions: + + len(counts) == n_rows + 1 + counts.max() <= n_cols + + while counts[i + 1] is interpreted as the number of specified + elements in the i-th row. + + The used sampling method aims at increasing the diversity of + CSR samples, that is, a CSR sample should contain (i) rows + that are all filled, (ii) rows with no elements at all, and + (iii) rows that are partially filled. At the same time and for + the given total number of specified elements (nnz), there + should be minimal preference to rows with a given number of + elements. To achieve this, the sampling method is built-up on + using a sawteeth model for counts. In the simplest case, we + would have + + counts = arange(n_rows + 1) % (n_cols + 1) + + that has equal number of all possible column counts per row. + This formula can be used only for specific input values of + n_rows, n_cols, and nnz. To generalize this model to any + combinations of inputs, the counts model above is extended + with an incomplete sawtooth, and the right and lower + rectangular parts that will guarantee that + + counts.sum() == nnz + + for any combination of n_rows, n_cols, and nnz. Basically, + we'll find a maximal window in (n_rows + 1, n_cols + 1)-grid + that is able to hold a sequence of sawteeth and so-called + final correction, while the external part of the window is + filled with counts to meet the nnz constraint exactly. + """ + assert 0 <= nnz <= n_rows * n_cols, (nnz, n_rows, n_cols) + + def sawteeth(n, m): + # return the total number of counts in the sequence of + # sawteeth where n and m define a window in (n_rows+1, + # n_cols+1) rectangle where the sequence of sawteeth + # perfectly fit. + M = (n_cols - m) * (n_cols - m + 1) // 2 + K = (n_rows - n) % (n_cols - m + 1) + return M * ((n_rows - n) // (n_cols - m + 1)) + K * (K - 1) // 2 + + # Different from the original method description, here counts + # has leading 0 required by crow_indices: + counts = torch.zeros(n_rows + 1, dtype=dtype, device=torch.device('cpu')) + + n = m = 0 + N = sawteeth(n, m) + if N and nnz >= max(N, n_cols): + # determine the width of the sawteeth window. We use bisection to solve + # N(n, 0) == 0 or nnz - n * n_cols < max(N(n, 0), n_cols) + # for n + n_left = n + n_right = n_rows - 1 + N_right = sawteeth(n_right, m) + while n_right - n_left > 1: + n_middle = (n_left + n_right) // 2 + N_middle = sawteeth(n_middle, m) + if N_middle == 0 or nnz - n_middle * n_cols < max(N_middle, n_cols): + n_right, N_right = n_middle, N_middle + else: + n_left = n_middle + n, N = n_right, N_right + # fill the right rectangle with counts: + assert n + counts[-n:].fill_(n_cols) + + if N and nnz - n * n_cols >= max(N, n_rows - n): + # determine the height of the sawteeth window. We use bisection to solve + # N(n, m) == 0 or nnz - n * n_cols - m * (n_rows - n) < max(N(n, m), n_rows - n) + # for m. + m_left = m + m_right = n_cols - 1 + N_right = sawteeth(n, m_right) + while m_right - m_left > 1: + m_middle = (m_left + m_right) // 2 + N_middle = sawteeth(n, m_middle) + if N_middle == 0 or nnz - n * n_cols - m_middle * (n_rows - n) < max(N_middle, n_rows - n): + m_right, N_right = m_middle, N_middle + else: + m_left = m_middle + m, N = m_right, N_right + # fill the bottom rectangle with counts: + assert m + counts[1:n_rows - n + 1].fill_(m) + + if N: + # fill the sawteeth window with counts + q, r = divmod(nnz - n * n_cols - m * (n_rows - n), + (n_cols - m) * (n_cols - m + 1) // 2) + p = 1 + q * (n_cols - m + 1) + k = math.isqrt(2 * r) + if k * (k + 1) > 2 * r: + k -= 1 + corr = r - k * (k + 1) // 2 + assert not ((p > 1) and (m > 0)) # full sawteeth are never on top of a bottom rectangle + # sequence of full sawteeth: + counts[1:p] = torch.arange(p - 1, dtype=dtype, device=counts.device) % (n_cols - m + 1) + # incomplete sawtooth: + counts[p:p + k + 1] += torch.arange(k + 1, dtype=dtype, device=counts.device) + else: + # given input does not support sawteeth + p = 1 + corr = nnz - n * n_cols - m * (n_rows - n) + + # correction that will guarantee counts.sum() == nnz: + counts[p] += corr + + if random: + # randomize crow_indices by shuffling the sawteeth + # sequence: + perm = torch.randperm(n_rows, device=counts.device) + counts[1:] = counts[1:][perm] + + # compute crow_indices: + crow_indices = counts + crow_indices.cumsum_(dim=0) + return crow_indices.to(device=device) + + def genSparseCompressedTensor(self, size, nnz, *, layout, device, dtype, index_dtype, blocksize=(), dense_dims=0): + from operator import mul + from functools import reduce + sparse_dim = 2 + assert all(size[d] > 0 for d in range(len(size))) or nnz == 0, 'invalid arguments' + assert len(size) >= sparse_dim + if blocksize: + assert len(blocksize) == 2, (size, blocksize) + assert size[-2 - dense_dims] % blocksize[0] == 0, (size, blocksize) + assert size[-1 - dense_dims] % blocksize[1] == 0, (size, blocksize) + blocksize0, blocksize1 = blocksize + else: + blocksize0 = blocksize1 = 1 + + size = tuple(size) + dense_size = size[(len(size) - dense_dims):] + + def random_sparse_compressed(n_compressed_dims, n_plain_dims, nnz): + compressed_indices = self._make_crow_indices(n_compressed_dims, n_plain_dims, nnz, device=device, dtype=index_dtype) + plain_indices = torch.zeros(nnz, dtype=index_dtype, device=device) + for i in range(n_compressed_dims): + count = compressed_indices[i + 1] - compressed_indices[i] + plain_indices[compressed_indices[i]:compressed_indices[i + 1]], _ = torch.sort( + torch.randperm(n_plain_dims, dtype=index_dtype, device=device)[:count]) + low = -1 if dtype != torch.uint8 else 0 + high = 1 if dtype != torch.uint8 else 2 + values = make_tensor((nnz,) + blocksize + dense_size, device=device, dtype=dtype, low=low, high=high) + return values, compressed_indices, plain_indices + + batch_shape = size[:-2 - dense_dims] + n_batch = reduce(mul, batch_shape, 1) + + if layout in {torch.sparse_csr, torch.sparse_bsr}: + n_compressed_dims, n_plain_dims = size[-2 - dense_dims] // blocksize0, size[-1 - dense_dims] // blocksize1 + else: + n_compressed_dims, n_plain_dims = size[-1 - dense_dims] // blocksize1, size[-2 - dense_dims] // blocksize0 + blocknnz = nnz // (blocksize0 * blocksize1) + sparse_tensors = [random_sparse_compressed(n_compressed_dims, n_plain_dims, blocknnz) for _ in range(n_batch)] + sparse_tensors_it = map(list, zip(*sparse_tensors)) + + values = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, blocknnz, *blocksize, *dense_size) + compressed_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1) + plain_indices = torch.stack(next(sparse_tensors_it)).reshape(*batch_shape, -1) + return torch.sparse_compressed_tensor(compressed_indices, plain_indices, + values, size=size, dtype=dtype, layout=layout, device=device) + + def genSparseCSRTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0): + return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csr, device=device, + dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=dense_dims) + + def genSparseCSCTensor(self, size, nnz, *, device, dtype, index_dtype, dense_dims=0): + return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_csc, device=device, + dtype=dtype, index_dtype=index_dtype, blocksize=(), dense_dims=0) + + def genSparseBSRTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0): + assert len(blocksize) == 2 + return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsr, device=device, + dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims) + + def genSparseBSCTensor(self, size, blocksize, nnz, *, device, dtype, index_dtype, dense_dims=0): + assert len(blocksize) == 2 + return self.genSparseCompressedTensor(size, nnz, layout=torch.sparse_bsc, device=device, + dtype=dtype, index_dtype=index_dtype, blocksize=blocksize, dense_dims=dense_dims) + + def genSparseTensor(self, size, sparse_dim, nnz, is_uncoalesced, device, dtype): + # Assert not given impossible combination, where the sparse dims have + # empty numel, but nnz > 0 makes the indices containing values. + assert all(size[d] > 0 for d in range(sparse_dim)) or nnz == 0, 'invalid arguments' + + v_size = [nnz] + list(size[sparse_dim:]) + v = make_tensor(v_size, device=device, dtype=dtype, low=-1, high=1) + i = torch.rand(sparse_dim, nnz, device=device) + i.mul_(torch.tensor(size[:sparse_dim]).unsqueeze(1).to(i)) + i = i.to(torch.long) + if is_uncoalesced: + i1 = i[:, :(nnz // 2), ...] + i2 = i[:, :((nnz + 1) // 2), ...] + i = torch.cat([i1, i2], 1) + x = torch.sparse_coo_tensor(i, v, torch.Size(size), dtype=dtype, device=device) + + if not is_uncoalesced: + x = x.coalesce() + else: + # FIXME: `x` is a sparse view of `v`. Currently rebase_history for + # sparse views is not implemented, so this workaround is + # needed for inplace operations done on `x`, e.g., copy_(). + # Remove after implementing something equivalent to CopySlice + # for sparse views. + # NOTE: We do clone() after detach() here because we need to be able to change size/storage of x afterwards + x = x.detach().clone()._coalesced_(False) + return x, x._indices().clone(), x._values().clone() + + def generate_simple_inputs(self, layout, + device=None, + dtype=None, + index_dtype=None, + pin_memory=None, + members_pin_memory=None, + enable_batch=True, + enable_hybrid=True, + enable_zero_sized=True, + enable_non_contiguous_indices=True, + enable_non_contiguous_values=True, + enable_batch_variable_nse=False, + output_tensor=True, + patterns=None): + """Generator of simple inputs for tensor constructors of the given layout. + + The generated tensor inputs have the following properties: + + - tensor shapes are minimal but not trivial + - tensor values are sorted sequences for COO and CSR formats, e.g. [1, 