diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..14cf8bb5879320c3838808bea5715ac06b046fd9
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py
@@ -0,0 +1,71 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
+
+
+_import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]}
+
+try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_bert_generation"] = [
+ "BertGenerationDecoder",
+ "BertGenerationEncoder",
+ "BertGenerationPreTrainedModel",
+ "load_tf_weights_in_bert_generation",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_bert_generation import BertGenerationConfig
+
+ try:
+ if not is_sentencepiece_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_bert_generation import BertGenerationTokenizer
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_bert_generation import (
+ BertGenerationDecoder,
+ BertGenerationEncoder,
+ BertGenerationPreTrainedModel,
+ load_tf_weights_in_bert_generation,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..570b0e101e9f2669b409b2871f16b40b24aba4fa
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..690ed04a6d3b83d13f77fc6bc7770b45ed71ff26
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..455557c5bfa8005db5d7a8dede38ed6b72c73daa
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5e45073fb78f8930144ea2a2e543172ca62c26e9
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..841aec5c0fb7acc3fb651aa213bf4cf2e1a6a581
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py
@@ -0,0 +1,124 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" BertGeneration model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+
+
+class BertGenerationConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to
+ instantiate a BertGeneration model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration
+ [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50358):
+ Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the
+ `inputs_ids` passed when calling [`BertGeneration`].
+ hidden_size (`int`, *optional*, defaults to 1024):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 24):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 4096):
+ Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ bos_token_id (`int`, *optional*, defaults to 2):
+ Beginning of stream token id.
+ eos_token_id (`int`, *optional*, defaults to 1):
+ End of stream token id.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+
+ Examples:
+
+ ```python
+ >>> from transformers import BertGenerationConfig, BertGenerationEncoder
+
+ >>> # Initializing a BertGeneration config
+ >>> configuration = BertGenerationConfig()
+
+ >>> # Initializing a model (with random weights) from the config
+ >>> model = BertGenerationEncoder(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "bert-generation"
+
+ def __init__(
+ self,
+ vocab_size=50358,
+ hidden_size=1024,
+ num_hidden_layers=24,
+ num_attention_heads=16,
+ intermediate_size=4096,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ initializer_range=0.02,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ bos_token_id=2,
+ eos_token_id=1,
+ position_embedding_type="absolute",
+ use_cache=True,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..b7250f6f7b926fc21102007ce34568d9276615f9
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py
@@ -0,0 +1,1008 @@
+# coding=utf-8
+# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""PyTorch BERT model specific for generation."""
+
+import math
+from typing import Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_bert_generation import BertGenerationConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder"
+_CONFIG_FOR_DOC = "BertGenerationConfig"
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration
+class BertGenerationSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration
+class BertGenerationSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration
+class BertGenerationAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = BertGenerationSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = BertGenerationSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration
+class BertGenerationIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration
+class BertGenerationOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration
+class BertGenerationLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = BertGenerationAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute")
+ self.intermediate = BertGenerationIntermediate(config)
+ self.output = BertGenerationOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration
+class BertEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+def load_tf_weights_in_bert_generation(
+ model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False
+):
+ try:
+ import numpy as np
+ import tensorflow.compat.v1 as tf
+ import tensorflow_hub as hub
+ import tensorflow_text # noqa: F401
+
+ tf.disable_eager_execution()
+ except ImportError:
+ logger.error(
+ "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
+ "https://www.tensorflow.org/install/ for installation instructions."
+ )
+ raise
+ tf_model = hub.Module(tf_hub_path)
+ init = tf.global_variables_initializer()
+ with tf.Session() as sess:
+ init.run()
+ all_variables = tf_model.variable_map
+ keep_track_variables = all_variables.copy()
+ for key in list(all_variables.keys()):
+ if "global" in key:
+ logger.info(f"Skipping {key}...")
+ continue
+ if not is_encoder:
+ model_pointer = getattr(model, model_class)
+ else:
+ model_pointer = model
+ is_embedding = False
+ logger.info(f"Trying to match {key}...")
+ # remove start_string = "module/bert/"
+ sub_layers = key.split("/")[2:]
+ if is_encoder_named_decoder and sub_layers[0] == "encoder":
+ logger.info(f"Skipping encoder layer {key} for decoder")
+ continue
+ if is_encoder and sub_layers[0] == "decoder":
+ logger.info(f"Skipping decoder layer {key} for encoder")
+ continue
+ for i, sub_layer in enumerate(sub_layers):
+ if sub_layer == "embeddings":
+ is_embedding = True
+ elif sub_layer == "LayerNorm":
+ is_embedding = False
+ if "layer" in sub_layer:
+ model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])]
+ elif sub_layer in ["kernel", "gamma"]:
+ model_pointer = model_pointer.weight
+ elif sub_layer == "beta":
+ model_pointer = model_pointer.bias
+ elif sub_layer == "encdec":
+ model_pointer = model_pointer.crossattention.self
+ elif sub_layer == "encdec_output":
+ model_pointer = model_pointer.crossattention.output
+ elif is_encoder_named_decoder and sub_layer == "decoder":
+ model_pointer = model_pointer.encoder
+ else:
+ if sub_layer == "attention" and "encdec" in sub_layers[i + 1]:
+ continue
+ try:
+ model_pointer = getattr(model_pointer, sub_layer)
+ except AttributeError:
+ logger.info(f"Skipping to initialize {key} at {sub_layer}...")
+ raise AttributeError
+
+ array = np.asarray(sess.run(all_variables[key]))
+ if not is_embedding:
+ logger.info(f"Transposing numpy weight of shape {array.shape} for {key}")
+ array = np.transpose(array)
+ else:
+ model_pointer = model_pointer.weight
+
+ if model_pointer.shape != array.shape:
+ raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched")
+ logger.info(f"Initialize PyTorch weight {key}")
+
+ model_pointer.data = torch.from_numpy(array.astype(np.float32))
+ keep_track_variables.pop(key, None)
+
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}")
+ return model
+
+
+class BertGenerationEmbeddings(nn.Module):
+ """Construct the embeddings from word and position embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+
+ def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0):
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ position_embeddings = self.position_embeddings(position_ids)
+
+ embeddings = inputs_embeds + position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+class BertGenerationPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = BertGenerationConfig
+ base_model_prefix = "bert"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ if isinstance(module, nn.Linear):
+ # Slightly different from the TF version which uses truncated_normal for initialization
+ # cf https://github.com/pytorch/pytorch/pull/5617
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+ elif isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+
+
+BERT_GENERATION_START_DOCSTRING = r"""
+
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BERT_GENERATION_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
+ [`PreTrainedTokenizer.encode`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ "The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.",
+ BERT_GENERATION_START_DOCSTRING,
+)
+class BertGenerationEncoder(BertGenerationPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as
+ described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461)
+ by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = BertGenerationEmbeddings(config)
+ self.encoder = BertEncoder(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPastAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for
+ tokens that are NOT MASKED, `0` for MASKED tokens.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask = None
+ if not use_cache:
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+
+ if not return_dict:
+ return (sequence_output,) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+class BertGenerationOnlyLMHead(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
+ self.decoder.bias = self.bias
+
+ def forward(self, hidden_states):
+ logits = self.decoder(hidden_states)
+ return logits
+
+ def _tie_weights(self):
+ # To tie those two weights if they get disconnected (on TPU or when the bias is resized)
+ self.bias = self.decoder.bias
+
+
+@add_start_docstrings(
+ """BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""",
+ BERT_GENERATION_START_DOCSTRING,
+)
+class BertGenerationDecoder(BertGenerationPreTrainedModel):
+ _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
+
+ def __init__(self, config):
+ super().__init__(config)
+
+ if not config.is_decoder:
+ logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`")
+
+ self.bert = BertGenerationEncoder(config)
+ self.lm_head = BertGenerationOnlyLMHead(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_output_embeddings(self):
+ return self.lm_head.decoder
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head.decoder = new_embeddings
+
+ @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ labels: Optional[torch.Tensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
+ `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
+ ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig
+ >>> import torch
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
+ >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
+ >>> config.is_decoder = True
+ >>> model = BertGenerationDecoder.from_pretrained(
+ ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config
+ ... )
+
+ >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> prediction_logits = outputs.logits
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ if labels is not None:
+ use_cache = False
+
+ outputs = self.bert(
+ input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ sequence_output = outputs[0]
+ prediction_scores = self.lm_head(sequence_output)
+
+ lm_loss = None
+ if labels is not None:
+ # we are doing next-token prediction; shift prediction scores and input ids by one
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
+ labels = labels[:, 1:].contiguous()
+ loss_fct = CrossEntropyLoss()
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (prediction_scores,) + outputs[1:]
+ return ((lm_loss,) + output) if lm_loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=lm_loss,
+ logits=prediction_scores,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
+ input_shape = input_ids.shape
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_shape)
+
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+
+ return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
+
+ def _reorder_cache(self, past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b6298fcbd8f6e054f7fac417095b188b070f472
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py
@@ -0,0 +1,185 @@
+# coding=utf-8
+# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Tokenization class for model BertGeneration."""
+
+
+import os
+from shutil import copyfile
+from typing import Any, Dict, List, Optional, Tuple
+
+import sentencepiece as spm
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "bert_for_seq_generation": (
+ "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model"
+ ),
+ }
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"bert_for_seq_generation": 512}
+
+
+class BertGenerationTokenizer(PreTrainedTokenizer):
+ """
+ Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ this superclass for more information regarding those methods.
+
+ Args:
+ vocab_file (`str`):
+ [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
+ contains the vocabulary necessary to instantiate a tokenizer.
+ bos_token (`str`, *optional*, defaults to `""`):
+ The begin of sequence token.
+ eos_token (`str`, *optional*, defaults to `""`):
+ The end of sequence token.
+ unk_token (`str`, *optional*, defaults to `""`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `""`):
+ The token used for padding, for example when batching sequences of different lengths.
+ sep_token (`str`, *optional*, defaults to `"<::::>"`):
+ The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
+ sequence classification or for a text and a question for question answering. It is also used as the last
+ token of a sequence built with special tokens.
+ sp_model_kwargs (`dict`, *optional*):
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
+ to set:
+
+ - `enable_sampling`: Enable subword regularization.
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
+
+ - `nbest_size = {0,1}`: No sampling is performed.
+ - `nbest_size > 1`: samples from the nbest_size results.
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
+ using forward-filtering-and-backward-sampling algorithm.
+
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
+ BPE-dropout.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ prefix_tokens: List[int] = []
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ bos_token="",
+ eos_token="",
+ unk_token="",
+ pad_token="",
+ sep_token="<::::>",
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
+ **kwargs,
+ ) -> None:
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
+
+ self.vocab_file = vocab_file
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(vocab_file)
+
+ # Add extra_ids to the special token list
+ super().__init__(
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ pad_token=pad_token,
+ sep_token=sep_token,
+ sp_model_kwargs=self.sp_model_kwargs,
+ **kwargs,
+ )
+
+ @property
+ def vocab_size(self):
+ return self.sp_model.get_piece_size()
+
+ def get_vocab(self):
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
+ vocab.update(self.added_tokens_encoder)
+ return vocab
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+ state["sp_model"] = None
+ return state
+
+ def __setstate__(self, d):
+ self.__dict__ = d
+
+ # for backward compatibility
+ if not hasattr(self, "sp_model_kwargs"):
+ self.sp_model_kwargs = {}
+
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
+ self.sp_model.Load(self.vocab_file)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Take as input a string and return a list of strings (tokens) for words/sub-words"""
+ return self.sp_model.encode(text, out_type=str)
+
+ def _convert_token_to_id(self, token):
+ """Converts a token (str) in an id using the vocab."""
+ return self.sp_model.piece_to_id(token)
+
+ def _convert_id_to_token(self, index):
+ """Converts an index (integer) in a token (str) using the vocab."""
+ token = self.sp_model.IdToPiece(index)
+ return token
+
+ def convert_tokens_to_string(self, tokens):
+ """Converts a sequence of tokens (string) in a single string."""
+ current_sub_tokens = []
+ out_string = ""
+ for token in tokens:
+ # make sure that special tokens are not decoded using sentencepiece model
+ if token in self.all_special_tokens:
+ out_string += self.sp_model.decode(current_sub_tokens) + token
+ current_sub_tokens = []
+ else:
+ current_sub_tokens.append(token)
+ out_string += self.sp_model.decode(current_sub_tokens)
+ return out_string.strip()
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ out_vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
+ copyfile(self.vocab_file, out_vocab_file)
+ elif not os.path.isfile(self.vocab_file):
+ with open(out_vocab_file, "wb") as fi:
+ content_spiece_model = self.sp_model.serialized_model_proto()
+ fi.write(content_spiece_model)
+
+ return (out_vocab_file,)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5622ab70de642935e75967c9121355cb65bc2c8f
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__init__.py
@@ -0,0 +1,138 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import (
+ OptionalDependencyNotAvailable,
+ _LazyModule,
+ is_flax_available,
+ is_tf_available,
+ is_tokenizers_available,
+ is_torch_available,
+)
+
+
+_import_structure = {
+ "configuration_blenderbot_small": [
+ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "BlenderbotSmallConfig",
+ "BlenderbotSmallOnnxConfig",
+ ],
+ "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
+}
+
+try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_blenderbot_small"] = [
+ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "BlenderbotSmallForCausalLM",
+ "BlenderbotSmallForConditionalGeneration",
+ "BlenderbotSmallModel",
+ "BlenderbotSmallPreTrainedModel",
+ ]
+
+try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_tf_blenderbot_small"] = [
+ "TFBlenderbotSmallForConditionalGeneration",
+ "TFBlenderbotSmallModel",
+ "TFBlenderbotSmallPreTrainedModel",
+ ]
+
+try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_flax_blenderbot_small"] = [
+ "FlaxBlenderbotSmallForConditionalGeneration",
+ "FlaxBlenderbotSmallModel",
+ "FlaxBlenderbotSmallPreTrainedModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_blenderbot_small import (
+ BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ BlenderbotSmallConfig,
+ BlenderbotSmallOnnxConfig,
+ )
+ from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
+
+ try:
+ if not is_tokenizers_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_blenderbot_small import (
+ BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
+ BlenderbotSmallForCausalLM,
+ BlenderbotSmallForConditionalGeneration,
+ BlenderbotSmallModel,
+ BlenderbotSmallPreTrainedModel,
+ )
+
+ try:
+ if not is_tf_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_tf_blenderbot_small import (
+ TFBlenderbotSmallForConditionalGeneration,
+ TFBlenderbotSmallModel,
+ TFBlenderbotSmallPreTrainedModel,
+ )
+
+ try:
+ if not is_flax_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_flax_blenderbot_small import (
+ FlaxBlenderbotSmallForConditionalGeneration,
+ FlaxBlenderbotSmallModel,
+ FlaxBlenderbotSmallPreTrainedModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..820dd5d93165254d582ea6940916b497140c114b
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/__init__.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/configuration_blenderbot_small.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/configuration_blenderbot_small.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1f9bc973700127ad8da7f3758f6c8b496ce635c7
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/configuration_blenderbot_small.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f1e7a797f66d448336af1c2cd26d2ba6b048e09c
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_blenderbot_small.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4f70a869896395d6fd403e3c5abaa3d14122d8e3
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_flax_blenderbot_small.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_tf_blenderbot_small.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_tf_blenderbot_small.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fe27390be0680c562c04d06aa88a5bea3467347d
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/modeling_tf_blenderbot_small.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..37238f40754848a7b7fe904a6d6949c1b20bd2fb
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small_fast.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small_fast.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d686f38ad5391874216a7ebb7ebcac7eca125168
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/__pycache__/tokenization_blenderbot_small_fast.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py
new file mode 100644
index 0000000000000000000000000000000000000000..b41330656d39abee211a69ba6c0f94462fa67bbf
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/configuration_blenderbot_small.py
@@ -0,0 +1,392 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" BlenderbotSmall model configuration"""
+
+from collections import OrderedDict
+from typing import Any, Mapping, Optional
+
+from ... import PreTrainedTokenizer
+from ...configuration_utils import PretrainedConfig
+from ...file_utils import TensorType, is_torch_available
+from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast
+from ...onnx.utils import compute_effective_axis_dimension
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
+ # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
+}
+
+
+class BlenderbotSmallConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate
+ an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall
+ [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 50265):
+ Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be
+ represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`].
+ d_model (`int`, *optional*, defaults to 512):
+ Dimensionality of the layers and the pooler layer.
+ encoder_layers (`int`, *optional*, defaults to 8):
+ Number of encoder layers.
+ decoder_layers (`int`, *optional*, defaults to 8):
+ Number of decoder layers.
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
+ Number of attention heads for each attention layer in the Transformer decoder.
+ decoder_ffn_dim (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ encoder_ffn_dim (`int`, *optional*, defaults to 2048):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ activation_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for activations inside the fully connected layer.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ init_std (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ scale_embedding (`bool`, *optional*, defaults to `False`):
+ Scale embeddings by diving by sqrt(d_model).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models)
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
+ `eos_token_id`.
+
+ Example:
+
+ ```python
+ >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel
+
+ >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration
+ >>> configuration = BlenderbotSmallConfig()
+
+ >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration
+ >>> model = BlenderbotSmallModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "blenderbot-small"
+ keys_to_ignore_at_inference = ["past_key_values"]
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
+
+ def __init__(
+ self,
+ vocab_size=50265,
+ max_position_embeddings=512,
+ encoder_layers=8,
+ encoder_ffn_dim=2048,
+ encoder_attention_heads=16,
+ decoder_layers=8,
+ decoder_ffn_dim=2048,
+ decoder_attention_heads=16,
+ encoder_layerdrop=0.0,
+ decoder_layerdrop=0.0,
+ use_cache=True,
+ is_encoder_decoder=True,
+ activation_function="gelu",
+ d_model=512,
+ dropout=0.1,
+ attention_dropout=0.0,
+ activation_dropout=0.0,
+ init_std=0.02,
+ decoder_start_token_id=1,
+ scale_embedding=False,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ forced_eos_token_id=2,
+ **kwargs,
+ ):
+ self.vocab_size = vocab_size
+ self.max_position_embeddings = max_position_embeddings
+ self.d_model = d_model
+ self.encoder_ffn_dim = encoder_ffn_dim
+ self.encoder_layers = encoder_layers
+ self.encoder_attention_heads = encoder_attention_heads
+ self.decoder_ffn_dim = decoder_ffn_dim
+ self.decoder_layers = decoder_layers
+ self.decoder_attention_heads = decoder_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.activation_function = activation_function
+ self.init_std = init_std
+ self.encoder_layerdrop = encoder_layerdrop
+ self.decoder_layerdrop = decoder_layerdrop
+ self.use_cache = use_cache
+ self.num_hidden_layers = encoder_layers
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ is_encoder_decoder=is_encoder_decoder,
+ decoder_start_token_id=decoder_start_token_id,
+ forced_eos_token_id=forced_eos_token_id,
+ **kwargs,
+ )
+
+
+# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig
+class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ]
+ )
+
+ if self.use_past:
+ common_inputs["decoder_input_ids"] = {0: "batch"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
+ else:
+ common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
+ common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
+
+ if self.use_past:
+ self.fill_with_past_key_values_(common_inputs, direction="inputs")
+ elif self.task == "causal-lm":
+ # TODO: figure this case out.
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ]
+ )
+ if self.use_past:
+ num_encoder_layers, _ = self.num_layers
+ for i in range(num_encoder_layers):
+ common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
+ common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
+ else:
+ common_inputs = OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "encoder_sequence"}),
+ ("attention_mask", {0: "batch", 1: "encoder_sequence"}),
+ ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
+ ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
+ ]
+ )
+
+ return common_inputs
+
+ @property
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_outputs = super().outputs
+ else:
+ common_outputs = super(OnnxConfigWithPast, self).outputs
+ if self.use_past:
+ num_encoder_layers, _ = self.num_layers
+ for i in range(num_encoder_layers):
+ common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"}
+ common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"}
+ return common_outputs
+
+ def _generate_dummy_inputs_for_default_and_seq2seq_lm(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, seq_length, is_pair, framework
+ )
+
+ # Generate decoder inputs
+ decoder_seq_length = seq_length if not self.use_past else 1
+ decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, decoder_seq_length, is_pair, framework
+ )
+ decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
+ common_inputs = dict(**encoder_inputs, **decoder_inputs)
+
+ if self.use_past:
+ if not is_torch_available():
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
+ else:
+ import torch
+ batch, encoder_seq_length = common_inputs["input_ids"].shape
+ decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
+ num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads
+ encoder_shape = (
+ batch,
+ num_encoder_attention_heads,
+ encoder_seq_length,
+ self._config.hidden_size // num_encoder_attention_heads,
+ )
+ decoder_past_length = decoder_seq_length + 3
+ decoder_shape = (
+ batch,
+ num_decoder_attention_heads,
+ decoder_past_length,
+ self._config.hidden_size // num_decoder_attention_heads,
+ )
+
+ common_inputs["decoder_attention_mask"] = torch.cat(
+ [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1
+ )
+
+ common_inputs["past_key_values"] = []
+ # If the number of encoder and decoder layers are present in the model configuration, both are considered
+ num_encoder_layers, num_decoder_layers = self.num_layers
+ min_num_layers = min(num_encoder_layers, num_decoder_layers)
+ max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers
+ remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
+
+ for _ in range(min_num_layers):
+ common_inputs["past_key_values"].append(
+ (
+ torch.zeros(decoder_shape),
+ torch.zeros(decoder_shape),
+ torch.zeros(encoder_shape),
+ torch.zeros(encoder_shape),
+ )
+ )
+ # TODO: test this.
+ shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
+ for _ in range(min_num_layers, max_num_layers):
+ common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape)))
+ return common_inputs
+
+ def _generate_dummy_inputs_for_causal_lm(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size, seq_length, is_pair, framework
+ )
+
+ if self.use_past:
+ if not is_torch_available():
+ raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
+ else:
+ import torch
+ batch, seqlen = common_inputs["input_ids"].shape
+ # Not using the same length for past_key_values
+ past_key_values_length = seqlen + 2
+ num_encoder_layers, _ = self.num_layers
+ num_encoder_attention_heads, _ = self.num_attention_heads
+ past_shape = (
+ batch,
+ num_encoder_attention_heads,
+ past_key_values_length,
+ self._config.hidden_size // num_encoder_attention_heads,
+ )
+
+ mask_dtype = common_inputs["attention_mask"].dtype
+ common_inputs["attention_mask"] = torch.cat(
+ [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
+ )
+ common_inputs["past_key_values"] = [
+ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers)
+ ]
+ return common_inputs
+
+ def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ # Copied from OnnxConfig.generate_dummy_inputs
+ # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
+ # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
+ batch_size = compute_effective_axis_dimension(
+ batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0
+ )
+
+ # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
+ token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
+ seq_length = compute_effective_axis_dimension(
+ seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add
+ )
+
+ # Generate dummy inputs according to compute batch and sequence
+ dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
+ common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
+ return common_inputs
+
+ def generate_dummy_inputs(
+ self,
+ tokenizer: PreTrainedTokenizer,
+ batch_size: int = -1,
+ seq_length: int = -1,
+ is_pair: bool = False,
+ framework: Optional[TensorType] = None,
+ ) -> Mapping[str, Any]:
+ if self.task in ["default", "seq2seq-lm"]:
+ common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ elif self.task == "causal-lm":
+ common_inputs = self._generate_dummy_inputs_for_causal_lm(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+ else:
+ common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
+ tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
+ )
+
+ return common_inputs
+
+ def _flatten_past_key_values_(self, flattened_output, name, idx, t):
+ if self.task in ["default", "seq2seq-lm"]:
+ flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t)
+ else:
+ flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_(
+ flattened_output, name, idx, t
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9a9508e5905575dedf832e01b239a9a14ae3cc8
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_blenderbot_small.py
@@ -0,0 +1,1570 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch BlenderbotSmall model."""
+
+
+import copy
+import math
+from typing import List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+from torch.nn import CrossEntropyLoss
+
+from ...activations import ACT2FN
+from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ CausalLMOutputWithCrossAttentions,
+ Seq2SeqLMOutput,
+ Seq2SeqModelOutput,
+)
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_blenderbot_small import BlenderbotSmallConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
+
+
+BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "facebook/blenderbot_small-90M",
+ # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
+]
+
+
+# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
+def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
+ shifted_input_ids[:, 0] = decoder_start_token_id
+
+ if pad_token_id is None:
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
+
+ return shifted_input_ids
+
+
+# Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
+class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int):
+ super().__init__(num_embeddings, embedding_dim)
+
+ def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
+ bsz, seq_len = input_ids_shape[:2]
+ positions = torch.arange(
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
+ )
+ return super().forward(positions)
+
+
+# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall
+class BlenderbotSmallAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ is_causal: bool = False,
+ config: Optional[BlenderbotSmallConfig] = None,
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ self.config = config
+
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+ self.is_causal = is_causal
+
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ key_value_states: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ output_attentions: bool = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+
+ bsz, tgt_len, _ = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ # `past_key_value[0].shape[2] == key_value_states.shape[1]`
+ # is checking that the `sequence_length` of the `past_key_value` is the same as
+ # the provided `key_value_states` to support prefix tuning
+ if (
+ is_cross_attention
+ and past_key_value is not None
+ and past_key_value[0].shape[2] == key_value_states.shape[1]
+ ):
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.reshape(*proj_shape)
+ value_states = value_states.reshape(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ if attention_mask is not None:
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
+ raise ValueError(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
+ )
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if layer_head_mask is not None:
+ if layer_head_mask.size() != (self.num_heads,):
+ raise ValueError(
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
+ f" {layer_head_mask.size()}"
+ )
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
+
+ if output_attentions:
+ # this operation is a bit awkward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to be reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
+ # partitioned across GPUs when using tensor-parallelism.
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped, past_key_value
+
+
+# Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
+class BlenderbotSmallEncoderLayer(nn.Module):
+ def __init__(self, config: BlenderbotSmallConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.encoder_attention_heads,
+ dropout=config.attention_dropout,
+ config=config,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: torch.FloatTensor,
+ layer_head_mask: torch.FloatTensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+ hidden_states, attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ if hidden_states.dtype == torch.float16 and (
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
+ ):
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# TODO: Implement attention with SDPA for TimeSeriesTransformer.
+BLENDERBOT_SMALL_ATTENTION_CLASSES = {
+ "eager": BlenderbotSmallAttention,
+}
+
+
+# Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall, BART->BLENDERBOT_SMALL
+class BlenderbotSmallDecoderLayer(nn.Module):
+ def __init__(self, config: BlenderbotSmallConfig):
+ super().__init__()
+ self.embed_dim = config.d_model
+
+ self.self_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ is_causal=True,
+ config=config,
+ )
+ self.dropout = config.dropout
+ self.activation_fn = ACT2FN[config.activation_function]
+ self.activation_dropout = config.activation_dropout
+
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.encoder_attn = BLENDERBOT_SMALL_ATTENTION_CLASSES[config._attn_implementation](
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ is_decoder=True,
+ config=config,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ layer_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
+ output_attentions: Optional[bool] = False,
+ use_cache: Optional[bool] = True,
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`torch.FloatTensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`torch.FloatTensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`.
+ cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
+ size `(decoder_attention_heads,)`.
+ past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ output_attentions=output_attentions,
+ )
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ if use_cache:
+ outputs += (present_key_value,)
+
+ return outputs
+
+
+class BlenderbotSmallPreTrainedModel(PreTrainedModel):
+ config_class = BlenderbotSmallConfig
+ base_model_prefix = "model"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ std = self.config.init_std
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.bias is not None:
+ module.bias.data.zero_()
+ elif isinstance(module, nn.Embedding):
+ module.weight.data.normal_(mean=0.0, std=std)
+ if module.padding_idx is not None:
+ module.weight.data[module.padding_idx].zero_()
+
+ @property
+ def dummy_inputs(self):
+ pad_token = self.config.pad_token_id
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
+ dummy_inputs = {
+ "attention_mask": input_ids.ne(pad_token),
+ "input_ids": input_ids,
+ "decoder_input_ids": input_ids,
+ }
+ return dummy_inputs
+
+
+BLENDERBOT_SMALL_START_DOCSTRING = r"""
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
+ and behavior.
+
+ Parameters:
+ config ([`BlenderbotSmallConfig`]):
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
+ load the weights associated with the model, only the configuration. Check out the
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
+ Conversation example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration
+
+ >>> mname = "facebook/blenderbot_small-90M"
+ >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
+ >>> print("Human: ", UTTERANCE)
+ Human: My friends are cool but they eat too many carbs.
+
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="pt")
+ >>> reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
+ Bot: what kind of carbs do they eat? i don't know much about carbs.
+
+ >>> REPLY = "I'm not sure"
+ >>> print("Human: ", REPLY)
+ Human: I'm not sure
+
+ >>> NEXT_UTTERANCE = (
+ ... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? "
+ ... "i don't know much about carbs__end__ "
+ ... "__start__ I'm not sure."
+ ... )
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt")
+ >>> next_reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
+ Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats.
+ ```
+"""
+
+BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
+ 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
+ representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
+ input (see `past_key_values`). This is useful if you want more control over how to convert
+ `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
+
+ If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
+ of `inputs_embeds`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel):
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`BlenderbotSmallEncoderLayer`].
+
+ Args:
+ config: BlenderbotSmallConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+
+ self.dropout = config.dropout
+ self.layerdrop = config.encoder_layerdrop
+
+ embed_dim = config.d_model
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
+
+ self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ embed_dim,
+ )
+ self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(embed_dim)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ head_mask=None,
+ inputs_embeds=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.layernorm_embedding(hidden_states)
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ if head_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ to_drop = False
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop: # skip the layer
+ to_drop = True
+
+ if to_drop:
+ layer_outputs = (None, None)
+ else:
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ (head_mask[idx] if head_mask is not None else None),
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel):
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`]
+
+ Args:
+ config: BlenderbotSmallConfig
+ embed_tokens (nn.Embedding): output embedding
+ """
+
+ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None):
+ super().__init__(config)
+ self.dropout = config.dropout
+ self.layerdrop = config.decoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_target_positions = config.max_position_embeddings
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
+
+ if embed_tokens is not None:
+ self.embed_tokens = embed_tokens
+ else:
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
+
+ self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ )
+ self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)])
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
+
+ self.gradient_checkpointing = False
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.embed_tokens = value
+
+ def forward(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ inputs_embeds=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ ):
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
+ cross-attention on hidden heads. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # retrieve input_ids and inputs_embeds
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ attention_mask = _prepare_4d_causal_attention_mask(
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
+ )
+
+ # expand encoder attention mask
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _prepare_4d_attention_mask(
+ encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
+ )
+
+ # embed positions
+ positions = self.embed_positions(input_shape, past_key_values_length)
+
+ # BlenderbotSmall applies layer norm on hidden_states
+ inputs_embeds = self.layernorm_embedding(inputs_embeds)
+ hidden_states = inputs_embeds + positions
+
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+ next_decoder_cache = () if use_cache else None
+
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
+ if attn_mask is not None:
+ if attn_mask.size()[0] != len(self.layers):
+ raise ValueError(
+ f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
+ f" {head_mask.size()[0]}."
+ )
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ if self.training:
+ dropout_probability = torch.rand([])
+ if dropout_probability < self.layerdrop:
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ decoder_layer.__call__,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ None,
+ output_attentions,
+ use_cache,
+ )
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
+ cross_attn_layer_head_mask=(
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
+ ),
+ past_key_value=past_key_value,
+ output_attentions=output_attentions,
+ use_cache=use_cache,
+ )
+ hidden_states = layer_outputs[0]
+
+ if use_cache:
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
+
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ next_cache = next_decoder_cache if use_cache else None
+ if not return_dict:
+ return tuple(
+ v
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel):
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
+
+ def __init__(self, config: BlenderbotSmallConfig):
+ super().__init__(config)
+
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
+
+ self.encoder = BlenderbotSmallEncoder(config, self.shared)
+ self.decoder = BlenderbotSmallDecoder(config, self.shared)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, value):
+ self.shared = value
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ def get_encoder(self):
+ return self.encoder
+
+ def get_decoder(self):
+ return self.decoder
+
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotSmallModel
+
+ >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+
+ >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
+ >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1
+ >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
+
+ >>> last_hidden_states = outputs.last_hidden_state
+ >>> list(last_hidden_states.shape)
+ [1, 3, 512]
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
+ encoder_outputs = BaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return Seq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel):
+ base_model_prefix = "model"
+ _keys_to_ignore_on_load_missing = ["final_logits_bias"]
+ _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
+
+ def __init__(self, config: BlenderbotSmallConfig):
+ super().__init__(config)
+ self.model = BlenderbotSmallModel(config)
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_encoder(self):
+ return self.model.get_encoder()
+
+ def get_decoder(self):
+ return self.model.get_decoder()
+
+ def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
+ new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
+ self._resize_final_logits_bias(new_embeddings.weight.shape[0])
+ return new_embeddings
+
+ def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
+ old_num_tokens = self.final_logits_bias.shape[-1]
+ if new_num_tokens <= old_num_tokens:
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
+ else:
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
+ self.register_buffer("final_logits_bias", new_bias)
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ decoder_input_ids: Optional[torch.LongTensor] = None,
+ decoder_attention_mask: Optional[torch.LongTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ decoder_head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
+ r"""
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+ """
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if labels is not None:
+ if use_cache:
+ logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ encoder_outputs=encoder_outputs,
+ decoder_attention_mask=decoder_attention_mask,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
+
+ masked_lm_loss = None
+ if labels is not None:
+ loss_fct = CrossEntropyLoss()
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+
+ return Seq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past is used
+ if past_key_values is not None:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if decoder_input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = decoder_input_ids.shape[1] - 1
+
+ decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ # cached cross_attention states don't have to be reordered -> they are always the same
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ + layer_past[2:],
+ )
+ return reordered_past
+
+
+# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall
+class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel):
+ """
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
+ used in combination with the [`EncoderDecoderModel`] framework.
+ """
+
+ def __init__(self, config):
+ super().__init__(config)
+ self.decoder = BlenderbotSmallDecoder(config)
+
+ def forward(self, *args, **kwargs):
+ return self.decoder(*args, **kwargs)
+
+
+# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M
+class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel):
+ _tied_weights_keys = ["lm_head.weight"]
+
+ def __init__(self, config):
+ config = copy.deepcopy(config)
+ config.is_decoder = True
+ config.is_encoder_decoder = False
+ super().__init__(config)
+ self.model = BlenderbotSmallDecoderWrapper(config)
+
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.model.decoder.embed_tokens
+
+ def set_input_embeddings(self, value):
+ self.model.decoder.embed_tokens = value
+
+ def get_output_embeddings(self):
+ return self.lm_head
+
+ def set_output_embeddings(self, new_embeddings):
+ self.lm_head = new_embeddings
+
+ def set_decoder(self, decoder):
+ self.model.decoder = decoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ input_ids: torch.LongTensor = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ cross_attn_head_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ labels: Optional[torch.LongTensor] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
+ r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ if the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
+ in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+ head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
+ shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
+ tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
+
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
+ cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
+ (see `past_key_values`).
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+ >>> model = BlenderbotSmallForCausalLM.from_pretrained("facebook/blenderbot_small-90M", add_cross_attention=False)
+ >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
+ >>> outputs = model(**inputs)
+
+ >>> logits = outputs.logits
+ >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
+ >>> list(logits.shape) == expected_shape
+ True
+ ```"""
+
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
+ outputs = self.model.decoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ head_mask=head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ logits = self.lm_head(outputs[0])
+
+ loss = None
+ if labels is not None:
+ labels = labels.to(logits.device)
+ loss_fct = CrossEntropyLoss()
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
+
+ if not return_dict:
+ output = (logits,) + outputs[1:]
+ return (loss,) + output if loss is not None else output
+
+ return CausalLMOutputWithCrossAttentions(
+ loss=loss,
+ logits=logits,
+ past_key_values=outputs.past_key_values,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+ def prepare_inputs_for_generation(
+ self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
+ ):
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
+ if attention_mask is None:
+ attention_mask = input_ids.new_ones(input_ids.shape)
+
+ if past_key_values:
+ past_length = past_key_values[0][0].shape[2]
+
+ # Some generation methods already pass only the last input ID
+ if input_ids.shape[1] > past_length:
+ remove_prefix_length = past_length
+ else:
+ # Default to old behavior: keep only final ID
+ remove_prefix_length = input_ids.shape[1] - 1
+
+ input_ids = input_ids[:, remove_prefix_length:]
+ # first step, decoder_cached_states are empty
+ return {
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
+ "attention_mask": attention_mask,
+ "past_key_values": past_key_values,
+ "use_cache": use_cache,
+ }
+
+ @staticmethod
+ def _reorder_cache(past_key_values, beam_idx):
+ reordered_past = ()
+ for layer_past in past_key_values:
+ reordered_past += (
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
+ )
+ return reordered_past
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5272fb3bca9e2eef8e307f738f6d456cb5e8218
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
@@ -0,0 +1,1522 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Flax BlenderbotSmall model."""