2, 3, 4] + - the generated tensors represent the same mathematical tensor for all layouts + - the generated tensors include regular, zero-sized, and optionally, batched or/and hybrid tensors. + - the generated tensors include contiguous or non-contiguous tensors both in indices and values + + If output_tensor is True, yield tensors with the given + layout. Otherwise, yield inputs to the corresponding tensor + constructors: + + - sparse compressed input is defined as + (compressed_indices, plain_indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype, + pin_memory=pin_memory) + + - sparse COO input is defined as + (indices, values), dict(size=expected_size_from_shape_inference, device=device, dtype=dtype, pin_memory=pin_memory) + + - strided input is defined as + (values,), dict(device=device, dtype=dtype) + """ + if index_dtype is None: + index_dtype = torch.int64 + + is_compressed_sparse_layout = layout in {torch.sparse_csr, torch.sparse_csc, torch.sparse_bsr, torch.sparse_bsc} + + if output_tensor: + for args, kwargs in self.generate_simple_inputs(layout, device=device, dtype=dtype, index_dtype=index_dtype, + pin_memory=pin_memory, + enable_batch=enable_batch, enable_hybrid=enable_hybrid, + enable_zero_sized=enable_zero_sized, + enable_non_contiguous_indices=enable_non_contiguous_indices, + enable_non_contiguous_values=enable_non_contiguous_values, + enable_batch_variable_nse=enable_batch_variable_nse, + output_tensor=False): + if members_pin_memory: + args = tuple(a.pin_memory() for a in args) + if layout is torch.strided: + assert len(args) == 1 + size = kwargs.pop('size', None) # to ensure that a zero-sized tensor has the desired shape + assert size is not None + if pin_memory: + yield args[0].reshape(size).pin_memory() + else: + yield args[0].reshape(size) + elif layout is torch.sparse_coo: + yield torch.sparse_coo_tensor(*args, **kwargs) + elif is_compressed_sparse_layout: + kwargs.update(layout=layout) + yield torch.sparse_compressed_tensor(*args, **kwargs) + else: + assert 0 # unreachable + return + + def get_blockpattern(pattern, blocksize): + basesize = pattern.shape + assert basesize[0] % blocksize[0] == 0, (basesize, blocksize) + assert basesize[1] % blocksize[1] == 0, (basesize, blocksize) + blockpattern = pattern.reshape(-1, + blocksize[0], + basesize[1] // blocksize[1], + blocksize[1]).transpose(-3, -2).any(-1).any(-1) + block_ids = torch.arange(1, blockpattern.numel() + 1).reshape(blockpattern.shape) + return (blockpattern != 0) * block_ids + + def get_sparse_data(pattern): + basesize = pattern.shape + assert len(basesize) == 2, basesize # pattern is expected to be a matrix + + # We cannot use `torch.sparse_xyz_tensor(pattern)` to + # compute the sparse layout indices and values because + # generate_simple_inputs is used to generate the inputs to + # test `torch.sparse_xyz_tensor` factory functions, so + # we'll compute the indices and values independently of + # the factory functions. + + indices = torch.where(pattern != 0) + coo_indices = torch.stack(indices) + crow_indices = torch.zeros(basesize[0] + 1, dtype=torch.int64) + crow_indices[1:] = torch.cumsum(coo_indices[0].bincount(minlength=basesize[0]), 0) + col_indices = coo_indices[1] + strided_values = torch.zeros(basesize, dtype=torch.int64) + + # the property of `values == range(1, 1+nnz)` is used in + # get_sparse_data_with_block to relate BSR and BSC values, + # so, don't change the following line: + values = torch.arange(1, 1 + len(indices[0]), dtype=torch.int64) + strided_values[indices] = values + + indices_T = torch.where(pattern.transpose(0, 1) != 0) + coo_indices_T = torch.stack(indices_T) + ccol_indices = torch.zeros(basesize[1] + 1, dtype=torch.int64) + ccol_indices[1:] = torch.cumsum(coo_indices_T[0].bincount(minlength=basesize[1]), 0) + row_indices = coo_indices_T[1] + csc_values = strided_values.transpose(0, 1)[indices_T] + + return {torch.sparse_coo: (coo_indices, values), + torch.sparse_csr: (crow_indices, col_indices, values), + torch.sparse_csc: (ccol_indices, row_indices, csc_values), + torch.strided: (strided_values,)} + + def get_sparse_data_with_block(pattern, blocksize): + nonblock_data = get_sparse_data(pattern) + blockpattern = get_blockpattern(pattern, blocksize) + block_data = get_sparse_data(blockpattern) + + strided_values = nonblock_data[torch.strided][0] + block_indices = block_data[torch.sparse_coo][0] + bsr_values = torch.stack([strided_values[bi * blocksize[0]:(bi + 1) * blocksize[0], + bj * blocksize[1]:(bj + 1) * blocksize[1]] + for bi, bj in block_indices.transpose(0, 1)]) + + # here we use the property `values == range(1, 1+nnz)` and + # `values` relation to `csc_values` (see get_sparse_data) + # to get BSC blocks via reordering the BSR blocks: + bsc_values = bsr_values[block_data[torch.sparse_csc][2] - 1] + + return {torch.sparse_bsr: (*block_data[torch.sparse_csr][:2], bsr_values), + torch.sparse_bsc: (*block_data[torch.sparse_csc][:2], bsc_values), + **nonblock_data} + + def get_batch_sparse_data(pattern, blocksize): + size = pattern.shape + if len(size) <= 2: # non-batch + return get_sparse_data_with_block(pattern, blocksize) + + # batch data is created recursively: + batch_data = {} + for i, item in enumerate(pattern): + for layout, d in get_batch_sparse_data(item, blocksize).items(): + target = batch_data.get(layout) + if layout is torch.sparse_coo: + # a "batch COO" means a COO with the leading + # sparse dimensions interpreted as batch + # dimensions + ext_coo_indices1 = torch.cat((torch.full((1, len(d[1])), i, dtype=torch.int64), d[0])) + if target is None: + target = batch_data[layout] = (ext_coo_indices1, d[1]) + else: + target[0].set_(torch.cat((target[0], ext_coo_indices1), 1)) + target[1].set_(torch.cat((target[1], d[1]))) + else: + if target is None: + target = batch_data[layout] = tuple(d[j].unsqueeze(0) for j in range(len(d))) + else: + for j in range(len(d)): + target[j].set_(torch.cat((target[j], d[j].unsqueeze(0)))) + return batch_data + + def generate_values(base, densesize): + """Generates a tensor of shape densesize with values equal to + + base + i_1 * 10^0 + ... + i_d * 10^{d - 1} + + at indices i_1, ..., i_d (with 0 <= i_j < densesize[j] for any 1 <= j <= + len(densesize)) + + This mapping produces unique values as long as + densesize[i] < 10 for all i in range(len(densesize)). + """ + + if not densesize: + return base + if not isinstance(base, int) and base.ndim > 0: + return torch.stack([generate_values(b, densesize) for b in base]) + if base == 0: + return torch.zeros(densesize, dtype=torch.int64) + r = torch.arange(densesize[0], dtype=torch.int64) + for i, d in enumerate(densesize[1:]): + y = torch.arange(d, dtype=torch.int64) * (10 ** (i + 1)) + r = r[..., None] + y[None, ...] + r.add_(base) + return r + + if patterns is None: + # A pattern is a 3-tuple with the following items: + # + # - a list of integers with the depth of two or more. The + # integers define the sparsity patterns of the generated + # inputs: zero values correspond to unspecified + # elements/blocks, and non-zero values to the specified + # elements. + # + # For debugging convenience, the elements with the same + # value typically belong to the same block. However, it + # is not a hard requirement: as long as the shape of a + # pattern divides with block sizes, the pattern will be + # a valid one. + # + # If the depth of the list is larger than two, inputs + # with batch dimensions will be generated. + # + # - a list of 2-tuples of block sizes, used to generate + # BSR/BSC tensors with various block size parameters + # + # - a list of tuples of dense dimensions, used to generate + # hybrid tensors with various dense dimensions + # + patterns = [ + # a simple 3 x 2 tensor: non-hybrid, hybrid with 1 and 2 dense dimensions + ([[1, 2, 0], + [1, 0, 3]], [(2, 1), (1, 3)], [(), (2,), (4, 5)]), + # 2 x 3 batch of 3 x 2 tensors: non-hybrid and hybrid with 2 dense dimensions + ([[[[1, 2, 0], + [1, 0, 3]], + [[1, 2, 3], + [1, 0, 0]], + [[1, 0, 0], + [1, 2, 3]]], + [[[0, 2, 0], + [1, 2, 3]], + [[1, 0, 3], + [1, 2, 0]], + [[1, 2, 3], + [0, 2, 0]]]], [(2, 1), (2, 3)], [(), (2,)]), + # tensor with non-trivial blocksize + ([[0, 1, 0, 2, 0, 2], + [0, 1, 0, 0, 2, 0], + [3, 3, 3, 0, 0, 0], + [0, 0, 0, 0, 0, 0], + [0, 5, 0, 6, 6, 6], + [5, 0, 5, 6, 6, 6], + [0, 0, 0, 0, 8, 8], + [7, 7, 7, 0, 8, 8]], [(2, 3)], [(), (4, 5)]), + # batch tensor with variable NSE + # Requires https://github.com/pytorch/pytorch/pull/84843 or similar. + ([[[1, 2], + [3, 4]], + [[1, 0], + [0, 0]]], [(1, 1)], ([()] if enable_batch_variable_nse else []))] + + def non_contiguous_copy(t, dim=-1, offset=0): + # return a copy of t that is non-contiguous along the + # given dimension and with the given storage offset + self.assertTrue(t.is_contiguous()) + if dim < 0: + dim = dim + t.ndim + assert dim >= 0 and dim < t.ndim + step = max(2, offset + 1) + tmp = torch.zeros((*t.shape[:dim], t.shape[dim] * step, *t.shape[dim + 1:]), dtype=t.dtype, device=t.device) + dim_slices = (*((slice(None),) * dim), slice(offset, None, step)) + r = tmp[dim_slices].copy_(t) + self.assertFalse(r.is_contiguous()) + self.assertEqual(t, r) + return r + + # the main loop of the method: + for pattern, blocksizes, densesizes in patterns: + if not enable_hybrid: + densesizes = [s for s in densesizes if not s] + if not (densesizes and blocksizes): + continue + pattern = torch.tensor(pattern, dtype=torch.int64) + if not enable_batch and pattern.ndim > 2: + continue + for blocksize in blocksizes: + data = get_batch_sparse_data(pattern, blocksize)[layout] + for densesize in densesizes: + indices = [a.to(device=device, dtype=index_dtype) for a in