+
+
+import math
+import random
+from functools import partial
+from typing import Callable, Optional, Tuple
+
+import flax.linen as nn
+import jax
+import jax.numpy as jnp
+from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
+from flax.linen import combine_masks, make_causal_mask
+from flax.linen.attention import dot_product_attention_weights
+from flax.traverse_util import flatten_dict, unflatten_dict
+from jax import lax
+from jax.random import PRNGKey
+
+from ...modeling_flax_outputs import (
+ FlaxBaseModelOutput,
+ FlaxBaseModelOutputWithPastAndCrossAttentions,
+ FlaxCausalLMOutputWithCrossAttentions,
+ FlaxSeq2SeqLMOutput,
+ FlaxSeq2SeqModelOutput,
+)
+from ...modeling_flax_utils import (
+ ACT2FN,
+ FlaxPreTrainedModel,
+ append_call_sample_docstring,
+ append_replace_return_docstrings,
+ overwrite_call_docstring,
+)
+from ...utils import add_start_docstrings, logging, replace_return_docstrings
+from .configuration_blenderbot_small import BlenderbotSmallConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
+_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
+
+BLENDERBOT_SMALL_START_DOCSTRING = r"""
+ This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a Flax Linen
+ [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
+ regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
+
+ Finally, this model supports inherent JAX features such as:
+
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
+
+ Parameters:
+ config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
+ `jax.numpy.bfloat16` (on TPUs).
+
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
+ specified all the computation will be performed with the given `dtype`.
+
+ **Note that this only specifies the dtype of the computation and does not influence the dtype of model
+ parameters.**
+
+ If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
+ [`~FlaxPreTrainedModel.to_bf16`].
+"""
+
+BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
+ for denoising pre-training following the paper.
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING = r"""
+ Args:
+ decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ For translation and summarization training, `decoder_input_ids` should be provided. If no
+ `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
+ for denoising pre-training following the paper.
+ encoder_outputs (`tuple(tuple(jnp.ndarray)`):
+ Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
+ `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
+ hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
+ be used by default.
+
+ If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the
+ paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy.
+ decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
+ Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
+ auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
+def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
+ """
+ Shift input ids one token to the right.
+ """
+ shifted_input_ids = jnp.zeros_like(input_ids)
+ shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
+ shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
+
+ shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
+ return shifted_input_ids
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallAttention(nn.Module):
+ config: BlenderbotSmallConfig
+ embed_dim: int
+ num_heads: int
+ dropout: float = 0.0
+ causal: bool = False
+ bias: bool = True
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self) -> None:
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {self.num_heads})."
+ )
+
+ dense = partial(
+ nn.Dense,
+ self.embed_dim,
+ use_bias=self.bias,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
+ self.out_proj = dense()
+
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
+
+ if self.causal:
+ self.causal_mask = make_causal_mask(
+ jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
+ )
+
+ def _split_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
+
+ def _merge_heads(self, hidden_states):
+ return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
+
+ @nn.compact
+ def _concatenate_to_cache(self, key, value, query, attention_mask):
+ """
+ This function takes projected key, value states from a single input token and concatenates the states to cached
+ states from previous steps. This function is slighly adapted from the official Flax repository:
+ https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
+ """
+ # detect if we're initializing by absence of existing cache data.
+ is_initialized = self.has_variable("cache", "cached_key")
+ cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
+ cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
+ cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
+
+ if is_initialized:
+ *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
+ # update key, value caches with our new 1d spatial slices
+ cur_index = cache_index.value
+ indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
+ key = lax.dynamic_update_slice(cached_key.value, key, indices)
+ value = lax.dynamic_update_slice(cached_value.value, value, indices)
+ cached_key.value = key
+ cached_value.value = value
+ num_updated_cache_vectors = query.shape[1]
+ cache_index.value = cache_index.value + num_updated_cache_vectors
+ # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
+ pad_mask = jnp.broadcast_to(
+ jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
+ tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
+ )
+ attention_mask = combine_masks(pad_mask, attention_mask)
+ return key, value, attention_mask
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ key_value_states: Optional[jnp.ndarray] = None,
+ attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ batch_size = hidden_states.shape[0]
+
+ # get query proj
+ query_states = self.q_proj(hidden_states)
+ # get key, value proj
+ if is_cross_attention:
+ # cross_attentions
+ key_states = self.k_proj(key_value_states)
+ value_states = self.v_proj(key_value_states)
+ else:
+ # self_attention
+ key_states = self.k_proj(hidden_states)
+ value_states = self.v_proj(hidden_states)
+
+ query_states = self._split_heads(query_states)
+ key_states = self._split_heads(key_states)
+ value_states = self._split_heads(value_states)
+
+ # handle cache prepare causal attention mask
+ if self.causal:
+ query_length, key_length = query_states.shape[1], key_states.shape[1]
+ if self.has_variable("cache", "cached_key"):
+ mask_shift = self.variables["cache"]["cache_index"]
+ max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
+ causal_mask = lax.dynamic_slice(
+ self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
+ )
+ else:
+ causal_mask = self.causal_mask[:, :, :query_length, :key_length]
+ causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
+
+ # combine masks if needed
+ if attention_mask is not None and self.causal:
+ attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
+ attention_mask = combine_masks(attention_mask, causal_mask)
+ elif self.causal:
+ attention_mask = causal_mask
+ elif attention_mask is not None:
+ attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
+
+ # During fast autoregressive decoding, we feed one position at a time,
+ # and cache the keys and values step by step.
+ if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
+ key_states, value_states, attention_mask = self._concatenate_to_cache(
+ key_states, value_states, query_states, attention_mask
+ )
+
+ # Convert the boolean attention mask to an attention bias.
+ if attention_mask is not None:
+ # attention mask in the form of attention bias
+ attention_bias = lax.select(
+ attention_mask > 0,
+ jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
+ jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
+ )
+ else:
+ attention_bias = None
+
+ dropout_rng = None
+ if not deterministic and self.dropout > 0.0:
+ dropout_rng = self.make_rng("dropout")
+
+ attn_weights = dot_product_attention_weights(
+ query_states,
+ key_states,
+ bias=attention_bias,
+ dropout_rng=dropout_rng,
+ dropout_rate=self.dropout,
+ broadcast_dropout=True,
+ deterministic=deterministic,
+ dtype=self.dtype,
+ precision=None,
+ )
+
+ attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
+ attn_output = self._merge_heads(attn_output)
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallEncoderLayer(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxBlenderbotSmallAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.encoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+ self.fc1 = nn.Dense(
+ self.config.encoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+ hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask)
+
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.encoder_layers)
+ ]
+ self.layerdrop = self.config.encoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ deterministic: bool = True,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ all_attentions = () if output_attentions else None
+ all_hidden_states = () if output_hidden_states else None
+
+ for encoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop): # skip the layer
+ layer_outputs = (None, None)
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ output_attentions,
+ deterministic,
+ )
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = (hidden_states, all_hidden_states, all_attentions)
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
+ )
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallDecoderLayer(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32
+
+ def setup(self) -> None:
+ self.embed_dim = self.config.d_model
+ self.self_attn = FlaxBlenderbotSmallAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ causal=True,
+ dtype=self.dtype,
+ )
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+ self.activation_fn = ACT2FN[self.config.activation_function]
+ self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
+
+ self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.encoder_attn = FlaxBlenderbotSmallAttention(
+ config=self.config,
+ embed_dim=self.embed_dim,
+ num_heads=self.config.decoder_attention_heads,
+ dropout=self.config.attention_dropout,
+ dtype=self.dtype,
+ )
+ self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+ self.fc1 = nn.Dense(
+ self.config.decoder_ffn_dim,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.fc2 = nn.Dense(
+ self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std)
+ )
+ self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ hidden_states: jnp.ndarray,
+ attention_mask: jnp.ndarray,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = True,
+ deterministic: bool = True,
+ ) -> Tuple[jnp.ndarray]:
+ residual = hidden_states
+
+ # Self Attention
+ hidden_states, self_attn_weights = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ hidden_states, cross_attn_weights = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ )
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (self_attn_weights, cross_attn_weights)
+
+ return outputs
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.layers = [
+ FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype)
+ for i in range(self.config.decoder_layers)
+ ]
+ self.layerdrop = self.config.decoder_layerdrop
+
+ def __call__(
+ self,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ deterministic: bool = True,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ ):
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
+
+ for decoder_layer in self.layers:
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if not deterministic and (dropout_probability < self.layerdrop):
+ layer_outputs = (None, None, None)
+ else:
+ layer_outputs = decoder_layer(
+ hidden_states,
+ attention_mask=attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ deterministic=deterministic,
+ )
+
+ hidden_states = layer_outputs[0]
+ if output_attentions:
+ all_self_attns += (layer_outputs[1],)
+
+ if encoder_hidden_states is not None:
+ all_cross_attentions += (layer_outputs[2],)
+
+ # add hidden states from the last decoder layer
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions]
+
+ if not return_dict:
+ return tuple(v for v in outputs if v is not None)
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class FlaxBlenderbotSmallEncoder(nn.Module):
+ config: BlenderbotSmallConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_source_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = nn.Embed(
+ self.config.max_position_embeddings,
+ embed_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype)
+ self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(position_ids)
+
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.layernorm_embedding(hidden_states)
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ deterministic=deterministic,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return outputs
+
+ return FlaxBaseModelOutput(
+ last_hidden_state=outputs.last_hidden_state,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
+
+
+class FlaxBlenderbotSmallDecoder(nn.Module):
+ config: BlenderbotSmallConfig
+ embed_tokens: nn.Embed
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.dropout_layer = nn.Dropout(rate=self.config.dropout)
+
+ embed_dim = self.config.d_model
+ self.padding_idx = self.config.pad_token_id
+ self.max_target_positions = self.config.max_position_embeddings
+ self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
+
+ self.embed_positions = nn.Embed(
+ self.config.max_position_embeddings,
+ embed_dim,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+
+ self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype)
+ self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ position_ids,
+ encoder_hidden_states: Optional[jnp.ndarray] = None,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ init_cache: bool = False,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ input_shape = input_ids.shape
+ input_ids = input_ids.reshape(-1, input_shape[-1])
+
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ # embed positions
+ positions = self.embed_positions(position_ids)
+
+ # BlenderbotSmall applies layer norm on inputs_embeds in decoder
+ inputs_embeds = self.layernorm_embedding(inputs_embeds)
+ hidden_states = inputs_embeds + positions
+
+ hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic)
+
+ outputs = self.layers(
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ deterministic=deterministic,
+ init_cache=init_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ if not return_dict:
+ return outputs
+
+ return FlaxBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=outputs.last_hidden_state,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ cross_attentions=outputs.cross_attentions,
+ )
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallModule(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+
+ def setup(self):
+ self.shared = nn.Embed(
+ self.config.vocab_size,
+ self.config.d_model,
+ embedding_init=jax.nn.initializers.normal(self.config.init_std),
+ dtype=self.dtype,
+ )
+
+ self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+ self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
+
+ def _get_encoder_module(self):
+ return self.encoder
+
+ def _get_decoder_module(self):
+ return self.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ decoder_outputs = self.decoder(
+ input_ids=decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return FlaxSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+
+class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel):
+ config_class = BlenderbotSmallConfig
+ base_model_prefix: str = "model"
+ module_class: nn.Module = None
+
+ def __init__(
+ self,
+ config: BlenderbotSmallConfig,
+ input_shape: Tuple[int] = (1, 1),
+ seed: int = 0,
+ dtype: jnp.dtype = jnp.float32,
+ _do_init: bool = True,
+ **kwargs,
+ ):
+ module = self.module_class(config=config, dtype=dtype, **kwargs)
+ super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
+
+ def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
+ # init input tensors
+ input_ids = jnp.zeros(input_shape, dtype="i4")
+ # make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule
+ input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id)
+ attention_mask = jnp.ones_like(input_ids)
+ decoder_input_ids = input_ids
+ decoder_attention_mask = jnp.ones_like(input_ids)
+
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+ decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ params_rng, dropout_rng = jax.random.split(rng)
+ rngs = {"params": params_rng, "dropout": dropout_rng}
+
+ random_params = self.module.init(
+ rngs,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ )["params"]
+
+ if params is not None:
+ random_params = flatten_dict(unfreeze(random_params))
+ params = flatten_dict(unfreeze(params))
+ for missing_key in self._missing_keys:
+ params[missing_key] = random_params[missing_key]
+ self._missing_keys = set()
+ return freeze(unflatten_dict(params))
+ else:
+ return random_params
+
+ def init_cache(self, batch_size, max_length, encoder_outputs):
+ r"""
+ Args:
+ batch_size (`int`):
+ batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
+ max_length (`int`):
+ maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
+ cache.
+ encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
+ `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
+ `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
+ is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
+ cross-attention of the decoder.
+ """
+ # init input variables to retrieve cache
+ decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape
+ )
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ init_variables = self.module.init(
+ jax.random.PRNGKey(0),
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ init_cache=True,
+ method=_decoder_forward, # we only need to call the decoder to init the cache
+ )
+ return unfreeze(init_variables["cache"])
+
+ @add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig)
+ def encode(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
+
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs):
+ encode_module = module._get_encoder_module()
+ return encode_module(input_ids, attention_mask, position_ids, **kwargs)
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ method=_encoder_forward,
+ )
+
+ @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(
+ output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig
+ )
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
+
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> last_decoder_hidden_states = outputs.last_hidden_state
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxBlenderbotSmallAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ return decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs, past = outputs
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs, past = outputs
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ def __call__(
+ self,
+ input_ids: jnp.ndarray,
+ attention_mask: Optional[jnp.ndarray] = None,
+ decoder_input_ids: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ position_ids: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ train: bool = False,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ # prepare encoder inputs
+ if attention_mask is None:
+ attention_mask = jnp.ones_like(input_ids)
+ if position_ids is None:
+ batch_size, sequence_length = input_ids.shape
+ position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
+
+ # prepare decoder inputs
+ if decoder_input_ids is None:
+ decoder_input_ids = shift_tokens_right(
+ input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id
+ )
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones_like(decoder_input_ids)
+ if decoder_position_ids is None:
+ batch_size, sequence_length = decoder_input_ids.shape
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
+
+ return self.module.apply(
+ {"params": params or self.params},
+ input_ids=jnp.array(input_ids, dtype="i4"),
+ attention_mask=jnp.array(attention_mask, dtype="i4"),
+ position_ids=jnp.array(position_ids, dtype="i4"),
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=not train,
+ rngs=rngs,
+ )
+
+
+@add_start_docstrings(
+ "The bare BlenderbotSmall Model transformer outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32 # the dtype of the computation
+ module_class = FlaxBlenderbotSmallModule
+
+
+append_call_sample_docstring(FlaxBlenderbotSmallModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC)
+
+
+# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->BlenderbotSmall
+class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module):
+ config: BlenderbotSmallConfig
+ dtype: jnp.dtype = jnp.float32
+ bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros
+
+ def setup(self):
+ self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype)
+ self.lm_head = nn.Dense(
+ self.model.shared.num_embeddings,
+ use_bias=False,
+ dtype=self.dtype,
+ kernel_init=jax.nn.initializers.normal(self.config.init_std),
+ )
+ self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings))
+
+ def _get_encoder_module(self):
+ return self.model.encoder
+
+ def _get_decoder_module(self):
+ return self.model.decoder
+
+ def __call__(
+ self,
+ input_ids,
+ attention_mask,
+ decoder_input_ids,
+ decoder_attention_mask,
+ position_ids,
+ decoder_position_ids,
+ output_attentions: bool = False,
+ output_hidden_states: bool = False,
+ return_dict: bool = True,
+ deterministic: bool = True,
+ ):
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ position_ids=position_ids,
+ decoder_position_ids=decoder_position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ )
+
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = self.model.variables["params"]["shared"]["embedding"]
+ lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = self.lm_head(hidden_states)
+
+ lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype))
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return output
+
+ return FlaxSeq2SeqLMOutput(
+ logits=lm_logits,
+ decoder_hidden_states=outputs.decoder_hidden_states,
+ decoder_attentions=outputs.decoder_attentions,
+ cross_attentions=outputs.cross_attentions,
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
+ encoder_hidden_states=outputs.encoder_hidden_states,
+ encoder_attentions=outputs.encoder_attentions,
+ )
+
+
+@add_start_docstrings(
+ "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel):
+ module_class = FlaxBlenderbotSmallForConditionalGenerationModule
+ dtype: jnp.dtype = jnp.float32
+
+ @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig)
+ def decode(
+ self,
+ decoder_input_ids,
+ encoder_outputs,
+ encoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_attention_mask: Optional[jnp.ndarray] = None,
+ decoder_position_ids: Optional[jnp.ndarray] = None,
+ past_key_values: dict = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ deterministic: bool = True,
+ params: dict = None,
+ dropout_rng: PRNGKey = None,
+ ):
+ r"""
+ Returns:
+
+ Example:
+
+ ```python
+ >>> import jax.numpy as jnp
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
+
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+
+ >>> text = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
+ >>> encoder_outputs = model.encode(**inputs)
+
+ >>> decoder_start_token_id = model.config.decoder_start_token_id
+ >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
+
+ >>> outputs = model.decode(decoder_input_ids, encoder_outputs)
+ >>> logits = outputs.logits
+ ```"""
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.return_dict
+
+ encoder_hidden_states = encoder_outputs[0]
+ if encoder_attention_mask is None:
+ batch_size, sequence_length = encoder_hidden_states.shape[:2]
+ encoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ batch_size, sequence_length = decoder_input_ids.shape
+ if decoder_attention_mask is None:
+ decoder_attention_mask = jnp.ones((batch_size, sequence_length))
+
+ if decoder_position_ids is None:
+ if past_key_values is not None:
+ raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.")
+
+ decoder_position_ids = jnp.broadcast_to(
+ jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
+ )
+
+ # Handle any PRNG if needed
+ rngs = {}
+ if dropout_rng is not None:
+ rngs["dropout"] = dropout_rng
+
+ inputs = {"params": params or self.params}
+
+ # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
+ # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
+ # it can be changed by FlaxBlenderbotSmallAttention module
+ if past_key_values:
+ inputs["cache"] = past_key_values
+ mutable = ["cache"]
+ else:
+ mutable = False
+
+ def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs):
+ decoder_module = module._get_decoder_module()
+ outputs = decoder_module(
+ decoder_input_ids,
+ decoder_attention_mask,
+ decoder_position_ids,
+ **kwargs,
+ )
+ hidden_states = outputs[0]
+
+ if self.config.tie_word_embeddings:
+ shared_embedding = module.model.variables["params"]["shared"]["embedding"]
+ lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
+ else:
+ lm_logits = module.lm_head(hidden_states)
+
+ lm_logits += module.final_logits_bias.astype(self.dtype)
+ return lm_logits, outputs
+
+ outputs = self.module.apply(
+ inputs,
+ decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
+ decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
+ decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ deterministic=deterministic,
+ rngs=rngs,
+ mutable=mutable,
+ method=_decoder_forward,
+ )
+
+ if past_key_values is None:
+ lm_logits, decoder_outputs = outputs
+ else:
+ (lm_logits, decoder_outputs), past = outputs
+
+ if return_dict:
+ outputs = FlaxCausalLMOutputWithCrossAttentions(
+ logits=lm_logits,
+ hidden_states=decoder_outputs.hidden_states,
+ attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ )
+ else:
+ outputs = (lm_logits,) + decoder_outputs[1:]
+
+ # add updated cache to model output
+ if past_key_values is not None and return_dict:
+ outputs["past_key_values"] = unfreeze(past["cache"])
+ return outputs
+ elif past_key_values is not None and not return_dict:
+ outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
+
+ return outputs
+
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ max_length,
+ attention_mask: Optional[jax.Array] = None,
+ decoder_attention_mask: Optional[jax.Array] = None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # initializing the cache
+ batch_size, seq_length = decoder_input_ids.shape
+
+ past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
+ # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
+ # But since the decoder uses a causal mask, those positions are masked anyways.
+ # Thus we can create a single static attention_mask here, which is more efficient for compilation
+ extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
+ if decoder_attention_mask is not None:
+ position_ids = decoder_attention_mask.cumsum(axis=-1) - 1
+ extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0))
+ else:
+ position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
+
+ return {
+ "past_key_values": past_key_values,
+ "encoder_outputs": encoder_outputs,
+ "encoder_attention_mask": attention_mask,
+ "decoder_attention_mask": extended_attention_mask,
+ "decoder_position_ids": position_ids,
+ }
+
+ def update_inputs_for_generation(self, model_outputs, model_kwargs):
+ model_kwargs["past_key_values"] = model_outputs.past_key_values
+ model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1
+ return model_kwargs
+
+
+FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """
+ Returns:
+
+ Summarization example:
+
+ ```py
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
+
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+
+ >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
+ >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
+
+ >>> # Generate Summary
+ >>> summary_ids = model.generate(inputs["input_ids"]).sequences
+ >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
+ ```
+
+ Mask filling example:
+
+ ```py
+ >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration
+
+ >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
+ >>> TXT = "My friends are but they eat too many carbs."
+
+ >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M")
+ >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
+ >>> logits = model(input_ids).logits
+
+ >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
+ >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
+ >>> values, predictions = jax.lax.top_k(probs)
+
+ >>> tokenizer.decode(predictions).split()
+ ```
+"""
+
+overwrite_call_docstring(
+ FlaxBlenderbotSmallForConditionalGeneration,
+ BLENDERBOT_SMALL_INPUTS_DOCSTRING + FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING,
+)
+append_replace_return_docstrings(
+ FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC
+)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
new file mode 100644
index 0000000000000000000000000000000000000000..93a480b1ea2715d6a666c0ad78239d11dbccdf49
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
@@ -0,0 +1,1529 @@
+# coding=utf-8
+# Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" TF 2.0 BlenderbotSmall model."""
+
+
+from __future__ import annotations
+
+import random
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import tensorflow as tf
+
+from ...activations_tf import get_tf_activation
+from ...modeling_tf_outputs import (
+ TFBaseModelOutput,
+ TFBaseModelOutputWithPastAndCrossAttentions,
+ TFSeq2SeqLMOutput,
+ TFSeq2SeqModelOutput,
+)
+
+# Public API
+from ...modeling_tf_utils import (
+ TFCausalLanguageModelingLoss,
+ TFPreTrainedModel,
+ keras_serializable,
+ unpack_inputs,
+)
+from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
+from ...utils import (
+ add_code_sample_docstrings,
+ add_end_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_blenderbot_small import BlenderbotSmallConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M"
+_CONFIG_FOR_DOC = "BlenderbotSmallConfig"
+
+
+LARGE_NEGATIVE = -1e8
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right
+def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int):
+ pad_token_id = tf.cast(pad_token_id, input_ids.dtype)
+ decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype)
+ start_tokens = tf.fill(
+ (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)
+ )
+ shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)
+ # replace possible -100 values in labels by `pad_token_id`
+ shifted_input_ids = tf.where(
+ shifted_input_ids == -100,
+ tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)),
+ shifted_input_ids,
+ )
+
+ # "Verify that `labels` has only positive values and -100"
+ assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype))
+
+ # Make sure the assertion op is called by wrapping the result in an identity no-op
+ with tf.control_dependencies([assert_gte0]):
+ shifted_input_ids = tf.identity(shifted_input_ids)
+
+ return shifted_input_ids
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask
+def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
+ """
+ Make causal mask used for bi-directional self-attention.
+ """
+ bsz = input_ids_shape[0]
+ tgt_len = input_ids_shape[1]
+ mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE
+ mask_cond = tf.range(shape_list(mask)[-1])
+
+ mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask)
+
+ if past_key_values_length > 0:
+ mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
+
+ return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
+def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ src_len = shape_list(mask)[1]
+ tgt_len = tgt_len if tgt_len is not None else src_len
+ one_cst = tf.constant(1.0)
+ mask = tf.cast(mask, dtype=one_cst.dtype)
+ expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
+
+ return (one_cst - expanded_mask) * LARGE_NEGATIVE
+
+
+# Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall
+class TFBlenderbotSmallLearnedPositionalEmbedding(tf.keras.layers.Embedding):
+ """
+ This module learns positional embeddings up to a fixed maximum size.
+ """
+
+ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
+ super().__init__(num_embeddings, embedding_dim, **kwargs)
+
+ def call(
+ self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None
+ ):
+ """Input is expected to be of size [bsz x seqlen]."""
+ if position_ids is None:
+ seq_len = input_shape[1]
+ position_ids = tf.range(seq_len, delta=1, name="range")
+ position_ids += past_key_values_length
+
+ return super().call(tf.cast(position_ids, dtype=tf.int32))
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall
+class TFBlenderbotSmallAttention(tf.keras.layers.Layer):
+ """Multi-headed attention from "Attention Is All You Need"""
+
+ def __init__(
+ self,
+ embed_dim: int,
+ num_heads: int,
+ dropout: float = 0.0,
+ is_decoder: bool = False,
+ bias: bool = True,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+ self.embed_dim = embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = tf.keras.layers.Dropout(dropout)
+ self.head_dim = embed_dim // num_heads
+ if (self.head_dim * num_heads) != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
+ f" and `num_heads`: {num_heads})."
+ )
+ self.scaling = self.head_dim**-0.5
+ self.is_decoder = is_decoder
+
+ self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
+ self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
+ self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
+ self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
+
+ def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
+ return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ key_value_states: tf.Tensor | None = None,
+ past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
+ attention_mask: tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor | None]:
+ """Input shape: Batch x Time x Channel"""
+
+ # if key_value_states are provided this layer is used as a cross-attention layer
+ # for the decoder
+ is_cross_attention = key_value_states is not None
+ bsz, tgt_len, embed_dim = shape_list(hidden_states)
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scaling
+ # get key, value proj
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_states = past_key_value[0]
+ value_states = past_key_value[1]
+ elif is_cross_attention:
+ # cross_attentions
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
+ elif past_key_value is not None:
+ # reuse k, v, self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+ key_states = tf.concat([past_key_value[0], key_states], axis=2)
+ value_states = tf.concat([past_key_value[1], value_states], axis=2)
+ else:
+ # self_attention
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ if self.is_decoder:
+ # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_states, value_states)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
+ key_states = tf.reshape(key_states, proj_shape)
+ value_states = tf.reshape(value_states, proj_shape)
+
+ src_len = shape_list(key_states)[1]
+ attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_weights),
+ [bsz * self.num_heads, tgt_len, src_len],
+ message=(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {shape_list(attn_weights)}"
+ ),
+ )
+
+ if attention_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attention_mask),
+ [bsz, 1, tgt_len, src_len],
+ message=(
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
+ f" {shape_list(attention_mask)}"
+ ),
+ )
+
+ attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
+ attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_weights = stable_softmax(attn_weights, axis=-1)
+
+ if layer_head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(layer_head_mask),
+ [self.num_heads],
+ message=(
+ f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
+ f" {shape_list(layer_head_mask)}"
+ ),
+ )
+
+ attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
+ attn_weights, (bsz, self.num_heads, tgt_len, src_len)
+ )
+ attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
+
+ attn_probs = self.dropout(attn_weights, training=training)
+ attn_output = tf.matmul(attn_probs, value_states)
+
+ tf.debugging.assert_equal(
+ shape_list(attn_output),
+ [bsz * self.num_heads, tgt_len, self.head_dim],
+ message=(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {shape_list(attn_output)}"
+ ),
+ )
+
+ attn_output = tf.transpose(
+ tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
+ )
+ attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
+
+ attn_output = self.out_proj(attn_output)
+ attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
+
+ return attn_output, attn_weights, past_key_value
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "k_proj", None) is not None:
+ with tf.name_scope(self.k_proj.name):
+ self.k_proj.build([None, None, self.embed_dim])
+ if getattr(self, "q_proj", None) is not None:
+ with tf.name_scope(self.q_proj.name):
+ self.q_proj.build([None, None, self.embed_dim])
+ if getattr(self, "v_proj", None) is not None:
+ with tf.name_scope(self.v_proj.name):
+ self.v_proj.build([None, None, self.embed_dim])
+ if getattr(self, "out_proj", None) is not None:
+ with tf.name_scope(self.out_proj.name):
+ self.out_proj.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall
+class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer):
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFBlenderbotSmallAttention(
+ self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn"
+ )
+ self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
+ self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1")
+ self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: np.ndarray | tf.Tensor | None,
+ layer_head_mask: tf.Tensor | None,
+ training: Optional[bool] = False,
+ ) -> tf.Tensor:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`tf.Tensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ `(encoder_attention_heads,)`
+ """
+ residual = hidden_states
+ hidden_states, self_attn_weights, _ = self.self_attn(
+ hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask
+ )
+
+ tf.debugging.assert_equal(
+ shape_list(hidden_states),
+ shape_list(residual),
+ message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}",
+ )
+
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return hidden_states, self_attn_weights
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.encoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall
+class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer):
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
+ super().__init__(**kwargs)
+ self.embed_dim = config.d_model
+ self.self_attn = TFBlenderbotSmallAttention(
+ embed_dim=self.embed_dim,
+ num_heads=config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="self_attn",
+ is_decoder=True,
+ )
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
+ self.activation_fn = get_tf_activation(config.activation_function)
+ self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout)
+
+ self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
+ self.encoder_attn = TFBlenderbotSmallAttention(
+ self.embed_dim,
+ config.decoder_attention_heads,
+ dropout=config.attention_dropout,
+ name="encoder_attn",
+ is_decoder=True,
+ )
+ self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm")
+ self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1")
+ self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2")
+ self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
+ self.config = config
+
+ def call(
+ self,
+ hidden_states: tf.Tensor,
+ attention_mask: np.ndarray | tf.Tensor | None = None,
+ encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
+ encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
+ layer_head_mask: tf.Tensor | None = None,
+ cross_attn_layer_head_mask: tf.Tensor | None = None,
+ past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
+ training: Optional[bool] = False,
+ ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
+ """
+ Args:
+ hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ attention_mask (`tf.Tensor`): attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ encoder_hidden_states (`tf.Tensor`):
+ cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
+ encoder_attention_mask (`tf.Tensor`): encoder attention mask of size
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
+ layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size
+ `(decoder_attention_heads,)`
+ cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module.
+ `(decoder_attention_heads,)`
+ past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states
+ """
+ residual = hidden_states
+
+ # Self Attention
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
+ hidden_states=hidden_states,
+ past_key_value=self_attn_past_key_value,
+ attention_mask=attention_mask,
+ layer_head_mask=layer_head_mask,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.self_attn_layer_norm(hidden_states)
+
+ # Cross-Attention Block
+ cross_attn_present_key_value = None
+ cross_attn_weights = None
+ if encoder_hidden_states is not None:
+ residual = hidden_states
+
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
+ hidden_states=hidden_states,
+ key_value_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ layer_head_mask=cross_attn_layer_head_mask,
+ past_key_value=cross_attn_past_key_value,
+ )
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
+
+ # add cross-attn to positions 3,4 of present_key_value tuple
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ # Fully Connected
+ residual = hidden_states
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
+ hidden_states = self.activation_dropout(hidden_states, training=training)
+ hidden_states = self.fc2(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+ hidden_states = residual + hidden_states
+ hidden_states = self.final_layer_norm(hidden_states)
+
+ return (
+ hidden_states,
+ self_attn_weights,
+ cross_attn_weights,
+ present_key_value,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "self_attn", None) is not None:
+ with tf.name_scope(self.self_attn.name):
+ self.self_attn.build(None)
+ if getattr(self, "self_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.self_attn_layer_norm.name):
+ self.self_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "encoder_attn", None) is not None:
+ with tf.name_scope(self.encoder_attn.name):
+ self.encoder_attn.build(None)
+ if getattr(self, "encoder_attn_layer_norm", None) is not None:
+ with tf.name_scope(self.encoder_attn_layer_norm.name):
+ self.encoder_attn_layer_norm.build([None, None, self.embed_dim])
+ if getattr(self, "fc1", None) is not None:
+ with tf.name_scope(self.fc1.name):
+ self.fc1.build([None, None, self.embed_dim])
+ if getattr(self, "fc2", None) is not None:
+ with tf.name_scope(self.fc2.name):
+ self.fc2.build([None, None, self.config.decoder_ffn_dim])
+ if getattr(self, "final_layer_norm", None) is not None:
+ with tf.name_scope(self.final_layer_norm.name):
+ self.final_layer_norm.build([None, None, self.embed_dim])
+
+
+class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel):
+ config_class = BlenderbotSmallConfig
+ base_model_prefix = "model"
+
+
+BLENDERBOT_SMALL_START_DOCSTRING = r"""
+ This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
+ etc.)
+
+ This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
+ as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
+ behavior.
+
+
+
+ TensorFlow models and layers in `transformers` accept two formats as input:
+
+ - having all inputs as keyword arguments (like PyTorch models), or
+ - having all inputs as a list, tuple or dict in the first positional argument.
+
+ The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
+ and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
+ pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
+ format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
+ the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
+ positional argument:
+
+ - a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
+ - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
+ `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
+ - a dictionary with one or several input Tensors associated to the input names given in the docstring:
+ `model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
+
+ Note that when creating models and layers with
+ [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
+ about any of this, as you can just pass inputs like you would to any other Python function!
+
+
+
+ Args:
+ config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+BLENDERBOT_SMALL_GENERATION_EXAMPLE = r"""
+ Conversation example::
+
+ ```py
+ >>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration
+
+ >>> mname = "facebook/blenderbot_small-90M"
+ >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname)
+ >>> tokenizer = AutoTokenizer.from_pretrained(mname)
+
+ >>> UTTERANCE = "My friends are cool but they eat too many carbs."
+ >>> print("Human: ", UTTERANCE)
+ >>> inputs = tokenizer([UTTERANCE], return_tensors="tf")
+
+ >>> reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0])
+ what kind of carbs do they eat? i don't know much about carbs.
+
+ >>> REPLY = "I'm not sure"
+ >>> print("Human: ", REPLY)
+ >>> NEXT_UTTERANCE = (
+ ... "My friends are cool but they eat too many carbs. "
+ ... "what kind of carbs do they eat? i don't know much about carbs. "
+ ... "I'm not sure."
+ ... )
+
+ >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf")
+ >>> inputs.pop("token_type_ids")
+ >>> next_reply_ids = model.generate(**inputs)
+ >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0])
+ ```
+"""
+
+BLENDERBOT_SMALL_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `({0})`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ Indices of decoder input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are decoder input IDs?](../glossary#decoder-input-ids)
+
+ BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If
+ `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
+ `past_key_values`).
+ decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*):
+ will be made by default and ignore pad tokens. It is not recommended to set this for most use cases.
+ decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ encoder_outputs (`tf.FloatTensor`, *optional*):
+ hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
+ of shape `(batch_size, sequence_length, hidden_size)` is a sequence of
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
+ contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`). Set to `False` during training, `True` during generation
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
+ config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
+ used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
+ eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+"""
+
+
+@keras_serializable
+class TFBlenderbotSmallEncoder(tf.keras.layers.Layer):
+ config_class = BlenderbotSmallConfig
+ """
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
+ [`TFBlenderbotSmallEncoderLayer`].
+
+ Args:
+ config: BlenderbotSmallConfig
+ """
+
+ def __init__(
+ self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
+ ):
+ super().__init__(**kwargs)
+ self.config = config
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
+ self.layerdrop = config.encoder_layerdrop
+ self.padding_idx = config.pad_token_id
+ self.max_source_positions = config.max_position_embeddings
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+
+ self.embed_tokens = embed_tokens
+ self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)]
+ self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
+ self.embed_dim = config.d_model
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ inputs_embeds=None,
+ attention_mask=None,
+ head_mask=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ """
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ embed_pos = self.embed_positions(input_shape)
+ hidden_states = inputs_embeds + embed_pos
+ hidden_states = self.layernorm_embedding(hidden_states)
+ hidden_states = self.dropout(hidden_states, training=training)
+
+ # check attention mask and invert
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask)
+ else:
+ attention_mask = None
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ # check if head_mask has a correct number of layers specified if desired
+ if head_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(head_mask)[0],
+ len(self.layers),
+ message=(
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(head_mask)[0]}."
+ ),
+ )
+
+ # encoder layers
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ dropout_probability = random.uniform(0, 1)
+ if training and (dropout_probability < self.layerdrop): # skip the layer
+ continue
+
+ hidden_states, attn = encoder_layer(
+ hidden_states,
+ attention_mask,
+ head_mask[idx] if head_mask is not None else None,
+ )
+
+ if output_attentions:
+ all_attentions += (attn,)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return TFBaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layernorm_embedding", None) is not None:
+ with tf.name_scope(self.layernorm_embedding.name):
+ self.layernorm_embedding.build([None, None, self.embed_dim])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFBlenderbotSmallDecoder(tf.keras.layers.Layer):
+ config_class = BlenderbotSmallConfig
+ """
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`]
+
+ Args:
+ config: BlenderbotSmallConfig
+ embed_tokens: output embedding
+ """
+
+ def __init__(
+ self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs
+ ):
+ super().__init__(**kwargs)
+ self.config = config
+ self.padding_idx = config.pad_token_id
+ self.embed_tokens = embed_tokens
+ self.layerdrop = config.decoder_layerdrop
+ self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding(
+ config.max_position_embeddings,
+ config.d_model,
+ name="embed_positions",
+ )
+ self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0
+ self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)]
+ self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding")
+
+ self.dropout = tf.keras.layers.Dropout(config.dropout)
+
+ def get_embed_tokens(self):
+ return self.embed_tokens
+
+ def set_embed_tokens(self, embed_tokens):
+ self.embed_tokens = embed_tokens
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ inputs_embeds=None,
+ attention_mask=None,
+ position_ids=None,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ head_mask=None,
+ cross_attn_head_mask=None,
+ past_key_values=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ ):
+ r"""
+ Args:
+ input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
+ provide it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
+ range `[0, config.max_position_embeddings - 1]`.
+ encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
+ of the decoder.
+ encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
+ Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
+ selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
+ Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
+ decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
+ that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
+ all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value
+ in the config will be used instead.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail. This argument can be used only in eager mode, in graph mode the value in the config
+ will be used instead.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used
+ in eager mode, in graph mode the value will always be set to True.
+ training (`bool`, *optional*, defaults to `False`):
+ Whether or not to use the model in training mode (some modules like dropout modules have different
+ behaviors between training and evaluation).
+ """
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
+ elif input_ids is not None:
+ input_shape = shape_list(input_ids)
+ elif inputs_embeds is not None:
+ input_shape = shape_list(inputs_embeds)[:-1]
+ else:
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
+
+ past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
+
+ if inputs_embeds is None:
+ check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim)
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
+
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ if input_shape[-1] > 1:
+ combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length)
+ else:
+ combined_attention_mask = _expand_mask(
+ tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1]
+ )
+
+ if attention_mask is not None:
+ combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1])
+
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1])
+
+ # embed positions
+ if position_ids is None:
+ positions = self.embed_positions(input_shape, past_key_values_length)
+ else:
+ positions = self.embed_positions(input_shape, position_ids=position_ids)
+
+ hidden_states = self.layernorm_embedding(inputs_embeds) + positions
+ hidden_states = self.dropout(hidden_states, training=training)
+
+ # decoder layers
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attns = () if output_attentions else None
+ all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None
+ present_key_values = () if use_cache else None
+
+ # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
+ for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]:
+ if attn_mask is not None:
+ tf.debugging.assert_equal(
+ shape_list(attn_mask)[0],
+ len(self.layers),
+ message=(
+ f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
+ f" {shape_list(attn_mask)[0]}."
+ ),
+ )
+
+ for idx, decoder_layer in enumerate(self.layers):
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+ dropout_probability = random.uniform(0, 1)
+
+ if training and (dropout_probability < self.layerdrop):
+ continue
+
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
+
+ hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer(
+ hidden_states,
+ attention_mask=combined_attention_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_attention_mask,
+ layer_head_mask=head_mask[idx] if head_mask is not None else None,
+ cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
+ past_key_value=past_key_value,
+ )
+
+ if use_cache:
+ present_key_values += (present_key_value,)
+
+ if output_attentions:
+ all_self_attns += (layer_self_attn,)
+
+ if encoder_hidden_states is not None:
+ all_cross_attns += (layer_cross_attn,)
+
+ if output_hidden_states:
+ all_hidden_states += (hidden_states,)
+
+ if not return_dict:
+ return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns
+ else:
+ return TFBaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=present_key_values,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attns,
+ cross_attentions=all_cross_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "embed_positions", None) is not None:
+ with tf.name_scope(self.embed_positions.name):
+ self.embed_positions.build(None)
+ if getattr(self, "layernorm_embedding", None) is not None:
+ with tf.name_scope(self.layernorm_embedding.name):
+ self.layernorm_embedding.build([None, None, self.config.d_model])
+ if getattr(self, "layers", None) is not None:
+ for layer in self.layers:
+ with tf.name_scope(layer.name):
+ layer.build(None)
+
+
+@keras_serializable
+class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer):
+ config_class = BlenderbotSmallConfig
+
+ def __init__(self, config: BlenderbotSmallConfig, **kwargs):
+ super().__init__(**kwargs)
+
+ self.config = config
+ self.shared = tf.keras.layers.Embedding(
+ input_dim=config.vocab_size,
+ output_dim=config.d_model,
+ embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std),
+ name="model.shared",
+ )
+ # Additional attribute to specify the expected name scope of the layer (for loading/storing weights)
+ self.shared.load_weight_prefix = "model.shared"
+
+ self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder")
+ self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder")
+
+ def get_input_embeddings(self):
+ return self.shared
+
+ def set_input_embeddings(self, new_embeddings):
+ self.shared = new_embeddings
+ self.encoder.embed_tokens = self.shared
+ self.decoder.embed_tokens = self.shared
+
+ @unpack_inputs
+ def call(
+ self,
+ input_ids=None,
+ attention_mask=None,
+ decoder_input_ids=None,
+ decoder_attention_mask=None,
+ decoder_position_ids=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values=None,
+ inputs_embeds=None,
+ decoder_inputs_embeds=None,
+ use_cache=None,
+ output_attentions=None,
+ output_hidden_states=None,
+ return_dict=None,
+ training=False,
+ **kwargs,
+ ):
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+
+ if encoder_outputs is None:
+ encoder_outputs = self.encoder(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ head_mask=head_mask,
+ inputs_embeds=inputs_embeds,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True
+ elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput):
+ encoder_outputs = TFBaseModelOutput(
+ last_hidden_state=encoder_outputs[0],
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
+ )
+ # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False
+ elif not return_dict and not isinstance(encoder_outputs, tuple):
+ encoder_outputs = encoder_outputs.to_tuple()
+
+ decoder_outputs = self.decoder(
+ decoder_input_ids,
+ attention_mask=decoder_attention_mask,
+ position_ids=decoder_position_ids,
+ encoder_hidden_states=encoder_outputs[0],
+ encoder_attention_mask=attention_mask,
+ head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ past_key_values=past_key_values,
+ inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ if not return_dict:
+ return decoder_outputs + encoder_outputs
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=decoder_outputs.last_hidden_state,
+ past_key_values=decoder_outputs.past_key_values,
+ decoder_hidden_states=decoder_outputs.hidden_states,
+ decoder_attentions=decoder_outputs.attentions,
+ cross_attentions=decoder_outputs.cross_attentions,
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
+ encoder_hidden_states=encoder_outputs.hidden_states,
+ encoder_attentions=encoder_outputs.attentions,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ # The shared/tied weights expect to be in the model base namespace
+ # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than
+ # the current one.
+ with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"):
+ self.shared.build(None)
+ if getattr(self, "encoder", None) is not None:
+ with tf.name_scope(self.encoder.name):
+ self.encoder.build(None)
+ if getattr(self, "decoder", None) is not None:
+ with tf.name_scope(self.decoder.name):
+ self.decoder.build(None)
+
+
+@add_start_docstrings(
+ "The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
+ def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+
+ self.model = TFBlenderbotSmallMainLayer(config, name="model")
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=TFSeq2SeqModelOutput,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ decoder_input_ids: tf.Tensor | None = None,
+ decoder_attention_mask: tf.Tensor | None = None,
+ decoder_position_ids: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ decoder_head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None,
+ past_key_values: List[tf.Tensor] | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ decoder_inputs_embeds: tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ training: Optional[bool] = False,
+ **kwargs,
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]:
+ outputs = self.model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+
+ return outputs
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqModelOutput(
+ last_hidden_state=output.last_hidden_state,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+
+
+# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer
+class BiasLayer(tf.keras.layers.Layer):
+ """
+ Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis,
+ so all weights have to be registered in a layer.
+ """
+
+ def __init__(self, shape, initializer, trainable, name, **kwargs):
+ super().__init__(name=name, **kwargs)
+ # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of
+ # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see:
+ # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214
+ self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable)
+
+ def call(self, x):
+ return x + self.bias
+
+
+@add_start_docstrings(
+ "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
+ BLENDERBOT_SMALL_START_DOCSTRING,
+)
+class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss):
+ _keys_to_ignore_on_load_unexpected = [
+ r"model.encoder.embed_tokens.weight",
+ r"model.decoder.embed_tokens.weight",
+ ]
+
+ def __init__(self, config, *inputs, **kwargs):
+ super().__init__(config, *inputs, **kwargs)
+ self.model = TFBlenderbotSmallMainLayer(config, name="model")
+ self.use_cache = config.use_cache
+ # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency.
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False
+ )
+
+ def get_decoder(self):
+ return self.model.decoder
+
+ def get_encoder(self):
+ return self.model.encoder
+
+ def get_output_embeddings(self):
+ return self.get_input_embeddings()
+
+ def set_output_embeddings(self, value):
+ self.set_input_embeddings(value)
+
+ def get_bias(self):
+ return {"final_logits_bias": self.bias_layer.bias}
+
+ def set_bias(self, value):
+ # Replaces the existing layers containing bias for correct (de)serialization.
+ vocab_size = value["final_logits_bias"].shape[-1]
+ self.bias_layer = BiasLayer(
+ name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False
+ )
+ self.bias_layer.bias.assign(value["final_logits_bias"])
+
+ @unpack_inputs
+ @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
+ @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE)
+ def call(
+ self,
+ input_ids: tf.Tensor | None = None,
+ attention_mask: tf.Tensor | None = None,
+ decoder_input_ids: tf.Tensor | None = None,
+ decoder_attention_mask: tf.Tensor | None = None,
+ decoder_position_ids: tf.Tensor | None = None,
+ head_mask: tf.Tensor | None = None,
+ decoder_head_mask: tf.Tensor | None = None,
+ cross_attn_head_mask: tf.Tensor | None = None,
+ encoder_outputs: Optional[TFBaseModelOutput] = None,
+ past_key_values: List[tf.Tensor] | None = None,
+ inputs_embeds: tf.Tensor | None = None,
+ decoder_inputs_embeds: tf.Tensor | None = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ labels: tf.Tensor | None = None,
+ training: Optional[bool] = False,
+ ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]:
+ r"""
+ labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
+
+ Returns:
+
+ """
+
+ if labels is not None:
+ labels = tf.where(
+ labels == self.config.pad_token_id,
+ tf.cast(tf.fill(shape_list(labels), -100), labels.dtype),
+ labels,
+ )
+ use_cache = False
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
+ decoder_input_ids = shift_tokens_right(
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
+ )
+
+ outputs = self.model(
+ input_ids,
+ attention_mask=attention_mask,
+ decoder_input_ids=decoder_input_ids,
+ decoder_attention_mask=decoder_attention_mask,
+ decoder_position_ids=decoder_position_ids,
+ head_mask=head_mask,
+ decoder_head_mask=decoder_head_mask,
+ cross_attn_head_mask=cross_attn_head_mask,
+ encoder_outputs=encoder_outputs,
+ past_key_values=past_key_values,
+ inputs_embeds=inputs_embeds,
+ decoder_inputs_embeds=decoder_inputs_embeds,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ training=training,
+ )
+ lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True)
+ lm_logits = self.bias_layer(lm_logits)
+ masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits)
+
+ if not return_dict:
+ output = (lm_logits,) + outputs[1:]
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
+ return TFSeq2SeqLMOutput(
+ loss=masked_lm_loss,
+ logits=lm_logits,
+ past_key_values=outputs.past_key_values, # index 1 of d outputs
+ decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs
+ decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs
+ cross_attentions=outputs.cross_attentions, # index 4 of d outputs
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs
+ encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out
+ encoder_attentions=outputs.encoder_attentions, # 2 of e out
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output
+ def serving_output(self, output):
+ pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
+ dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None
+ dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None
+ cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None
+ enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None
+ enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None
+
+ return TFSeq2SeqLMOutput(
+ logits=output.logits,
+ past_key_values=pkv,
+ decoder_hidden_states=dec_hs,
+ decoder_attentions=dec_attns,
+ cross_attentions=cross_attns,
+ encoder_last_hidden_state=output.encoder_last_hidden_state,
+ encoder_hidden_states=enc_hs,
+ encoder_attentions=enc_attns,
+ )
+
+ # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation
+ def prepare_inputs_for_generation(
+ self,
+ decoder_input_ids,
+ past_key_values=None,
+ attention_mask=None,
+ decoder_attention_mask=None,
+ head_mask=None,
+ decoder_head_mask=None,
+ cross_attn_head_mask=None,
+ use_cache=None,
+ encoder_outputs=None,
+ **kwargs,
+ ):
+ # cut decoder_input_ids if past_key_values is used
+ if past_key_values is not None:
+ decoder_input_ids = decoder_input_ids[:, -1:]
+
+ if decoder_attention_mask is not None: # xla
+ decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:]
+ elif past_key_values is not None: # no xla + past_key_values
+ decoder_position_ids = past_key_values[0][0].shape[2]
+ else: # no xla + no past_key_values
+ decoder_position_ids = tf.range(decoder_input_ids.shape[1])
+
+ return {
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
+ "encoder_outputs": encoder_outputs,
+ "past_key_values": past_key_values,
+ "decoder_input_ids": decoder_input_ids,
+ "attention_mask": attention_mask,
+ "decoder_attention_mask": decoder_attention_mask,
+ "decoder_position_ids": decoder_position_ids,
+ "head_mask": head_mask,
+ "decoder_head_mask": decoder_head_mask,
+ "cross_attn_head_mask": cross_attn_head_mask,
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
+ }
+
+ def build(self, input_shape=None):
+ if self.built:
+ return
+ self.built = True
+ if getattr(self, "model", None) is not None:
+ with tf.name_scope(self.model.name):
+ self.model.build(None)
+ if getattr(self, "bias_layer", None) is not None:
+ with tf.name_scope(self.bias_layer.name):
+ self.bias_layer.build(None)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py
new file mode 100644
index 0000000000000000000000000000000000000000..240495d73894efc2bd3911d28d30199262981a2b
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small.py
@@ -0,0 +1,258 @@
+# coding=utf-8
+# Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Tokenization class for BlenderbotSmall."""
+
+import json
+import os
+from typing import Dict, List, Optional, Tuple
+
+import regex as re
+
+from ...tokenization_utils import PreTrainedTokenizer
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+ "tokenizer_config_file": "tokenizer_config.json",
+}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
+ },
+ "merges_file": {
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
+ },
+ "tokenizer_config_file": {
+ "facebook/blenderbot_small-90M": (
+ "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
+ )
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512}
+
+
+def get_pairs(word):
+ """
+ Return set of symbol pairs in a word.
+
+ Word is represented as tuple of symbols (symbols being variable-length strings).
+ """
+ pairs = set()
+ prev_char = word[0]
+ for char in word[1:]:
+ pairs.add((prev_char, char))
+ prev_char = char
+
+ pairs = set(pairs)
+ return pairs
+
+
+class BlenderbotSmallTokenizer(PreTrainedTokenizer):
+ """
+ Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding)
+
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
+ the superclass for more information regarding methods.
+
+ Args:
+ vocab_file (`str`):
+ File containing the vocabulary.
+ merges_file (`str`):
+ Path to the merges file.
+ bos_token (`str`, *optional*, defaults to `"__start__"`):
+ The beginning of sentence token.
+ eos_token (`str`, *optional*, defaults to `"__end__"`):
+ The end of sentence token.
+ unk_token (`str`, *optional*, defaults to `"__unk__"`):
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
+ token instead.
+ pad_token (`str`, *optional*, defaults to `"__null__"`):
+ The token used for padding, for example when batching sequences of different lengths.
+ kwargs (*optional*):
+ Additional keyword arguments passed along to [`PreTrainedTokenizer`]
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ model_input_names = ["input_ids", "attention_mask"]
+
+ def __init__(
+ self,
+ vocab_file,
+ merges_file,
+ bos_token="__start__",
+ eos_token="__end__",
+ unk_token="__unk__",
+ pad_token="__null__",
+ **kwargs,
+ ):
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
+ self.encoder = json.load(vocab_handle)
+ self.decoder = {v: k for k, v in self.encoder.items()}
+ with open(merges_file, encoding="utf-8") as merges_handle:
+ merges = merges_handle.read().split("\n")[1:-1]
+ merges = [tuple(merge.split()) for merge in merges]
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
+ self.cache = {}
+ super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs)
+
+ @property
+ def vocab_size(self) -> int:
+ return len(self.encoder)
+
+ def get_vocab(self) -> Dict:
+ return dict(self.encoder, **self.added_tokens_encoder)
+
+ def bpe(self, token: str) -> str:
+ if token in self.cache:
+ return self.cache[token]
+ token = re.sub("([.,!?()])", r" \1", token)
+ token = re.sub("(')", r" \1 ", token)
+ token = re.sub(r"\s{2,}", " ", token)
+ if "\n" in token:
+ token = token.replace("\n", " __newln__")
+
+ tokens = token.split(" ")
+ words = []
+ for token in tokens:
+ if not len(token):
+ continue
+
+ token = token.lower()
+ word = tuple(token)
+ word = tuple(list(word[:-1]) + [word[-1] + ""])
+ pairs = get_pairs(word)
+
+ if not pairs:
+ words.append(token)
+ continue
+
+ while True:
+ bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
+ if bigram not in self.bpe_ranks:
+ break
+ first, second = bigram
+ new_word = []
+ i = 0
+
+ while i < len(word):
+ try:
+ j = word.index(first, i)
+ new_word.extend(word[i:j])
+ i = j
+ except ValueError:
+ new_word.extend(word[i:])
+ break
+
+ if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
+ new_word.append(first + second)
+ i += 2
+ else:
+ new_word.append(word[i])
+ i += 1
+ new_word = tuple(new_word)
+ word = new_word
+ if len(word) == 1:
+ break
+ else:
+ pairs = get_pairs(word)
+ word = "@@ ".join(word)
+ word = word[:-4]
+
+ self.cache[token] = word
+ words.append(word)
+ return " ".join(words)
+
+ def _tokenize(self, text: str) -> List[str]:
+ """Split a string into tokens using BPE."""
+ split_tokens = []
+
+ words = re.findall(r"\S+\n?", text)
+
+ for token in words:
+ split_tokens.extend(list(self.bpe(token).split(" ")))
+ return split_tokens
+
+ def _convert_token_to_id(self, token: str) -> int:
+ """Converts a token to an id using the vocab."""
+ token = token.lower()
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
+
+ def _convert_id_to_token(self, index: int) -> str:
+ """Converts an index (integer) in a token (str) using the vocab."""
+ return self.decoder.get(index, self.unk_token)
+
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
+ """Converts a sequence of tokens in a single string."""
+ out_string = " ".join(tokens).replace("@@ ", "").strip()
+ return out_string
+
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
+ if not os.path.isdir(save_directory):
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
+ return
+ vocab_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
+ )
+ merge_file = os.path.join(
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
+ )
+
+ with open(vocab_file, "w", encoding="utf-8") as f:
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
+
+ index = 0
+ with open(merge_file, "w", encoding="utf-8") as writer:
+ writer.write("#version: 0.2\n")
+ for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
+ if index != token_index:
+ logger.warning(
+ f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
+ " Please check that the tokenizer is not corrupted!"
+ )
+ index = token_index
+ writer.write(" ".join(bpe_tokens) + "\n")
+ index += 1
+
+ return vocab_file, merge_file
+
+ @property
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
+ def default_chat_template(self):
+ """
+ A very simple chat template that just adds whitespace between messages.
+ """
+ logger.warning_once(
+ "\nNo chat template is defined for this tokenizer - using the default template "
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
+ )
+ return (
+ "{% for message in messages %}"
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
+ "{{ message['content'] }}"
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
+ "{% endfor %}"
+ "{{ eos_token }}"
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py
new file mode 100644
index 0000000000000000000000000000000000000000..4bf0017b5f2a29753bfce8414b813c270e82432a
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py
@@ -0,0 +1,140 @@
+# coding=utf-8
+# Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Fast tokenization class for BlenderbotSmall."""
+from typing import List, Optional
+
+from tokenizers import ByteLevelBPETokenizer
+
+from ...tokenization_utils_fast import PreTrainedTokenizerFast
+from ...utils import logging
+from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
+
+
+logger = logging.get_logger(__name__)
+
+VOCAB_FILES_NAMES = {
+ "vocab_file": "vocab.json",
+ "merges_file": "merges.txt",
+ "tokenizer_config_file": "tokenizer_config.json",
+}
+
+PRETRAINED_VOCAB_FILES_MAP = {
+ "vocab_file": {
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
+ },
+ "merges_file": {
+ "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
+ },
+ "tokenizer_config_file": {
+ "facebook/blenderbot_small-90M": (
+ "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
+ )
+ },
+}
+
+PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
+ "facebook/blenderbot_small-90M": 512,
+}
+
+
+class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast):
+ """
+ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library).
+
+ Args:
+ vocab_file (`str`):
+ Path to the vocabulary file.
+ """
+
+ vocab_files_names = VOCAB_FILES_NAMES
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
+ slow_tokenizer_class = BlenderbotSmallTokenizer
+
+ def __init__(
+ self,
+ vocab_file=None,
+ merges_file=None,
+ unk_token="<|endoftext|>",
+ bos_token="<|endoftext|>",
+ eos_token="<|endoftext|>",
+ add_prefix_space=False,
+ trim_offsets=True,
+ **kwargs,
+ ):
+ super().__init__(
+ ByteLevelBPETokenizer(
+ vocab=vocab_file,
+ merges=merges_file,
+ add_prefix_space=add_prefix_space,
+ trim_offsets=trim_offsets,
+ ),
+ bos_token=bos_token,
+ eos_token=eos_token,
+ unk_token=unk_token,
+ **kwargs,
+ )
+ self.add_prefix_space = add_prefix_space
+
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
+ output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
+ if token_ids_1 is None:
+ return output
+
+ return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
+
+ def create_token_type_ids_from_sequences(
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
+ ) -> List[int]:
+ """
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall
+ does not make use of token type ids, therefore a list of zeros is returned.
+
+ Args:
+ token_ids_0 (`List[int]`):
+ List of IDs.
+ token_ids_1 (`List[int]`, *optional*):
+ Optional second list of IDs for sequence pairs.
+
+ Returns:
+ `List[int]`: List of zeros.
+ """
+ sep = [self.sep_token_id]
+ cls = [self.cls_token_id]
+
+ if token_ids_1 is None:
+ return len(cls + token_ids_0 + sep) * [0]
+ return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
+
+ @property
+ # Copied from transformers.models.blenderbot.tokenization_blenderbot.BlenderbotTokenizer.default_chat_template
+ def default_chat_template(self):
+ """
+ A very simple chat template that just adds whitespace between messages.
+ """
+ logger.warning_once(
+ "\nNo chat template is defined for this tokenizer - using the default template "
+ f"for the {self.__class__.__name__} class. If the default is not appropriate for "
+ "your model, please set `tokenizer.chat_template` to an appropriate template. "
+ "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
+ )
+ return (
+ "{% for message in messages %}"
+ "{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}"
+ "{{ message['content'] }}"
+ "{% if not loop.last %}{{ ' ' }}{% endif %}"
+ "{% endfor %}"
+ "{{ eos_token }}"
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..efc89807427382814208ba49d052c5d1be990f63
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/__init__.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..119842f7bf157c96c6d680860eb40e98bf734240
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/__pycache__/tokenization_byt5.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
new file mode 100644
index 0000000000000000000000000000000000000000..7d9a20f3b0b395ffd31a2e8445d94aedb6036a6e
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/byt5/convert_byt5_original_tf_checkpoint_to_pytorch.py
@@ -0,0 +1,60 @@
+# coding=utf-8
+# Copyright 2018 The T5 authors and HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert T5 checkpoint."""
+
+
+import argparse
+
+from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5
+from transformers.utils import logging
+
+
+logging.set_verbosity_info()
+
+
+def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
+ # Initialise PyTorch model
+ config = T5Config.from_json_file(config_file)
+ print(f"Building PyTorch model from configuration: {config}")
+ model = T5ForConditionalGeneration(config)
+
+ # Load weights from tf checkpoint
+ load_tf_weights_in_t5(model, config, tf_checkpoint_path)
+
+ # Save pytorch-model
+ print(f"Save PyTorch model to {pytorch_dump_path}")
+ model.save_pretrained(pytorch_dump_path)
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
+ )
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ type=str,
+ required=True,
+ help=(
+ "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
+ ),
+ )
+ parser.add_argument(
+ "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
+ )
+ args = parser.parse_args()
+ convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbc0a57e8324f3025c96fad65f18fc59de6fa56c
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__init__.py
@@ -0,0 +1,88 @@
+# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
+
+
+_import_structure = {
+ "configuration_chinese_clip": [
+ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
+ "ChineseCLIPConfig",
+ "ChineseCLIPOnnxConfig",
+ "ChineseCLIPTextConfig",
+ "ChineseCLIPVisionConfig",
+ ],
+ "processing_chinese_clip": ["ChineseCLIPProcessor"],
+}
+
+try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["feature_extraction_chinese_clip"] = ["ChineseCLIPFeatureExtractor"]
+ _import_structure["image_processing_chinese_clip"] = ["ChineseCLIPImageProcessor"]
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_chinese_clip"] = [
+ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "ChineseCLIPModel",
+ "ChineseCLIPPreTrainedModel",
+ "ChineseCLIPTextModel",
+ "ChineseCLIPVisionModel",
+ ]
+
+if TYPE_CHECKING:
+ from .configuration_chinese_clip import (
+ CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
+ ChineseCLIPConfig,
+ ChineseCLIPOnnxConfig,
+ ChineseCLIPTextConfig,
+ ChineseCLIPVisionConfig,
+ )
+ from .processing_chinese_clip import ChineseCLIPProcessor
+
+ try:
+ if not is_vision_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_chinese_clip import (
+ CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
+ ChineseCLIPModel,
+ ChineseCLIPPreTrainedModel,
+ ChineseCLIPTextModel,
+ ChineseCLIPVisionModel,
+ )
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bdd6bb4642d44f72f8f248ff42d369c5a0ca2070
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/configuration_chinese_clip.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..9d7a4200edbd94dbc5c2edf7cdcbc788ac4fb1b2
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/convert_chinese_clip_original_pytorch_to_hf.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..827d49545de7af4b36b50a338782249220cbeab7
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/feature_extraction_chinese_clip.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..a26b261ed05733e41c56b802195b1625e268775c
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/image_processing_chinese_clip.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d62a58eaff732430f722a23116530d97bcc80295
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/modeling_chinese_clip.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..ccfe28abea63d21c803be73dafe68cbbc5fd85f5
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/__pycache__/processing_chinese_clip.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..399b4e6b0ec1606dde8e9c851250b499a0b74223
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/configuration_chinese_clip.py
@@ -0,0 +1,472 @@
+# coding=utf-8
+# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Chinese-CLIP model configuration"""
+
+import os
+from collections import OrderedDict
+from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
+
+
+if TYPE_CHECKING:
+ from ...processing_utils import ProcessorMixin
+ from ...utils import TensorType
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "OFA-Sys/chinese-clip-vit-base-patch16": (
+ "https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16/resolve/main/config.json"
+ ),
+}
+
+
+class ChineseCLIPTextConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate a
+ Chinese CLIP model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Chinese CLIP
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 30522):
+ Vocabulary size of the CHINESE_CLIP model. Defines the number of different tokens that can be represented
+ by the `inputs_ids` passed when calling [`ChineseCLIPModel`].
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 512):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 2):
+ The vocabulary size of the `token_type_ids` passed when calling [`ChineseCLIPModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ pad_token_id (`int`, *optional*, defaults to 0):
+ Padding token id.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+
+ Example:
+
+ ```python
+ >>> from transformers import ChineseCLIPTextConfig, ChineseCLIPTextModel
+
+ >>> # Initializing a ChineseCLIPTextConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> configuration = ChineseCLIPTextConfig()
+
+ >>> # Initializing a ChineseCLIPTextModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> model = ChineseCLIPTextModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "chinese_clip_text_model"
+
+ def __init__(
+ self,
+ vocab_size=30522,
+ hidden_size=768,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ intermediate_size=3072,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=512,
+ type_vocab_size=2,
+ initializer_range=0.02,
+ initializer_factor=1.0,
+ layer_norm_eps=1e-12,
+ pad_token_id=0,
+ position_embedding_type="absolute",
+ use_cache=True,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, **kwargs)
+
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.initializer_factor = initializer_factor
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the vision config dict if we are loading from ChineseCLIPConfig
+ if config_dict.get("model_type") == "chinese_clip":
+ config_dict = config_dict["text_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ChineseCLIPVisionConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used to instantiate an
+ ChineseCLIP model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the ChineseCLIP
+ [OFA-Sys/chinese-clip-vit-base-patch16](https:
+ //huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ hidden_size (`int`, *optional*, defaults to 768):
+ Dimensionality of the encoder layers and the pooler layer.
+ intermediate_size (`int`, *optional*, defaults to 3072):
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and vision projection layers.
+ num_hidden_layers (`int`, *optional*, defaults to 12):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 12):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ image_size (`int`, *optional*, defaults to 224):
+ The size (resolution) of each image.
+ patch_size (`int`, *optional*, defaults to 32):
+ The size (resolution) of each patch.
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the layer normalization layers.
+ attention_dropout (`float`, *optional*, defaults to 0.0):
+ The dropout ratio for the attention probabilities.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ initializer_factor (`float`, *optional*, defaults to 1.0):
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
+ testing).
+ Example:
+ ```python
+ >>> from transformers import ChineseCLIPVisionConfig, ChineseCLIPVisionModel
+
+ >>> # Initializing a ChineseCLIPVisionConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> configuration = ChineseCLIPVisionConfig()
+
+ >>> # Initializing a ChineseCLIPVisionModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> model = ChineseCLIPVisionModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "chinese_clip_vision_model"
+
+ def __init__(
+ self,
+ hidden_size=768,
+ intermediate_size=3072,
+ projection_dim=512,
+ num_hidden_layers=12,
+ num_attention_heads=12,
+ num_channels=3,
+ image_size=224,
+ patch_size=32,
+ hidden_act="quick_gelu",
+ layer_norm_eps=1e-5,
+ attention_dropout=0.0,
+ initializer_range=0.02,
+ initializer_factor=1.0,
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ self.hidden_size = hidden_size
+ self.intermediate_size = intermediate_size
+ self.projection_dim = projection_dim
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.num_channels = num_channels
+ self.patch_size = patch_size
+ self.image_size = image_size
+ self.initializer_range = initializer_range
+ self.initializer_factor = initializer_factor
+ self.attention_dropout = attention_dropout
+ self.layer_norm_eps = layer_norm_eps
+ self.hidden_act = hidden_act
+
+ @classmethod
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
+ cls._set_token_in_kwargs(kwargs)
+
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
+
+ # get the vision config dict if we are loading from ChineseCLIPConfig
+ if config_dict.get("model_type") == "chinese_clip":
+ config_dict = config_dict["vision_config"]
+
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
+ logger.warning(
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
+ )
+
+ return cls.from_dict(config_dict, **kwargs)
+
+
+class ChineseCLIPConfig(PretrainedConfig):
+ r"""
+ [`ChineseCLIPConfig`] is the configuration class to store the configuration of a [`ChineseCLIPModel`]. It is used
+ to instantiate Chinese-CLIP model according to the specified arguments, defining the text model and vision model
+ configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the
+ Chinese-CLIP [OFA-Sys/chinese-clip-vit-base-patch16](https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16)
+ architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ text_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`ChineseCLIPTextConfig`].
+ vision_config (`dict`, *optional*):
+ Dictionary of configuration options used to initialize [`ChineseCLIPVisionConfig`].
+ projection_dim (`int`, *optional*, defaults to 512):
+ Dimentionality of text and vision projection layers.
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
+ The inital value of the *logit_scale* paramter. Default is used as per the original ChineseCLIP
+ implementation.
+ kwargs (*optional*):
+ Dictionary of keyword arguments.
+
+ Example:
+
+ ```python
+ >>> from transformers import ChineseCLIPConfig, ChineseCLIPModel
+
+ >>> # Initializing a ChineseCLIPConfig with OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> configuration = ChineseCLIPConfig()
+
+ >>> # Initializing a ChineseCLIPModel (with random weights) from the OFA-Sys/chinese-clip-vit-base-patch16 style configuration
+ >>> model = ChineseCLIPModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+
+ >>> # We can also initialize a ChineseCLIPConfig from a ChineseCLIPTextConfig and a ChineseCLIPVisionConfig
+
+ >>> # Initializing a ChineseCLIPTextConfig and ChineseCLIPVisionConfig configuration
+ >>> config_text = ChineseCLIPTextConfig()
+ >>> config_vision = ChineseCLIPVisionConfig()
+
+ >>> config = ChineseCLIPConfig.from_text_vision_configs(config_text, config_vision)
+ ```"""
+
+ model_type = "chinese_clip"
+
+ def __init__(
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
+ ):
+ # If `_config_dict` exist, we use them for the backward compatibility.
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
+ # of confusion!).
+ text_config_dict = kwargs.pop("text_config_dict", None)
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
+
+ super().__init__(**kwargs)
+
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
+ if text_config_dict is not None:
+ if text_config is None:
+ text_config = {}
+
+ # This is the complete result when using `text_config_dict`.
+ _text_config_dict = ChineseCLIPTextConfig(**text_config_dict).to_dict()
+
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
+ for key, value in _text_config_dict.items():
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
+ # If specified in `text_config_dict`
+ if key in text_config_dict:
+ message = (
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
+ f'The value `text_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`text_config_dict` is provided which will be used to initialize `ChineseCLIPTextConfig`. "
+ f'The value `text_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
+ text_config.update(_text_config_dict)
+
+ if vision_config_dict is not None:
+ if vision_config is None:
+ vision_config = {}
+
+ # This is the complete result when using `vision_config_dict`.
+ _vision_config_dict = ChineseCLIPVisionConfig(**vision_config_dict).to_dict()
+ # convert keys to string instead of integer
+ if "id2label" in _vision_config_dict:
+ _vision_config_dict["id2label"] = {
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
+ }
+
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
+ for key, value in _vision_config_dict.items():
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
+ # If specified in `vision_config_dict`
+ if key in vision_config_dict:
+ message = (
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
+ )
+ # If inferred from default argument values (just to be super careful)
+ else:
+ message = (
+ f"`vision_config_dict` is provided which will be used to initialize "
+ f'`ChineseCLIPVisionConfig`. The value `vision_config["{key}"]` will be overriden.'
+ )
+ logger.info(message)
+
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
+ vision_config.update(_vision_config_dict)
+
+ if text_config is None:
+ text_config = {}
+ logger.info("`text_config` is `None`. Initializing the `ChineseCLIPTextConfig` with default values.")
+
+ if vision_config is None:
+ vision_config = {}
+ logger.info("`vision_config` is `None`. initializing the `ChineseCLIPVisionConfig` with default values.")