data[:-1]] + values = generate_values(data[-1], densesize).to(device=device, dtype=dtype) + kwargs = dict(device=device, dtype=dtype, size=pattern.shape + densesize) + if pin_memory is not None: + kwargs.update(pin_memory=pin_memory) + + yield (*indices, values), kwargs.copy() + if enable_non_contiguous_indices and pattern.ndim > 2: + # sparse compressed indices can be sliced only along batch dimensions + for (dim, offset) in {(0, 1), (-2, 0)}: + indices_copy = [non_contiguous_copy(a, dim=dim, offset=offset) for a in indices] + yield (*indices_copy, values), kwargs.copy() + + if enable_non_contiguous_values: + values_copy = non_contiguous_copy(values, dim=-1, offset=1) + yield (*indices_copy, values_copy), kwargs.copy() + + if enable_non_contiguous_values: + values_copy = non_contiguous_copy(values, dim=-1, offset=1) + yield (*indices, values_copy), kwargs.copy() + + # zero-sized tensor inputs, non-batch, non-hybrid/hybrid + if enable_zero_sized: + for basesize, blocksizes, densesizes in [ + ((2, 0), [(1, 2)], [(), (2,), (2, 3)] if enable_hybrid else [()]), + ((0, 2), [(1, 2), (2, 1), (3, 2)], [()]), + ((0, 0), [(1, 2)], [()]), + ]: + for blocksize in blocksizes: + for densesize in densesizes: + if layout == torch.strided: + indices = () + values = torch.empty((basesize + densesize), device=device, dtype=dtype) + elif layout == torch.sparse_coo: + indices = (torch.empty(len(basesize), 0, device=device, dtype=index_dtype),) + values = torch.empty((0, *densesize), device=device, dtype=dtype) + elif layout == torch.sparse_csr: + crow_indices = torch.tensor([0] * (basesize[0] + 1), device=device, dtype=index_dtype) + col_indices = torch.empty(0, device=device, dtype=index_dtype) + indices = (crow_indices, col_indices) + values = torch.empty((0, *densesize), device=device, dtype=dtype) + elif layout == torch.sparse_csc: + ccol_indices = torch.tensor([0] * (basesize[1] + 1), device=device, dtype=index_dtype) + row_indices = torch.empty(0, device=device, dtype=index_dtype) + indices = (ccol_indices, row_indices) + values = torch.empty((0, *densesize), device=device, dtype=dtype) + elif layout == torch.sparse_bsr: + crow_indices = torch.tensor([0] * (basesize[0] // blocksize[0] + 1), device=device, dtype=index_dtype) + col_indices = torch.empty(0, device=device, dtype=index_dtype) + indices = (crow_indices, col_indices) + values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype) + elif layout == torch.sparse_bsc: + ccol_indices = torch.tensor([0] * (basesize[1] // blocksize[1] + 1), device=device, dtype=index_dtype) + row_indices = torch.empty(0, device=device, dtype=index_dtype) + indices = (ccol_indices, row_indices) + values = torch.empty((0, *blocksize, *densesize), device=device, dtype=dtype) + else: + assert 0 # unreachable + kwargs = dict(device=device, dtype=dtype, size=basesize + densesize) + if pin_memory is not None: + kwargs.update(pin_memory=pin_memory) + yield (*indices, values), kwargs + + def safeToDense(self, t): + # coalesce is only implemented for COO + if t.layout == torch.sparse_coo: + t = t.coalesce() + return t.to_dense() + + # Compares a torch function with a reference function for a given sample input (object of SampleInput) + # Note: only values are compared, type comparison is not done here + def compare_with_reference(self, torch_fn, ref_fn, sample_input, **kwargs): + numpy_sample = sample_input.numpy() + n_inp, n_args, n_kwargs = numpy_sample.input, numpy_sample.args, numpy_sample.kwargs + t_inp, t_args, t_kwargs = sample_input.input, sample_input.args, sample_input.kwargs + + actual = torch_fn(t_inp, *t_args, **t_kwargs) + expected = ref_fn(n_inp, *n_args, **n_kwargs) + + self.assertEqual(actual, expected, exact_device=False, **kwargs) + + # Compares the given Torch and NumPy functions on the given tensor-like object. + # NOTE: both torch_fn and np_fn should be functions that take a single + # tensor (array). If the torch and/or NumPy function require additional + # arguments then wrap the function in a lambda or pass a partial function. + # TODO: add args/kwargs for passing to assertEqual (e.g. rtol, atol) + def compare_with_numpy(self, torch_fn, np_fn, tensor_like, + device=None, dtype=None, **kwargs): + assert TEST_NUMPY + + if isinstance(tensor_like, torch.Tensor): + assert device is None + assert dtype is None + t_cpu = tensor_like.detach().cpu() + if t_cpu.dtype is torch.bfloat16: + t_cpu = t_cpu.float() + a = t_cpu.numpy() + t = tensor_like + else: + d = copy.copy(torch_to_numpy_dtype_dict) + d[torch.bfloat16] = np.float32 + a = np.array(tensor_like, dtype=d[dtype]) + t = torch.tensor(tensor_like, device=device, dtype=dtype) + + np_result = np_fn(a) + torch_result = torch_fn(t).cpu() + + # Converts arrays to tensors + if isinstance(np_result, np.ndarray): + try: + np_result = torch.from_numpy(np_result) + except Exception: + # NOTE: copying an array before conversion is necessary when, + # for example, the array has negative strides. + np_result = torch.from_numpy(np_result.copy()) + if t.dtype is torch.bfloat16 and torch_result.dtype is torch.bfloat16 and np_result.dtype is torch.float: + torch_result = torch_result.to(torch.float) + + self.assertEqual(np_result, torch_result, **kwargs) + + def assertEqualIgnoreType(self, *args, **kwargs) -> None: + # If you are seeing this function used, that means test is written wrongly + # and deserves detailed investigation + return self.assertEqual(*args, exact_dtype=False, **kwargs) + + def assertEqualBroadcasting(self, x, y, *args, **kwargs) -> None: + r"""Tests if tensor x equals to y, if y to be broadcast to x.shape. + """ + if not isinstance(y, Iterable): + # int, float, etc. or different shape tensors + y = torch.ones_like(x) * y + if not isinstance(y, torch.Tensor): + # iterable, but not a tensor + y = torch.ones_like(x) * torch.tensor(y) + return self.assertEqual(x, y, *args, **kwargs) + + def assertEqual( + self, + x, + y, + msg: Optional[Union[str, Callable[[str], str]]] = None, + *, + atol: Optional[float] = None, + rtol: Optional[float] = None, + equal_nan=True, + exact_dtype=True, + # TODO: default this to True + exact_device=False, + exact_layout=False, + exact_stride=False, + exact_is_coalesced=False + ): + # Hide this function from `pytest`'s traceback + __tracebackhide__ = True + + # numpy's dtypes are a superset of what PyTorch supports. In case we encounter an unsupported dtype, we fall + # back to an elementwise comparison. Note that this has to happen here and not for example in + # `TensorOrArrayPair`, since at that stage we can no longer split the array into its elements and perform + # multiple comparisons. + if any( + isinstance(input, np.ndarray) and not has_corresponding_torch_dtype(input.dtype) for input in (x, y) + ): + def to_list(input): + return input.tolist() if isinstance(input, (torch.Tensor, np.ndarray)) else list(input) + + x = to_list(x) + y = to_list(y) + # When comparing a sequence of numbers to a tensor, we need to convert the sequence to a tensor here. + # Otherwise, the pair origination of `are_equal` will fail, because the sequence is recognized as container + # that should be checked elementwise while the tensor is not. + elif isinstance(x, torch.Tensor) and isinstance(y, Sequence): + y = torch.as_tensor(y, dtype=x.dtype, device=x.device) + elif isinstance(x, Sequence) and isinstance(y, torch.Tensor): + x = torch.as_tensor(x, dtype=y.dtype, device=y.device) + + # unbind NSTs to compare them; don't do this for NJTs + if isinstance(x, torch.Tensor) and x.is_nested and x.layout == torch.strided: + x = x.unbind() + if isinstance(y, torch.Tensor) and y.is_nested and y.layout == torch.strided: + y = y.unbind() + + error_metas = not_close_error_metas( + x, + y, + pair_types=( + NonePair, + RelaxedBooleanPair, + RelaxedNumberPair, + TensorOrArrayPair, + TypedStoragePair, + StringPair, + SetPair, + TypePair, + ObjectPair, + ), + sequence_types=( + Sequence, + Sequential, + ModuleList, + ParameterList, + ScriptList, + torch.utils.data.dataset.Subset, + ), + mapping_types=(Mapping, ModuleDict, ParameterDict, ScriptDict), + rtol=rtol, + rtol_override=self.rel_tol, + atol=atol, + atol_override=self.precision, + equal_nan=equal_nan, + check_device=exact_device, + check_dtype=exact_dtype, + check_layout=exact_layout, + check_stride=exact_stride, + check_is_coalesced=exact_is_coalesced, + ) + + if error_metas: + # See [ErrorMeta Cycles] + error_metas = [error_metas] + # TODO: compose all metas into one AssertionError + raise error_metas.pop()[0].to_error( + # This emulates unittest.TestCase's behavior if a custom message passed and + # TestCase.longMessage (https://docs.python.org/3/library/unittest.html#unittest.TestCase.longMessage) + # is True (default) + (lambda generated_msg: f"{generated_msg}\n{msg}") if isinstance(msg, str) and self.longMessage else msg + ) + + def assertNotEqual(self, x, y, msg: Optional[str] = None, *, # type: ignore[override] + atol: Optional[float] = None, rtol: Optional[float] = None, **kwargs) -> None: + with self.assertRaises(AssertionError, msg=msg): + self.assertEqual(x, y, msg, atol=atol, rtol=rtol, **kwargs) + + def assertEqualTypeString(self, x, y) -> None: + # This API is used simulate deprecated x.type() == y.type() + self.assertEqual(x.device, y.device) + self.assertEqual(x.dtype, y.dtype) + self.assertEqual(x.is_sparse, y.is_sparse) + + def assertObjectIn(self, obj: Any, iterable: Iterable[Any]) -> None: + for elem in iterable: + if id(obj) == id(elem): + return + raise AssertionError("object not found in iterable") + + # Reimplemented to provide special behavior when + # _ignore_not_implemented_error is True + def assertRaises(self, expected_exception, *args, **kwargs): + if self._ignore_not_implemented_error: + context: Optional[AssertRaisesContextIgnoreNotImplementedError] = \ + AssertRaisesContextIgnoreNotImplementedError(expected_exception, self) # type: ignore[call-arg] + try: + return context.handle('assertRaises', args, kwargs) # type: ignore[union-attr] + finally: + # see https://bugs.python.org/issue23890 + context = None + else: + return super().assertRaises(expected_exception, *args, **kwargs) + + # Reimplemented to provide special behavior when + # _ignore_not_implemented_error is True + def assertRaisesRegex(self, expected_exception, expected_regex, *args, **kwargs): + # Verifies that an exception with the type expected_exception and message + # matching the regular expression defined by expected_regex is thrown. + # If the test is instantiated for a non-native device type (like XLA) + # then the message is not validated. + + # Checks whether the test is instantiated for a device type by testing + # if the test class has defined the device_type attribute and, + # if so, tests whether the instantiated device type is native or not + if hasattr(self, 'device_type') and self.device_type not in NATIVE_DEVICES and self.device_type != "mps": # type: ignore[attr-defined] + # empty string matches any string + expected_regex = '' + + if self._ignore_not_implemented_error: + context = AssertRaisesContextIgnoreNotImplementedError( # type: ignore[call-arg] + expected_exception, self, expected_regex) + return context.handle('assertRaisesRegex', args, kwargs) # type: ignore[attr-defined] + else: + return super().assertRaisesRegex(expected_exception, expected_regex, *args, **kwargs) + + # Verifies that no unraisable exceptions are raised by callable. Unlike regular + # exceptions, these do not actually propagate to the caller and are + # suppressed. We must test for them specially. + def assertNoUnraisable(self, callable, *args, **kwargs): + raised = None + + def record_unraisable(unraisable): + nonlocal raised + raised = unraisable + + # Disable GC when running the callable to prevent spurious flakiness + # from unlucky GCs inside the callable + prev = gc.isenabled() + gc.disable() + try: + with unittest.mock.patch("sys.unraisablehook", record_unraisable): + callable(*args, **kwargs) + finally: + if prev: + gc.enable() + + self.assertIsNone(raised) + + # TODO: Support context manager interface + # NB: The kwargs forwarding to callable robs the 'subname' parameter. + # If you need it, manually apply your callable in a lambda instead. + def assertExpectedRaises(self, exc_type, callable, *args, **kwargs): + subname = None + if 'subname' in kwargs: + subname = kwargs['subname'] + del kwargs['subname'] + try: + callable(*args, **kwargs) + except exc_type as e: + self.assertExpected(str(e), subname) + return + # Don't put this in the try block; the AssertionError will catch it + self.fail(msg="Did not raise when expected to") + + def assertNotWarn(self, callable, msg=''): + r""" + Test if :attr:`callable` does not raise a warning. + """ + with warnings.catch_warnings(record=True) as ws: + warnings.simplefilter("always") # allow any warning to be raised + with set_warn_always_context(True): + callable() + self.assertTrue(len(ws) == 0, msg) + + @contextmanager + def assertWarnsOnceRegex(self, category, regex=''): + """Context manager for code that *must always* warn + + This filters expected warnings from the test and fails if + the expected warning is not caught. It uses set_warn_always() to force + TORCH_WARN_ONCE to behave like TORCH_WARN + """ + pattern = re.compile(regex) + with warnings.catch_warnings(record=True) as ws: + warnings.simplefilter("always") # allow any warning to be raised + with set_warn_always_context(True): + yield + if len(ws) == 0: + self.fail('no warning caught') + self.assertTrue(any(type(w.message) is category for w in ws)) + self.assertTrue( + any(re.match(pattern, str(w.message)) for w in ws), + f'{pattern}, {[w.message for w in ws if type(w.message) is category]}') + + def assertExpected(self, s, subname=None): + r""" + Test that a string matches the recorded contents of a file + derived from the name of this test and subname. This file + is placed in the 'expect' directory in the same directory + as the test script. You can automatically update the recorded test + output using --accept. + + If you call this multiple times in a single function, you must + give a unique subname each time. + """ + if not isinstance(s, str): + raise TypeError("assertExpected is strings only") + + def remove_prefix(text, prefix): + if text.startswith(prefix): + return text[len(prefix):] + return text + # NB: we take __file__ from the module that defined the test + # class, so we place the expect directory where the test script + # lives, NOT where test/common_utils.py lives. This doesn't matter in + # PyTorch where all test scripts are in the same directory as + # test/common_utils.py, but it matters in onnx-pytorch + module_id = self.__class__.__module__ + munged_id = remove_prefix(self.id(), module_id + ".") + test_file = os.path.realpath(sys.modules[module_id].__file__) + expected_file = os.path.join(os.path.dirname(test_file), + "expect", + munged_id) + + subname_output = "" + if subname: + expected_file += "-" + subname + subname_output = f" ({subname})" + expected_file += ".expect" + expected = None + + def accept_output(update_type): + print(f"Accepting {update_type} for {munged_id}{subname_output}:\n\n{s}") + with open(expected_file, 'w') as f: + # Adjust for producer_version, leave s unmodified + s_tag = re.sub(r'(producer_version): "[0-9.]*"', + r'\1: "CURRENT_VERSION"', s) + f.write(s_tag) + + try: + with open(expected_file) as f: + expected = f.read() + except OSError as e: + if e.errno != errno.ENOENT: + raise + elif expecttest.ACCEPT: + return accept_output("output") + else: + raise RuntimeError( + f"I got this output for {munged_id}{subname_output}:\n\n{s}\n\n" + "No expect file exists; to accept the current output, run:\n" + f"python {__main__.__file__} {munged_id} --accept") from None + + # a hack for JIT tests + if IS_WINDOWS: + expected = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', expected) + s = re.sub(r'CppOp\[(.+?)\]', 'CppOp[]', s) + + # Adjust for producer_version + expected = expected.replace( + 'producer_version: "CURRENT_VERSION"', + f'producer_version: "{torch.onnx.producer_version}"' + ) + if expecttest.ACCEPT: + if expected != s: + return accept_output("updated output") + else: + if hasattr(self, "assertMultiLineEqual"): + # Python 2.7 only + # NB: Python considers lhs "old" and rhs "new". + self.assertMultiLineEqual(expected, s) + else: + self.assertEqual(s, expected) + + def assertExpectedStripMangled(self, s, subname=None): + s = re.sub(r'__torch__[^ ]+', '', s) + self.assertExpected(s, subname) + + def assertGreaterAlmostEqual(self, first, second, places=None, msg=None, delta=None): + """Assert that ``first`` is greater than or almost equal to ``second``. + + The equality of ``first`` and ``second`` is determined in a similar way to + the ``assertAlmostEqual`` function of the standard library. + """ + if delta is not None and places is not None: + raise TypeError("specify delta or places not both") + + if first >= second: + return + + diff = second - first + if delta is not None: + if diff <= delta: + return + + standardMsg = f"{first} not greater than or equal to {second} within {delta} delta" + else: + if places is None: + places = 7 + + if round(diff, places) == 0: + return + + standardMsg = f"{first} not greater than or equal to {second} within {places} places" + + msg = self._formatMessage(msg, standardMsg) + raise self.failureException(msg) + + def assertAtenOp(self, onnx_model, operator, overload_name=""): + all_aten_nodes = [p for p in onnx_model.graph.node + if p.op_type == "ATen" and p.domain == "org.pytorch.aten"] + self.assertTrue(all_aten_nodes) + + for op in all_aten_nodes: + attrs = {attr.name: attr.s.decode() for attr in op.attribute} + if attrs.get("operator") == operator: + break + + self.assertEqual(attrs["operator"], operator) + self.assertEqual(attrs.get("overload_name", ""), overload_name) + + def check_nondeterministic_alert(self, fn, caller_name, should_alert=True): + '''Checks that an operation produces a nondeterministic alert when + expected while `torch.use_deterministic_algorithms(True)` is set. + + Args: + fn (callable): Function to check for a nondeterministic alert + + caller_name (str): Name of the operation that produces the + nondeterministic alert. This name is expected to appear at the + beginning of the error/warning message. + + should_alert (bool, optional): If True, then the check will only pass + if calling `fn` produces a nondeterministic error/warning with the + expected message. If False, then the check will only pass if + calling `fn` does not produce an error. Default: `True`. + ''' + + alert_message = '^' + caller_name + ' does not have a deterministic implementation, but you set' + + # Check that errors are thrown correctly + with DeterministicGuard(True): + if should_alert: + with self.assertRaisesRegex( + RuntimeError, + alert_message, + msg='expected a non-deterministic error, but it was not raised'): + fn() + + else: + # If a nondeterministic error is not expected, make sure + # that it is not raised + try: + fn() + except RuntimeError as e: + if 'does not have a deterministic implementation' in str(e): + self.fail( + 'did not expect non-deterministic error message, ' + + 'but got one anyway: "' + str(e) + '"') + # Reraise exceptions unrelated to nondeterminism + raise + + # Check that warnings are thrown correctly + with DeterministicGuard(True, warn_only=True): + if should_alert: + with self.assertWarnsRegex( + UserWarning, + alert_message): + fn() + else: + with warnings.catch_warnings(record=True) as w: + warnings.simplefilter("always") + fn() + for warning in w: + if isinstance(warning, UserWarning): + self.assertTrue(re.search(alert_message, str(warning)) is None) + + # run code in subprocess and capture exceptions. + @staticmethod + def run_process_no_exception(code, env=None): + import subprocess + + popen = subprocess.Popen( + [sys.executable, '-c', code], + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + env=env) + (stdout, stderr) = popen.communicate() + return (stdout, stderr) + + # returns captured stderr + @staticmethod + def runWithPytorchAPIUsageStderr(code): + env = os.environ.copy() + env["PYTORCH_API_USAGE_STDERR"] = "1" + # remove CI flag since this is a wrapped test process. + # CI flag should be set in the parent process only. + env.pop("CI", None) + env.pop("TEST_SHOWLOCALS", None) + (stdout, stderr) = TestCase.run_process_no_exception(code, env=env) + return stderr.decode('ascii') + + +class TestCaseBase(TestCase): + # Calls to super() in dynamically created classes are a bit odd. + # See https://github.com/pytorch/pytorch/pull/118586 for more info + # Subclassing this class and then calling super(TestCaseBase) will run + # TestCase's setUp, tearDown etc functions + pass + + +def download_file(url, binary=True): + from urllib.parse import urlsplit + from urllib import request, error + + filename = os.path.basename(urlsplit(url)[2]) + data_dir = get_writable_path(os.path.join(os.path.dirname(__file__), 'data')) + path = os.path.join(data_dir, filename) + + if os.path.exists(path): + return path + try: + data = request.urlopen(url, timeout=15).read() + with open(path, 'wb' if binary else 'w') as f: + f.write(data) + return path + except error.URLError as e: + msg = f"could not download test file '{url}'" + warnings.warn(msg, RuntimeWarning) + raise unittest.SkipTest(msg) from e + +def find_free_port(): + """ + Finds an available port and returns that port number. + + NOTE: If this function is being used to allocate a port to Store (or + indirectly via init_process_group or init_rpc), it should be used + in conjuction with the `retry_on_connect_failures` decorator as there is a potential + race condition where the allocated port may become unavailable before it can be used + """ + with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: + sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) + sock.bind(('localhost', 0)) + _, port = sock.getsockname() + return port + +# Errors that we can get in c10d initialization for which we should retry tests for. +ADDRESS_IN_USE = "Address already in use" +CONNECT_TIMEOUT = "connect() timed out." + +def retry_on_connect_failures(func=None, connect_errors=(ADDRESS_IN_USE)): + """Reruns a test if the test returns a RuntimeError and the exception + contains one of the strings in connect_errors.""" + # This if block is executed when using this function as a decorator with arguments. + if func is None: + return partial(retry_on_connect_failures, connect_errors=connect_errors) + + @wraps(func) + def wrapper(*args, **kwargs): + n_retries = 10 + tries_remaining = n_retries + while True: + try: + return func(*args, **kwargs) + except RuntimeError as error: + if any(connect_error in str(error) for connect_error in connect_errors): + tries_remaining -= 1 + if tries_remaining == 0: + raise RuntimeError(f"Failing after {n_retries} retries with error: {str(error)}") from error + time.sleep(random.random()) + continue + raise + return wrapper + + +# Decorator to retry upon certain Exceptions. +def retry(ExceptionToCheck, tries=3, delay=3, skip_after_retries=False): + def deco_retry(f): + @wraps(f) + def f_retry(*args, **kwargs): + mtries, mdelay = tries, delay + while mtries > 1: + try: + return f(*args, **kwargs) + except ExceptionToCheck as e: + msg = "%s, Retrying in %d seconds..." % (str(e), mdelay) + print(msg) + time.sleep(mdelay) + mtries -= 1 + try: + return f(*args, **kwargs) + except ExceptionToCheck as e: + raise unittest.SkipTest(f"Skipping after {tries} consecutive {str(e)}") from e if skip_after_retries else e + return f_retry # true decorator + return deco_retry + + +# FIXME: modernize these to be consistent with make_tensor +# and review including them in torch.testing +# Methods for matrix generation + +def random_square_matrix_of_rank(l, rank, dtype=torch.double, device='cpu'): + assert rank <= l + A = torch.randn(l, l, dtype=dtype, device=device) + u, s, vh = torch.linalg.svd(A, full_matrices=False) + for i in range(l): + if i >= rank: + s[i] = 0 + elif s[i] == 0: + s[i] = 1 + return (u * s.to(dtype).unsqueeze(-2)) @ vh + +def random_well_conditioned_matrix(*shape, dtype, device, mean=1.0, sigma=0.001): + """ + Returns a random rectangular matrix (batch of matrices) + with singular values sampled from a Gaussian with + mean `mean` and standard deviation `sigma`. + The smaller the `sigma`, the better conditioned + the output matrix is. + """ + primitive_dtype = { + torch.float: torch.float, + torch.double: torch.double, + torch.cfloat: torch.float, + torch.cdouble: torch.double + } + x = torch.rand(shape, dtype=dtype, device=device) + m = x.size(-2) + n = x.size(-1) + u, _, vh = torch.linalg.svd(x, full_matrices=False) + s = (torch.randn(*(shape[:-2] + (min(m, n),)), dtype=primitive_dtype[dtype], device=device) * sigma + mean) \ + .sort(-1, descending=True).values.to(dtype) + return (u * s.unsqueeze(-2)) @ vh + +# Returns a noncontiguous (tensor with the same shape and values as t +# The noncontiguous tensor is constructed such that elements in the innermost +# dimension are separated by zeros or (whenever possible) nans +# TODO: consider more complicated noncontiguity schemes +def noncontiguous_like(t): + # Short-circuits if t is already noncontiguous + if not t.is_contiguous(): + return t + + # Choose a "weird" value that won't be accessed + if t.dtype.is_floating_point or t.dtype.is_complex: + value = math.nan + elif t.dtype == torch.bool: + value = True + else: + value = 12 + + result = t.new_empty(t.shape + (2,)) + result[..., 0] = value + result[..., 1] = t.detach() + result = result[..., 1] + result.requires_grad_(t.requires_grad) + return result + +# TODO: remove this (prefer make_symmetric_matrices below) +def random_symmetric_matrix(l, *batches, **kwargs): + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) + A = (A + A.mT).div_(2) + return A + +# Creates a symmetric matrix or batch of symmetric matrices +# Shape must be a square matrix or batch of square matrices +def make_symmetric_matrices(*shape, device, dtype): + assert shape[-1] == shape[-2] + t = make_tensor(shape, device=device, dtype=dtype) + t = (t + t.mT).div_(2) + return t + +def random_hermitian_matrix(l, *batches, **kwargs): + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) + A = (A + A.mH).div_(2) + return A + + +def random_symmetric_psd_matrix(l, *batches, **kwargs): + """ + Returns a batch of random symmetric positive-semi-definite matrices. + The shape of the result is batch_dims + (matrix_size, matrix_size) + The following example creates a tensor of size 2 x 4 x 3 x 3 + >>> # xdoctest: +SKIP("undefined variables") + >>> matrices = random_symmetric_psd_matrix(3, 2, 4, dtype=dtype, device=device) + """ + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + A = torch.randn(*(batches + (l, l)), dtype=dtype, device=device) + return A @ A.mT + + +def random_hermitian_psd_matrix(matrix_size, *batch_dims, dtype=torch.double, device='cpu'): + """ + Returns a batch of random Hermitian positive-semi-definite matrices. + The shape of the result is batch_dims + (matrix_size, matrix_size) + The following example creates a tensor of size 2 x 4 x 3 x 3 + >>> # xdoctest: +SKIP("undefined variables") + >>> matrices = random_hermitian_psd_matrix(3, 2, 4, dtype=dtype, device=device) + """ + A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), dtype=dtype, device=device) + return A @ A.mH + + +# TODO: remove this (prefer make_symmetric_pd_matrices below) +def random_symmetric_pd_matrix(matrix_size, *batch_dims, **kwargs): + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), + dtype=dtype, device=device) + return torch.matmul(A, A.mT) \ + + torch.eye(matrix_size, dtype=dtype, device=device) * 1e-5 + + +# Creates a symmetric positive-definite matrix or batch of +# such matrices +def make_symmetric_pd_matrices(*shape, device, dtype): + assert shape[-1] == shape[-2] + t = make_tensor(shape, device=device, dtype=dtype) + i = torch.eye(shape[-1], device=device, dtype=dtype) * 1e-5 + return t @ t.mT + i + +def random_hermitian_pd_matrix(matrix_size, *batch_dims, dtype, device): + """ + Returns a batch of random Hermitian positive-definite matrices. + The shape of the result is batch_dims + (matrix_size, matrix_size) + The following example creates a tensor of size 2 x 4 x 3 x 3 + >>> # xdoctest: +SKIP("undefined variables") + >>> matrices = random_hermitian_pd_matrix(3, 2, 4, dtype=dtype, device=device) + """ + A = torch.randn(*(batch_dims + (matrix_size, matrix_size)), + dtype=dtype, device=device) + return A @ A.mH + torch.eye(matrix_size, dtype=dtype, device=device) + +# Creates a full rank matrix with distinct singular values or +# a batch of such matrices +def make_fullrank_matrices_with_distinct_singular_values(*shape, device, dtype, requires_grad=False): + with torch.no_grad(): + t = make_tensor(shape, device=device, dtype=dtype) + u, _, vh = torch.linalg.svd(t, full_matrices=False) + real_dtype = t.real.dtype if t.dtype.is_complex else