+
+ self.text_config = ChineseCLIPTextConfig(**text_config)
+ self.vision_config = ChineseCLIPVisionConfig(**vision_config)
+
+ self.projection_dim = projection_dim
+ self.logit_scale_init_value = logit_scale_init_value
+ self.initializer_factor = 1.0
+ self.initializer_range = 0.02
+
+ @classmethod
+ def from_text_vision_configs(
+ cls, text_config: ChineseCLIPTextConfig, vision_config: ChineseCLIPVisionConfig, **kwargs
+ ):
+ r"""
+ Instantiate a [`ChineseCLIPConfig`] (or a derived class) from Chinese-CLIP text model configuration and
+ Chinese-CLIP vision model configuration. Returns:
+ [`ChineseCLIPConfig`]: An instance of a configuration object
+ """
+
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
+
+
+class ChineseCLIPOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("input_ids", {0: "batch", 1: "sequence"}),
+ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
+ ("attention_mask", {0: "batch", 1: "sequence"}),
+ ]
+ )
+
+ @property
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
+ return OrderedDict(
+ [
+ ("logits_per_image", {0: "batch"}),
+ ("logits_per_text", {0: "batch"}),
+ ("text_embeds", {0: "batch"}),
+ ("image_embeds", {0: "batch"}),
+ ]
+ )
+
+ @property
+ def atol_for_validation(self) -> float:
+ return 1e-4
+
+ def generate_dummy_inputs(
+ self,
+ processor: "ProcessorMixin",
+ batch_size: int = -1,
+ seq_length: int = -1,
+ framework: Optional["TensorType"] = None,
+ ) -> Mapping[str, Any]:
+ text_input_dict = super().generate_dummy_inputs(
+ processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
+ )
+ image_input_dict = super().generate_dummy_inputs(
+ processor.image_processor, batch_size=batch_size, framework=framework
+ )
+ return {**text_input_dict, **image_input_dict}
+
+ @property
+ def default_onnx_opset(self) -> int:
+ return 14
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f1048a45e6ac68e19fbc69c50e84230510c1fd6
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/image_processing_chinese_clip.py
@@ -0,0 +1,312 @@
+# coding=utf-8
+# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for Chinese-CLIP."""
+
+from typing import Dict, List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
+from ...image_transforms import (
+ convert_to_rgb,
+ get_resize_output_image_size,
+ resize,
+ to_channel_dimension_format,
+)
+from ...image_utils import (
+ OPENAI_CLIP_MEAN,
+ OPENAI_CLIP_STD,
+ ChannelDimension,
+ ImageInput,
+ PILImageResampling,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+)
+from ...utils import TensorType, is_vision_available, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+if is_vision_available():
+ import PIL
+
+
+class ChineseCLIPImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a Chinese-CLIP image processor.
+
+ Args:
+ do_resize (`bool`, *optional*, defaults to `True`):
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
+ `do_resize` in the `preprocess` method.
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
+ method.
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
+ Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
+ do_center_crop (`bool`, *optional*, defaults to `True`):
+ Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
+ `preprocess` method.
+ crop_size (`Dict[str, int]` *optional*, defaults to 224):
+ Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
+ method.
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
+ the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
+ method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
+ Whether to convert the image to RGB.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_resize: bool = True,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ do_center_crop: bool = True,
+ crop_size: Dict[str, int] = None,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = True,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ size = size if size is not None else {"shortest_edge": 224}
+ size = get_size_dict(size, default_to_square=False)
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
+ crop_size = get_size_dict(crop_size)
+
+ self.do_resize = do_resize
+ self.size = size
+ self.resample = resample
+ self.do_center_crop = do_center_crop
+ self.crop_size = crop_size
+ self.do_rescale = do_rescale
+ self.rescale_factor = rescale_factor
+ self.do_normalize = do_normalize
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
+ self.do_convert_rgb = do_convert_rgb
+
+ def resize(
+ self,
+ image: np.ndarray,
+ size: Dict[str, int],
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> np.ndarray:
+ """
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
+ resized to keep the input aspect ratio.
+
+ Args:
+ image (`np.ndarray`):
+ Image to resize.
+ size (`Dict[str, int]`):
+ Size of the output image.
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
+ Resampling filter to use when resiizing the image.
+ data_format (`str` or `ChannelDimension`, *optional*):
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format of the input image. If not provided, it will be inferred from the input
+ image.
+ """
+ size = get_size_dict(size, default_to_square=False)
+ output_size = get_resize_output_image_size(
+ image, size=(size["height"], size["width"]), default_to_square=False, input_data_format=input_data_format
+ )
+ return resize(
+ image,
+ size=output_size,
+ resample=resample,
+ data_format=data_format,
+ input_data_format=input_data_format,
+ **kwargs,
+ )
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ do_resize: bool = None,
+ size: Dict[str, int] = None,
+ resample: PILImageResampling = None,
+ do_center_crop: bool = None,
+ crop_size: int = None,
+ do_rescale: bool = None,
+ rescale_factor: float = None,
+ do_normalize: bool = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_convert_rgb: bool = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ) -> PIL.Image.Image:
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
+ Whether to resize the image.
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
+ the longest edge resized to keep the input aspect ratio.
+ resample (`int`, *optional*, defaults to `self.resample`):
+ Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
+ has an effect if `do_resize` is set to `True`.
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
+ Whether to center crop the image.
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image.
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
+ `True`.
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
+ Whether to convert the image to RGB.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_resize = do_resize if do_resize is not None else self.do_resize
+ size = size if size is not None else self.size
+ size = get_size_dict(size, default_to_square=False)
+ resample = resample if resample is not None else self.resample
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
+ crop_size = crop_size if crop_size is not None else self.crop_size
+ crop_size = get_size_dict(crop_size)
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
+
+ images = make_list_of_images(images)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ if do_resize and size is None:
+ raise ValueError("Size must be specified if do_resize is True.")
+
+ if do_center_crop and crop_size is None:
+ raise ValueError("Crop size must be specified if do_center_crop is True.")
+
+ if do_rescale and rescale_factor is None:
+ raise ValueError("Rescale factor must be specified if do_rescale is True.")
+
+ if do_normalize and (image_mean is None or image_std is None):
+ raise ValueError("Image mean and std must be specified if do_normalize is True.")
+
+ # PIL RGBA images are converted to RGB
+ if do_convert_rgb:
+ images = [convert_to_rgb(image) for image in images]
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_resize:
+ images = [
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_center_crop:
+ images = [
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
+ ]
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..a16fb081b1935769dee60909d3d9314693fcb207
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/modeling_chinese_clip.py
@@ -0,0 +1,1564 @@
+# coding=utf-8
+# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch Chinese-CLIP model."""
+
+
+import math
+from dataclasses import dataclass
+from typing import Any, List, Optional, Tuple, Union
+
+import torch
+import torch.utils.checkpoint
+from torch import nn
+
+from ...activations import ACT2FN
+from ...modeling_outputs import (
+ BaseModelOutput,
+ BaseModelOutputWithPastAndCrossAttentions,
+ BaseModelOutputWithPooling,
+ BaseModelOutputWithPoolingAndCrossAttentions,
+)
+from ...modeling_utils import PreTrainedModel
+from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
+from ...utils import (
+ ModelOutput,
+ add_code_sample_docstrings,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ logging,
+ replace_return_docstrings,
+)
+from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
+
+
+logger = logging.get_logger(__name__)
+
+_CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
+_CONFIG_FOR_DOC = "ChineseCLIPConfig"
+
+CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "OFA-Sys/chinese-clip-vit-base-patch16",
+ # See all Chinese-CLIP models at https://huggingface.co/models?filter=chinese_clip
+]
+
+
+# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
+# Copied from transformers.models.clip.modeling_clip.contrastive_loss
+def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
+
+
+def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
+ caption_loss = contrastive_loss(similarity)
+ image_loss = contrastive_loss(similarity.t())
+ return (caption_loss + image_loss) / 2.0
+
+
+@dataclass
+class ChineseCLIPOutput(ModelOutput):
+ """
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
+ Contrastive loss for image-text similarity.
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
+ similarity scores.
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
+ similarity scores.
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The text embeddings obtained by applying the projection layer to the pooled output of
+ [`ChineseCLIPTextModel`].
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
+ The image embeddings obtained by applying the projection layer to the pooled output of
+ [`ChineseCLIPVisionModel`].
+ text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
+ The output of the [`ChineseCLIPTextModel`].
+ vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
+ The output of the [`ChineseCLIPVisionModel`].
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ logits_per_image: torch.FloatTensor = None
+ logits_per_text: torch.FloatTensor = None
+ text_embeds: torch.FloatTensor = None
+ image_embeds: torch.FloatTensor = None
+ text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
+ vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
+
+ def to_tuple(self) -> Tuple[Any]:
+ return tuple(
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
+ for k in self.keys()
+ )
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
+class ChineseCLIPTextEmbeddings(nn.Module):
+ """Construct the embeddings from word, position and token_type embeddings."""
+
+ def __init__(self, config):
+ super().__init__()
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
+
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
+ # any TensorFlow checkpoint file
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
+ self.register_buffer(
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
+ )
+ self.register_buffer(
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
+ )
+
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ token_type_ids: Optional[torch.LongTensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ inputs_embeds: Optional[torch.FloatTensor] = None,
+ past_key_values_length: int = 0,
+ ) -> torch.Tensor:
+ if input_ids is not None:
+ input_shape = input_ids.size()
+ else:
+ input_shape = inputs_embeds.size()[:-1]
+
+ seq_length = input_shape[1]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
+
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
+ # issue #5664
+ if token_type_ids is None:
+ if hasattr(self, "token_type_ids"):
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
+
+ if inputs_embeds is None:
+ inputs_embeds = self.word_embeddings(input_ids)
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
+
+ embeddings = inputs_embeds + token_type_embeddings
+ if self.position_embedding_type == "absolute":
+ position_embeddings = self.position_embeddings(position_ids)
+ embeddings += position_embeddings
+ embeddings = self.LayerNorm(embeddings)
+ embeddings = self.dropout(embeddings)
+ return embeddings
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
+class ChineseCLIPVisionEmbeddings(nn.Module):
+ def __init__(self, config: ChineseCLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.image_size = config.image_size
+ self.patch_size = config.patch_size
+
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
+
+ self.patch_embedding = nn.Conv2d(
+ in_channels=config.num_channels,
+ out_channels=self.embed_dim,
+ kernel_size=self.patch_size,
+ stride=self.patch_size,
+ bias=False,
+ )
+
+ self.num_patches = (self.image_size // self.patch_size) ** 2
+ self.num_positions = self.num_patches + 1
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
+
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
+ batch_size = pixel_values.shape[0]
+ target_dtype = self.patch_embedding.weight.dtype
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
+
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
+ embeddings = embeddings + self.position_embedding(self.position_ids)
+ return embeddings
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
+class ChineseCLIPTextSelfAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
+ raise ValueError(
+ f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
+ f"heads ({config.num_attention_heads})"
+ )
+
+ self.num_attention_heads = config.num_attention_heads
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
+
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
+
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
+ self.position_embedding_type = position_embedding_type or getattr(
+ config, "position_embedding_type", "absolute"
+ )
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ self.max_position_embeddings = config.max_position_embeddings
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
+
+ self.is_decoder = config.is_decoder
+
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
+ x = x.view(new_x_shape)
+ return x.permute(0, 2, 1, 3)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ mixed_query_layer = self.query(hidden_states)
+
+ # If this is instantiated as a cross-attention module, the keys
+ # and values come from an encoder; the attention mask needs to be
+ # such that the encoder's padding tokens are not attended to.
+ is_cross_attention = encoder_hidden_states is not None
+
+ if is_cross_attention and past_key_value is not None:
+ # reuse k,v, cross_attentions
+ key_layer = past_key_value[0]
+ value_layer = past_key_value[1]
+ attention_mask = encoder_attention_mask
+ elif is_cross_attention:
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
+ attention_mask = encoder_attention_mask
+ elif past_key_value is not None:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
+ else:
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
+
+ query_layer = self.transpose_for_scores(mixed_query_layer)
+
+ use_cache = past_key_value is not None
+ if self.is_decoder:
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
+ # Further calls to cross_attention layer can then reuse all cross-attention
+ # key/value_states (first "if" case)
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
+ past_key_value = (key_layer, value_layer)
+
+ # Take the dot product between "query" and "key" to get the raw attention scores.
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
+
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
+ query_length, key_length = query_layer.shape[2], key_layer.shape[2]
+ if use_cache:
+ position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
+ -1, 1
+ )
+ else:
+ position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
+ position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
+ distance = position_ids_l - position_ids_r
+
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
+
+ if self.position_embedding_type == "relative_key":
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores
+ elif self.position_embedding_type == "relative_key_query":
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
+
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
+ if attention_mask is not None:
+ # Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
+ attention_scores = attention_scores + attention_mask
+
+ # Normalize the attention scores to probabilities.
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
+
+ # This is actually dropping out entire tokens to attend to, which might
+ # seem a bit unusual, but is taken from the original Transformer paper.
+ attention_probs = self.dropout(attention_probs)
+
+ # Mask heads if we want to
+ if head_mask is not None:
+ attention_probs = attention_probs * head_mask
+
+ context_layer = torch.matmul(attention_probs, value_layer)
+
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
+ context_layer = context_layer.view(new_context_layer_shape)
+
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
+
+ if self.is_decoder:
+ outputs = outputs + (past_key_value,)
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
+class ChineseCLIPTextSelfOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
+class ChineseCLIPTextAttention(nn.Module):
+ def __init__(self, config, position_embedding_type=None):
+ super().__init__()
+ self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
+ self.output = ChineseCLIPTextSelfOutput(config)
+ self.pruned_heads = set()
+
+ def prune_heads(self, heads):
+ if len(heads) == 0:
+ return
+ heads, index = find_pruneable_heads_and_indices(
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
+ )
+
+ # Prune linear layers
+ self.self.query = prune_linear_layer(self.self.query, index)
+ self.self.key = prune_linear_layer(self.self.key, index)
+ self.self.value = prune_linear_layer(self.self.value, index)
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
+
+ # Update hyper params and store pruned heads
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
+ self.pruned_heads = self.pruned_heads.union(heads)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ self_outputs = self.self(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ attention_output = self.output(self_outputs[0], hidden_states)
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
+ return outputs
+
+
+class ChineseCLIPVisionAttention(nn.Module):
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
+
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.embed_dim = config.hidden_size
+ self.num_heads = config.num_attention_heads
+ self.head_dim = self.embed_dim // self.num_heads
+ if self.head_dim * self.num_heads != self.embed_dim:
+ raise ValueError(
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
+ f" {self.num_heads})."
+ )
+ self.scale = self.head_dim**-0.5
+ self.dropout = config.attention_dropout
+
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
+ """Input shape: Batch x Time x Channel"""
+
+ bsz, tgt_len, embed_dim = hidden_states.size()
+
+ # get query proj
+ query_states = self.q_proj(hidden_states) * self.scale
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_states = value_states.view(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
+ f" {attn_weights.size()}"
+ )
+
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
+
+ if output_attentions:
+ # this operation is a bit akward, but it's required to
+ # make sure that attn_weights keeps its gradient.
+ # In order to do so, attn_weights have to reshaped
+ # twice and have to be reused in the following
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
+ else:
+ attn_weights_reshaped = None
+
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
+
+ attn_output = torch.bmm(attn_probs, value_states)
+
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
+ )
+
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output = attn_output.transpose(1, 2)
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
+
+ attn_output = self.out_proj(attn_output)
+
+ return attn_output, attn_weights_reshaped
+
+
+# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
+class ChineseCLIPTextIntermediate(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
+ if isinstance(config.hidden_act, str):
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
+ else:
+ self.intermediate_act_fn = config.hidden_act
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.intermediate_act_fn(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
+class ChineseCLIPTextOutput(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
+
+ def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.dense(hidden_states)
+ hidden_states = self.dropout(hidden_states)
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
+ return hidden_states
+
+
+# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
+class ChineseCLIPVisionMLP(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.activation_fn = ACT2FN[config.hidden_act]
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ hidden_states = self.fc1(hidden_states)
+ hidden_states = self.activation_fn(hidden_states)
+ hidden_states = self.fc2(hidden_states)
+ return hidden_states
+
+
+# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
+class ChineseCLIPTextLayer(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
+ self.seq_len_dim = 1
+ self.attention = ChineseCLIPTextAttention(config)
+ self.is_decoder = config.is_decoder
+ self.add_cross_attention = config.add_cross_attention
+ if self.add_cross_attention:
+ if not self.is_decoder:
+ raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
+ self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
+ self.intermediate = ChineseCLIPTextIntermediate(config)
+ self.output = ChineseCLIPTextOutput(config)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.Tensor]:
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
+ self_attention_outputs = self.attention(
+ hidden_states,
+ attention_mask,
+ head_mask,
+ output_attentions=output_attentions,
+ past_key_value=self_attn_past_key_value,
+ )
+ attention_output = self_attention_outputs[0]
+
+ # if decoder, the last output is tuple of self-attn cache
+ if self.is_decoder:
+ outputs = self_attention_outputs[1:-1]
+ present_key_value = self_attention_outputs[-1]
+ else:
+ outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
+
+ cross_attn_present_key_value = None
+ if self.is_decoder and encoder_hidden_states is not None:
+ if not hasattr(self, "crossattention"):
+ raise ValueError(
+ f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
+ " by setting `config.add_cross_attention=True`"
+ )
+
+ # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
+ cross_attention_outputs = self.crossattention(
+ attention_output,
+ attention_mask,
+ head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ cross_attn_past_key_value,
+ output_attentions,
+ )
+ attention_output = cross_attention_outputs[0]
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
+
+ # add cross-attn cache to positions 3,4 of present_key_value tuple
+ cross_attn_present_key_value = cross_attention_outputs[-1]
+ present_key_value = present_key_value + cross_attn_present_key_value
+
+ layer_output = apply_chunking_to_forward(
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
+ )
+ outputs = (layer_output,) + outputs
+
+ # if decoder, return the attn key/values as the last output
+ if self.is_decoder:
+ outputs = outputs + (present_key_value,)
+
+ return outputs
+
+ def feed_forward_chunk(self, attention_output):
+ intermediate_output = self.intermediate(attention_output)
+ layer_output = self.output(intermediate_output, attention_output)
+ return layer_output
+
+
+class ChineseCLIPVisionLayer(nn.Module):
+ def __init__(self, config: ChineseCLIPConfig):
+ super().__init__()
+ self.embed_dim = config.hidden_size
+ self.self_attn = ChineseCLIPVisionAttention(config)
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+ self.mlp = ChineseCLIPVisionMLP(config)
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ output_attentions: Optional[bool] = False,
+ ) -> Tuple[torch.FloatTensor]:
+ """
+ Args:
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ """
+ residual = hidden_states
+
+ hidden_states = self.layer_norm1(hidden_states)
+ hidden_states, attn_weights = self.self_attn(
+ hidden_states=hidden_states,
+ output_attentions=output_attentions,
+ )
+ hidden_states = residual + hidden_states
+
+ residual = hidden_states
+ hidden_states = self.layer_norm2(hidden_states)
+ hidden_states = self.mlp(hidden_states)
+ hidden_states = residual + hidden_states
+
+ outputs = (hidden_states,)
+
+ if output_attentions:
+ outputs += (attn_weights,)
+
+ return outputs
+
+
+# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
+class ChineseCLIPTextPooler(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
+ self.activation = nn.Tanh()
+
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
+ # We "pool" the model by simply taking the hidden state corresponding
+ # to the first token.
+ first_token_tensor = hidden_states[:, 0]
+ pooled_output = self.dense(first_token_tensor)
+ pooled_output = self.activation(pooled_output)
+ return pooled_output
+
+
+class ChineseCLIPPreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = ChineseCLIPConfig
+ base_model_prefix = "chinese_clip"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ """Initialize the weights"""
+ factor = self.config.initializer_factor
+ if isinstance(module, ChineseCLIPVisionEmbeddings):
+ factor = self.config.initializer_factor
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
+ elif isinstance(module, ChineseCLIPTextEmbeddings):
+ nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
+ nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
+ nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
+ for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
+ if embedding.padding_idx is not None:
+ embedding.weight.data[embedding.padding_idx].zero_()
+ elif isinstance(module, ChineseCLIPVisionAttention):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ out_proj_std = (module.embed_dim**-0.5) * factor
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
+ elif isinstance(module, ChineseCLIPVisionMLP):
+ factor = self.config.initializer_factor
+ in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
+ nn.init.normal_(module.fc1.weight, std=fc_std)
+ nn.init.normal_(module.fc2.weight, std=in_proj_std)
+ elif isinstance(module, ChineseCLIPModel):
+ nn.init.normal_(
+ module.text_projection.weight,
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+ nn.init.normal_(
+ module.visual_projection.weight,
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
+ )
+
+ if isinstance(module, nn.LayerNorm):
+ module.bias.data.zero_()
+ module.weight.data.fill_(1.0)
+ if isinstance(module, nn.Linear):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+
+
+CHINESE_CLIP_START_DOCSTRING = r"""
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+
+ Parameters:
+ config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
+ Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
+
+ - 1 indicates the head is **not masked**,
+ - 0 indicates the head is **masked**.
+
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
+ model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+CHINESE_CLIP_INPUTS_DOCSTRING = r"""
+ Args:
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
+ it.
+
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
+ [`PreTrainedTokenizer.__call__`] for details.
+
+ [What are input IDs?](../glossary#input-ids)
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+
+ [What are attention masks?](../glossary#attention-mask)
+ token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
+ 1]`:
+
+ - 0 corresponds to a *sentence A* token,
+ - 1 corresponds to a *sentence B* token.
+
+ [What are token type IDs?](../glossary#token-type-ids)
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
+ config.max_position_embeddings - 1]`.
+
+ [What are position IDs?](../glossary#position-ids)
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
+ return_loss (`bool`, *optional*):
+ Whether or not to return the contrastive loss.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
+ tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
+ more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
+class ChineseCLIPTextEncoder(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.config = config
+ self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ head_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = False,
+ output_hidden_states: Optional[bool] = False,
+ return_dict: Optional[bool] = True,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
+ all_hidden_states = () if output_hidden_states else None
+ all_self_attentions = () if output_attentions else None
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
+
+ if self.gradient_checkpointing and self.training:
+ if use_cache:
+ logger.warning_once(
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
+ )
+ use_cache = False
+
+ next_decoder_cache = () if use_cache else None
+ for i, layer_module in enumerate(self.layer):
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ layer_head_mask = head_mask[i] if head_mask is not None else None
+ past_key_value = past_key_values[i] if past_key_values is not None else None
+
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ layer_module.__call__,
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+ else:
+ layer_outputs = layer_module(
+ hidden_states,
+ attention_mask,
+ layer_head_mask,
+ encoder_hidden_states,
+ encoder_attention_mask,
+ past_key_value,
+ output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+ if use_cache:
+ next_decoder_cache += (layer_outputs[-1],)
+ if output_attentions:
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
+ if self.config.add_cross_attention:
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
+
+ if output_hidden_states:
+ all_hidden_states = all_hidden_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(
+ v
+ for v in [
+ hidden_states,
+ next_decoder_cache,
+ all_hidden_states,
+ all_self_attentions,
+ all_cross_attentions,
+ ]
+ if v is not None
+ )
+ return BaseModelOutputWithPastAndCrossAttentions(
+ last_hidden_state=hidden_states,
+ past_key_values=next_decoder_cache,
+ hidden_states=all_hidden_states,
+ attentions=all_self_attentions,
+ cross_attentions=all_cross_attentions,
+ )
+
+
+class ChineseCLIPVisionEncoder(nn.Module):
+ """
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
+ [`ChineseCLIPVisionEncoderLayer`].
+
+ Args:
+ config: ChineseCLIPConfig
+ """
+
+ def __init__(self, config: ChineseCLIPConfig):
+ super().__init__()
+ self.config = config
+ self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
+ self.gradient_checkpointing = False
+
+ def forward(
+ self,
+ inputs_embeds,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutput]:
+ r"""
+ Args:
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
+ than the model's internal embedding lookup matrix.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
+ returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
+ for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+ if self.gradient_checkpointing and self.training:
+ layer_outputs = self._gradient_checkpointing_func(
+ encoder_layer.__call__,
+ hidden_states,
+ output_attentions,
+ )
+ else:
+ layer_outputs = encoder_layer(
+ hidden_states,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ if not return_dict:
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ return BaseModelOutput(
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ )
+
+
+class ChineseCLIPVisionTransformer(nn.Module):
+ def __init__(self, config: ChineseCLIPVisionConfig):
+ super().__init__()
+ self.config = config
+ embed_dim = config.hidden_size
+
+ self.embeddings = ChineseCLIPVisionEmbeddings(config)
+ self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+ self.encoder = ChineseCLIPVisionEncoder(config)
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if pixel_values is None:
+ raise ValueError("You have to specify pixel_values")
+
+ hidden_states = self.embeddings(pixel_values)
+ hidden_states = self.pre_layrnorm(hidden_states)
+
+ encoder_outputs = self.encoder(
+ inputs_embeds=hidden_states,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = encoder_outputs[0]
+ pooled_output = last_hidden_state[:, 0, :]
+ pooled_output = self.post_layernorm(pooled_output)
+
+ if not return_dict:
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPooling(
+ last_hidden_state=last_hidden_state,
+ pooler_output=pooled_output,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ )
+
+
+@add_start_docstrings(
+ "The text model from CHINESE_CLIP without any head or projection on top.",
+ CHINESE_CLIP_START_DOCSTRING,
+)
+class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
+ """
+
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
+ cross-attention is added between the self-attention layers, following the architecture described in [Attention is
+ all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
+
+ To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
+ to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
+ `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
+ """
+
+ config_class = ChineseCLIPTextConfig
+
+ def __init__(self, config, add_pooling_layer=True):
+ super().__init__(config)
+ self.config = config
+
+ self.embeddings = ChineseCLIPTextEmbeddings(config)
+ self.encoder = ChineseCLIPTextEncoder(config)
+
+ self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self):
+ return self.embeddings.word_embeddings
+
+ def set_input_embeddings(self, value):
+ self.embeddings.word_embeddings = value
+
+ def _prune_heads(self, heads_to_prune):
+ """
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
+ class PreTrainedModel
+ """
+ for layer, heads in heads_to_prune.items():
+ self.encoder.layer[layer].attention.prune_heads(heads)
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @add_code_sample_docstrings(
+ checkpoint=_CHECKPOINT_FOR_DOC,
+ output_type=BaseModelOutputWithPoolingAndCrossAttentions,
+ config_class=_CONFIG_FOR_DOC,
+ )
+ def forward(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ head_mask: Optional[torch.Tensor] = None,
+ inputs_embeds: Optional[torch.Tensor] = None,
+ encoder_hidden_states: Optional[torch.Tensor] = None,
+ encoder_attention_mask: Optional[torch.Tensor] = None,
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
+ use_cache: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
+ r"""
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
+ the model is configured as a decoder.
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
+
+ - 1 for tokens that are **not masked**,
+ - 0 for tokens that are **masked**.
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
+
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
+ use_cache (`bool`, *optional*):
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
+ `past_key_values`).
+ """
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if self.config.is_decoder:
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
+ else:
+ use_cache = False
+
+ if input_ids is not None and inputs_embeds is not None:
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
+ elif input_ids is not None:
+ self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
+ input_shape = input_ids.size()
+ elif inputs_embeds is not None:
+ input_shape = inputs_embeds.size()[:-1]
+ else:
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
+
+ batch_size, seq_length = input_shape
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
+
+ # past_key_values_length
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
+
+ if attention_mask is None:
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
+
+ if token_type_ids is None:
+ if hasattr(self.embeddings, "token_type_ids"):
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
+ token_type_ids = buffered_token_type_ids_expanded
+ else:
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
+
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
+ # ourselves in which case we just need to make it broadcastable to all heads.
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
+
+ # If a 2D or 3D attention mask is provided for the cross-attention
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
+ if self.config.is_decoder and encoder_hidden_states is not None:
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
+ if encoder_attention_mask is None:
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
+ else:
+ encoder_extended_attention_mask = None
+
+ # Prepare head mask if needed
+ # 1.0 in head_mask indicate we keep the head
+ # attention_probs has shape bsz x n_heads x N x N
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
+
+ embedding_output = self.embeddings(
+ input_ids=input_ids,
+ position_ids=position_ids,
+ token_type_ids=token_type_ids,
+ inputs_embeds=inputs_embeds,
+ past_key_values_length=past_key_values_length,
+ )
+ encoder_outputs = self.encoder(
+ embedding_output,
+ attention_mask=extended_attention_mask,
+ head_mask=head_mask,
+ encoder_hidden_states=encoder_hidden_states,
+ encoder_attention_mask=encoder_extended_attention_mask,
+ past_key_values=past_key_values,
+ use_cache=use_cache,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+ sequence_output = encoder_outputs[0]
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
+
+ if not return_dict:
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
+
+ return BaseModelOutputWithPoolingAndCrossAttentions(
+ last_hidden_state=sequence_output,
+ pooler_output=pooled_output,
+ past_key_values=encoder_outputs.past_key_values,
+ hidden_states=encoder_outputs.hidden_states,
+ attentions=encoder_outputs.attentions,
+ cross_attentions=encoder_outputs.cross_attentions,
+ )
+
+
+@add_start_docstrings(
+ """The vision model from CHINESE_CLIP without any head or projection on top.""",
+ CHINESE_CLIP_START_DOCSTRING,
+)
+class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
+ config_class = ChineseCLIPVisionConfig
+ main_input_name = "pixel_values"
+
+ def __init__(self, config: ChineseCLIPVisionConfig):
+ super().__init__(config)
+ self.vision_model = ChineseCLIPVisionTransformer(config)
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ def get_input_embeddings(self) -> nn.Module:
+ return self.vision_model.embeddings.patch_embedding
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
+ def forward(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
+
+ >>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+ >>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> outputs = model(**inputs)
+ >>> last_hidden_state = outputs.last_hidden_state
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ return self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+
+@add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
+class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
+ config_class = ChineseCLIPConfig
+
+ def __init__(self, config: ChineseCLIPConfig):
+ super().__init__(config)
+
+ if not isinstance(config.text_config, ChineseCLIPTextConfig):
+ raise ValueError(
+ "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
+ f" {type(config.text_config)}."
+ )
+
+ if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
+ raise ValueError(
+ "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
+ f" {type(config.vision_config)}."
+ )
+
+ text_config = config.text_config
+ vision_config = config.vision_config
+
+ self.projection_dim = config.projection_dim
+ self.text_embed_dim = text_config.hidden_size
+ self.vision_embed_dim = vision_config.hidden_size
+
+ self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
+ self.vision_model = ChineseCLIPVisionTransformer(vision_config)
+
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
+ self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
+ def get_text_features(
+ self,
+ input_ids: Optional[torch.Tensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
+ applying the projection layer to the final [CLS] hidden state of Text-Transformer.
+
+ Examples:
+
+ ```python
+ >>> from transformers import AutoTokenizer, ChineseCLIPModel
+
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+ >>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+
+ >>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
+ >>> text_features = model.get_text_features(**inputs)
+ >>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
+ ```"""
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = text_outputs[0][:, 0, :]
+ text_features = self.text_projection(pooled_output)
+
+ return text_features
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
+ def get_image_features(
+ self,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> torch.FloatTensor:
+ r"""
+ Returns:
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
+ applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
+
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(images=image, return_tensors="pt")
+
+ >>> image_features = model.get_image_features(**inputs)
+ >>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
+ ```"""
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ pooled_output = vision_outputs[1] # pooled_output
+ image_features = self.visual_projection(pooled_output)
+
+ return image_features
+
+ @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
+ @replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
+ def forward(
+ self,
+ input_ids: Optional[torch.LongTensor] = None,
+ pixel_values: Optional[torch.FloatTensor] = None,
+ attention_mask: Optional[torch.Tensor] = None,
+ token_type_ids: Optional[torch.Tensor] = None,
+ position_ids: Optional[torch.LongTensor] = None,
+ return_loss: Optional[bool] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ return_dict: Optional[bool] = None,
+ ) -> Union[Tuple, ChineseCLIPOutput]:
+ r"""
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from PIL import Image
+ >>> import requests
+ >>> from transformers import AutoProcessor, ChineseCLIPModel
+
+ >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+ >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
+
+ >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
+ >>> image = Image.open(requests.get(url, stream=True).raw)
+
+ >>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
+
+ >>> outputs = model(**inputs)
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
+ ```"""
+ # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ vision_outputs = self.vision_model(
+ pixel_values=pixel_values,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ text_outputs = self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ token_type_ids=token_type_ids,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ image_embeds = vision_outputs[1]
+ image_embeds = self.visual_projection(image_embeds)
+
+ text_embeds = text_outputs[0][:, 0, :]
+ text_embeds = self.text_projection(text_embeds)
+
+ # normalized features
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
+
+ # cosine similarity as logits
+ logit_scale = self.logit_scale.exp()
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
+ logits_per_image = logits_per_text.t()
+
+ loss = None
+ if return_loss:
+ loss = chinese_clip_loss(logits_per_text)
+
+ if not return_dict:
+ # fix the None pooled_output of text_outputs to conform with dict_output
+ pooled_output = text_outputs[1]
+ if pooled_output is None:
+ text_outputs = (text_outputs[0],) + text_outputs[2:]
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
+ return ((loss,) + output) if loss is not None else output
+
+ return ChineseCLIPOutput(
+ loss=loss,
+ logits_per_image=logits_per_image,
+ logits_per_text=logits_per_text,
+ text_embeds=text_embeds,
+ image_embeds=image_embeds,
+ text_model_output=text_outputs,
+ vision_model_output=vision_outputs,
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py
new file mode 100644
index 0000000000000000000000000000000000000000..832f44102abf32e7a5cb0b7f04cda0faea80ded0
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/chinese_clip/processing_chinese_clip.py
@@ -0,0 +1,142 @@
+# coding=utf-8
+# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Image/Text processor class for Chinese-CLIP
+"""
+
+import warnings
+
+from ...processing_utils import ProcessorMixin
+from ...tokenization_utils_base import BatchEncoding
+
+
+class ChineseCLIPProcessor(ProcessorMixin):
+ r"""
+ Constructs a Chinese-CLIP processor which wraps a Chinese-CLIP image processor and a Chinese-CLIP tokenizer into a
+ single processor.
+
+ [`ChineseCLIPProcessor`] offers all the functionalities of [`ChineseCLIPImageProcessor`] and [`BertTokenizerFast`].
+ See the [`~ChineseCLIPProcessor.__call__`] and [`~ChineseCLIPProcessor.decode`] for more information.
+
+ Args:
+ image_processor ([`ChineseCLIPImageProcessor`], *optional*):
+ The image processor is a required input.
+ tokenizer ([`BertTokenizerFast`], *optional*):
+ The tokenizer is a required input.
+ """
+
+ attributes = ["image_processor", "tokenizer"]
+ image_processor_class = "ChineseCLIPImageProcessor"
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
+
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
+ feature_extractor = None
+ if "feature_extractor" in kwargs:
+ warnings.warn(
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
+ " instead.",
+ FutureWarning,
+ )
+ feature_extractor = kwargs.pop("feature_extractor")
+
+ image_processor = image_processor if image_processor is not None else feature_extractor
+ if image_processor is None:
+ raise ValueError("You need to specify an `image_processor`.")
+ if tokenizer is None:
+ raise ValueError("You need to specify a `tokenizer`.")
+
+ super().__init__(image_processor, tokenizer)
+ self.current_processor = self.image_processor
+
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
+ """
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
+ and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
+ of the above two methods for more information.
+
+ Args:
+ text (`str`, `List[str]`, `List[List[str]]`):
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
+ number of channels, H and W are image height and width.
+
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
+ If set, will return tensors of a particular framework. Acceptable values are:
+
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
+ - `'np'`: Return NumPy `np.ndarray` objects.
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
+
+ Returns:
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
+
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
+ `None`).
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
+ """
+
+ if text is None and images is None:
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
+
+ if text is not None:
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
+
+ if images is not None:
+ image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
+
+ if text is not None and images is not None:
+ encoding["pixel_values"] = image_features.pixel_values
+ return encoding
+ elif text is not None:
+ return encoding
+ else:
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
+
+ def batch_decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
+ refer to the docstring of this method for more information.
+ """
+ return self.tokenizer.batch_decode(*args, **kwargs)
+
+ def decode(self, *args, **kwargs):
+ """
+ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
+ the docstring of this method for more information.
+ """
+ return self.tokenizer.decode(*args, **kwargs)
+
+ @property
+ def model_input_names(self):
+ tokenizer_input_names = self.tokenizer.model_input_names
+ image_processor_input_names = self.image_processor.model_input_names
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
+
+ @property
+ def feature_extractor_class(self):
+ warnings.warn(
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
+ FutureWarning,
+ )
+ return self.image_processor_class
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0eeed73256d8ee7077c90fa821c01fb1effb20c6
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/configuration_efficientformer.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..88a5088b3a0e5e03692afaca7988c250e6ff67fe
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/__pycache__/modeling_efficientformer.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..fecb90a886e8eb9ef06c15748034825a20a1b0bf
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/efficientformer/configuration_efficientformer.py
@@ -0,0 +1,173 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" EfficientFormer model configuration"""
+
+from typing import List
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "snap-research/efficientformer-l1-300": (
+ "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
+ ),
+}
+
+
+class EfficientFormerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
+ instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
+ [snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
+ Depth of each stage.
+ hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
+ Dimensionality of each stage.
+ downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
+ Whether or not to downsample inputs between two stages.
+ dim (`int`, *optional*, defaults to 448):
+ Number of channels in Meta3D layers
+ key_dim (`int`, *optional*, defaults to 32):
+ The size of the key in meta3D block.
+ attention_ratio (`int`, *optional*, defaults to 4):
+ Ratio of the dimension of the query and value to the dimension of the key in MSHA block
+ resolution (`int`, *optional*, defaults to 7)
+ Size of each patch
+ num_hidden_layers (`int`, *optional*, defaults to 5):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 8):
+ Number of attention heads for each attention layer in the 3D MetaBlock.
+ mlp_expansion_ratio (`int`, *optional*, defaults to 4):
+ Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings and encoder.
+ patch_size (`int`, *optional*, defaults to 16):
+ The size (resolution) of each patch.
+ num_channels (`int`, *optional*, defaults to 3):
+ The number of input channels.
+ pool_size (`int`, *optional*, defaults to 3):
+ Kernel size of pooling layers.
+ downsample_patch_size (`int`, *optional*, defaults to 3):
+ The size of patches in downsampling layers.
+ downsample_stride (`int`, *optional*, defaults to 2):
+ The stride of convolution kernels in downsampling layers.
+ downsample_pad (`int`, *optional*, defaults to 1):
+ Padding in downsampling layers.
+ drop_path_rate (`int`, *optional*, defaults to 0):
+ Rate at which to increase dropout probability in DropPath.
+ num_meta3d_blocks (`int`, *optional*, defaults to 1):
+ The number of 3D MetaBlocks in the last stage.
+ distillation (`bool`, *optional*, defaults to `True`):
+ Whether to add a distillation head.
+ use_layer_scale (`bool`, *optional*, defaults to `True`):
+ Whether to scale outputs from token mixers.
+ layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
+ Factor by which outputs from token mixers are scaled.
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
+ The epsilon used by the layer normalization layers.
+ image_size (`int`, *optional*, defaults to `224`):
+ The size (resolution) of each image.
+
+ Example:
+
+ ```python
+ >>> from transformers import EfficientFormerConfig, EfficientFormerModel
+
+ >>> # Initializing a EfficientFormer efficientformer-l1 style configuration
+ >>> configuration = EfficientFormerConfig()
+
+ >>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
+ >>> model = EfficientFormerModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "efficientformer"
+
+ def __init__(
+ self,
+ depths: List[int] = [3, 2, 6, 4],
+ hidden_sizes: List[int] = [48, 96, 224, 448],
+ downsamples: List[bool] = [True, True, True, True],
+ dim: int = 448,
+ key_dim: int = 32,
+ attention_ratio: int = 4,
+ resolution: int = 7,
+ num_hidden_layers: int = 5,
+ num_attention_heads: int = 8,
+ mlp_expansion_ratio: int = 4,
+ hidden_dropout_prob: float = 0.0,
+ patch_size: int = 16,
+ num_channels: int = 3,
+ pool_size: int = 3,
+ downsample_patch_size: int = 3,
+ downsample_stride: int = 2,
+ downsample_pad: int = 1,
+ drop_path_rate: float = 0.0,
+ num_meta3d_blocks: int = 1,
+ distillation: bool = True,
+ use_layer_scale: bool = True,
+ layer_scale_init_value: float = 1e-5,
+ hidden_act: str = "gelu",
+ initializer_range: float = 0.02,
+ layer_norm_eps: float = 1e-12,
+ image_size: int = 224,
+ batch_norm_eps: float = 1e-05,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+
+ self.hidden_act = hidden_act
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.hidden_sizes = hidden_sizes
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.patch_size = patch_size
+ self.num_channels = num_channels
+ self.depths = depths
+ self.mlp_expansion_ratio = mlp_expansion_ratio
+ self.downsamples = downsamples
+ self.dim = dim
+ self.key_dim = key_dim
+ self.attention_ratio = attention_ratio
+ self.resolution = resolution
+ self.pool_size = pool_size
+ self.downsample_patch_size = downsample_patch_size
+ self.downsample_stride = downsample_stride
+ self.downsample_pad = downsample_pad
+ self.drop_path_rate = drop_path_rate
+ self.num_meta3d_blocks = num_meta3d_blocks
+ self.distillation = distillation
+ self.use_layer_scale = use_layer_scale
+ self.layer_scale_init_value = layer_scale_init_value
+ self.image_size = image_size
+ self.batch_norm_eps = batch_norm_eps
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4263525682147f42553effe2c7b287ec91c6613d
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__init__.py
@@ -0,0 +1,57 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from typing import TYPE_CHECKING
+
+from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
+
+
+_import_structure = {
+ "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"],
+}
+
+try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+except OptionalDependencyNotAvailable:
+ pass
+else:
+ _import_structure["modeling_graphormer"] = [
+ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
+ "GraphormerForGraphClassification",
+ "GraphormerModel",
+ "GraphormerPreTrainedModel",
+ ]
+
+
+if TYPE_CHECKING:
+ from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
+
+ try:
+ if not is_torch_available():
+ raise OptionalDependencyNotAvailable()
+ except OptionalDependencyNotAvailable:
+ pass
+ else:
+ from .modeling_graphormer import (
+ GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
+ GraphormerForGraphClassification,
+ GraphormerModel,
+ GraphormerPreTrainedModel,
+ )
+
+
+else:
+ import sys
+
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..3aac16b99fb7ff4a4fdb7a93fac297719a1639df
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/__init__.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d3095553162edd7f0f33e98619534939bf79d561
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/collating_graphormer.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..59f0c88cd0c627b57b969230f67e46d6af7a6f4d
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/__pycache__/configuration_graphormer.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx
new file mode 100644
index 0000000000000000000000000000000000000000..a0fafbdee53b55efb9596036817b03be0d006992
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/algos_graphormer.pyx
@@ -0,0 +1,107 @@
+# Copyright (c) Microsoft Corporation and HuggingFace
+# Licensed under the MIT License.
+
+import cython
+
+cimport numpy
+from cython.parallel cimport parallel, prange
+
+import numpy as np
+
+
+# Reduce this number if matrices are too big for large graphs
+UNREACHABLE_NODE_DISTANCE = 510
+
+def floyd_warshall(adjacency_matrix):
+ """
+ Applies the Floyd-Warshall algorithm to the adjacency matrix, to compute the
+ shortest paths distance between all nodes, up to UNREACHABLE_NODE_DISTANCE.
+ """
+ (nrows, ncols) = adjacency_matrix.shape
+ assert nrows == ncols
+ cdef unsigned int n = nrows
+
+ adj_mat_copy = adjacency_matrix.astype(np.int32, order='C', casting='safe', copy=True)
+ assert adj_mat_copy.flags['C_CONTIGUOUS']
+ cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] M = adj_mat_copy
+ cdef numpy.ndarray[numpy.int32_t, ndim=2, mode='c'] path = -1 * np.ones([n, n], dtype=np.int32)
+
+ cdef unsigned int i, j, k
+ cdef numpy.int32_t M_ij, M_ik, cost_ikkj
+ cdef numpy.int32_t* M_ptr = &M[0,0]
+ cdef numpy.int32_t* M_i_ptr
+ cdef numpy.int32_t* M_k_ptr
+
+ # set unreachable nodes distance to UNREACHABLE_NODE_DISTANCE
+ for i in range(n):
+ for j in range(n):
+ if i == j:
+ M[i][j] = 0
+ elif M[i][j] == 0:
+ M[i][j] = UNREACHABLE_NODE_DISTANCE
+
+ # floyed algo
+ for k in range(n):
+ M_k_ptr = M_ptr + n*k
+ for i in range(n):
+ M_i_ptr = M_ptr + n*i
+ M_ik = M_i_ptr[k]
+ for j in range(n):
+ cost_ikkj = M_ik + M_k_ptr[j]
+ M_ij = M_i_ptr[j]
+ if M_ij > cost_ikkj:
+ M_i_ptr[j] = cost_ikkj
+ path[i][j] = k
+
+ # set unreachable path to UNREACHABLE_NODE_DISTANCE
+ for i in range(n):
+ for j in range(n):
+ if M[i][j] >= UNREACHABLE_NODE_DISTANCE:
+ path[i][j] = UNREACHABLE_NODE_DISTANCE
+ M[i][j] = UNREACHABLE_NODE_DISTANCE
+
+ return M, path
+
+
+def get_all_edges(path, i, j):
+ """
+ Recursive function to compute all possible paths between two nodes from the graph adjacency matrix.
+ """
+ cdef int k = path[i][j]
+ if k == -1:
+ return []
+ else:
+ return get_all_edges(path, i, k) + [k] + get_all_edges(path, k, j)
+
+
+def gen_edge_input(max_dist, path, edge_feat):
+ """
+ Generates the full edge feature and adjacency matrix.
+ Shape: num_nodes * num_nodes * max_distance_between_nodes * num_edge_features
+ Dim 1 is the input node, dim 2 the output node of the edge, dim 3 the depth of the edge, dim 4 the feature
+ """
+ (nrows, ncols) = path.shape
+ assert nrows == ncols
+ cdef unsigned int n = nrows
+ cdef unsigned int max_dist_copy = max_dist
+
+ path_copy = path.astype(long, order='C', casting='safe', copy=True)
+ edge_feat_copy = edge_feat.astype(long, order='C', casting='safe', copy=True)
+ assert path_copy.flags['C_CONTIGUOUS']
+ assert edge_feat_copy.flags['C_CONTIGUOUS']
+
+ cdef numpy.ndarray[numpy.int32_t, ndim=4, mode='c'] edge_fea_all = -1 * np.ones([n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32)
+ cdef unsigned int i, j, k, num_path, cur
+
+ for i in range(n):
+ for j in range(n):
+ if i == j:
+ continue
+ if path_copy[i][j] == UNREACHABLE_NODE_DISTANCE:
+ continue
+ path = [i] + get_all_edges(path_copy, i, j) + [j]
+ num_path = len(path) - 1
+ for k in range(num_path):
+ edge_fea_all[i, j, k, :] = edge_feat_copy[path[k], path[k+1], :]
+
+ return edge_fea_all
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py
new file mode 100644
index 0000000000000000000000000000000000000000..58ce602ea28de1a3f5f45c40a9ffb1a0e4f0fdcf
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/collating_graphormer.py
@@ -0,0 +1,134 @@
+# Copyright (c) Microsoft Corporation and HuggingFace
+# Licensed under the MIT License.
+
+from typing import Any, Dict, List, Mapping
+
+import numpy as np
+import torch
+
+from ...utils import is_cython_available, requires_backends
+
+
+if is_cython_available():
+ import pyximport
+
+ pyximport.install(setup_args={"include_dirs": np.get_include()})
+ from . import algos_graphormer # noqa E402
+
+
+def convert_to_single_emb(x, offset: int = 512):
+ feature_num = x.shape[1] if len(x.shape) > 1 else 1
+ feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64)
+ x = x + feature_offset
+ return x
+
+
+def preprocess_item(item, keep_features=True):
+ requires_backends(preprocess_item, ["cython"])
+
+ if keep_features and "edge_attr" in item.keys(): # edge_attr
+ edge_attr = np.asarray(item["edge_attr"], dtype=np.int64)
+ else:
+ edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all
+
+ if keep_features and "node_feat" in item.keys(): # input_nodes
+ node_feature = np.asarray(item["node_feat"], dtype=np.int64)
+ else:
+ node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all
+
+ edge_index = np.asarray(item["edge_index"], dtype=np.int64)
+
+ input_nodes = convert_to_single_emb(node_feature) + 1
+ num_nodes = item["num_nodes"]
+
+ if len(edge_attr.shape) == 1:
+ edge_attr = edge_attr[:, None]
+ attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64)
+ attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1
+
+ # node adj matrix [num_nodes, num_nodes] bool
+ adj = np.zeros([num_nodes, num_nodes], dtype=bool)
+ adj[edge_index[0], edge_index[1]] = True
+
+ shortest_path_result, path = algos_graphormer.floyd_warshall(adj)
+ max_dist = np.amax(shortest_path_result)
+
+ input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type)
+ attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token
+
+ # combine
+ item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding
+ item["attn_bias"] = attn_bias
+ item["attn_edge_type"] = attn_edge_type
+ item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding
+ item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding
+ item["out_degree"] = item["in_degree"] # for undirected graph
+ item["input_edges"] = input_edges + 1 # we shift all indices by one for padding
+ if "labels" not in item:
+ item["labels"] = item["y"]
+
+ return item
+
+
+class GraphormerDataCollator:
+ def __init__(self, spatial_pos_max=20, on_the_fly_processing=False):
+ if not is_cython_available():
+ raise ImportError("Graphormer preprocessing needs Cython (pyximport)")
+
+ self.spatial_pos_max = spatial_pos_max
+ self.on_the_fly_processing = on_the_fly_processing
+
+ def __call__(self, features: List[dict]) -> Dict[str, Any]:
+ if self.on_the_fly_processing:
+ features = [preprocess_item(i) for i in features]
+
+ if not isinstance(features[0], Mapping):
+ features = [vars(f) for f in features]
+ batch = {}
+
+ max_node_num = max(len(i["input_nodes"]) for i in features)
+ node_feat_size = len(features[0]["input_nodes"][0])
+ edge_feat_size = len(features[0]["attn_edge_type"][0][0])
+ max_dist = max(len(i["input_edges"][0][0]) for i in features)
+ edge_input_size = len(features[0]["input_edges"][0][0][0])
+ batch_size = len(features)
+
+ batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float)
+ batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long)
+ batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long)
+ batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long)
+ batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long)
+ batch["input_edges"] = torch.zeros(
+ batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long
+ )
+
+ for ix, f in enumerate(features):
+ for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]:
+ f[k] = torch.tensor(f[k])
+
+ if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0:
+ f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf")
+
+ batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"]
+ batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[
+ "attn_edge_type"
+ ]
+ batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"]
+ batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"]
+ batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"]
+ batch["input_edges"][
+ ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], :
+ ] = f["input_edges"]
+
+ batch["out_degree"] = batch["in_degree"]
+
+ sample = features[0]["labels"]
+ if len(sample) == 1: # one task
+ if isinstance(sample[0], float): # regression
+ batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
+ else: # binary classification
+ batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
+ else: # multi task classification, left to float to keep the NaNs
+ batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0))
+
+ return batch
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d49fbea29448d5ebb52c26724c145442b8b0a95
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/graphormer/configuration_graphormer.py
@@ -0,0 +1,221 @@
+# coding=utf-8
+# Copyright 2022 Microsoft, clefourrier and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Graphormer model configuration"""
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ # pcqm4mv1 now deprecated
+ "graphormer-base": "https://huggingface.co/clefourrier/graphormer-base-pcqm4mv2/resolve/main/config.json",
+ # See all Graphormer models at https://huggingface.co/models?filter=graphormer
+}
+
+
+class GraphormerConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`~GraphormerModel`]. It is used to instantiate an
+ Graphormer model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the Graphormer
+ [graphormer-base-pcqm4mv1](https://huggingface.co/graphormer-base-pcqm4mv1) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ num_classes (`int`, *optional*, defaults to 1):
+ Number of target classes or labels, set to n for binary classification of n tasks.
+ num_atoms (`int`, *optional*, defaults to 512*9):
+ Number of node types in the graphs.
+ num_edges (`int`, *optional*, defaults to 512*3):
+ Number of edges types in the graph.
+ num_in_degree (`int`, *optional*, defaults to 512):
+ Number of in degrees types in the input graphs.
+ num_out_degree (`int`, *optional*, defaults to 512):
+ Number of out degrees types in the input graphs.
+ num_edge_dis (`int`, *optional*, defaults to 128):
+ Number of edge dis in the input graphs.
+ multi_hop_max_dist (`int`, *optional*, defaults to 20):
+ Maximum distance of multi hop edges between two nodes.
+ spatial_pos_max (`int`, *optional*, defaults to 1024):
+ Maximum distance between nodes in the graph attention bias matrices, used during preprocessing and
+ collation.
+ edge_type (`str`, *optional*, defaults to multihop):
+ Type of edge relation chosen.
+ max_nodes (`int`, *optional*, defaults to 512):
+ Maximum number of nodes which can be parsed for the input graphs.
+ share_input_output_embed (`bool`, *optional*, defaults to `False`):
+ Shares the embedding layer between encoder and decoder - careful, True is not implemented.
+ num_layers (`int`, *optional*, defaults to 12):
+ Number of layers.
+ embedding_dim (`int`, *optional*, defaults to 768):
+ Dimension of the embedding layer in encoder.
+ ffn_embedding_dim (`int`, *optional*, defaults to 768):
+ Dimension of the "intermediate" (often named feed-forward) layer in encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads in the encoder.
+ self_attention (`bool`, *optional*, defaults to `True`):
+ Model is self attentive (False not implemented).
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the attention weights.
+ activation_dropout (`float`, *optional*, defaults to 0.1):
+ The dropout probability for the activation of the linear transformer layer.
+ layerdrop (`float`, *optional*, defaults to 0.0):
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
+ for more details.
+ bias (`bool`, *optional*, defaults to `True`):
+ Uses bias in the attention module - unsupported at the moment.
+ embed_scale(`float`, *optional*, defaults to None):
+ Scaling factor for the node embeddings.
+ num_trans_layers_to_freeze (`int`, *optional*, defaults to 0):
+ Number of transformer layers to freeze.
+ encoder_normalize_before (`bool`, *optional*, defaults to `False`):
+ Normalize features before encoding the graph.
+ pre_layernorm (`bool`, *optional*, defaults to `False`):
+ Apply layernorm before self attention and the feed forward network. Without this, post layernorm will be
+ used.
+ apply_graphormer_init (`bool`, *optional*, defaults to `False`):
+ Apply a custom graphormer initialisation to the model before training.
+ freeze_embeddings (`bool`, *optional*, defaults to `False`):
+ Freeze the embedding layer, or train it along the model.
+ encoder_normalize_before (`bool`, *optional*, defaults to `False`):
+ Apply the layer norm before each encoder block.
+ q_noise (`float`, *optional*, defaults to 0.0):
+ Amount of quantization noise (see "Training with Quantization Noise for Extreme Model Compression"). (For
+ more detail, see fairseq's documentation on quant_noise).
+ qn_block_size (`int`, *optional*, defaults to 8):
+ Size of the blocks for subsequent quantization with iPQ (see q_noise).
+ kdim (`int`, *optional*, defaults to None):
+ Dimension of the key in the attention, if different from the other values.
+ vdim (`int`, *optional*, defaults to None):
+ Dimension of the value in the attention, if different from the other values.
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models).
+ traceable (`bool`, *optional*, defaults to `False`):
+ Changes return value of the encoder's inner_state to stacked tensors.
+
+ Example:
+ ```python
+ >>> from transformers import GraphormerForGraphClassification, GraphormerConfig
+
+ >>> # Initializing a Graphormer graphormer-base-pcqm4mv2 style configuration
+ >>> configuration = GraphormerConfig()
+
+ >>> # Initializing a model from the graphormer-base-pcqm4mv1 style configuration
+ >>> model = GraphormerForGraphClassification(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```
+ """
+
+ model_type = "graphormer"
+ keys_to_ignore_at_inference = ["past_key_values"]
+
+ def __init__(
+ self,
+ num_classes: int = 1,
+ num_atoms: int = 512 * 9,
+ num_edges: int = 512 * 3,
+ num_in_degree: int = 512,
+ num_out_degree: int = 512,
+ num_spatial: int = 512,
+ num_edge_dis: int = 128,
+ multi_hop_max_dist: int = 5, # sometimes is 20
+ spatial_pos_max: int = 1024,
+ edge_type: str = "multi_hop",
+ max_nodes: int = 512,
+ share_input_output_embed: bool = False,
+ num_hidden_layers: int = 12,
+ embedding_dim: int = 768,
+ ffn_embedding_dim: int = 768,
+ num_attention_heads: int = 32,
+ dropout: float = 0.1,
+ attention_dropout: float = 0.1,
+ activation_dropout: float = 0.1,
+ layerdrop: float = 0.0,
+ encoder_normalize_before: bool = False,
+ pre_layernorm: bool = False,
+ apply_graphormer_init: bool = False,
+ activation_fn: str = "gelu",
+ embed_scale: float = None,
+ freeze_embeddings: bool = False,
+ num_trans_layers_to_freeze: int = 0,
+ traceable: bool = False,
+ q_noise: float = 0.0,
+ qn_block_size: int = 8,
+ kdim: int = None,
+ vdim: int = None,
+ bias: bool = True,
+ self_attention: bool = True,
+ pad_token_id=0,
+ bos_token_id=1,
+ eos_token_id=2,
+ **kwargs,
+ ):
+ self.num_classes = num_classes
+ self.num_atoms = num_atoms
+ self.num_in_degree = num_in_degree
+ self.num_out_degree = num_out_degree
+ self.num_edges = num_edges
+ self.num_spatial = num_spatial
+ self.num_edge_dis = num_edge_dis
+ self.edge_type = edge_type
+ self.multi_hop_max_dist = multi_hop_max_dist
+ self.spatial_pos_max = spatial_pos_max
+ self.max_nodes = max_nodes
+ self.num_hidden_layers = num_hidden_layers
+ self.embedding_dim = embedding_dim
+ self.hidden_size = embedding_dim
+ self.ffn_embedding_dim = ffn_embedding_dim
+ self.num_attention_heads = num_attention_heads
+ self.dropout = dropout
+ self.attention_dropout = attention_dropout
+ self.activation_dropout = activation_dropout
+ self.layerdrop = layerdrop
+ self.encoder_normalize_before = encoder_normalize_before
+ self.pre_layernorm = pre_layernorm
+ self.apply_graphormer_init = apply_graphormer_init
+ self.activation_fn = activation_fn
+ self.embed_scale = embed_scale
+ self.freeze_embeddings = freeze_embeddings
+ self.num_trans_layers_to_freeze = num_trans_layers_to_freeze
+ self.share_input_output_embed = share_input_output_embed
+ self.traceable = traceable
+ self.q_noise = q_noise
+ self.qn_block_size = qn_block_size
+
+ # These parameters are here for future extensions
+ # atm, the model only supports self attention
+ self.kdim = kdim
+ self.vdim = vdim
+ self.self_attention = self_attention
+ self.bias = bias
+
+ super().__init__(
+ pad_token_id=pad_token_id,
+ bos_token_id=bos_token_id,
+ eos_token_id=eos_token_id,
+ **kwargs,
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/roc_bert/__pycache__/configuration_roc_bert.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/roc_bert/__pycache__/configuration_roc_bert.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7e273ac67d743874df7dfb76619d2ce3c29ca646
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/roc_bert/__pycache__/configuration_roc_bert.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..366ca50a9ba58b321a96cdd5ed27a7afe3111408
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/__init__.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/configuration_vitmatte.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/configuration_vitmatte.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..966c50f9a33ad28ed74126d866578332bc59f135
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/configuration_vitmatte.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/convert_vitmatte_to_hf.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/convert_vitmatte_to_hf.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0cc13c45a2c1bd07b7bf1796d2963318484161d3
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/convert_vitmatte_to_hf.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/image_processing_vitmatte.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/image_processing_vitmatte.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1fa36daeea055f60477ad4d769eea4832c403637
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/image_processing_vitmatte.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/modeling_vitmatte.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/modeling_vitmatte.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..52162fe5dcea781238eeccbae46533851603e2d0
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/__pycache__/modeling_vitmatte.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/configuration_vitmatte.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/configuration_vitmatte.py
new file mode 100644
index 0000000000000000000000000000000000000000..562abbe5e5ae9fb11851abd0e4addd073fbaf703
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/configuration_vitmatte.py
@@ -0,0 +1,108 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" VitMatte model configuration"""
+
+import copy
+from typing import List
+
+from ...configuration_utils import PretrainedConfig
+from ...utils import logging
+from ..auto.configuration_auto import CONFIG_MAPPING
+
+
+logger = logging.get_logger(__name__)
+
+VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "hustvl/vitmatte-small-composition-1k": "https://huggingface.co/hustvl/vitmatte-small-composition-1k/resolve/main/config.json",
+}
+
+
+class VitMatteConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of [`VitMatteForImageMatting`]. It is used to
+ instantiate a ViTMatte model according to the specified arguments, defining the model architecture. Instantiating a
+ configuration with the defaults will yield a similar configuration to that of the ViTMatte
+ [hustvl/vitmatte-small-composition-1k](https://huggingface.co/hustvl/vitmatte-small-composition-1k) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+ Args:
+ backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `VitDetConfig()`):
+ The configuration of the backbone model.
+ hidden_size (`int`, *optional*, defaults to 384):
+ The number of input channels of the decoder.
+ batch_norm_eps (`float`, *optional*, defaults to 1e-05):
+ The epsilon used by the batch norm layers.
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ convstream_hidden_sizes (`List[int]`, *optional*, defaults to `[48, 96, 192]`):
+ The output channels of the ConvStream module.
+ fusion_hidden_sizes (`List[int]`, *optional*, defaults to `[256, 128, 64, 32]`):
+ The output channels of the Fusion blocks.
+
+ Example:
+
+ ```python
+ >>> from transformers import VitMatteConfig, VitMatteForImageMatting
+
+ >>> # Initializing a ViTMatte hustvl/vitmatte-small-composition-1k style configuration
+ >>> configuration = VitMatteConfig()
+
+ >>> # Initializing a model (with random weights) from the hustvl/vitmatte-small-composition-1k style configuration
+ >>> model = VitMatteForImageMatting(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "vitmatte"
+
+ def __init__(
+ self,
+ backbone_config: PretrainedConfig = None,
+ hidden_size: int = 384,
+ batch_norm_eps: float = 1e-5,
+ initializer_range: float = 0.02,
+ convstream_hidden_sizes: List[int] = [48, 96, 192],
+ fusion_hidden_sizes: List[int] = [256, 128, 64, 32],
+ **kwargs,
+ ):
+ super().__init__(**kwargs)
+
+ if backbone_config is None:
+ logger.info("`backbone_config` is `None`. Initializing the config with the default `VitDet` backbone.")
+ backbone_config = CONFIG_MAPPING["vitdet"](out_features=["stage4"])
+ elif isinstance(backbone_config, dict):
+ backbone_model_type = backbone_config.get("model_type")
+ config_class = CONFIG_MAPPING[backbone_model_type]
+ backbone_config = config_class.from_dict(backbone_config)
+
+ self.backbone_config = backbone_config
+ self.batch_norm_eps = batch_norm_eps
+ self.hidden_size = hidden_size
+ self.initializer_range = initializer_range
+ self.convstream_hidden_sizes = convstream_hidden_sizes
+ self.fusion_hidden_sizes = fusion_hidden_sizes
+
+ def to_dict(self):
+ """
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
+ """
+ output = copy.deepcopy(self.__dict__)
+ output["backbone_config"] = self.backbone_config.to_dict()
+ output["model_type"] = self.__class__.model_type
+ return output
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/convert_vitmatte_to_hf.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/convert_vitmatte_to_hf.py
new file mode 100644
index 0000000000000000000000000000000000000000..bcc05563337198021c91f56356533bf87c1e6e9f
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/convert_vitmatte_to_hf.py
@@ -0,0 +1,170 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Convert VitMatte checkpoints from the original repository.
+
+URL: https://github.com/hustvl/ViTMatte
+"""
+
+import argparse
+
+import requests
+import torch
+from huggingface_hub import hf_hub_download
+from PIL import Image
+
+from transformers import VitDetConfig, VitMatteConfig, VitMatteForImageMatting, VitMatteImageProcessor
+
+
+def get_config(model_name):
+ hidden_size = 384 if "small" in model_name else 768
+ num_attention_heads = 6 if "small" in model_name else 12
+
+ backbone_config = VitDetConfig(
+ num_channels=4,
+ image_size=512,
+ pretrain_image_size=224,
+ patch_size=16,
+ hidden_size=hidden_size,
+ num_attention_heads=num_attention_heads,
+ use_absolute_position_embeddings=True,
+ use_relative_position_embeddings=True,
+ window_size=14,
+ # 2, 5, 8, 11 for global attention
+ window_block_indices=[0, 1, 3, 4, 6, 7, 9, 10],
+ residual_block_indices=[2, 5, 8, 11],
+ out_features=["stage12"],
+ )
+
+ return VitMatteConfig(backbone_config=backbone_config, hidden_size=hidden_size)
+
+
+# here we list all keys to be renamed (original name on the left, our name on the right)
+def create_rename_keys(config):
+ rename_keys = []
+
+ # fmt: off
+ # stem
+ rename_keys.append(("backbone.pos_embed", "backbone.embeddings.position_embeddings"))
+ rename_keys.append(("backbone.patch_embed.proj.weight", "backbone.embeddings.projection.weight"))
+ rename_keys.append(("backbone.patch_embed.proj.bias", "backbone.embeddings.projection.bias"))
+ # fmt: on
+
+ return rename_keys
+
+
+def rename_key(dct, old, new):
+ val = dct.pop(old)
+ dct[new] = val
+
+
+def convert_vitmatte_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub):
+ config = get_config(model_name)
+
+ # load original state dict
+ model_name_to_filename = {
+ "vitmatte-small-composition-1k": "ViTMatte_S_Com.pth",
+ "vitmatte-base-composition-1k": "ViTMatte_B_Com.pth",
+ "vitmatte-small-distinctions-646": "ViTMatte_S_DIS.pth",
+ "vitmatte-base-distinctions-646": "ViTMatte_B_DIS.pth",
+ }
+
+ filename = model_name_to_filename[model_name]
+ filepath = hf_hub_download(repo_id="nielsr/vitmatte-checkpoints", filename=filename, repo_type="model")
+ state_dict = torch.load(filepath, map_location="cpu")
+
+ # rename keys
+ for key in state_dict.copy().keys():
+ val = state_dict.pop(key)
+ if "backbone.blocks" in key:
+ key = key.replace("backbone.blocks", "backbone.encoder.layer")
+ if "attn" in key:
+ key = key.replace("attn", "attention")
+ if "fusion_blks" in key:
+ key = key.replace("fusion_blks", "fusion_blocks")
+ if "bn" in key:
+ key = key.replace("bn", "batch_norm")
+ state_dict[key] = val
+
+ # rename keys
+ rename_keys = create_rename_keys(config)
+ for src, dest in rename_keys:
+ rename_key(state_dict, src, dest)
+
+ # create model
+ processor = VitMatteImageProcessor()
+ model = VitMatteForImageMatting(config)
+ model.eval()
+
+ # load state dict
+ model.load_state_dict(state_dict)
+
+ # verify on dummy image + trimap
+ url = "https://github.com/hustvl/ViTMatte/blob/main/demo/bulb_rgb.png?raw=true"
+ image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
+ url = "https://github.com/hustvl/ViTMatte/blob/main/demo/bulb_trimap.png?raw=true"
+ trimap = Image.open(requests.get(url, stream=True).raw)
+
+ pixel_values = processor(images=image, trimaps=trimap.convert("L"), return_tensors="pt").pixel_values
+
+ with torch.no_grad():
+ alphas = model(pixel_values).alphas
+
+ if model_name == "vitmatte-small-composition-1k":
+ expected_slice = torch.tensor([[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]])
+ elif model_name == "vitmatte-base-composition-1k":
+ expected_slice = torch.tensor([[0.9972, 0.9971, 0.9981], [0.9948, 0.9987, 0.9994], [0.9963, 0.9992, 0.9995]])
+ elif model_name == "vitmatte-small-distinctions-646":
+ expected_slice = torch.tensor([[0.9880, 0.9970, 0.9972], [0.9960, 0.9996, 0.9997], [0.9963, 0.9996, 0.9997]])
+ elif model_name == "vitmatte-base-distinctions-646":
+ expected_slice = torch.tensor([[0.9963, 0.9998, 0.9999], [0.9995, 1.0000, 1.0000], [0.9992, 0.9999, 1.0000]])
+
+ assert torch.allclose(alphas[0, 0, :3, :3], expected_slice, atol=1e-4)
+ print("Looks ok!")
+
+ if pytorch_dump_folder_path is not None:
+ print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
+ model.save_pretrained(pytorch_dump_folder_path)
+ processor.save_pretrained(pytorch_dump_folder_path)
+
+ if push_to_hub:
+ print(f"Pushing model and processor for {model_name} to hub")
+ model.push_to_hub(f"hustvl/{model_name}")
+ processor.push_to_hub(f"hustvl/{model_name}")
+
+
+if __name__ == "__main__":
+ parser = argparse.ArgumentParser()
+ # Required parameters
+ parser.add_argument(
+ "--model_name",
+ default="vitmatte-small-composition-1k",
+ type=str,
+ choices=[
+ "vitmatte-small-composition-1k",
+ "vitmatte-base-composition-1k",
+ "vitmatte-small-distinctions-646",
+ "vitmatte-base-distinctions-646",
+ ],
+ help="Name of the VitMatte model you'd like to convert.",
+ )
+ parser.add_argument(
+ "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
+ )
+ parser.add_argument(
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
+ )
+
+ args = parser.parse_args()
+ convert_vitmatte_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/image_processing_vitmatte.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/image_processing_vitmatte.py
new file mode 100644
index 0000000000000000000000000000000000000000..602b1fbefa8ceab4ffd4a900d5c0cade2308f3e5
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/image_processing_vitmatte.py
@@ -0,0 +1,267 @@
+# coding=utf-8
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""Image processor class for ViTMatte."""
+
+from typing import List, Optional, Union
+
+import numpy as np
+
+from ...image_processing_utils import BaseImageProcessor, BatchFeature
+from ...image_transforms import pad, to_channel_dimension_format
+from ...image_utils import (
+ IMAGENET_STANDARD_MEAN,
+ IMAGENET_STANDARD_STD,
+ ChannelDimension,
+ ImageInput,
+ get_image_size,
+ infer_channel_dimension_format,
+ is_scaled_image,
+ make_list_of_images,
+ to_numpy_array,
+ valid_images,
+)
+from ...utils import TensorType, logging
+
+
+logger = logging.get_logger(__name__)
+
+
+class VitMatteImageProcessor(BaseImageProcessor):
+ r"""
+ Constructs a ViTMatte image processor.
+
+ Args:
+ do_rescale (`bool`, *optional*, defaults to `True`):
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
+ parameter in the `preprocess` method.
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
+ `preprocess` method.
+ do_normalize (`bool`, *optional*, defaults to `True`):
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
+ method.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
+ do_pad (`bool`, *optional*, defaults to `True`):
+ Whether to pad the image to make the width and height divisible by `size_divisibility`. Can be overridden
+ by the `do_pad` parameter in the `preprocess` method.
+ size_divisibility (`int`, *optional*, defaults to 32):
+ The width and height of the image will be padded to be divisible by this number.
+ """
+
+ model_input_names = ["pixel_values"]
+
+ def __init__(
+ self,
+ do_rescale: bool = True,
+ rescale_factor: Union[int, float] = 1 / 255,
+ do_normalize: bool = True,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: bool = True,
+ size_divisibility: int = 32,
+ **kwargs,
+ ) -> None:
+ super().__init__(**kwargs)
+ self.do_rescale = do_rescale
+ self.do_normalize = do_normalize
+ self.do_pad = do_pad
+ self.rescale_factor = rescale_factor
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
+ self.size_divisibility = size_divisibility
+
+ def pad_image(
+ self,
+ image: np.ndarray,
+ size_divisibility: int = 32,
+ data_format: Optional[Union[str, ChannelDimension]] = None,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ ) -> np.ndarray:
+ """
+ Args:
+ image (`np.ndarray`):
+ Image to pad.