t.dtype + k = min(shape[-1], shape[-2]) + # We choose the singular values to be "around one" + # This is to make the matrix well conditioned + # s = [2, 3, ..., k+1] + s = torch.arange(2, k + 2, dtype=real_dtype, device=device) + # s = [2, -3, 4, ..., (-1)^k k+1] + s[1::2] *= -1. + # 1 + 1/s so that the singular values are in the range [2/3, 3/2] + # This gives a condition number of 9/4, which should be good enough + s.reciprocal_().add_(1.) + # Note that the singular values need not be ordered in an SVD so + # we don't need need to sort S + x = (u * s.to(u.dtype)) @ vh + x.requires_grad_(requires_grad) + return x + +def random_matrix(rows, columns, *batch_dims, **kwargs): + """Return rectangular matrix or batches of rectangular matrices. + + Parameters: + dtype - the data type + device - the device kind + singular - when True, the output will be singular + """ + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + silent = kwargs.get("silent", False) + singular = kwargs.get("singular", False) + if silent and not torch._C.has_lapack: + return torch.ones(rows, columns, dtype=dtype, device=device) + + A = torch.randn(batch_dims + (rows, columns), dtype=dtype, device=device) + if A.numel() == 0: + return A + u, _, vh = torch.linalg.svd(A, full_matrices=False) + k = min(rows, columns) + s = torch.linspace(1 / (k + 1), 1, k, dtype=dtype, device=device) + if singular: + # make matrix singular + s[k - 1] = 0 + if k > 2: + # increase the order of singularity so that the pivoting + # in LU factorization will be non-trivial + s[0] = 0 + return (u * s.unsqueeze(-2)) @ vh + + +def random_lowrank_matrix(rank, rows, columns, *batch_dims, **kwargs): + """Return rectangular matrix or batches of rectangular matrices with + given rank. + """ + B = random_matrix(rows, rank, *batch_dims, **kwargs) + C = random_matrix(rank, columns, *batch_dims, **kwargs) + return B.matmul(C) + + +def _generate_indices_prefer_all_rows(rows: int, cols: int, num_indices: int) -> torch.Tensor: + """Generate indices for a row x cols matrix, preferring at least one index per row if possible.""" + indices = [] + n_per_row = math.ceil(num_indices / rows) + col_indices = list(range(cols)) + + for r in range(rows): + # Note that this can yield overlapping indices + for c in random.choices(col_indices, k=n_per_row): + indices.append((r, c)) + + return torch.tensor(indices[:num_indices]) + + +def random_sparse_matrix(rows, columns, density=0.01, **kwargs): + """Return rectangular random sparse matrix within given density. + + The density of the result approaches to given density as the size + of the matrix is increased and a relatively small value of density + is specified but higher than min(rows, columns)/(rows * columns) + for non-singular matrices. + """ + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + + nonzero_elements = max(min(rows, columns), int(rows * columns * density)) + indices = _generate_indices_prefer_all_rows(rows, columns, nonzero_elements) + values = torch.randn(nonzero_elements, dtype=dtype, device=device) + + # ensure that the diagonal dominates + values *= torch.tensor([-float(i - j)**2 for i, j in indices], dtype=dtype, device=device).exp() + A = torch.sparse_coo_tensor(indices.t(), values, (rows, columns), device=device) + return A.coalesce() + + +def random_sparse_pd_matrix(matrix_size, density=0.01, **kwargs): + """Return random sparse positive-definite matrix with given density. + + The eigenvalues of the matrix are defined as:: + arange(1, matrix_size+1)/matrix_size + + Algorithm: + A = diag(arange(1, matrix_size+1)/matrix_size) + while : + + R = + A = R^T A R + """ + import math + torch = kwargs.get('torch', globals()['torch']) + dtype = kwargs.get('dtype', torch.double) + device = kwargs.get('device', 'cpu') + data = {(i, i): float(i + 1) / matrix_size + for i in range(matrix_size)} + + + def multiply(data, N, i, j, cs, sn, left=True): + for k in range(N): + if left: + ik, jk = (k, i), (k, j) + else: + ik, jk = (i, k), (j, k) + aik, ajk = data.get(ik, 0), data.get(jk, 0) + aik, ajk = cs * aik + sn * ajk, -sn * aik + cs * ajk + if aik: + data[ik] = aik + else: + data.pop(ik, None) + if ajk: + data[jk] = ajk + else: + data.pop(jk, None) + + target_nnz = density * matrix_size * matrix_size + while len(data) < target_nnz: + i = random.randint(0, matrix_size - 1) + j = random.randint(0, matrix_size - 1) + if i != j: + theta = random.uniform(0, 2 * math.pi) + cs = math.cos(theta) + sn = math.sin(theta) + multiply(data, matrix_size, i, j, cs, sn, left=True) + multiply(data, matrix_size, i, j, cs, sn, left=False) + icoords, jcoords, values = [], [], [] + for (i, j), v in sorted(data.items()): + icoords.append(i) + jcoords.append(j) + values.append(v) + indices_tensor = torch.tensor([icoords, jcoords]) + return torch.sparse_coo_tensor(indices_tensor, values, (matrix_size, matrix_size), dtype=dtype, device=device) + +# FIXME: remove this by updating test suites using it +def do_test_dtypes(self, dtypes, layout, device): + for dtype in dtypes: + if dtype != torch.float16: + out = torch.zeros((2, 3), dtype=dtype, layout=layout, device=device) + self.assertIs(dtype, out.dtype) + self.assertIs(layout, out.layout) + self.assertEqual(device, out.device) + +# FIXME: remove this by updating test suites using it +def do_test_empty_full(self, dtypes, layout, device): + shape = torch.Size([2, 3]) + + def check_value(tensor, dtype, layout, device, value, requires_grad): + self.assertEqual(shape, tensor.shape) + self.assertIs(dtype, tensor.dtype) + self.assertIs(layout, tensor.layout) + self.assertEqual(tensor.requires_grad, requires_grad) + if tensor.is_cuda and device is not None: + self.assertEqual(device, tensor.device) + if value is not None: + fill = tensor.new(shape).fill_(value) + self.assertEqual(tensor, fill) + + def get_int64_dtype(dtype): + module = '.'.join(str(dtype).split('.')[1:-1]) + if not module: + return torch.int64 + return operator.attrgetter(module)(torch).int64 + + default_dtype = torch.get_default_dtype() + check_value(torch.empty(shape), default_dtype, torch.strided, -1, None, False) + check_value(torch.full(shape, -5.), default_dtype, torch.strided, -1, None, False) + for dtype in dtypes: + for rg in {dtype.is_floating_point, False}: + int64_dtype = get_int64_dtype(dtype) + v = torch.empty(shape, dtype=dtype, device=device, layout=layout, requires_grad=rg) + check_value(v, dtype, layout, device, None, rg) + out = v.new() + check_value(torch.empty(shape, out=out, device=device, layout=layout, requires_grad=rg), + dtype, layout, device, None, rg) + check_value(v.new_empty(shape), dtype, layout, device, None, False) + check_value(v.new_empty(shape, dtype=int64_dtype, device=device, requires_grad=False), + int64_dtype, layout, device, None, False) + check_value(torch.empty_like(v), dtype, layout, device, None, False) + check_value(torch.empty_like(v, dtype=int64_dtype, layout=layout, device=device, requires_grad=False), + int64_dtype, layout, device, None, False) + + if dtype is not torch.float16 and layout != torch.sparse_coo: + fv = 3 + v = torch.full(shape, fv, dtype=dtype, layout=layout, device=device, requires_grad=rg) + check_value(v, dtype, layout, device, fv, rg) + check_value(v.new_full(shape, fv + 1), dtype, layout, device, fv + 1, False) + out = v.new() + check_value(torch.full(shape, fv + 2, out=out, device=device, layout=layout, requires_grad=rg), + dtype, layout, device, fv + 2, rg) + check_value(v.new_full(shape, fv + 3, dtype=int64_dtype, device=device, requires_grad=False), + int64_dtype, layout, device, fv + 3, False) + check_value(torch.full_like(v, fv + 4), dtype, layout, device, fv + 4, False) + check_value(torch.full_like(v, fv + 5, + dtype=int64_dtype, layout=layout, device=device, requires_grad=False), + int64_dtype, layout, device, fv + 5, False) + +# FIXME: improve load_tests() documentation here +running_script_path = None +def set_running_script_path(): + global running_script_path + try: + running_file = os.path.abspath(os.path.realpath(sys.argv[0])) + if running_file.endswith('.py'): # skip if the running file is not a script + running_script_path = running_file + except Exception: + pass + +def check_test_defined_in_running_script(test_case): + if running_script_path is None: + return + test_case_class_file = os.path.abspath(os.path.realpath(inspect.getfile(test_case.