+ size_divisibility (`int`, *optional*, defaults to 32):
+ The width and height of the image will be padded to be divisible by this number.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ if input_data_format is None:
+ input_data_format = infer_channel_dimension_format(image)
+
+ height, width = get_image_size(image, input_data_format)
+
+ if height % size_divisibility != 0 or width % size_divisibility != 0:
+ pad_height = size_divisibility - height % size_divisibility
+ pad_width = size_divisibility - width % size_divisibility
+ padding = ((0, pad_height), (0, pad_width))
+ image = pad(image, padding=padding, data_format=data_format, input_data_format=input_data_format)
+
+ if data_format is not None:
+ image = to_channel_dimension_format(image, data_format, input_data_format)
+
+ return image
+
+ def preprocess(
+ self,
+ images: ImageInput,
+ trimaps: ImageInput,
+ do_rescale: Optional[bool] = None,
+ rescale_factor: Optional[float] = None,
+ do_normalize: Optional[bool] = None,
+ image_mean: Optional[Union[float, List[float]]] = None,
+ image_std: Optional[Union[float, List[float]]] = None,
+ do_pad: Optional[bool] = None,
+ size_divisibility: Optional[int] = None,
+ return_tensors: Optional[Union[str, TensorType]] = None,
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
+ **kwargs,
+ ):
+ """
+ Preprocess an image or batch of images.
+
+ Args:
+ images (`ImageInput`):
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
+ trimaps (`ImageInput`):
+ Trimap to preprocess.
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
+ Whether to rescale the image values between [0 - 1].
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
+ Whether to normalize the image.
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
+ Image mean to use if `do_normalize` is set to `True`.
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
+ Image standard deviation to use if `do_normalize` is set to `True`.
+ do_pad (`bool`, *optional*, defaults to `self.do_pad`):
+ Whether to pad the image.
+ size_divisibility (`int`, *optional*, defaults to `self.size_divisibility`):
+ The size divisibility to pad the image to if `do_pad` is set to `True`.
+ return_tensors (`str` or `TensorType`, *optional*):
+ The type of tensors to return. Can be one of:
+ - Unset: Return a list of `np.ndarray`.
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
+ The channel dimension format for the output image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - Unset: Use the channel dimension format of the input image.
+ input_data_format (`ChannelDimension` or `str`, *optional*):
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
+ from the input image. Can be one of:
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
+ """
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
+ do_pad = do_pad if do_pad is not None else self.do_pad
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
+ image_mean = image_mean if image_mean is not None else self.image_mean
+ image_std = image_std if image_std is not None else self.image_std
+ size_divisibility = size_divisibility if size_divisibility is not None else self.size_divisibility
+
+ images = make_list_of_images(images)
+ trimaps = make_list_of_images(trimaps, expected_ndims=2)
+
+ if not valid_images(images):
+ raise ValueError(
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+ if not valid_images(trimaps):
+ raise ValueError(
+ "Invalid trimap type. Must be of type PIL.Image.Image, numpy.ndarray, "
+ "torch.Tensor, tf.Tensor or jax.ndarray."
+ )
+
+ if do_rescale and rescale_factor is None:
+ raise ValueError("Rescale factor must be specified if do_rescale is True.")
+
+ if do_pad and size_divisibility is None:
+ raise ValueError("Size divisilibyt must be specified if do_pad is True.")
+
+ if do_normalize and (image_mean is None or image_std is None):
+ raise ValueError("Image mean and std must be specified if do_normalize is True.")
+
+ # All transformations expect numpy arrays.
+ images = [to_numpy_array(image) for image in images]
+ trimaps = [to_numpy_array(trimap) for trimap in trimaps]
+
+ if is_scaled_image(images[0]) and do_rescale:
+ logger.warning_once(
+ "It looks like you are trying to rescale already rescaled images. If the input"
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
+ )
+
+ if input_data_format is None:
+ # We assume that all images have the same channel dimension format.
+ input_data_format = infer_channel_dimension_format(images[0])
+
+ if do_rescale:
+ images = [
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
+ for image in images
+ ]
+ trimaps = [
+ self.rescale(image=trimap, scale=rescale_factor, input_data_format=input_data_format)
+ for trimap in trimaps
+ ]
+
+ if do_normalize:
+ images = [
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ # concatenate images and trimaps
+ images = [
+ np.concatenate([image, np.expand_dims(trimap, axis=-1)], axis=-1) for image, trimap in zip(images, trimaps)
+ ]
+
+ if do_pad:
+ images = [
+ self.pad_image(image, size_divisibility=size_divisibility, input_data_format=input_data_format)
+ for image in images
+ ]
+
+ images = [
+ to_channel_dimension_format(image=image, channel_dim=data_format, input_channel_dim=input_data_format)
+ for image in images
+ ]
+
+ data = {"pixel_values": images}
+ return BatchFeature(data=data, tensor_type=return_tensors)
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/modeling_vitmatte.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/modeling_vitmatte.py
new file mode 100644
index 0000000000000000000000000000000000000000..01e6ed5aa0a3d822d918497f0c10953de9614484
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/vitmatte/modeling_vitmatte.py
@@ -0,0 +1,338 @@
+# coding=utf-8
+# Copyright 2023 HUST-VL and The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" PyTorch ViTMatte model."""
+
+from dataclasses import dataclass
+from typing import Optional, Tuple
+
+import torch
+from torch import nn
+
+from ... import AutoBackbone
+from ...modeling_utils import PreTrainedModel
+from ...utils import (
+ ModelOutput,
+ add_start_docstrings,
+ add_start_docstrings_to_model_forward,
+ replace_return_docstrings,
+)
+from .configuration_vitmatte import VitMatteConfig
+
+
+VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = [
+ "hustvl/vitmatte-small-composition-1k",
+ # See all VitMatte models at https://huggingface.co/models?filter=vitmatte
+]
+
+
+# General docstring
+_CONFIG_FOR_DOC = "VitMatteConfig"
+
+
+@dataclass
+class ImageMattingOutput(ModelOutput):
+ """
+ Class for outputs of image matting models.
+
+ Args:
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
+ Loss.
+ alphas (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Estimated alpha values.
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
+ one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
+ (also called feature maps) of the model at the output of each stage.
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
+ sequence_length)`.
+
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
+ heads.
+ """
+
+ loss: Optional[torch.FloatTensor] = None
+ alphas: torch.FloatTensor = None
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
+
+
+class VitMattePreTrainedModel(PreTrainedModel):
+ """
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
+ models.
+ """
+
+ config_class = VitMatteConfig
+ main_input_name = "pixel_values"
+ supports_gradient_checkpointing = True
+
+ def _init_weights(self, module):
+ if isinstance(module, nn.Conv2d):
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
+ if module.bias is not None:
+ module.bias.data.zero_()
+
+
+class VitMatteBasicConv3x3(nn.Module):
+ """
+ Basic convolution layers including: Conv3x3, BatchNorm2d, ReLU layers.
+ """
+
+ def __init__(self, config, in_channels, out_channels, stride=2, padding=1):
+ super().__init__()
+ self.conv = nn.Conv2d(
+ in_channels=in_channels,
+ out_channels=out_channels,
+ kernel_size=3,
+ stride=stride,
+ padding=padding,
+ bias=False,
+ )
+ self.batch_norm = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
+ self.relu = nn.ReLU()
+
+ def forward(self, hidden_state):
+ hidden_state = self.conv(hidden_state)
+ hidden_state = self.batch_norm(hidden_state)
+ hidden_state = self.relu(hidden_state)
+
+ return hidden_state
+
+
+class VitMatteConvStream(nn.Module):
+ """
+ Simple ConvStream containing a series of basic conv3x3 layers to extract detail features.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ in_channels = config.backbone_config.num_channels
+ out_channels = config.convstream_hidden_sizes
+
+ self.convs = nn.ModuleList()
+ self.conv_chans = [in_channels] + out_channels
+
+ for i in range(len(self.conv_chans) - 1):
+ in_chan_ = self.conv_chans[i]
+ out_chan_ = self.conv_chans[i + 1]
+ self.convs.append(VitMatteBasicConv3x3(config, in_chan_, out_chan_))
+
+ def forward(self, pixel_values):
+ out_dict = {"detailed_feature_map_0": pixel_values}
+ embeddings = pixel_values
+ for i in range(len(self.convs)):
+ embeddings = self.convs[i](embeddings)
+ name_ = "detailed_feature_map_" + str(i + 1)
+ out_dict[name_] = embeddings
+
+ return out_dict
+
+
+class VitMatteFusionBlock(nn.Module):
+ """
+ Simple fusion block to fuse features from ConvStream and Plain Vision Transformer.
+ """
+
+ def __init__(self, config, in_channels, out_channels):
+ super().__init__()
+ self.conv = VitMatteBasicConv3x3(config, in_channels, out_channels, stride=1, padding=1)
+
+ def forward(self, features, detailed_feature_map):
+ upscaled_features = nn.functional.interpolate(features, scale_factor=2, mode="bilinear", align_corners=False)
+ out = torch.cat([detailed_feature_map, upscaled_features], dim=1)
+ out = self.conv(out)
+
+ return out
+
+
+class VitMatteHead(nn.Module):
+ """
+ Simple Matting Head, containing only conv3x3 and conv1x1 layers.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+
+ in_channels = config.fusion_hidden_sizes[-1]
+ mid_channels = 16
+
+ self.matting_convs = nn.Sequential(
+ nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1),
+ nn.BatchNorm2d(mid_channels),
+ nn.ReLU(True),
+ nn.Conv2d(mid_channels, 1, kernel_size=1, stride=1, padding=0),
+ )
+
+ def forward(self, hidden_state):
+ hidden_state = self.matting_convs(hidden_state)
+
+ return hidden_state
+
+
+class VitMatteDetailCaptureModule(nn.Module):
+ """
+ Simple and lightweight Detail Capture Module for ViT Matting.
+ """
+
+ def __init__(self, config):
+ super().__init__()
+ if len(config.fusion_hidden_sizes) != len(config.convstream_hidden_sizes) + 1:
+ raise ValueError(
+ "The length of fusion_hidden_sizes should be equal to the length of convstream_hidden_sizes + 1."
+ )
+
+ self.config = config
+ self.convstream = VitMatteConvStream(config)
+ self.conv_chans = self.convstream.conv_chans
+
+ self.fusion_blocks = nn.ModuleList()
+ self.fusion_channels = [config.hidden_size] + config.fusion_hidden_sizes
+
+ for i in range(len(self.fusion_channels) - 1):
+ self.fusion_blocks.append(
+ VitMatteFusionBlock(
+ config=config,
+ in_channels=self.fusion_channels[i] + self.conv_chans[-(i + 1)],
+ out_channels=self.fusion_channels[i + 1],
+ )
+ )
+
+ self.matting_head = VitMatteHead(config)
+
+ def forward(self, features, pixel_values):
+ detail_features = self.convstream(pixel_values)
+ for i in range(len(self.fusion_blocks)):
+ detailed_feature_map_name = "detailed_feature_map_" + str(len(self.fusion_blocks) - i - 1)
+ features = self.fusion_blocks[i](features, detail_features[detailed_feature_map_name])
+
+ alphas = torch.sigmoid(self.matting_head(features))
+
+ return alphas
+
+
+VITMATTE_START_DOCSTRING = r"""
+ Parameters:
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
+ it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
+ behavior.
+ config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
+ Initializing with a config file does not load the weights associated with the model, only the
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
+"""
+
+VITMATTE_INPUTS_DOCSTRING = r"""
+ Args:
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
+ [`AutoImageProcessor`]. See [`VitMatteImageProcessor.__call__`] for details.
+ output_attentions (`bool`, *optional*):
+ Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
+ `attentions` under returned tensors for more detail.
+ output_hidden_states (`bool`, *optional*):
+ Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
+ returned tensors for more detail.
+ return_dict (`bool`, *optional*):
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
+"""
+
+
+@add_start_docstrings(
+ """ViTMatte framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""",
+ VITMATTE_START_DOCSTRING,
+)
+class VitMatteForImageMatting(VitMattePreTrainedModel):
+ def __init__(self, config):
+ super().__init__(config)
+ self.config = config
+
+ self.backbone = AutoBackbone.from_config(config.backbone_config)
+ self.decoder = VitMatteDetailCaptureModule(config)
+
+ # Initialize weights and apply final processing
+ self.post_init()
+
+ @add_start_docstrings_to_model_forward(VITMATTE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
+ @replace_return_docstrings(output_type=ImageMattingOutput, config_class=_CONFIG_FOR_DOC)
+ def forward(
+ self,
+ pixel_values: Optional[torch.Tensor] = None,
+ output_attentions: Optional[bool] = None,
+ output_hidden_states: Optional[bool] = None,
+ labels: Optional[torch.Tensor] = None,
+ return_dict: Optional[bool] = None,
+ ):
+ """
+ labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
+ Ground truth image matting for computing the loss.
+
+ Returns:
+
+ Examples:
+
+ ```python
+ >>> from transformers import VitMatteImageProcessor, VitMatteForImageMatting
+ >>> import torch
+ >>> from PIL import Image
+ >>> from huggingface_hub import hf_hub_download
+
+ >>> processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
+ >>> model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k")
+
+ >>> filepath = hf_hub_download(
+ ... repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
+ ... )
+ >>> image = Image.open(filepath).convert("RGB")
+ >>> filepath = hf_hub_download(
+ ... repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
+ ... )
+ >>> trimap = Image.open(filepath).convert("L")
+
+ >>> # prepare image + trimap for the model
+ >>> inputs = processor(images=image, trimaps=trimap, return_tensors="pt")
+
+ >>> with torch.no_grad():
+ ... alphas = model(**inputs).alphas
+ >>> print(alphas.shape)
+ torch.Size([1, 1, 640, 960])
+ ```"""
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+
+ outputs = self.backbone.forward_with_filtered_kwargs(
+ pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
+ )
+
+ features = outputs.feature_maps[-1]
+ alphas = self.decoder(features, pixel_values)
+
+ loss = None
+ if labels is not None:
+ raise NotImplementedError("Training is not yet supported")
+
+ if not return_dict:
+ output = (alphas,) + outputs[1:]
+ return ((loss,) + output) if loss is not None else output
+
+ return ImageMattingOutput(
+ loss=loss,
+ alphas=alphas,
+ hidden_states=outputs.hidden_states,
+ attentions=outputs.attentions,
+ )
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/__pycache__/configuration_xlm_roberta_xl.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/__pycache__/configuration_xlm_roberta_xl.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..89a726a3b171061f8b6ed9ac4c9385d641f2c68d
Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/__pycache__/configuration_xlm_roberta_xl.cpython-310.pyc differ
diff --git a/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py
new file mode 100644
index 0000000000000000000000000000000000000000..e2dee1cbe4e11b74defe20c4fdc2f736a9800803
--- /dev/null
+++ b/evalkit_cambrian/lib/python3.10/site-packages/transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py
@@ -0,0 +1,156 @@
+# coding=utf-8
+# Copyright 2022 The HuggingFace Inc. team.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" XLM_ROBERTa_XL configuration"""
+
+from collections import OrderedDict
+from typing import Mapping
+
+from ...configuration_utils import PretrainedConfig
+from ...onnx import OnnxConfig
+from ...utils import logging
+
+
+logger = logging.get_logger(__name__)
+
+XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
+ "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
+ "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
+ # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
+}
+
+
+class XLMRobertaXLConfig(PretrainedConfig):
+ r"""
+ This is the configuration class to store the configuration of a [`XLMRobertaXLModel`] or a [`TFXLMRobertaXLModel`].
+ It is used to instantiate a XLM_ROBERTA_XL model according to the specified arguments, defining the model
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
+ XLM_ROBERTA_XL [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) architecture.
+
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
+ documentation from [`PretrainedConfig`] for more information.
+
+
+ Args:
+ vocab_size (`int`, *optional*, defaults to 250880):
+ Vocabulary size of the XLM_ROBERTA_XL model. Defines the number of different tokens that can be represented
+ by the `inputs_ids` passed when calling [`XLMRobertaXLModel`].
+ hidden_size (`int`, *optional*, defaults to 2560):
+ Dimensionality of the encoder layers and the pooler layer.
+ num_hidden_layers (`int`, *optional*, defaults to 36):
+ Number of hidden layers in the Transformer encoder.
+ num_attention_heads (`int`, *optional*, defaults to 32):
+ Number of attention heads for each attention layer in the Transformer encoder.
+ intermediate_size (`int`, *optional*, defaults to 10240):
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
+ The dropout ratio for the attention probabilities.
+ max_position_embeddings (`int`, *optional*, defaults to 514):
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
+ just in case (e.g., 512 or 1024 or 2048).
+ type_vocab_size (`int`, *optional*, defaults to 1):
+ The vocabulary size of the `token_type_ids` passed when calling [`XLMRobertaXLModel`] or
+ [`TFXLMRobertaXLModel`].
+ initializer_range (`float`, *optional*, defaults to 0.02):
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
+ The epsilon used by the layer normalization layers.
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
+ use_cache (`bool`, *optional*, defaults to `True`):
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
+ relevant if `config.is_decoder=True`.
+ classifier_dropout (`float`, *optional*):
+ The dropout ratio for the classification head.
+
+ Examples:
+
+ ```python
+ >>> from transformers import XLMRobertaXLConfig, XLMRobertaXLModel
+
+ >>> # Initializing a XLM_ROBERTA_XL bert-base-uncased style configuration
+ >>> configuration = XLMRobertaXLConfig()
+
+ >>> # Initializing a model (with random weights) from the bert-base-uncased style configuration
+ >>> model = XLMRobertaXLModel(configuration)
+
+ >>> # Accessing the model configuration
+ >>> configuration = model.config
+ ```"""
+
+ model_type = "xlm-roberta-xl"
+
+ def __init__(
+ self,
+ vocab_size=250880,
+ hidden_size=2560,
+ num_hidden_layers=36,
+ num_attention_heads=32,
+ intermediate_size=10240,
+ hidden_act="gelu",
+ hidden_dropout_prob=0.1,
+ attention_probs_dropout_prob=0.1,
+ max_position_embeddings=514,
+ type_vocab_size=1,
+ initializer_range=0.02,
+ layer_norm_eps=1e-05,
+ pad_token_id=1,
+ bos_token_id=0,
+ eos_token_id=2,
+ position_embedding_type="absolute",
+ use_cache=True,
+ classifier_dropout=None,
+ **kwargs,
+ ):
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
+ self.vocab_size = vocab_size
+ self.hidden_size = hidden_size
+ self.num_hidden_layers = num_hidden_layers
+ self.num_attention_heads = num_attention_heads
+ self.hidden_act = hidden_act
+ self.intermediate_size = intermediate_size
+ self.hidden_dropout_prob = hidden_dropout_prob
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
+ self.max_position_embeddings = max_position_embeddings
+ self.type_vocab_size = type_vocab_size
+ self.initializer_range = initializer_range
+ self.layer_norm_eps = layer_norm_eps
+ self.position_embedding_type = position_embedding_type
+ self.use_cache = use_cache
+ self.classifier_dropout = classifier_dropout
+
+
+# Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->XLMRobertaXL
+class XLMRobertaXLOnnxConfig(OnnxConfig):
+ @property
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
+ if self.task == "multiple-choice":
+ dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
+ else:
+ dynamic_axis = {0: "batch", 1: "sequence"}
+ return OrderedDict(
+ [
+ ("input_ids", dynamic_axis),
+ ("attention_mask", dynamic_axis),
+ ]
+ )
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__main__.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__main__.py
new file mode 100644
index 0000000000000000000000000000000000000000..8f5e44ea9e432213593c9270284ea7fd860bb63d
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__main__.py
@@ -0,0 +1,6 @@
+import sys
+from fontTools.designspaceLib import main
+
+
+if __name__ == "__main__":
+ sys.exit(main())
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/__init__.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1e011e12b4f5f41b3eada49c3758f710353d3931
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/__init__.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/statNames.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/statNames.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d032279965978a89d5d3d3cc7b538032ba357f99
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/statNames.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/types.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/types.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..835418c67a35a18f8e65cf36ef5a21b011d80d59
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/__pycache__/types.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/split.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/split.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b7cdf4be05dea1e810b4fddf4bf026bc1a50a85
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/split.py
@@ -0,0 +1,475 @@
+"""Allows building all the variable fonts of a DesignSpace version 5 by
+splitting the document into interpolable sub-space, then into each VF.
+"""
+
+from __future__ import annotations
+
+import itertools
+import logging
+import math
+from typing import Any, Callable, Dict, Iterator, List, Tuple, cast
+
+from fontTools.designspaceLib import (
+ AxisDescriptor,
+ AxisMappingDescriptor,
+ DesignSpaceDocument,
+ DiscreteAxisDescriptor,
+ InstanceDescriptor,
+ RuleDescriptor,
+ SimpleLocationDict,
+ SourceDescriptor,
+ VariableFontDescriptor,
+)
+from fontTools.designspaceLib.statNames import StatNames, getStatNames
+from fontTools.designspaceLib.types import (
+ ConditionSet,
+ Range,
+ Region,
+ getVFUserRegion,
+ locationInRegion,
+ regionInRegion,
+ userRegionToDesignRegion,
+)
+
+LOGGER = logging.getLogger(__name__)
+
+MakeInstanceFilenameCallable = Callable[
+ [DesignSpaceDocument, InstanceDescriptor, StatNames], str
+]
+
+
+def defaultMakeInstanceFilename(
+ doc: DesignSpaceDocument, instance: InstanceDescriptor, statNames: StatNames
+) -> str:
+ """Default callable to synthesize an instance filename
+ when makeNames=True, for instances that don't specify an instance name
+ in the designspace. This part of the name generation can be overriden
+ because it's not specified by the STAT table.
+ """
+ familyName = instance.familyName or statNames.familyNames.get("en")
+ styleName = instance.styleName or statNames.styleNames.get("en")
+ return f"{familyName}-{styleName}.ttf"
+
+
+def splitInterpolable(
+ doc: DesignSpaceDocument,
+ makeNames: bool = True,
+ expandLocations: bool = True,
+ makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename,
+) -> Iterator[Tuple[SimpleLocationDict, DesignSpaceDocument]]:
+ """Split the given DS5 into several interpolable sub-designspaces.
+ There are as many interpolable sub-spaces as there are combinations of
+ discrete axis values.
+
+ E.g. with axes:
+ - italic (discrete) Upright or Italic
+ - style (discrete) Sans or Serif
+ - weight (continuous) 100 to 900
+
+ There are 4 sub-spaces in which the Weight axis should interpolate:
+ (Upright, Sans), (Upright, Serif), (Italic, Sans) and (Italic, Serif).
+
+ The sub-designspaces still include the full axis definitions and STAT data,
+ but the rules, sources, variable fonts, instances are trimmed down to only
+ keep what falls within the interpolable sub-space.
+
+ Args:
+ - ``makeNames``: Whether to compute the instance family and style
+ names using the STAT data.
+ - ``expandLocations``: Whether to turn all locations into "full"
+ locations, including implicit default axis values where missing.
+ - ``makeInstanceFilename``: Callable to synthesize an instance filename
+ when makeNames=True, for instances that don't specify an instance name
+ in the designspace. This part of the name generation can be overridden
+ because it's not specified by the STAT table.
+
+ .. versionadded:: 5.0
+ """
+ discreteAxes = []
+ interpolableUserRegion: Region = {}
+ for axis in doc.axes:
+ if hasattr(axis, "values"):
+ # Mypy doesn't support narrowing union types via hasattr()
+ # TODO(Python 3.10): use TypeGuard
+ # https://mypy.readthedocs.io/en/stable/type_narrowing.html
+ axis = cast(DiscreteAxisDescriptor, axis)
+ discreteAxes.append(axis)
+ else:
+ axis = cast(AxisDescriptor, axis)
+ interpolableUserRegion[axis.name] = Range(
+ axis.minimum,
+ axis.maximum,
+ axis.default,
+ )
+ valueCombinations = itertools.product(*[axis.values for axis in discreteAxes])
+ for values in valueCombinations:
+ discreteUserLocation = {
+ discreteAxis.name: value
+ for discreteAxis, value in zip(discreteAxes, values)
+ }
+ subDoc = _extractSubSpace(
+ doc,
+ {**interpolableUserRegion, **discreteUserLocation},
+ keepVFs=True,
+ makeNames=makeNames,
+ expandLocations=expandLocations,
+ makeInstanceFilename=makeInstanceFilename,
+ )
+ yield discreteUserLocation, subDoc
+
+
+def splitVariableFonts(
+ doc: DesignSpaceDocument,
+ makeNames: bool = False,
+ expandLocations: bool = False,
+ makeInstanceFilename: MakeInstanceFilenameCallable = defaultMakeInstanceFilename,
+) -> Iterator[Tuple[str, DesignSpaceDocument]]:
+ """Convert each variable font listed in this document into a standalone
+ designspace. This can be used to compile all the variable fonts from a
+ format 5 designspace using tools that can only deal with 1 VF at a time.
+
+ Args:
+ - ``makeNames``: Whether to compute the instance family and style
+ names using the STAT data.
+ - ``expandLocations``: Whether to turn all locations into "full"
+ locations, including implicit default axis values where missing.
+ - ``makeInstanceFilename``: Callable to synthesize an instance filename
+ when makeNames=True, for instances that don't specify an instance name
+ in the designspace. This part of the name generation can be overridden
+ because it's not specified by the STAT table.
+
+ .. versionadded:: 5.0
+ """
+ # Make one DesignspaceDoc v5 for each variable font
+ for vf in doc.getVariableFonts():
+ vfUserRegion = getVFUserRegion(doc, vf)
+ vfDoc = _extractSubSpace(
+ doc,
+ vfUserRegion,
+ keepVFs=False,
+ makeNames=makeNames,
+ expandLocations=expandLocations,
+ makeInstanceFilename=makeInstanceFilename,
+ )
+ vfDoc.lib = {**vfDoc.lib, **vf.lib}
+ yield vf.name, vfDoc
+
+
+def convert5to4(
+ doc: DesignSpaceDocument,
+) -> Dict[str, DesignSpaceDocument]:
+ """Convert each variable font listed in this document into a standalone
+ format 4 designspace. This can be used to compile all the variable fonts
+ from a format 5 designspace using tools that only know about format 4.
+
+ .. versionadded:: 5.0
+ """
+ vfs = {}
+ for _location, subDoc in splitInterpolable(doc):
+ for vfName, vfDoc in splitVariableFonts(subDoc):
+ vfDoc.formatVersion = "4.1"
+ vfs[vfName] = vfDoc
+ return vfs
+
+
+def _extractSubSpace(
+ doc: DesignSpaceDocument,
+ userRegion: Region,
+ *,
+ keepVFs: bool,
+ makeNames: bool,
+ expandLocations: bool,
+ makeInstanceFilename: MakeInstanceFilenameCallable,
+) -> DesignSpaceDocument:
+ subDoc = DesignSpaceDocument()
+ # Don't include STAT info
+ # FIXME: (Jany) let's think about it. Not include = OK because the point of
+ # the splitting is to build VFs and we'll use the STAT data of the full
+ # document to generate the STAT of the VFs, so "no need" to have STAT data
+ # in sub-docs. Counterpoint: what if someone wants to split this DS for
+ # other purposes? Maybe for that it would be useful to also subset the STAT
+ # data?
+ # subDoc.elidedFallbackName = doc.elidedFallbackName
+
+ def maybeExpandDesignLocation(object):
+ if expandLocations:
+ return object.getFullDesignLocation(doc)
+ else:
+ return object.designLocation
+
+ for axis in doc.axes:
+ range = userRegion[axis.name]
+ if isinstance(range, Range) and hasattr(axis, "minimum"):
+ # Mypy doesn't support narrowing union types via hasattr()
+ # TODO(Python 3.10): use TypeGuard
+ # https://mypy.readthedocs.io/en/stable/type_narrowing.html
+ axis = cast(AxisDescriptor, axis)
+ subDoc.addAxis(
+ AxisDescriptor(
+ # Same info
+ tag=axis.tag,
+ name=axis.name,
+ labelNames=axis.labelNames,
+ hidden=axis.hidden,
+ # Subset range
+ minimum=max(range.minimum, axis.minimum),
+ default=range.default or axis.default,
+ maximum=min(range.maximum, axis.maximum),
+ map=[
+ (user, design)
+ for user, design in axis.map
+ if range.minimum <= user <= range.maximum
+ ],
+ # Don't include STAT info
+ axisOrdering=None,
+ axisLabels=None,
+ )
+ )
+
+ subDoc.axisMappings = mappings = []
+ subDocAxes = {axis.name for axis in subDoc.axes}
+ for mapping in doc.axisMappings:
+ if not all(axis in subDocAxes for axis in mapping.inputLocation.keys()):
+ continue
+ if not all(axis in subDocAxes for axis in mapping.outputLocation.keys()):
+ LOGGER.error(
+ "In axis mapping from input %s, some output axes are not in the variable-font: %s",
+ mapping.inputLocation,
+ mapping.outputLocation,
+ )
+ continue
+
+ mappingAxes = set()
+ mappingAxes.update(mapping.inputLocation.keys())
+ mappingAxes.update(mapping.outputLocation.keys())
+ for axis in doc.axes:
+ if axis.name not in mappingAxes:
+ continue
+ range = userRegion[axis.name]
+ if (
+ range.minimum != axis.minimum
+ or (range.default is not None and range.default != axis.default)
+ or range.maximum != axis.maximum
+ ):
+ LOGGER.error(
+ "Limiting axis ranges used in elements not supported: %s",
+ axis.name,
+ )
+ continue
+
+ mappings.append(
+ AxisMappingDescriptor(
+ inputLocation=mapping.inputLocation,
+ outputLocation=mapping.outputLocation,
+ )
+ )
+
+ # Don't include STAT info
+ # subDoc.locationLabels = doc.locationLabels
+
+ # Rules: subset them based on conditions
+ designRegion = userRegionToDesignRegion(doc, userRegion)
+ subDoc.rules = _subsetRulesBasedOnConditions(doc.rules, designRegion)
+ subDoc.rulesProcessingLast = doc.rulesProcessingLast
+
+ # Sources: keep only the ones that fall within the kept axis ranges
+ for source in doc.sources:
+ if not locationInRegion(doc.map_backward(source.designLocation), userRegion):
+ continue
+
+ subDoc.addSource(
+ SourceDescriptor(
+ filename=source.filename,
+ path=source.path,
+ font=source.font,
+ name=source.name,
+ designLocation=_filterLocation(
+ userRegion, maybeExpandDesignLocation(source)
+ ),
+ layerName=source.layerName,
+ familyName=source.familyName,
+ styleName=source.styleName,
+ muteKerning=source.muteKerning,
+ muteInfo=source.muteInfo,
+ mutedGlyphNames=source.mutedGlyphNames,
+ )
+ )
+
+ # Copy family name translations from the old default source to the new default
+ vfDefault = subDoc.findDefault()
+ oldDefault = doc.findDefault()
+ if vfDefault is not None and oldDefault is not None:
+ vfDefault.localisedFamilyName = oldDefault.localisedFamilyName
+
+ # Variable fonts: keep only the ones that fall within the kept axis ranges
+ if keepVFs:
+ # Note: call getVariableFont() to make the implicit VFs explicit
+ for vf in doc.getVariableFonts():
+ vfUserRegion = getVFUserRegion(doc, vf)
+ if regionInRegion(vfUserRegion, userRegion):
+ subDoc.addVariableFont(
+ VariableFontDescriptor(
+ name=vf.name,
+ filename=vf.filename,
+ axisSubsets=[
+ axisSubset
+ for axisSubset in vf.axisSubsets
+ if isinstance(userRegion[axisSubset.name], Range)
+ ],
+ lib=vf.lib,
+ )
+ )
+
+ # Instances: same as Sources + compute missing names
+ for instance in doc.instances:
+ if not locationInRegion(instance.getFullUserLocation(doc), userRegion):
+ continue
+
+ if makeNames:
+ statNames = getStatNames(doc, instance.getFullUserLocation(doc))
+ familyName = instance.familyName or statNames.familyNames.get("en")
+ styleName = instance.styleName or statNames.styleNames.get("en")
+ subDoc.addInstance(
+ InstanceDescriptor(
+ filename=instance.filename
+ or makeInstanceFilename(doc, instance, statNames),
+ path=instance.path,
+ font=instance.font,
+ name=instance.name or f"{familyName} {styleName}",
+ userLocation={} if expandLocations else instance.userLocation,
+ designLocation=_filterLocation(
+ userRegion, maybeExpandDesignLocation(instance)
+ ),
+ familyName=familyName,
+ styleName=styleName,
+ postScriptFontName=instance.postScriptFontName
+ or statNames.postScriptFontName,
+ styleMapFamilyName=instance.styleMapFamilyName
+ or statNames.styleMapFamilyNames.get("en"),
+ styleMapStyleName=instance.styleMapStyleName
+ or statNames.styleMapStyleName,
+ localisedFamilyName=instance.localisedFamilyName
+ or statNames.familyNames,
+ localisedStyleName=instance.localisedStyleName
+ or statNames.styleNames,
+ localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName
+ or statNames.styleMapFamilyNames,
+ localisedStyleMapStyleName=instance.localisedStyleMapStyleName
+ or {},
+ lib=instance.lib,
+ )
+ )
+ else:
+ subDoc.addInstance(
+ InstanceDescriptor(
+ filename=instance.filename,
+ path=instance.path,
+ font=instance.font,
+ name=instance.name,
+ userLocation={} if expandLocations else instance.userLocation,
+ designLocation=_filterLocation(
+ userRegion, maybeExpandDesignLocation(instance)
+ ),
+ familyName=instance.familyName,
+ styleName=instance.styleName,
+ postScriptFontName=instance.postScriptFontName,
+ styleMapFamilyName=instance.styleMapFamilyName,
+ styleMapStyleName=instance.styleMapStyleName,
+ localisedFamilyName=instance.localisedFamilyName,
+ localisedStyleName=instance.localisedStyleName,
+ localisedStyleMapFamilyName=instance.localisedStyleMapFamilyName,
+ localisedStyleMapStyleName=instance.localisedStyleMapStyleName,
+ lib=instance.lib,
+ )
+ )
+
+ subDoc.lib = doc.lib
+
+ return subDoc
+
+
+def _conditionSetFrom(conditionSet: List[Dict[str, Any]]) -> ConditionSet:
+ c: Dict[str, Range] = {}
+ for condition in conditionSet:
+ minimum, maximum = condition.get("minimum"), condition.get("maximum")
+ c[condition["name"]] = Range(
+ minimum if minimum is not None else -math.inf,
+ maximum if maximum is not None else math.inf,
+ )
+ return c
+
+
+def _subsetRulesBasedOnConditions(
+ rules: List[RuleDescriptor], designRegion: Region
+) -> List[RuleDescriptor]:
+ # What rules to keep:
+ # - Keep the rule if any conditionset is relevant.
+ # - A conditionset is relevant if all conditions are relevant or it is empty.
+ # - A condition is relevant if
+ # - axis is point (C-AP),
+ # - and point in condition's range (C-AP-in)
+ # (in this case remove the condition because it's always true)
+ # - else (C-AP-out) whole conditionset can be discarded (condition false
+ # => conditionset false)
+ # - axis is range (C-AR),
+ # - (C-AR-all) and axis range fully contained in condition range: we can
+ # scrap the condition because it's always true
+ # - (C-AR-inter) and intersection(axis range, condition range) not empty:
+ # keep the condition with the smaller range (= intersection)
+ # - (C-AR-none) else, whole conditionset can be discarded
+ newRules: List[RuleDescriptor] = []
+ for rule in rules:
+ newRule: RuleDescriptor = RuleDescriptor(
+ name=rule.name, conditionSets=[], subs=rule.subs
+ )
+ for conditionset in rule.conditionSets:
+ cs = _conditionSetFrom(conditionset)
+ newConditionset: List[Dict[str, Any]] = []
+ discardConditionset = False
+ for selectionName, selectionValue in designRegion.items():
+ # TODO: Ensure that all(key in conditionset for key in region.keys())?
+ if selectionName not in cs:
+ # raise Exception("Selection has different axes than the rules")
+ continue
+ if isinstance(selectionValue, (float, int)): # is point
+ # Case C-AP-in
+ if selectionValue in cs[selectionName]:
+ pass # always matches, conditionset can stay empty for this one.
+ # Case C-AP-out
+ else:
+ discardConditionset = True
+ else: # is range
+ # Case C-AR-all
+ if selectionValue in cs[selectionName]:
+ pass # always matches, conditionset can stay empty for this one.