__class__))) + assert test_case_class_file == running_script_path, f'Class of loaded TestCase "{test_case.id()}" ' \ + f'is not defined in the running script "{running_script_path}", but in "{test_case_class_file}". Did you ' \ + "accidentally import a unittest.TestCase from another file?" + +def load_tests(loader, tests, pattern): + set_running_script_path() + test_suite = unittest.TestSuite() + for test_group in tests: + if not DISABLE_RUNNING_SCRIPT_CHK: + for test in test_group: + check_test_defined_in_running_script(test) + if test_group._tests: + test_suite.addTest(test_group) + return test_suite + +# FIXME: document this and move it to test_serialization +class BytesIOContext(io.BytesIO): + def __enter__(self): + return self + + def __exit__(self, *args): + pass + +# Tentative value for nondet_tol for gradcheck when backward implementation +# relies on nondeterministic operations, i.e., those listed here: +# https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html +# +# For more information see https://github.com/pytorch/pytorch/issues/56202 +GRADCHECK_NONDET_TOL = 1e-12 + +TEST_WITH_SLOW_GRADCHECK: bool = TestEnvironment.def_flag( + "TEST_WITH_SLOW_GRADCHECK", + env_var="PYTORCH_TEST_WITH_SLOW_GRADCHECK", +) + +skipIfSlowGradcheckEnv = unittest.skipIf( + TEST_WITH_SLOW_GRADCHECK, + "Tests that don't use gradcheck don't need to run on slow_gradcheck CI", +) + + +def gradcheck(fn, inputs, **kwargs): + # Wrapper around gradcheck that enables certain keys by default. + # Use this testing-internal gradcheck instead of autograd.gradcheck so that new features like vmap and + # forward-mode AD are tested by default. We create this wrapper because we'd like to keep new checks + # to be disabled to default for the public-facing api to avoid breaking user code. + # + # All PyTorch devs doing testing should use this wrapper instead of autograd.gradcheck. + default_values = { + "check_batched_grad": True, + "fast_mode": True, + } + + if TEST_WITH_SLOW_GRADCHECK: + default_values["fast_mode"] = False + + for key, value in default_values.items(): + # default value override values explicitly set to None + k = kwargs.get(key, None) + kwargs[key] = k if k is not None else value + + return torch.autograd.gradcheck(fn, inputs, **kwargs) + +def gradgradcheck(fn, inputs, grad_outputs=None, **kwargs): + # Wrapper around gradgradcheck that enables certain keys by default + # See gradcheck above for an explanation of why we need something like this. + # + # All PyTorch devs doing testing should use this wrapper instead of autograd.gradgradcheck + default_values = { + "check_batched_grad": True, + "fast_mode": True, + } + + if TEST_WITH_SLOW_GRADCHECK: + default_values["fast_mode"] = False + + for key, value in default_values.items(): + # default value override values explicitly set to None + k = kwargs.get(key, None) + kwargs[key] = k if k is not None else value + + return torch.autograd.gradgradcheck(fn, inputs, grad_outputs, **kwargs) + + +def _assertGradAndGradgradChecks(test_case, apply_fn, inputs, **kwargs): + # call assert function rather than returning a bool since it's nicer + # if we get whether this failed on the gradcheck or the gradgradcheck. + test_case.assertTrue(gradcheck(apply_fn, inputs, **kwargs)) + test_case.assertTrue(gradgradcheck(apply_fn, inputs, **kwargs)) + + +@contextmanager +def set_cwd(path: str) -> Iterator[None]: + old_cwd = os.getcwd() + try: + os.chdir(path) + yield + finally: + os.chdir(old_cwd) + + +# FIXME: delete this +# Using @toleranceOverride specific to your test is the recommended way +# of doing this. These are just some values that worked for test_nn. +dtype2prec_DONTUSE = {torch.float: 1e-5, + torch.double: 1e-5, + torch.half: 1e-2, + torch.bfloat16: 1e-1} + +# FIXME: move to test_sparse or sparse utils +# This is a wrapper that wraps a test to run this test twice, one with +# coalesced=True, another with coalesced=False for coalesced/uncoalesced sparse tensors. +def coalescedonoff(f): + @wraps(f) + def wrapped(self, *args, **kwargs): + f(self, *args, **kwargs, coalesced=True) + f(self, *args, **kwargs, coalesced=False) + return wrapped + + +def is_coalesced_indices(s): + indices = s._indices() + hash_coeffs = (1,) + s.shape[s.sparse_dim() - 1:0:-1] + hash_indices = torch.tensor(hash_coeffs, device=s.device).cumprod(-1).flip(-1) + if s.sparse_dim() > 1: + hash_indices.unsqueeze_(-1) + hash_indices = (indices * hash_indices).sum(0) + else: + hash_indices = indices * hash_indices + + # check if indices are sorted + res = torch.allclose(hash_indices, hash_indices.sort()[0]) + + # check if there are no repeated indices + res = res and torch.allclose(hash_indices, hash_indices.unique()) + + return res + + +@contextlib.contextmanager +def disable_gc(): + if gc.isenabled(): + try: + gc.disable() + yield + finally: + gc.enable() + else: + yield + + +def find_library_location(lib_name: str) -> Path: + # return the shared library file in the installed folder if exist, + # else the file in the build folder + torch_root = Path(torch.__file__).resolve().parent + path = torch_root / 'lib' / lib_name + if os.path.exists(path): + return path + torch_root = Path(__file__).resolve().parent.parent.parent + return torch_root / 'build' / 'lib' / lib_name + +def skip_but_pass_in_sandcastle(reason): + """ + Similar to unittest.skip, however in the sandcastle environment it just + "passes" the test instead to avoid creating tasks complaining about tests + skipping continuously. + """ + def decorator(func): + if not IS_SANDCASTLE: + func.__unittest_skip__ = True + func.__unittest_skip_why__ = reason + return func + + @wraps(func) + def wrapper(*args, **kwargs): + print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr) + return + return wrapper + + return decorator + +def mock_wrapper(method): + """ + Returns a function that calls the real implementation of a method + in addition to passing args to a mock object. + """ + mock = MagicMock() + + @wraps(method) + def wrapper(self, *args, **kwargs): + mock(*args, **kwargs) + return method(self, *args, **kwargs) + wrapper.mock = mock # type: ignore[attr-defined] + return wrapper + +def get_tensors_from(args, kwargs): + """ Returns a set of all Tensor objects in the given args and kwargs. """ + return set([arg for arg in args if isinstance(arg, Tensor)] + + [v for v in kwargs.values() if isinstance(v, Tensor)]) + + +# Returns scalar tensor representation of a list of integer byte values +def bytes_to_scalar(byte_list: List[int], dtype: torch.dtype, device: torch.device): + dtype_to_ctype: Dict[torch.dtype, Any] = { + torch.int8: ctypes.c_int8, + torch.uint8: ctypes.c_uint8, + torch.uint16: ctypes.c_uint16, + torch.uint32: ctypes.c_uint32, + torch.uint64: ctypes.c_uint64, + torch.int16: ctypes.c_int16, + torch.int32: ctypes.c_int32, + torch.int64: ctypes.c_int64, + torch.bool: ctypes.c_bool, + torch.float32: ctypes.c_float, + torch.complex64: ctypes.c_float, + torch.float64: ctypes.c_double, + torch.complex128: ctypes.c_double, + } + ctype = dtype_to_ctype[dtype] + num_bytes = ctypes.sizeof(ctype) + + def check_bytes(byte_list): + for byte in byte_list: + assert 0 <= byte <= 255 + + if dtype.is_complex: + assert len(byte_list) == (num_bytes * 2) + check_bytes(byte_list) + real = ctype.from_buffer((ctypes.c_byte * num_bytes)( + *byte_list[:num_bytes])).value + imag = ctype.from_buffer((ctypes.c_byte * num_bytes)( + *byte_list[num_bytes:])).value + res = real + 1j * imag + else: + assert len(byte_list) == num_bytes + check_bytes(byte_list) + res = ctype.from_buffer((ctypes.c_byte * num_bytes)( + *byte_list)).value + + return torch.tensor(res, device=device, dtype=dtype) + + +def copy_func(f): + """Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)""" + g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__, + argdefs=f.__defaults__, + closure=f.__closure__) + g = functools.update_wrapper(g, f) + g.__kwdefaults__ = f.__kwdefaults__ + return g + + +def xfail_inherited_tests(tests): + """ + Given a list of test names which are defined by a superclass of the + class this decorates, mark them as expected failure. This is useful + if you are doing poor man's parameterized tests by subclassing a generic + test class. + """ + def deco(cls): + for t in tests: + # NB: expectedFailure operates by mutating the method in question, + # which is why you have to copy the function first + setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t)))) + return cls + return deco + + +def skip_but_pass_in_sandcastle_if(condition, reason): + """ + Similar to unittest.skipIf, however in the sandcastle environment it just + "passes" the test instead to avoid creating tasks complaining about tests + skipping continuously. + """ + def decorator(func): + if condition: + if IS_SANDCASTLE: + @wraps(func) + def wrapper(*args, **kwargs): + print(f'Skipping {func.__name__} on sandcastle for following reason: {reason}', file=sys.stderr) + return wrapper + else: + func.__unittest_skip__ = True + func.__unittest_skip_why__ = reason + + return func + + return decorator + +def dtype_name(dtype): + """ Returns the pretty name of the dtype (e.g. torch.int64 -> int64). """ + return str(dtype).split('.')[1] + + +dtype_abbrs = { + torch.bfloat16: 'bf16', + torch.float64: 'f64', + torch.float32: 'f32', + torch.float16: 'f16', + torch.complex32: 'c32', + torch.complex64: 'c64', + torch.complex128: 'c128', + torch.int8: 'i8', + torch.int16: 'i16', + torch.int32: 'i32', + torch.int64: 'i64', + torch.bool: 'b8', + torch.uint8: 'u8', +} + + +@functools.lru_cache +def get_cycles_per_ms() -> float: + """Measure and return approximate number of cycles per millisecond for torch.cuda._sleep + """ + + def measure() -> float: + start = torch.cuda.Event(enable_timing=True) + end = torch.cuda.Event(enable_timing=True) + start.record() + torch.cuda._sleep(1000000) + end.record() + end.synchronize() + cycles_per_ms = 1000000 / start.elapsed_time(end) + return cycles_per_ms + + # Get 10 values and remove the 2 max and 2 min and return the avg. + # This is to avoid system disturbance that skew the results, e.g. + # the very first cuda call likely does a bunch of init, which takes + # much longer than subsequent calls. + # + # Tested on both Tesla V100, Quadro GP100, Titan RTX, RTX 3090 GPUs + # and seems to return stable values. Therefore, we enable caching + # using lru_cache decorator above. + num = 10 + vals = [] + for _ in range(num): + vals.append(measure()) + vals = sorted(vals) + return mean(vals[2 : num - 2]) + + +# OpInfo utils + +T = TypeVar('T') +def first_sample(self: unittest.TestCase, samples: Iterable[T]) -> T: + """ + Returns the first sample from an iterable of samples, like those returned by OpInfo. + The test will be skipped if no samples are available. + """ + try: + return next(iter(samples)) + except StopIteration as e: + raise unittest.SkipTest('Skipped! Need at least 1 sample input') from e + +# this helper method is to recursively +# clone the