+ else:
+ intersection = cs[selectionName].intersection(selectionValue)
+ # Case C-AR-inter
+ if intersection is not None:
+ newConditionset.append(
+ {
+ "name": selectionName,
+ "minimum": intersection.minimum,
+ "maximum": intersection.maximum,
+ }
+ )
+ # Case C-AR-none
+ else:
+ discardConditionset = True
+ if not discardConditionset:
+ newRule.conditionSets.append(newConditionset)
+ if newRule.conditionSets:
+ newRules.append(newRule)
+
+ return newRules
+
+
+def _filterLocation(
+ userRegion: Region,
+ location: Dict[str, float],
+) -> Dict[str, float]:
+ return {
+ name: value
+ for name, value in location.items()
+ if name in userRegion and isinstance(userRegion[name], Range)
+ }
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/types.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/types.py
new file mode 100644
index 0000000000000000000000000000000000000000..80ba9d6d7b44f58773f42107d672c13651c166a9
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/designspaceLib/types.py
@@ -0,0 +1,147 @@
+from __future__ import annotations
+
+from dataclasses import dataclass
+from typing import Dict, List, Optional, Union, cast
+
+from fontTools.designspaceLib import (
+ AxisDescriptor,
+ DesignSpaceDocument,
+ DesignSpaceDocumentError,
+ RangeAxisSubsetDescriptor,
+ SimpleLocationDict,
+ ValueAxisSubsetDescriptor,
+ VariableFontDescriptor,
+)
+
+
+def clamp(value, minimum, maximum):
+ return min(max(value, minimum), maximum)
+
+
+@dataclass
+class Range:
+ minimum: float
+ """Inclusive minimum of the range."""
+ maximum: float
+ """Inclusive maximum of the range."""
+ default: float = 0
+ """Default value"""
+
+ def __post_init__(self):
+ self.minimum, self.maximum = sorted((self.minimum, self.maximum))
+ self.default = clamp(self.default, self.minimum, self.maximum)
+
+ def __contains__(self, value: Union[float, Range]) -> bool:
+ if isinstance(value, Range):
+ return self.minimum <= value.minimum and value.maximum <= self.maximum
+ return self.minimum <= value <= self.maximum
+
+ def intersection(self, other: Range) -> Optional[Range]:
+ if self.maximum < other.minimum or self.minimum > other.maximum:
+ return None
+ else:
+ return Range(
+ max(self.minimum, other.minimum),
+ min(self.maximum, other.maximum),
+ self.default, # We don't care about the default in this use-case
+ )
+
+
+# A region selection is either a range or a single value, as a Designspace v5
+# axis-subset element only allows a single discrete value or a range for a
+# variable-font element.
+Region = Dict[str, Union[Range, float]]
+
+# A conditionset is a set of named ranges.
+ConditionSet = Dict[str, Range]
+
+# A rule is a list of conditionsets where any has to be relevant for the whole rule to be relevant.
+Rule = List[ConditionSet]
+Rules = Dict[str, Rule]
+
+
+def locationInRegion(location: SimpleLocationDict, region: Region) -> bool:
+ for name, value in location.items():
+ if name not in region:
+ return False
+ regionValue = region[name]
+ if isinstance(regionValue, (float, int)):
+ if value != regionValue:
+ return False
+ else:
+ if value not in regionValue:
+ return False
+ return True
+
+
+def regionInRegion(region: Region, superRegion: Region) -> bool:
+ for name, value in region.items():
+ if not name in superRegion:
+ return False
+ superValue = superRegion[name]
+ if isinstance(superValue, (float, int)):
+ if value != superValue:
+ return False
+ else:
+ if value not in superValue:
+ return False
+ return True
+
+
+def userRegionToDesignRegion(doc: DesignSpaceDocument, userRegion: Region) -> Region:
+ designRegion = {}
+ for name, value in userRegion.items():
+ axis = doc.getAxis(name)
+ if axis is None:
+ raise DesignSpaceDocumentError(
+ f"Cannot find axis named '{name}' for region."
+ )
+ if isinstance(value, (float, int)):
+ designRegion[name] = axis.map_forward(value)
+ else:
+ designRegion[name] = Range(
+ axis.map_forward(value.minimum),
+ axis.map_forward(value.maximum),
+ axis.map_forward(value.default),
+ )
+ return designRegion
+
+
+def getVFUserRegion(doc: DesignSpaceDocument, vf: VariableFontDescriptor) -> Region:
+ vfUserRegion: Region = {}
+ # For each axis, 2 cases:
+ # - it has a range = it's an axis in the VF DS
+ # - it's a single location = use it to know which rules should apply in the VF
+ for axisSubset in vf.axisSubsets:
+ axis = doc.getAxis(axisSubset.name)
+ if axis is None:
+ raise DesignSpaceDocumentError(
+ f"Cannot find axis named '{axisSubset.name}' for variable font '{vf.name}'."
+ )
+ if hasattr(axisSubset, "userMinimum"):
+ # Mypy doesn't support narrowing union types via hasattr()
+ # TODO(Python 3.10): use TypeGuard
+ # https://mypy.readthedocs.io/en/stable/type_narrowing.html
+ axisSubset = cast(RangeAxisSubsetDescriptor, axisSubset)
+ if not hasattr(axis, "minimum"):
+ raise DesignSpaceDocumentError(
+ f"Cannot select a range over '{axis.name}' for variable font '{vf.name}' "
+ "because it's a discrete axis, use only 'userValue' instead."
+ )
+ axis = cast(AxisDescriptor, axis)
+ vfUserRegion[axis.name] = Range(
+ max(axisSubset.userMinimum, axis.minimum),
+ min(axisSubset.userMaximum, axis.maximum),
+ axisSubset.userDefault or axis.default,
+ )
+ else:
+ axisSubset = cast(ValueAxisSubsetDescriptor, axisSubset)
+ vfUserRegion[axis.name] = axisSubset.userValue
+ # Any axis not mentioned explicitly has a single location = default value
+ for axis in doc.axes:
+ if axis.name not in vfUserRegion:
+ assert isinstance(
+ axis.default, (int, float)
+ ), f"Axis '{axis.name}' has no valid default value."
+ vfUserRegion[axis.name] = axis.default
+ return vfUserRegion
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/builder.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/builder.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..19af4d69a0fe4683f2de2aabb556a86436423105
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/__pycache__/builder.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/ast.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/ast.py
new file mode 100644
index 0000000000000000000000000000000000000000..17c6cc3fbe494a076d2b59f4664ab9fe56ecd20f
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/ast.py
@@ -0,0 +1,2134 @@
+from fontTools.feaLib.error import FeatureLibError
+from fontTools.feaLib.location import FeatureLibLocation
+from fontTools.misc.encodingTools import getEncoding
+from fontTools.misc.textTools import byteord, tobytes
+from collections import OrderedDict
+import itertools
+
+SHIFT = " " * 4
+
+__all__ = [
+ "Element",
+ "FeatureFile",
+ "Comment",
+ "GlyphName",
+ "GlyphClass",
+ "GlyphClassName",
+ "MarkClassName",
+ "AnonymousBlock",
+ "Block",
+ "FeatureBlock",
+ "NestedBlock",
+ "LookupBlock",
+ "GlyphClassDefinition",
+ "GlyphClassDefStatement",
+ "MarkClass",
+ "MarkClassDefinition",
+ "AlternateSubstStatement",
+ "Anchor",
+ "AnchorDefinition",
+ "AttachStatement",
+ "AxisValueLocationStatement",
+ "BaseAxis",
+ "CVParametersNameStatement",
+ "ChainContextPosStatement",
+ "ChainContextSubstStatement",
+ "CharacterStatement",
+ "ConditionsetStatement",
+ "CursivePosStatement",
+ "ElidedFallbackName",
+ "ElidedFallbackNameID",
+ "Expression",
+ "FeatureNameStatement",
+ "FeatureReferenceStatement",
+ "FontRevisionStatement",
+ "HheaField",
+ "IgnorePosStatement",
+ "IgnoreSubstStatement",
+ "IncludeStatement",
+ "LanguageStatement",
+ "LanguageSystemStatement",
+ "LigatureCaretByIndexStatement",
+ "LigatureCaretByPosStatement",
+ "LigatureSubstStatement",
+ "LookupFlagStatement",
+ "LookupReferenceStatement",
+ "MarkBasePosStatement",
+ "MarkLigPosStatement",
+ "MarkMarkPosStatement",
+ "MultipleSubstStatement",
+ "NameRecord",
+ "OS2Field",
+ "PairPosStatement",
+ "ReverseChainSingleSubstStatement",
+ "ScriptStatement",
+ "SinglePosStatement",
+ "SingleSubstStatement",
+ "SizeParameters",
+ "Statement",
+ "STATAxisValueStatement",
+ "STATDesignAxisStatement",
+ "STATNameStatement",
+ "SubtableStatement",
+ "TableBlock",
+ "ValueRecord",
+ "ValueRecordDefinition",
+ "VheaField",
+]
+
+
+def deviceToString(device):
+ if device is None:
+ return ""
+ else:
+ return "" % ", ".join("%d %d" % t for t in device)
+
+
+fea_keywords = set(
+ [
+ "anchor",
+ "anchordef",
+ "anon",
+ "anonymous",
+ "by",
+ "contour",
+ "cursive",
+ "device",
+ "enum",
+ "enumerate",
+ "excludedflt",
+ "exclude_dflt",
+ "feature",
+ "from",
+ "ignore",
+ "ignorebaseglyphs",
+ "ignoreligatures",
+ "ignoremarks",
+ "include",
+ "includedflt",
+ "include_dflt",
+ "language",
+ "languagesystem",
+ "lookup",
+ "lookupflag",
+ "mark",
+ "markattachmenttype",
+ "markclass",
+ "nameid",
+ "null",
+ "parameters",
+ "pos",
+ "position",
+ "required",
+ "righttoleft",
+ "reversesub",
+ "rsub",
+ "script",
+ "sub",
+ "substitute",
+ "subtable",
+ "table",
+ "usemarkfilteringset",
+ "useextension",
+ "valuerecorddef",
+ "base",
+ "gdef",
+ "head",
+ "hhea",
+ "name",
+ "vhea",
+ "vmtx",
+ ]
+)
+
+
+def asFea(g):
+ if hasattr(g, "asFea"):
+ return g.asFea()
+ elif isinstance(g, tuple) and len(g) == 2:
+ return asFea(g[0]) + " - " + asFea(g[1]) # a range
+ elif g.lower() in fea_keywords:
+ return "\\" + g
+ else:
+ return g
+
+
+class Element(object):
+ """A base class representing "something" in a feature file."""
+
+ def __init__(self, location=None):
+ #: location of this element as a `FeatureLibLocation` object.
+ if location and not isinstance(location, FeatureLibLocation):
+ location = FeatureLibLocation(*location)
+ self.location = location
+
+ def build(self, builder):
+ pass
+
+ def asFea(self, indent=""):
+ """Returns this element as a string of feature code. For block-type
+ elements (such as :class:`FeatureBlock`), the `indent` string is
+ added to the start of each line in the output."""
+ raise NotImplementedError
+
+ def __str__(self):
+ return self.asFea()
+
+
+class Statement(Element):
+ pass
+
+
+class Expression(Element):
+ pass
+
+
+class Comment(Element):
+ """A comment in a feature file."""
+
+ def __init__(self, text, location=None):
+ super(Comment, self).__init__(location)
+ #: Text of the comment
+ self.text = text
+
+ def asFea(self, indent=""):
+ return self.text
+
+
+class NullGlyph(Expression):
+ """The NULL glyph, used in glyph deletion substitutions."""
+
+ def __init__(self, location=None):
+ Expression.__init__(self, location)
+ #: The name itself as a string
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return ()
+
+ def asFea(self, indent=""):
+ return "NULL"
+
+
+class GlyphName(Expression):
+ """A single glyph name, such as ``cedilla``."""
+
+ def __init__(self, glyph, location=None):
+ Expression.__init__(self, location)
+ #: The name itself as a string
+ self.glyph = glyph
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return (self.glyph,)
+
+ def asFea(self, indent=""):
+ return asFea(self.glyph)
+
+
+class GlyphClass(Expression):
+ """A glyph class, such as ``[acute cedilla grave]``."""
+
+ def __init__(self, glyphs=None, location=None):
+ Expression.__init__(self, location)
+ #: The list of glyphs in this class, as :class:`GlyphName` objects.
+ self.glyphs = glyphs if glyphs is not None else []
+ self.original = []
+ self.curr = 0
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return tuple(self.glyphs)
+
+ def asFea(self, indent=""):
+ if len(self.original):
+ if self.curr < len(self.glyphs):
+ self.original.extend(self.glyphs[self.curr :])
+ self.curr = len(self.glyphs)
+ return "[" + " ".join(map(asFea, self.original)) + "]"
+ else:
+ return "[" + " ".join(map(asFea, self.glyphs)) + "]"
+
+ def extend(self, glyphs):
+ """Add a list of :class:`GlyphName` objects to the class."""
+ self.glyphs.extend(glyphs)
+
+ def append(self, glyph):
+ """Add a single :class:`GlyphName` object to the class."""
+ self.glyphs.append(glyph)
+
+ def add_range(self, start, end, glyphs):
+ """Add a range (e.g. ``A-Z``) to the class. ``start`` and ``end``
+ are either :class:`GlyphName` objects or strings representing the
+ start and end glyphs in the class, and ``glyphs`` is the full list of
+ :class:`GlyphName` objects in the range."""
+ if self.curr < len(self.glyphs):
+ self.original.extend(self.glyphs[self.curr :])
+ self.original.append((start, end))
+ self.glyphs.extend(glyphs)
+ self.curr = len(self.glyphs)
+
+ def add_cid_range(self, start, end, glyphs):
+ """Add a range to the class by glyph ID. ``start`` and ``end`` are the
+ initial and final IDs, and ``glyphs`` is the full list of
+ :class:`GlyphName` objects in the range."""
+ if self.curr < len(self.glyphs):
+ self.original.extend(self.glyphs[self.curr :])
+ self.original.append(("\\{}".format(start), "\\{}".format(end)))
+ self.glyphs.extend(glyphs)
+ self.curr = len(self.glyphs)
+
+ def add_class(self, gc):
+ """Add glyphs from the given :class:`GlyphClassName` object to the
+ class."""
+ if self.curr < len(self.glyphs):
+ self.original.extend(self.glyphs[self.curr :])
+ self.original.append(gc)
+ self.glyphs.extend(gc.glyphSet())
+ self.curr = len(self.glyphs)
+
+
+class GlyphClassName(Expression):
+ """A glyph class name, such as ``@FRENCH_MARKS``. This must be instantiated
+ with a :class:`GlyphClassDefinition` object."""
+
+ def __init__(self, glyphclass, location=None):
+ Expression.__init__(self, location)
+ assert isinstance(glyphclass, GlyphClassDefinition)
+ self.glyphclass = glyphclass
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return tuple(self.glyphclass.glyphSet())
+
+ def asFea(self, indent=""):
+ return "@" + self.glyphclass.name
+
+
+class MarkClassName(Expression):
+ """A mark class name, such as ``@FRENCH_MARKS`` defined with ``markClass``.
+ This must be instantiated with a :class:`MarkClass` object."""
+
+ def __init__(self, markClass, location=None):
+ Expression.__init__(self, location)
+ assert isinstance(markClass, MarkClass)
+ self.markClass = markClass
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return self.markClass.glyphSet()
+
+ def asFea(self, indent=""):
+ return "@" + self.markClass.name
+
+
+class AnonymousBlock(Statement):
+ """An anonymous data block."""
+
+ def __init__(self, tag, content, location=None):
+ Statement.__init__(self, location)
+ self.tag = tag #: string containing the block's "tag"
+ self.content = content #: block data as string
+
+ def asFea(self, indent=""):
+ res = "anon {} {{\n".format(self.tag)
+ res += self.content
+ res += "}} {};\n\n".format(self.tag)
+ return res
+
+
+class Block(Statement):
+ """A block of statements: feature, lookup, etc."""
+
+ def __init__(self, location=None):
+ Statement.__init__(self, location)
+ self.statements = [] #: Statements contained in the block
+
+ def build(self, builder):
+ """When handed a 'builder' object of comparable interface to
+ :class:`fontTools.feaLib.builder`, walks the statements in this
+ block, calling the builder callbacks."""
+ for s in self.statements:
+ s.build(builder)
+
+ def asFea(self, indent=""):
+ indent += SHIFT
+ return (
+ indent
+ + ("\n" + indent).join([s.asFea(indent=indent) for s in self.statements])
+ + "\n"
+ )
+
+
+class FeatureFile(Block):
+ """The top-level element of the syntax tree, containing the whole feature
+ file in its ``statements`` attribute."""
+
+ def __init__(self):
+ Block.__init__(self, location=None)
+ self.markClasses = {} # name --> ast.MarkClass
+
+ def asFea(self, indent=""):
+ return "\n".join(s.asFea(indent=indent) for s in self.statements)
+
+
+class FeatureBlock(Block):
+ """A named feature block."""
+
+ def __init__(self, name, use_extension=False, location=None):
+ Block.__init__(self, location)
+ self.name, self.use_extension = name, use_extension
+
+ def build(self, builder):
+ """Call the ``start_feature`` callback on the builder object, visit
+ all the statements in this feature, and then call ``end_feature``."""
+ # TODO(sascha): Handle use_extension.
+ builder.start_feature(self.location, self.name)
+ # language exclude_dflt statements modify builder.features_
+ # limit them to this block with temporary builder.features_
+ features = builder.features_
+ builder.features_ = {}
+ Block.build(self, builder)
+ for key, value in builder.features_.items():
+ features.setdefault(key, []).extend(value)
+ builder.features_ = features
+ builder.end_feature()
+
+ def asFea(self, indent=""):
+ res = indent + "feature %s " % self.name.strip()
+ if self.use_extension:
+ res += "useExtension "
+ res += "{\n"
+ res += Block.asFea(self, indent=indent)
+ res += indent + "} %s;\n" % self.name.strip()
+ return res
+
+
+class NestedBlock(Block):
+ """A block inside another block, for example when found inside a
+ ``cvParameters`` block."""
+
+ def __init__(self, tag, block_name, location=None):
+ Block.__init__(self, location)
+ self.tag = tag
+ self.block_name = block_name
+
+ def build(self, builder):
+ Block.build(self, builder)
+ if self.block_name == "ParamUILabelNameID":
+ builder.add_to_cv_num_named_params(self.tag)
+
+ def asFea(self, indent=""):
+ res = "{}{} {{\n".format(indent, self.block_name)
+ res += Block.asFea(self, indent=indent)
+ res += "{}}};\n".format(indent)
+ return res
+
+
+class LookupBlock(Block):
+ """A named lookup, containing ``statements``."""
+
+ def __init__(self, name, use_extension=False, location=None):
+ Block.__init__(self, location)
+ self.name, self.use_extension = name, use_extension
+
+ def build(self, builder):
+ # TODO(sascha): Handle use_extension.
+ builder.start_lookup_block(self.location, self.name)
+ Block.build(self, builder)
+ builder.end_lookup_block()
+
+ def asFea(self, indent=""):
+ res = "lookup {} ".format(self.name)
+ if self.use_extension:
+ res += "useExtension "
+ res += "{\n"
+ res += Block.asFea(self, indent=indent)
+ res += "{}}} {};\n".format(indent, self.name)
+ return res
+
+
+class TableBlock(Block):
+ """A ``table ... { }`` block."""
+
+ def __init__(self, name, location=None):
+ Block.__init__(self, location)
+ self.name = name
+
+ def asFea(self, indent=""):
+ res = "table {} {{\n".format(self.name.strip())
+ res += super(TableBlock, self).asFea(indent=indent)
+ res += "}} {};\n".format(self.name.strip())
+ return res
+
+
+class GlyphClassDefinition(Statement):
+ """Example: ``@UPPERCASE = [A-Z];``."""
+
+ def __init__(self, name, glyphs, location=None):
+ Statement.__init__(self, location)
+ self.name = name #: class name as a string, without initial ``@``
+ self.glyphs = glyphs #: a :class:`GlyphClass` object
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return tuple(self.glyphs.glyphSet())
+
+ def asFea(self, indent=""):
+ return "@" + self.name + " = " + self.glyphs.asFea() + ";"
+
+
+class GlyphClassDefStatement(Statement):
+ """Example: ``GlyphClassDef @UPPERCASE, [B], [C], [D];``. The parameters
+ must be either :class:`GlyphClass` or :class:`GlyphClassName` objects, or
+ ``None``."""
+
+ def __init__(
+ self, baseGlyphs, markGlyphs, ligatureGlyphs, componentGlyphs, location=None
+ ):
+ Statement.__init__(self, location)
+ self.baseGlyphs, self.markGlyphs = (baseGlyphs, markGlyphs)
+ self.ligatureGlyphs = ligatureGlyphs
+ self.componentGlyphs = componentGlyphs
+
+ def build(self, builder):
+ """Calls the builder's ``add_glyphClassDef`` callback."""
+ base = self.baseGlyphs.glyphSet() if self.baseGlyphs else tuple()
+ liga = self.ligatureGlyphs.glyphSet() if self.ligatureGlyphs else tuple()
+ mark = self.markGlyphs.glyphSet() if self.markGlyphs else tuple()
+ comp = self.componentGlyphs.glyphSet() if self.componentGlyphs else tuple()
+ builder.add_glyphClassDef(self.location, base, liga, mark, comp)
+
+ def asFea(self, indent=""):
+ return "GlyphClassDef {}, {}, {}, {};".format(
+ self.baseGlyphs.asFea() if self.baseGlyphs else "",
+ self.ligatureGlyphs.asFea() if self.ligatureGlyphs else "",
+ self.markGlyphs.asFea() if self.markGlyphs else "",
+ self.componentGlyphs.asFea() if self.componentGlyphs else "",
+ )
+
+
+class MarkClass(object):
+ """One `or more` ``markClass`` statements for the same mark class.
+
+ While glyph classes can be defined only once, the feature file format
+ allows expanding mark classes with multiple definitions, each using
+ different glyphs and anchors. The following are two ``MarkClassDefinitions``
+ for the same ``MarkClass``::
+
+ markClass [acute grave] @FRENCH_ACCENTS;
+ markClass [cedilla] @FRENCH_ACCENTS;
+
+ The ``MarkClass`` object is therefore just a container for a list of
+ :class:`MarkClassDefinition` statements.
+ """
+
+ def __init__(self, name):
+ self.name = name
+ self.definitions = []
+ self.glyphs = OrderedDict() # glyph --> ast.MarkClassDefinitions
+
+ def addDefinition(self, definition):
+ """Add a :class:`MarkClassDefinition` statement to this mark class."""
+ assert isinstance(definition, MarkClassDefinition)
+ self.definitions.append(definition)
+ for glyph in definition.glyphSet():
+ if glyph in self.glyphs:
+ otherLoc = self.glyphs[glyph].location
+ if otherLoc is None:
+ end = ""
+ else:
+ end = f" at {otherLoc}"
+ raise FeatureLibError(
+ "Glyph %s already defined%s" % (glyph, end), definition.location
+ )
+ self.glyphs[glyph] = definition
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return tuple(self.glyphs.keys())
+
+ def asFea(self, indent=""):
+ res = "\n".join(d.asFea() for d in self.definitions)
+ return res
+
+
+class MarkClassDefinition(Statement):
+ """A single ``markClass`` statement. The ``markClass`` should be a
+ :class:`MarkClass` object, the ``anchor`` an :class:`Anchor` object,
+ and the ``glyphs`` parameter should be a `glyph-containing object`_ .
+
+ Example:
+
+ .. code:: python
+
+ mc = MarkClass("FRENCH_ACCENTS")
+ mc.addDefinition( MarkClassDefinition(mc, Anchor(350, 800),
+ GlyphClass([ GlyphName("acute"), GlyphName("grave") ])
+ ) )
+ mc.addDefinition( MarkClassDefinition(mc, Anchor(350, -200),
+ GlyphClass([ GlyphName("cedilla") ])
+ ) )
+
+ mc.asFea()
+ # markClass [acute grave] @FRENCH_ACCENTS;
+ # markClass [cedilla] @FRENCH_ACCENTS;
+
+ """
+
+ def __init__(self, markClass, anchor, glyphs, location=None):
+ Statement.__init__(self, location)
+ assert isinstance(markClass, MarkClass)
+ assert isinstance(anchor, Anchor) and isinstance(glyphs, Expression)
+ self.markClass, self.anchor, self.glyphs = markClass, anchor, glyphs
+
+ def glyphSet(self):
+ """The glyphs in this class as a tuple of :class:`GlyphName` objects."""
+ return self.glyphs.glyphSet()
+
+ def asFea(self, indent=""):
+ return "markClass {} {} @{};".format(
+ self.glyphs.asFea(), self.anchor.asFea(), self.markClass.name
+ )
+
+
+class AlternateSubstStatement(Statement):
+ """A ``sub ... from ...`` statement.
+
+ ``prefix``, ``glyph``, ``suffix`` and ``replacement`` should be lists of
+ `glyph-containing objects`_. ``glyph`` should be a `one element list`."""
+
+ def __init__(self, prefix, glyph, suffix, replacement, location=None):
+ Statement.__init__(self, location)
+ self.prefix, self.glyph, self.suffix = (prefix, glyph, suffix)
+ self.replacement = replacement
+
+ def build(self, builder):
+ """Calls the builder's ``add_alternate_subst`` callback."""
+ glyph = self.glyph.glyphSet()
+ assert len(glyph) == 1, glyph
+ glyph = list(glyph)[0]
+ prefix = [p.glyphSet() for p in self.prefix]
+ suffix = [s.glyphSet() for s in self.suffix]
+ replacement = self.replacement.glyphSet()
+ builder.add_alternate_subst(self.location, prefix, glyph, suffix, replacement)
+
+ def asFea(self, indent=""):
+ res = "sub "
+ if len(self.prefix) or len(self.suffix):
+ if len(self.prefix):
+ res += " ".join(map(asFea, self.prefix)) + " "
+ res += asFea(self.glyph) + "'" # even though we really only use 1
+ if len(self.suffix):
+ res += " " + " ".join(map(asFea, self.suffix))
+ else:
+ res += asFea(self.glyph)
+ res += " from "
+ res += asFea(self.replacement)
+ res += ";"
+ return res
+
+
+class Anchor(Expression):
+ """An ``Anchor`` element, used inside a ``pos`` rule.
+
+ If a ``name`` is given, this will be used in preference to the coordinates.
+ Other values should be integer.
+ """
+
+ def __init__(
+ self,
+ x,
+ y,
+ name=None,
+ contourpoint=None,
+ xDeviceTable=None,
+ yDeviceTable=None,
+ location=None,
+ ):
+ Expression.__init__(self, location)
+ self.name = name
+ self.x, self.y, self.contourpoint = x, y, contourpoint
+ self.xDeviceTable, self.yDeviceTable = xDeviceTable, yDeviceTable
+
+ def asFea(self, indent=""):
+ if self.name is not None:
+ return "".format(self.name)
+ res = ""
+ return res
+
+
+class AnchorDefinition(Statement):
+ """A named anchor definition. (2.e.viii). ``name`` should be a string."""
+
+ def __init__(self, name, x, y, contourpoint=None, location=None):
+ Statement.__init__(self, location)
+ self.name, self.x, self.y, self.contourpoint = name, x, y, contourpoint
+
+ def asFea(self, indent=""):
+ res = "anchorDef {} {}".format(self.x, self.y)
+ if self.contourpoint:
+ res += " contourpoint {}".format(self.contourpoint)
+ res += " {};".format(self.name)
+ return res
+
+
+class AttachStatement(Statement):
+ """A ``GDEF`` table ``Attach`` statement."""
+
+ def __init__(self, glyphs, contourPoints, location=None):
+ Statement.__init__(self, location)
+ self.glyphs = glyphs #: A `glyph-containing object`_
+ self.contourPoints = contourPoints #: A list of integer contour points
+
+ def build(self, builder):
+ """Calls the builder's ``add_attach_points`` callback."""
+ glyphs = self.glyphs.glyphSet()
+ builder.add_attach_points(self.location, glyphs, self.contourPoints)
+
+ def asFea(self, indent=""):
+ return "Attach {} {};".format(
+ self.glyphs.asFea(), " ".join(str(c) for c in self.contourPoints)
+ )
+
+
+class ChainContextPosStatement(Statement):
+ r"""A chained contextual positioning statement.
+
+ ``prefix``, ``glyphs``, and ``suffix`` should be lists of
+ `glyph-containing objects`_ .
+
+ ``lookups`` should be a list of elements representing what lookups
+ to apply at each glyph position. Each element should be a
+ :class:`LookupBlock` to apply a single chaining lookup at the given
+ position, a list of :class:`LookupBlock`\ s to apply multiple
+ lookups, or ``None`` to apply no lookup. The length of the outer
+ list should equal the length of ``glyphs``; the inner lists can be
+ of variable length."""
+
+ def __init__(self, prefix, glyphs, suffix, lookups, location=None):
+ Statement.__init__(self, location)
+ self.prefix, self.glyphs, self.suffix = prefix, glyphs, suffix
+ self.lookups = list(lookups)
+ for i, lookup in enumerate(lookups):
+ if lookup:
+ try:
+ (_ for _ in lookup)
+ except TypeError:
+ self.lookups[i] = [lookup]
+
+ def build(self, builder):
+ """Calls the builder's ``add_chain_context_pos`` callback."""
+ prefix = [p.glyphSet() for p in self.prefix]
+ glyphs = [g.glyphSet() for g in self.glyphs]
+ suffix = [s.glyphSet() for s in self.suffix]
+ builder.add_chain_context_pos(
+ self.location, prefix, glyphs, suffix, self.lookups
+ )
+
+ def asFea(self, indent=""):
+ res = "pos "
+ if (
+ len(self.prefix)
+ or len(self.suffix)
+ or any([x is not None for x in self.lookups])
+ ):
+ if len(self.prefix):
+ res += " ".join(g.asFea() for g in self.prefix) + " "
+ for i, g in enumerate(self.glyphs):
+ res += g.asFea() + "'"
+ if self.lookups[i]:
+ for lu in self.lookups[i]:
+ res += " lookup " + lu.name
+ if i < len(self.glyphs) - 1:
+ res += " "
+ if len(self.suffix):
+ res += " " + " ".join(map(asFea, self.suffix))
+ else:
+ res += " ".join(map(asFea, self.glyph))
+ res += ";"
+ return res
+
+
+class ChainContextSubstStatement(Statement):
+ r"""A chained contextual substitution statement.
+
+ ``prefix``, ``glyphs``, and ``suffix`` should be lists of
+ `glyph-containing objects`_ .
+
+ ``lookups`` should be a list of elements representing what lookups
+ to apply at each glyph position. Each element should be a
+ :class:`LookupBlock` to apply a single chaining lookup at the given
+ position, a list of :class:`LookupBlock`\ s to apply multiple
+ lookups, or ``None`` to apply no lookup. The length of the outer
+ list should equal the length of ``glyphs``; the inner lists can be
+ of variable length."""
+
+ def __init__(self, prefix, glyphs, suffix, lookups, location=None):
+ Statement.__init__(self, location)
+ self.prefix, self.glyphs, self.suffix = prefix, glyphs, suffix
+ self.lookups = list(lookups)
+ for i, lookup in enumerate(lookups):
+ if lookup:
+ try:
+ (_ for _ in lookup)
+ except TypeError:
+ self.lookups[i] = [lookup]
+
+ def build(self, builder):
+ """Calls the builder's ``add_chain_context_subst`` callback."""
+ prefix = [p.glyphSet() for p in self.prefix]
+ glyphs = [g.glyphSet() for g in self.glyphs]
+ suffix = [s.glyphSet() for s in self.suffix]
+ builder.add_chain_context_subst(
+ self.location, prefix, glyphs, suffix, self.lookups
+ )
+
+ def asFea(self, indent=""):
+ res = "sub "
+ if (
+ len(self.prefix)
+ or len(self.suffix)
+ or any([x is not None for x in self.lookups])
+ ):
+ if len(self.prefix):
+ res += " ".join(g.asFea() for g in self.prefix) + " "
+ for i, g in enumerate(self.glyphs):
+ res += g.asFea() + "'"
+ if self.lookups[i]:
+ for lu in self.lookups[i]:
+ res += " lookup " + lu.name
+ if i < len(self.glyphs) - 1:
+ res += " "
+ if len(self.suffix):
+ res += " " + " ".join(map(asFea, self.suffix))
+ else:
+ res += " ".join(map(asFea, self.glyph))
+ res += ";"
+ return res
+
+
+class CursivePosStatement(Statement):
+ """A cursive positioning statement. Entry and exit anchors can either
+ be :class:`Anchor` objects or ``None``."""
+
+ def __init__(self, glyphclass, entryAnchor, exitAnchor, location=None):
+ Statement.__init__(self, location)
+ self.glyphclass = glyphclass
+ self.entryAnchor, self.exitAnchor = entryAnchor, exitAnchor
+
+ def build(self, builder):
+ """Calls the builder object's ``add_cursive_pos`` callback."""
+ builder.add_cursive_pos(
+ self.location, self.glyphclass.glyphSet(), self.entryAnchor, self.exitAnchor
+ )
+
+ def asFea(self, indent=""):
+ entry = self.entryAnchor.asFea() if self.entryAnchor else ""
+ exit = self.exitAnchor.asFea() if self.exitAnchor else ""
+ return "pos cursive {} {} {};".format(self.glyphclass.asFea(), entry, exit)
+
+
+class FeatureReferenceStatement(Statement):
+ """Example: ``feature salt;``"""
+
+ def __init__(self, featureName, location=None):
+ Statement.__init__(self, location)
+ self.location, self.featureName = (location, featureName)
+
+ def build(self, builder):
+ """Calls the builder object's ``add_feature_reference`` callback."""
+ builder.add_feature_reference(self.location, self.featureName)
+
+ def asFea(self, indent=""):
+ return "feature {};".format(self.featureName)
+
+
+class IgnorePosStatement(Statement):
+ """An ``ignore pos`` statement, containing `one or more` contexts to ignore.
+
+ ``chainContexts`` should be a list of ``(prefix, glyphs, suffix)`` tuples,
+ with each of ``prefix``, ``glyphs`` and ``suffix`` being
+ `glyph-containing objects`_ ."""
+
+ def __init__(self, chainContexts, location=None):
+ Statement.__init__(self, location)
+ self.chainContexts = chainContexts
+
+ def build(self, builder):
+ """Calls the builder object's ``add_chain_context_pos`` callback on each
+ rule context."""
+ for prefix, glyphs, suffix in self.chainContexts:
+ prefix = [p.glyphSet() for p in prefix]
+ glyphs = [g.glyphSet() for g in glyphs]
+ suffix = [s.glyphSet() for s in suffix]
+ builder.add_chain_context_pos(self.location, prefix, glyphs, suffix, [])
+
+ def asFea(self, indent=""):
+ contexts = []
+ for prefix, glyphs, suffix in self.chainContexts:
+ res = ""
+ if len(prefix) or len(suffix):
+ if len(prefix):
+ res += " ".join(map(asFea, prefix)) + " "
+ res += " ".join(g.asFea() + "'" for g in glyphs)
+ if len(suffix):
+ res += " " + " ".join(map(asFea, suffix))
+ else:
+ res += " ".join(map(asFea, glyphs))
+ contexts.append(res)
+ return "ignore pos " + ", ".join(contexts) + ";"
+
+
+class IgnoreSubstStatement(Statement):
+ """An ``ignore sub`` statement, containing `one or more` contexts to ignore.
+
+ ``chainContexts`` should be a list of ``(prefix, glyphs, suffix)`` tuples,
+ with each of ``prefix``, ``glyphs`` and ``suffix`` being
+ `glyph-containing objects`_ ."""
+
+ def __init__(self, chainContexts, location=None):
+ Statement.__init__(self, location)
+ self.chainContexts = chainContexts
+
+ def build(self, builder):
+ """Calls the builder object's ``add_chain_context_subst`` callback on
+ each rule context."""
+ for prefix, glyphs, suffix in self.chainContexts:
+ prefix = [p.glyphSet() for p in prefix]
+ glyphs = [g.glyphSet() for g in glyphs]
+ suffix = [s.glyphSet() for s in suffix]
+ builder.add_chain_context_subst(self.location, prefix, glyphs, suffix, [])
+
+ def asFea(self, indent=""):
+ contexts = []
+ for prefix, glyphs, suffix in self.chainContexts:
+ res = ""
+ if len(prefix):
+ res += " ".join(map(asFea, prefix)) + " "
+ res += " ".join(g.asFea() + "'" for g in glyphs)
+ if len(suffix):
+ res += " " + " ".join(map(asFea, suffix))
+ contexts.append(res)
+ return "ignore sub " + ", ".join(contexts) + ";"
+
+
+class IncludeStatement(Statement):
+ """An ``include()`` statement."""
+
+ def __init__(self, filename, location=None):
+ super(IncludeStatement, self).__init__(location)
+ self.filename = filename #: String containing name of file to include
+
+ def build(self):
+ # TODO: consider lazy-loading the including parser/lexer?