tensor-type input of operators tested by OpInfo +def clone_input_helper(input): + if isinstance(input, torch.Tensor): + return torch.clone(input) + + if isinstance(input, Sequence): + return tuple(map(clone_input_helper, input)) + + return input + +@contextmanager +def custom_op(opname, symbolic_fn, opset_version): + """Context manager/decorator to test ONNX export with custom operator""" + try: + register_custom_op_symbolic(opname, symbolic_fn, opset_version) + yield + finally: + unregister_custom_op_symbolic(opname, opset_version) + + +def outs_and_grads(fn, graph_inps, inps): + outs = fn(*graph_inps) + for out in pytree.tree_leaves(outs): + if isinstance(out, torch.Tensor) and out.requires_grad: + out.sum().backward(retain_graph=True) + grads = [inp.grad for inp in pytree.tree_leaves(inps) if isinstance(inp, torch.Tensor)] + for inp in pytree.tree_leaves(inps): + if isinstance(inp, torch.Tensor): + inp.grad = None + return outs, grads + +def compare_equal_outs_and_grads(test, m1, m2, inps): + r1, g1 = outs_and_grads(m1, inps, inps) + r2, g2 = outs_and_grads(m2, inps, inps) + test.assertEqual(r1, r2) + test.assertEqual(g1, g2) + +class TestGradients(TestCase): + exact_dtype = True + + # Copies inputs to inplace operations to avoid inplace modifications + # to leaves requiring gradient + def _get_safe_inplace(self, inplace_variant): + @wraps(inplace_variant) + def _fn(t, *args, **kwargs): + return inplace_variant(t.clone(), *args, **kwargs) + + return _fn + + def _check_helper(self, device, dtype, op, variant, check, *, check_forward_ad=False, check_backward_ad=True, + check_batched_grad=None, check_batched_forward_grad=False): + assert check in ('gradcheck', 'bwgrad_bwgrad', 'fwgrad_bwgrad') + # NB: check_backward_ad does not affect gradgradcheck (always True) + if variant is None: + self.skipTest("Skipped! Variant not implemented.") + if not op.supports_dtype(dtype, torch.device(device).type): + self.skipTest(f"Skipped! {op.name} does not support dtype {str(dtype)}") + + def is_inplace(variant): + if hasattr(variant, "__wrapped__"): + return variant.__wrapped__ is op.get_inplace() + return variant is op.get_inplace() + + include_conjugated_inputs = op.test_conjugated_samples and dtype.is_complex + + samples = op.sample_inputs(device, dtype, requires_grad=True, include_conjugated_inputs=include_conjugated_inputs, + small_inputs_only=TEST_WITH_SLOW_GRADCHECK) + + for sample in samples: + if sample.broadcasts_input and is_inplace(variant): + continue + + # Gradcheck expects tensors as its input, but autograd actually supports tensorlists + # and tensors passed as kwargs. The following creates a function that accepts just + # the tensors that require grad as varargs, and then recomposes them back into the + # original input. + + # Creates gradcheck inputs by identifying tensors requiring grad + all_args = None + if is_iterable_of_tensors(sample.input): + all_args = chain(sample.input, sample.args, sample.kwargs.values()) + else: + all_args = tuple(chain((sample.input,), sample.args, sample.kwargs.values())) + gradcheck_args = tuple(x for x in all_args if (isinstance(x, torch.Tensor) and x.requires_grad)) + + # Verifies sample input tensors should have no grad + # This may happen if the same tensor is used in two different SampleInputs + for t in gradcheck_args: + self.assertIsNone(t.grad, + "A sampled input has a gradient before running autograd. " + "This usually means that (at least) one input tensor is reused " + "across different SampleInputs. " + "Please create a new tensor for each SampleInput.") + + def _input_recomposition_helper(inputs, inp, input_idx): + if is_iterable_of_tensors(inp): + tensor_list = [] + for x in inp: + if isinstance(x, torch.Tensor) and x.requires_grad: + tensor_list.append(inputs[input_idx]) + input_idx = input_idx + 1 + else: + tensor_list.append(x) + return tensor_list, input_idx + elif isinstance(inp, torch.Tensor) and inp.requires_grad: + return inputs[input_idx], input_idx + 1 + else: + return inp, input_idx + + def fn(*inputs): + # Puts inputs back into sample properly + positional_args = [] + input_idx = 0 + inp, input_idx = _input_recomposition_helper(inputs, sample.input, input_idx) + positional_args.append(inp) + + for x in sample.args: + inp, input_idx = _input_recomposition_helper(inputs, x, input_idx) + positional_args.append(inp) + + # Recreates kwargs + kwargs = {} + for k, v in sample.kwargs.items(): + inp, input_idx = _input_recomposition_helper(inputs, v, input_idx) + kwargs[k] = inp + + output = op.gradcheck_wrapper(variant, *positional_args, **kwargs) + if sample.output_process_fn_grad is not None: + return sample.output_process_fn_grad(output) + return output + + if check == 'gradcheck': + if check_batched_grad is None: + check_batched_grad = op.check_batched_grad + self.assertTrue(gradcheck(fn, gradcheck_args, + check_batched_grad=check_batched_grad, + check_grad_dtypes=True, + nondet_tol=op.gradcheck_nondet_tol, + fast_mode=op.gradcheck_fast_mode, + check_forward_ad=check_forward_ad, + check_backward_ad=check_backward_ad, + check_undefined_grad=True, + check_batched_forward_grad=check_batched_forward_grad)) + elif check in ('bwgrad_bwgrad', 'fwgrad_bwgrad'): # gradgrad check + self.assertFalse(check_forward_ad, msg="Cannot run forward AD check for gradgradcheck") + for gen_non_contig_grad_outputs in (False, True): + kwargs = { + "gen_non_contig_grad_outputs": gen_non_contig_grad_outputs, + "check_batched_grad": op.check_batched_gradgrad, + "check_grad_dtypes": True, + "nondet_tol": op.gradcheck_nondet_tol, + "fast_mode": op.gradcheck_fast_mode + } + if check == "fwgrad_bwgrad": + kwargs["check_fwd_over_rev"] = True + kwargs["check_rev_over_rev"] = False + kwargs["check_batched_grad"] = False + kwargs["check_undefined_grad"] = False + + self.assertTrue(gradgradcheck(fn, gradcheck_args, **kwargs)) + else: + self.assertTrue(False, msg="Unknown check requested!") + + def _grad_test_helper(self, device, dtype, op, variant, *, check_forward_ad=False, check_backward_ad=True, + check_batched_grad=None, check_batched_forward_grad=False): + return self._check_helper(device, dtype, op, variant, 'gradcheck', check_forward_ad=check_forward_ad, + check_backward_ad=check_backward_ad, check_batched_grad=check_batched_grad, + check_batched_forward_grad=check_batched_forward_grad) + + def _skip_helper(self, op, device, dtype): + if dtype not in op.supported_backward_dtypes(torch.device(device).type): + self.skipTest("Skipped! Op doesn't support autograd for this dtype.") + if not op.supports_autograd and not op.supports_forward_ad: + self.skipTest("Skipped! autograd not supported.") + +def make_lazy_class(cls): + + def lazy_init(self, cb): + self._cb = cb + self._value = None + + cls.__init__ = lazy_init + + for basename in [ + "add", "sub", "mul", "truediv", "floordiv", "mod", "divmod", "pow", + "lshift", "rshift", "and", "or", "xor", "neg", "pos", "abs", "invert", + "eq", "ne", "lt", "le", "gt", "ge", "bool", "int", "index", + ]: + name = f"__{basename}__" + + def inner_wrapper(name): + use_operator = basename not in ("bool", "int") + + def wrapped(self, *args, **kwargs): + if self._cb is not None: + self._value = self._cb() + self._cb = None + if not use_operator: + return getattr(self._value, name)(*args, **kwargs) + else: + return getattr(operator, name)(self._value, *args, **kwargs) + return wrapped + + setattr(cls, name, inner_wrapper(name)) + + return cls + + +# Base TestCase for NT tests; used to define common helpers, etc. +class NestedTensorTestCase(TestCase): + def assertEqualIgnoringNestedInts(self, a, b): + # unbinding NJTs allows us to compare them as essentially equal without + # caring about exact nested int comparison + def _unbind_njts(x): + if isinstance(x, torch.Tensor) and x.is_nested and x.layout == torch.jagged: + return x.unbind() + else: + return x + + self.assertEqual(pytree.tree_map(_unbind_njts, a), pytree.tree_map(_unbind_njts, b)) + + @contextlib.contextmanager + def branch_nested_state(self): + """Context manager to branch and restore the nested tensor state.""" + nested_tensor_module = torch.nested._internal.nested_tensor + original_tensor_symint_registry = nested_tensor_module._tensor_symint_registry.copy() + original_tensor_id_counter = nested_tensor_module._tensor_id_counter + try: + yield + finally: + nested_tensor_module._tensor_id_counter = original_tensor_id_counter + nested_tensor_module._tensor_symint_registry = original_tensor_symint_registry + + +@make_lazy_class +class LazyVal: + pass + + +def munge_exc(e, *, suppress_suffix=True, suppress_prefix=True, file=None, skip=0): + if file is None: + file = inspect.stack()[1 + skip].filename # skip one frame + + file = _as_posix_path(file) + s = _as_posix_path(str(e)) + + # Remove everything that looks like stack frames in NOT this file + def repl_frame(m): + if m.group(1) != file: + return "" + # Don't accept top-level, even for this script, these will wobble + # depending on how the testing script was invoked + if m.group(2) == "": + return "" + + return m.group(0) + + s = re.sub(r' File "([^"]+)", line \d+, in (.+)\n( .+\n( +[~^]+ *\n)?)+', repl_frame, s) + s = re.sub(r"line \d+", "line N", s) + s = re.sub(r".py:\d+", ".py:N", s) + s = re.sub(file, _as_posix_path(os.path.basename(file)), s) + s = re.sub(_as_posix_path(os.path.join(os.path.dirname(torch.__file__), "")), "", s) + if suppress_suffix: + s = re.sub(r"\n*Set TORCH_LOGS.+", "", s, flags=re.DOTALL) + s = re.sub(r"\n*You can suppress this exception.+", "", s, flags=re.DOTALL) + if suppress_prefix: + s = re.sub(r"Cannot export model.+\n\n", "", s) + s = re.sub(r" +$", "", s, flags=re.MULTILINE) + return s