+ raise FeatureLibError(
+ "Building an include statement is not implemented yet. "
+ "Instead, use Parser(..., followIncludes=True) for building.",
+ self.location,
+ )
+
+ def asFea(self, indent=""):
+ return indent + "include(%s);" % self.filename
+
+
+class LanguageStatement(Statement):
+ """A ``language`` statement within a feature."""
+
+ def __init__(self, language, include_default=True, required=False, location=None):
+ Statement.__init__(self, location)
+ assert len(language) == 4
+ self.language = language #: A four-character language tag
+ self.include_default = include_default #: If false, "exclude_dflt"
+ self.required = required
+
+ def build(self, builder):
+ """Call the builder object's ``set_language`` callback."""
+ builder.set_language(
+ location=self.location,
+ language=self.language,
+ include_default=self.include_default,
+ required=self.required,
+ )
+
+ def asFea(self, indent=""):
+ res = "language {}".format(self.language.strip())
+ if not self.include_default:
+ res += " exclude_dflt"
+ if self.required:
+ res += " required"
+ res += ";"
+ return res
+
+
+class LanguageSystemStatement(Statement):
+ """A top-level ``languagesystem`` statement."""
+
+ def __init__(self, script, language, location=None):
+ Statement.__init__(self, location)
+ self.script, self.language = (script, language)
+
+ def build(self, builder):
+ """Calls the builder object's ``add_language_system`` callback."""
+ builder.add_language_system(self.location, self.script, self.language)
+
+ def asFea(self, indent=""):
+ return "languagesystem {} {};".format(self.script, self.language.strip())
+
+
+class FontRevisionStatement(Statement):
+ """A ``head`` table ``FontRevision`` statement. ``revision`` should be a
+ number, and will be formatted to three significant decimal places."""
+
+ def __init__(self, revision, location=None):
+ Statement.__init__(self, location)
+ self.revision = revision
+
+ def build(self, builder):
+ builder.set_font_revision(self.location, self.revision)
+
+ def asFea(self, indent=""):
+ return "FontRevision {:.3f};".format(self.revision)
+
+
+class LigatureCaretByIndexStatement(Statement):
+ """A ``GDEF`` table ``LigatureCaretByIndex`` statement. ``glyphs`` should be
+ a `glyph-containing object`_, and ``carets`` should be a list of integers."""
+
+ def __init__(self, glyphs, carets, location=None):
+ Statement.__init__(self, location)
+ self.glyphs, self.carets = (glyphs, carets)
+
+ def build(self, builder):
+ """Calls the builder object's ``add_ligatureCaretByIndex_`` callback."""
+ glyphs = self.glyphs.glyphSet()
+ builder.add_ligatureCaretByIndex_(self.location, glyphs, set(self.carets))
+
+ def asFea(self, indent=""):
+ return "LigatureCaretByIndex {} {};".format(
+ self.glyphs.asFea(), " ".join(str(x) for x in self.carets)
+ )
+
+
+class LigatureCaretByPosStatement(Statement):
+ """A ``GDEF`` table ``LigatureCaretByPos`` statement. ``glyphs`` should be
+ a `glyph-containing object`_, and ``carets`` should be a list of integers."""
+
+ def __init__(self, glyphs, carets, location=None):
+ Statement.__init__(self, location)
+ self.glyphs, self.carets = (glyphs, carets)
+
+ def build(self, builder):
+ """Calls the builder object's ``add_ligatureCaretByPos_`` callback."""
+ glyphs = self.glyphs.glyphSet()
+ builder.add_ligatureCaretByPos_(self.location, glyphs, set(self.carets))
+
+ def asFea(self, indent=""):
+ return "LigatureCaretByPos {} {};".format(
+ self.glyphs.asFea(), " ".join(str(x) for x in self.carets)
+ )
+
+
+class LigatureSubstStatement(Statement):
+ """A chained contextual substitution statement.
+
+ ``prefix``, ``glyphs``, and ``suffix`` should be lists of
+ `glyph-containing objects`_; ``replacement`` should be a single
+ `glyph-containing object`_.
+
+ If ``forceChain`` is True, this is expressed as a chaining rule
+ (e.g. ``sub f' i' by f_i``) even when no context is given."""
+
+ def __init__(self, prefix, glyphs, suffix, replacement, forceChain, location=None):
+ Statement.__init__(self, location)
+ self.prefix, self.glyphs, self.suffix = (prefix, glyphs, suffix)
+ self.replacement, self.forceChain = replacement, forceChain
+
+ def build(self, builder):
+ prefix = [p.glyphSet() for p in self.prefix]
+ glyphs = [g.glyphSet() for g in self.glyphs]
+ suffix = [s.glyphSet() for s in self.suffix]
+ builder.add_ligature_subst(
+ self.location, prefix, glyphs, suffix, self.replacement, self.forceChain
+ )
+
+ def asFea(self, indent=""):
+ res = "sub "
+ if len(self.prefix) or len(self.suffix) or self.forceChain:
+ if len(self.prefix):
+ res += " ".join(g.asFea() for g in self.prefix) + " "
+ res += " ".join(g.asFea() + "'" for g in self.glyphs)
+ if len(self.suffix):
+ res += " " + " ".join(g.asFea() for g in self.suffix)
+ else:
+ res += " ".join(g.asFea() for g in self.glyphs)
+ res += " by "
+ res += asFea(self.replacement)
+ res += ";"
+ return res
+
+
+class LookupFlagStatement(Statement):
+ """A ``lookupflag`` statement. The ``value`` should be an integer value
+ representing the flags in use, but not including the ``markAttachment``
+ class and ``markFilteringSet`` values, which must be specified as
+ glyph-containing objects."""
+
+ def __init__(
+ self, value=0, markAttachment=None, markFilteringSet=None, location=None
+ ):
+ Statement.__init__(self, location)
+ self.value = value
+ self.markAttachment = markAttachment
+ self.markFilteringSet = markFilteringSet
+
+ def build(self, builder):
+ """Calls the builder object's ``set_lookup_flag`` callback."""
+ markAttach = None
+ if self.markAttachment is not None:
+ markAttach = self.markAttachment.glyphSet()
+ markFilter = None
+ if self.markFilteringSet is not None:
+ markFilter = self.markFilteringSet.glyphSet()
+ builder.set_lookup_flag(self.location, self.value, markAttach, markFilter)
+
+ def asFea(self, indent=""):
+ res = []
+ flags = ["RightToLeft", "IgnoreBaseGlyphs", "IgnoreLigatures", "IgnoreMarks"]
+ curr = 1
+ for i in range(len(flags)):
+ if self.value & curr != 0:
+ res.append(flags[i])
+ curr = curr << 1
+ if self.markAttachment is not None:
+ res.append("MarkAttachmentType {}".format(self.markAttachment.asFea()))
+ if self.markFilteringSet is not None:
+ res.append("UseMarkFilteringSet {}".format(self.markFilteringSet.asFea()))
+ if not res:
+ res = ["0"]
+ return "lookupflag {};".format(" ".join(res))
+
+
+class LookupReferenceStatement(Statement):
+ """Represents a ``lookup ...;`` statement to include a lookup in a feature.
+
+ The ``lookup`` should be a :class:`LookupBlock` object."""
+
+ def __init__(self, lookup, location=None):
+ Statement.__init__(self, location)
+ self.location, self.lookup = (location, lookup)
+
+ def build(self, builder):
+ """Calls the builder object's ``add_lookup_call`` callback."""
+ builder.add_lookup_call(self.lookup.name)
+
+ def asFea(self, indent=""):
+ return "lookup {};".format(self.lookup.name)
+
+
+class MarkBasePosStatement(Statement):
+ """A mark-to-base positioning rule. The ``base`` should be a
+ `glyph-containing object`_. The ``marks`` should be a list of
+ (:class:`Anchor`, :class:`MarkClass`) tuples."""
+
+ def __init__(self, base, marks, location=None):
+ Statement.__init__(self, location)
+ self.base, self.marks = base, marks
+
+ def build(self, builder):
+ """Calls the builder object's ``add_mark_base_pos`` callback."""
+ builder.add_mark_base_pos(self.location, self.base.glyphSet(), self.marks)
+
+ def asFea(self, indent=""):
+ res = "pos base {}".format(self.base.asFea())
+ for a, m in self.marks:
+ res += "\n" + indent + SHIFT + "{} mark @{}".format(a.asFea(), m.name)
+ res += ";"
+ return res
+
+
+class MarkLigPosStatement(Statement):
+ """A mark-to-ligature positioning rule. The ``ligatures`` must be a
+ `glyph-containing object`_. The ``marks`` should be a list of lists: each
+ element in the top-level list represents a component glyph, and is made
+ up of a list of (:class:`Anchor`, :class:`MarkClass`) tuples representing
+ mark attachment points for that position.
+
+ Example::
+
+ m1 = MarkClass("TOP_MARKS")
+ m2 = MarkClass("BOTTOM_MARKS")
+ # ... add definitions to mark classes...
+
+ glyph = GlyphName("lam_meem_jeem")
+ marks = [
+ [ (Anchor(625,1800), m1) ], # Attachments on 1st component (lam)
+ [ (Anchor(376,-378), m2) ], # Attachments on 2nd component (meem)
+ [ ] # No attachments on the jeem
+ ]
+ mlp = MarkLigPosStatement(glyph, marks)
+
+ mlp.asFea()
+ # pos ligature lam_meem_jeem mark @TOP_MARKS
+ # ligComponent mark @BOTTOM_MARKS;
+
+ """
+
+ def __init__(self, ligatures, marks, location=None):
+ Statement.__init__(self, location)
+ self.ligatures, self.marks = ligatures, marks
+
+ def build(self, builder):
+ """Calls the builder object's ``add_mark_lig_pos`` callback."""
+ builder.add_mark_lig_pos(self.location, self.ligatures.glyphSet(), self.marks)
+
+ def asFea(self, indent=""):
+ res = "pos ligature {}".format(self.ligatures.asFea())
+ ligs = []
+ for l in self.marks:
+ temp = ""
+ if l is None or not len(l):
+ temp = "\n" + indent + SHIFT * 2 + ""
+ else:
+ for a, m in l:
+ temp += (
+ "\n"
+ + indent
+ + SHIFT * 2
+ + "{} mark @{}".format(a.asFea(), m.name)
+ )
+ ligs.append(temp)
+ res += ("\n" + indent + SHIFT + "ligComponent").join(ligs)
+ res += ";"
+ return res
+
+
+class MarkMarkPosStatement(Statement):
+ """A mark-to-mark positioning rule. The ``baseMarks`` must be a
+ `glyph-containing object`_. The ``marks`` should be a list of
+ (:class:`Anchor`, :class:`MarkClass`) tuples."""
+
+ def __init__(self, baseMarks, marks, location=None):
+ Statement.__init__(self, location)
+ self.baseMarks, self.marks = baseMarks, marks
+
+ def build(self, builder):
+ """Calls the builder object's ``add_mark_mark_pos`` callback."""
+ builder.add_mark_mark_pos(self.location, self.baseMarks.glyphSet(), self.marks)
+
+ def asFea(self, indent=""):
+ res = "pos mark {}".format(self.baseMarks.asFea())
+ for a, m in self.marks:
+ res += "\n" + indent + SHIFT + "{} mark @{}".format(a.asFea(), m.name)
+ res += ";"
+ return res
+
+
+class MultipleSubstStatement(Statement):
+ """A multiple substitution statement.
+
+ Args:
+ prefix: a list of `glyph-containing objects`_.
+ glyph: a single glyph-containing object.
+ suffix: a list of glyph-containing objects.
+ replacement: a list of glyph-containing objects.
+ forceChain: If true, the statement is expressed as a chaining rule
+ (e.g. ``sub f' i' by f_i``) even when no context is given.
+ """
+
+ def __init__(
+ self, prefix, glyph, suffix, replacement, forceChain=False, location=None
+ ):
+ Statement.__init__(self, location)
+ self.prefix, self.glyph, self.suffix = prefix, glyph, suffix
+ self.replacement = replacement
+ self.forceChain = forceChain
+
+ def build(self, builder):
+ """Calls the builder object's ``add_multiple_subst`` callback."""
+ prefix = [p.glyphSet() for p in self.prefix]
+ suffix = [s.glyphSet() for s in self.suffix]
+ if hasattr(self.glyph, "glyphSet"):
+ originals = self.glyph.glyphSet()
+ else:
+ originals = [self.glyph]
+ count = len(originals)
+ replaces = []
+ for r in self.replacement:
+ if hasattr(r, "glyphSet"):
+ replace = r.glyphSet()
+ else:
+ replace = [r]
+ if len(replace) == 1 and len(replace) != count:
+ replace = replace * count
+ replaces.append(replace)
+ replaces = list(zip(*replaces))
+
+ seen_originals = set()
+ for i, original in enumerate(originals):
+ if original not in seen_originals:
+ seen_originals.add(original)
+ builder.add_multiple_subst(
+ self.location,
+ prefix,
+ original,
+ suffix,
+ replaces and replaces[i] or (),
+ self.forceChain,
+ )
+
+ def asFea(self, indent=""):
+ res = "sub "
+ if len(self.prefix) or len(self.suffix) or self.forceChain:
+ if len(self.prefix):
+ res += " ".join(map(asFea, self.prefix)) + " "
+ res += asFea(self.glyph) + "'"
+ if len(self.suffix):
+ res += " " + " ".join(map(asFea, self.suffix))
+ else:
+ res += asFea(self.glyph)
+ replacement = self.replacement or [NullGlyph()]
+ res += " by "
+ res += " ".join(map(asFea, replacement))
+ res += ";"
+ return res
+
+
+class PairPosStatement(Statement):
+ """A pair positioning statement.
+
+ ``glyphs1`` and ``glyphs2`` should be `glyph-containing objects`_.
+ ``valuerecord1`` should be a :class:`ValueRecord` object;
+ ``valuerecord2`` should be either a :class:`ValueRecord` object or ``None``.
+ If ``enumerated`` is true, then this is expressed as an
+ `enumerated pair `_.
+ """
+
+ def __init__(
+ self,
+ glyphs1,
+ valuerecord1,
+ glyphs2,
+ valuerecord2,
+ enumerated=False,
+ location=None,
+ ):
+ Statement.__init__(self, location)
+ self.enumerated = enumerated
+ self.glyphs1, self.valuerecord1 = glyphs1, valuerecord1
+ self.glyphs2, self.valuerecord2 = glyphs2, valuerecord2
+
+ def build(self, builder):
+ """Calls a callback on the builder object:
+
+ * If the rule is enumerated, calls ``add_specific_pair_pos`` on each
+ combination of first and second glyphs.
+ * If the glyphs are both single :class:`GlyphName` objects, calls
+ ``add_specific_pair_pos``.
+ * Else, calls ``add_class_pair_pos``.
+ """
+ if self.enumerated:
+ g = [self.glyphs1.glyphSet(), self.glyphs2.glyphSet()]
+ seen_pair = False
+ for glyph1, glyph2 in itertools.product(*g):
+ seen_pair = True
+ builder.add_specific_pair_pos(
+ self.location, glyph1, self.valuerecord1, glyph2, self.valuerecord2
+ )
+ if not seen_pair:
+ raise FeatureLibError(
+ "Empty glyph class in positioning rule", self.location
+ )
+ return
+
+ is_specific = isinstance(self.glyphs1, GlyphName) and isinstance(
+ self.glyphs2, GlyphName
+ )
+ if is_specific:
+ builder.add_specific_pair_pos(
+ self.location,
+ self.glyphs1.glyph,
+ self.valuerecord1,
+ self.glyphs2.glyph,
+ self.valuerecord2,
+ )
+ else:
+ builder.add_class_pair_pos(
+ self.location,
+ self.glyphs1.glyphSet(),
+ self.valuerecord1,
+ self.glyphs2.glyphSet(),
+ self.valuerecord2,
+ )
+
+ def asFea(self, indent=""):
+ res = "enum " if self.enumerated else ""
+ if self.valuerecord2:
+ res += "pos {} {} {} {};".format(
+ self.glyphs1.asFea(),
+ self.valuerecord1.asFea(),
+ self.glyphs2.asFea(),
+ self.valuerecord2.asFea(),
+ )
+ else:
+ res += "pos {} {} {};".format(
+ self.glyphs1.asFea(), self.glyphs2.asFea(), self.valuerecord1.asFea()
+ )
+ return res
+
+
+class ReverseChainSingleSubstStatement(Statement):
+ """A reverse chaining substitution statement. You don't see those every day.
+
+ Note the unusual argument order: ``suffix`` comes `before` ``glyphs``.
+ ``old_prefix``, ``old_suffix``, ``glyphs`` and ``replacements`` should be
+ lists of `glyph-containing objects`_. ``glyphs`` and ``replacements`` should
+ be one-item lists.
+ """
+
+ def __init__(self, old_prefix, old_suffix, glyphs, replacements, location=None):
+ Statement.__init__(self, location)
+ self.old_prefix, self.old_suffix = old_prefix, old_suffix
+ self.glyphs = glyphs
+ self.replacements = replacements
+
+ def build(self, builder):
+ prefix = [p.glyphSet() for p in self.old_prefix]
+ suffix = [s.glyphSet() for s in self.old_suffix]
+ originals = self.glyphs[0].glyphSet()
+ replaces = self.replacements[0].glyphSet()
+ if len(replaces) == 1:
+ replaces = replaces * len(originals)
+ builder.add_reverse_chain_single_subst(
+ self.location, prefix, suffix, dict(zip(originals, replaces))
+ )
+
+ def asFea(self, indent=""):
+ res = "rsub "
+ if len(self.old_prefix) or len(self.old_suffix):
+ if len(self.old_prefix):
+ res += " ".join(asFea(g) for g in self.old_prefix) + " "
+ res += " ".join(asFea(g) + "'" for g in self.glyphs)
+ if len(self.old_suffix):
+ res += " " + " ".join(asFea(g) for g in self.old_suffix)
+ else:
+ res += " ".join(map(asFea, self.glyphs))
+ res += " by {};".format(" ".join(asFea(g) for g in self.replacements))
+ return res
+
+
+class SingleSubstStatement(Statement):
+ """A single substitution statement.
+
+ Note the unusual argument order: ``prefix`` and suffix come `after`
+ the replacement ``glyphs``. ``prefix``, ``suffix``, ``glyphs`` and
+ ``replace`` should be lists of `glyph-containing objects`_. ``glyphs`` and
+ ``replace`` should be one-item lists.
+ """
+
+ def __init__(self, glyphs, replace, prefix, suffix, forceChain, location=None):
+ Statement.__init__(self, location)
+ self.prefix, self.suffix = prefix, suffix
+ self.forceChain = forceChain
+ self.glyphs = glyphs
+ self.replacements = replace
+
+ def build(self, builder):
+ """Calls the builder object's ``add_single_subst`` callback."""
+ prefix = [p.glyphSet() for p in self.prefix]
+ suffix = [s.glyphSet() for s in self.suffix]
+ originals = self.glyphs[0].glyphSet()
+ replaces = self.replacements[0].glyphSet()
+ if len(replaces) == 1:
+ replaces = replaces * len(originals)
+ builder.add_single_subst(
+ self.location,
+ prefix,
+ suffix,
+ OrderedDict(zip(originals, replaces)),
+ self.forceChain,
+ )
+
+ def asFea(self, indent=""):
+ res = "sub "
+ if len(self.prefix) or len(self.suffix) or self.forceChain:
+ if len(self.prefix):
+ res += " ".join(asFea(g) for g in self.prefix) + " "
+ res += " ".join(asFea(g) + "'" for g in self.glyphs)
+ if len(self.suffix):
+ res += " " + " ".join(asFea(g) for g in self.suffix)
+ else:
+ res += " ".join(asFea(g) for g in self.glyphs)
+ res += " by {};".format(" ".join(asFea(g) for g in self.replacements))
+ return res
+
+
+class ScriptStatement(Statement):
+ """A ``script`` statement."""
+
+ def __init__(self, script, location=None):
+ Statement.__init__(self, location)
+ self.script = script #: the script code
+
+ def build(self, builder):
+ """Calls the builder's ``set_script`` callback."""
+ builder.set_script(self.location, self.script)
+
+ def asFea(self, indent=""):
+ return "script {};".format(self.script.strip())
+
+
+class SinglePosStatement(Statement):
+ """A single position statement. ``prefix`` and ``suffix`` should be
+ lists of `glyph-containing objects`_.
+
+ ``pos`` should be a one-element list containing a (`glyph-containing object`_,
+ :class:`ValueRecord`) tuple."""
+
+ def __init__(self, pos, prefix, suffix, forceChain, location=None):
+ Statement.__init__(self, location)
+ self.pos, self.prefix, self.suffix = pos, prefix, suffix
+ self.forceChain = forceChain
+
+ def build(self, builder):
+ """Calls the builder object's ``add_single_pos`` callback."""
+ prefix = [p.glyphSet() for p in self.prefix]
+ suffix = [s.glyphSet() for s in self.suffix]
+ pos = [(g.glyphSet(), value) for g, value in self.pos]
+ builder.add_single_pos(self.location, prefix, suffix, pos, self.forceChain)
+
+ def asFea(self, indent=""):
+ res = "pos "
+ if len(self.prefix) or len(self.suffix) or self.forceChain:
+ if len(self.prefix):
+ res += " ".join(map(asFea, self.prefix)) + " "
+ res += " ".join(
+ [
+ asFea(x[0]) + "'" + ((" " + x[1].asFea()) if x[1] else "")
+ for x in self.pos
+ ]
+ )
+ if len(self.suffix):
+ res += " " + " ".join(map(asFea, self.suffix))
+ else:
+ res += " ".join(
+ [asFea(x[0]) + " " + (x[1].asFea() if x[1] else "") for x in self.pos]
+ )
+ res += ";"
+ return res
+
+
+class SubtableStatement(Statement):
+ """Represents a subtable break."""
+
+ def __init__(self, location=None):
+ Statement.__init__(self, location)
+
+ def build(self, builder):
+ """Calls the builder objects's ``add_subtable_break`` callback."""
+ builder.add_subtable_break(self.location)
+
+ def asFea(self, indent=""):
+ return "subtable;"
+
+
+class ValueRecord(Expression):
+ """Represents a value record."""
+
+ def __init__(
+ self,
+ xPlacement=None,
+ yPlacement=None,
+ xAdvance=None,
+ yAdvance=None,
+ xPlaDevice=None,
+ yPlaDevice=None,
+ xAdvDevice=None,
+ yAdvDevice=None,
+ vertical=False,
+ location=None,
+ ):
+ Expression.__init__(self, location)
+ self.xPlacement, self.yPlacement = (xPlacement, yPlacement)
+ self.xAdvance, self.yAdvance = (xAdvance, yAdvance)
+ self.xPlaDevice, self.yPlaDevice = (xPlaDevice, yPlaDevice)
+ self.xAdvDevice, self.yAdvDevice = (xAdvDevice, yAdvDevice)
+ self.vertical = vertical
+
+ def __eq__(self, other):
+ return (
+ self.xPlacement == other.xPlacement
+ and self.yPlacement == other.yPlacement
+ and self.xAdvance == other.xAdvance
+ and self.yAdvance == other.yAdvance
+ and self.xPlaDevice == other.xPlaDevice
+ and self.xAdvDevice == other.xAdvDevice
+ )
+
+ def __ne__(self, other):
+ return not self.__eq__(other)
+
+ def __hash__(self):
+ return (
+ hash(self.xPlacement)
+ ^ hash(self.yPlacement)
+ ^ hash(self.xAdvance)
+ ^ hash(self.yAdvance)
+ ^ hash(self.xPlaDevice)
+ ^ hash(self.yPlaDevice)
+ ^ hash(self.xAdvDevice)
+ ^ hash(self.yAdvDevice)
+ )
+
+ def asFea(self, indent=""):
+ if not self:
+ return ""
+
+ x, y = self.xPlacement, self.yPlacement
+ xAdvance, yAdvance = self.xAdvance, self.yAdvance
+ xPlaDevice, yPlaDevice = self.xPlaDevice, self.yPlaDevice
+ xAdvDevice, yAdvDevice = self.xAdvDevice, self.yAdvDevice
+ vertical = self.vertical
+
+ # Try format A, if possible.
+ if x is None and y is None:
+ if xAdvance is None and vertical:
+ return str(yAdvance)
+ elif yAdvance is None and not vertical:
+ return str(xAdvance)
+
+ # Make any remaining None value 0 to avoid generating invalid records.
+ x = x or 0
+ y = y or 0
+ xAdvance = xAdvance or 0
+ yAdvance = yAdvance or 0
+
+ # Try format B, if possible.
+ if (
+ xPlaDevice is None
+ and yPlaDevice is None
+ and xAdvDevice is None
+ and yAdvDevice is None
+ ):
+ return "<%s %s %s %s>" % (x, y, xAdvance, yAdvance)
+
+ # Last resort is format C.
+ return "<%s %s %s %s %s %s %s %s>" % (
+ x,
+ y,
+ xAdvance,
+ yAdvance,
+ deviceToString(xPlaDevice),
+ deviceToString(yPlaDevice),
+ deviceToString(xAdvDevice),
+ deviceToString(yAdvDevice),
+ )
+
+ def __bool__(self):
+ return any(
+ getattr(self, v) is not None
+ for v in [
+ "xPlacement",
+ "yPlacement",
+ "xAdvance",
+ "yAdvance",
+ "xPlaDevice",
+ "yPlaDevice",
+ "xAdvDevice",
+ "yAdvDevice",
+ ]
+ )
+
+ __nonzero__ = __bool__
+
+
+class ValueRecordDefinition(Statement):
+ """Represents a named value record definition."""
+
+ def __init__(self, name, value, location=None):
+ Statement.__init__(self, location)
+ self.name = name #: Value record name as string
+ self.value = value #: :class:`ValueRecord` object
+
+ def asFea(self, indent=""):
+ return "valueRecordDef {} {};".format(self.value.asFea(), self.name)
+
+
+def simplify_name_attributes(pid, eid, lid):
+ if pid == 3 and eid == 1 and lid == 1033:
+ return ""
+ elif pid == 1 and eid == 0 and lid == 0:
+ return "1"
+ else:
+ return "{} {} {}".format(pid, eid, lid)
+
+
+class NameRecord(Statement):
+ """Represents a name record. (`Section 9.e. `_)"""
+
+ def __init__(self, nameID, platformID, platEncID, langID, string, location=None):
+ Statement.__init__(self, location)
+ self.nameID = nameID #: Name ID as integer (e.g. 9 for designer's name)
+ self.platformID = platformID #: Platform ID as integer
+ self.platEncID = platEncID #: Platform encoding ID as integer
+ self.langID = langID #: Language ID as integer
+ self.string = string #: Name record value
+
+ def build(self, builder):
+ """Calls the builder object's ``add_name_record`` callback."""
+ builder.add_name_record(
+ self.location,
+ self.nameID,
+ self.platformID,
+ self.platEncID,
+ self.langID,
+ self.string,
+ )
+
+ def asFea(self, indent=""):
+ def escape(c, escape_pattern):
+ # Also escape U+0022 QUOTATION MARK and U+005C REVERSE SOLIDUS
+ if c >= 0x20 and c <= 0x7E and c not in (0x22, 0x5C):
+ return chr(c)
+ else:
+ return escape_pattern % c
+
+ encoding = getEncoding(self.platformID, self.platEncID, self.langID)
+ if encoding is None:
+ raise FeatureLibError("Unsupported encoding", self.location)
+ s = tobytes(self.string, encoding=encoding)
+ if encoding == "utf_16_be":
+ escaped_string = "".join(
+ [
+ escape(byteord(s[i]) * 256 + byteord(s[i + 1]), r"\%04x")
+ for i in range(0, len(s), 2)
+ ]
+ )
+ else:
+ escaped_string = "".join([escape(byteord(b), r"\%02x") for b in s])
+ plat = simplify_name_attributes(self.platformID, self.platEncID, self.langID)
+ if plat != "":
+ plat += " "
+ return 'nameid {} {}"{}";'.format(self.nameID, plat, escaped_string)
+
+
+class FeatureNameStatement(NameRecord):
+ """Represents a ``sizemenuname`` or ``name`` statement."""
+
+ def build(self, builder):
+ """Calls the builder object's ``add_featureName`` callback."""
+ NameRecord.build(self, builder)
+ builder.add_featureName(self.nameID)
+
+ def asFea(self, indent=""):
+ if self.nameID == "size":
+ tag = "sizemenuname"
+ else:
+ tag = "name"
+ plat = simplify_name_attributes(self.platformID, self.platEncID, self.langID)
+ if plat != "":
+ plat += " "
+ return '{} {}"{}";'.format(tag, plat, self.string)
+
+
+class STATNameStatement(NameRecord):
+ """Represents a STAT table ``name`` statement."""
+
+ def asFea(self, indent=""):
+ plat = simplify_name_attributes(self.platformID, self.platEncID, self.langID)
+ if plat != "":
+ plat += " "
+ return 'name {}"{}";'.format(plat, self.string)
+
+
+class SizeParameters(Statement):
+ """A ``parameters`` statement."""
+
+ def __init__(self, DesignSize, SubfamilyID, RangeStart, RangeEnd, location=None):
+ Statement.__init__(self, location)
+ self.DesignSize = DesignSize
+ self.SubfamilyID = SubfamilyID
+ self.RangeStart = RangeStart
+ self.RangeEnd = RangeEnd
+
+ def build(self, builder):
+ """Calls the builder object's ``set_size_parameters`` callback."""
+ builder.set_size_parameters(
+ self.location,
+ self.DesignSize,
+ self.SubfamilyID,
+ self.RangeStart,
+ self.RangeEnd,
+ )
+
+ def asFea(self, indent=""):
+ res = "parameters {:.1f} {}".format(self.DesignSize, self.SubfamilyID)
+ if self.RangeStart != 0 or self.RangeEnd != 0:
+ res += " {} {}".format(int(self.RangeStart * 10), int(self.RangeEnd * 10))
+ return res + ";"
+
+
+class CVParametersNameStatement(NameRecord):
+ """Represent a name statement inside a ``cvParameters`` block."""
+
+ def __init__(
+ self, nameID, platformID, platEncID, langID, string, block_name, location=None
+ ):
+ NameRecord.__init__(
+ self, nameID, platformID, platEncID, langID, string, location=location
+ )
+ self.block_name = block_name
+
+ def build(self, builder):
+ """Calls the builder object's ``add_cv_parameter`` callback."""
+ item = ""
+ if self.block_name == "ParamUILabelNameID":
+ item = "_{}".format(builder.cv_num_named_params_.get(self.nameID, 0))
+ builder.add_cv_parameter(self.nameID)
+ self.nameID = (self.nameID, self.block_name + item)
+ NameRecord.build(self, builder)
+
+ def asFea(self, indent=""):
+ plat = simplify_name_attributes(self.platformID, self.platEncID, self.langID)
+ if plat != "":
+ plat += " "
+ return 'name {}"{}";'.format(plat, self.string)
+
+
+class CharacterStatement(Statement):
+ """
+ Statement used in cvParameters blocks of Character Variant features (cvXX).
+ The Unicode value may be written with either decimal or hexadecimal
+ notation. The value must be preceded by '0x' if it is a hexadecimal value.
+ The largest Unicode value allowed is 0xFFFFFF.
+ """
+
+ def __init__(self, character, tag, location=None):
+ Statement.__init__(self, location)
+ self.character = character
+ self.tag = tag
+
+ def build(self, builder):
+ """Calls the builder object's ``add_cv_character`` callback."""
+ builder.add_cv_character(self.character, self.tag)
+
+ def asFea(self, indent=""):
+ return "Character {:#x};".format(self.character)
+
+
+class BaseAxis(Statement):
+ """An axis definition, being either a ``VertAxis.BaseTagList/BaseScriptList``
+ pair or a ``HorizAxis.BaseTagList/BaseScriptList`` pair."""
+
+ def __init__(self, bases, scripts, vertical, location=None):
+ Statement.__init__(self, location)
+ self.bases = bases #: A list of baseline tag names as strings
+ self.scripts = scripts #: A list of script record tuplets (script tag, default baseline tag, base coordinate)
+ self.vertical = vertical #: Boolean; VertAxis if True, HorizAxis if False
+
+ def build(self, builder):
+ """Calls the builder object's ``set_base_axis`` callback."""
+ builder.set_base_axis(self.bases, self.scripts, self.vertical)
+
+ def asFea(self, indent=""):
+ direction = "Vert" if self.vertical else "Horiz"
+ scripts = [
+ "{} {} {}".format(a[0], a[1], " ".join(map(str, a[2])))
+ for a in self.scripts
+ ]
+ return "{}Axis.BaseTagList {};\n{}{}Axis.BaseScriptList {};".format(
+ direction, " ".join(self.bases), indent, direction, ", ".join(scripts)
+ )
+
+
+class OS2Field(Statement):
+ """An entry in the ``OS/2`` table. Most ``values`` should be numbers or
+ strings, apart from when the key is ``UnicodeRange``, ``CodePageRange``
+ or ``Panose``, in which case it should be an array of integers."""
+
+ def __init__(self, key, value, location=None):
+ Statement.__init__(self, location)
+ self.key = key
+ self.value = value
+
+ def build(self, builder):
+ """Calls the builder object's ``add_os2_field`` callback."""
+ builder.add_os2_field(self.key, self.value)
+
+ def asFea(self, indent=""):
+ def intarr2str(x):
+ return " ".join(map(str, x))
+
+ numbers = (
+ "FSType",
+ "TypoAscender",
+ "TypoDescender",
+ "TypoLineGap",
+ "winAscent",
+ "winDescent",
+ "XHeight",
+ "CapHeight",
+ "WeightClass",
+ "WidthClass",
+ "LowerOpSize",
+ "UpperOpSize",
+ )
+ ranges = ("UnicodeRange", "CodePageRange")
+ keywords = dict([(x.lower(), [x, str]) for x in numbers])
+ keywords.update([(x.lower(), [x, intarr2str]) for x in ranges])
+ keywords["panose"] = ["Panose", intarr2str]
+ keywords["vendor"] = ["Vendor", lambda y: '"{}"'.format(y)]
+ if self.key in keywords:
+ return "{} {};".format(
+ keywords[self.key][0], keywords[self.key][1](self.value)
+ )
+ return "" # should raise exception
+
+
+class HheaField(Statement):
+ """An entry in the ``hhea`` table."""
+
+ def __init__(self, key, value, location=None):
+ Statement.__init__(self, location)
+ self.key = key
+ self.value = value
+
+ def build(self, builder):
+ """Calls the builder object's ``add_hhea_field`` callback."""
+ builder.add_hhea_field(self.key, self.value)
+
+ def asFea(self, indent=""):
+ fields = ("CaretOffset", "Ascender", "Descender", "LineGap")
+ keywords = dict([(x.lower(), x) for x in fields])
+ return "{} {};".format(keywords[self.key], self.value)
+
+
+class VheaField(Statement):
+ """An entry in the ``vhea`` table."""
+
+ def __init__(self, key, value, location=None):
+ Statement.__init__(self, location)
+ self.key = key
+ self.value = value
+
+ def build(self, builder):
+ """Calls the builder object's ``add_vhea_field`` callback."""
+ builder.add_vhea_field(self.key, self.value)
+
+ def asFea(self, indent=""):
+ fields = ("VertTypoAscender", "VertTypoDescender", "VertTypoLineGap")
+ keywords = dict([(x.lower(), x) for x in fields])
+ return "{} {};".format(keywords[self.key], self.value)
+
+
+class STATDesignAxisStatement(Statement):
+ """A STAT table Design Axis
+
+ Args:
+ tag (str): a 4 letter axis tag
+ axisOrder (int): an int
+ names (list): a list of :class:`STATNameStatement` objects
+ """
+
+ def __init__(self, tag, axisOrder, names, location=None):
+ Statement.__init__(self, location)
+ self.tag = tag
+ self.axisOrder = axisOrder
+ self.names = names
+ self.location = location
+
+ def build(self, builder):
+ builder.addDesignAxis(self, self.location)
+
+ def asFea(self, indent=""):
+ indent += SHIFT
+ res = f"DesignAxis {self.tag} {self.axisOrder} {{ \n"
+ res += ("\n" + indent).join([s.asFea(indent=indent) for s in self.names]) + "\n"
+ res += "};"
+ return res
+
+
+class ElidedFallbackName(Statement):
+ """STAT table ElidedFallbackName
+
+ Args:
+ names: a list of :class:`STATNameStatement` objects
+ """
+
+ def __init__(self, names, location=None):
+ Statement.__init__(self, location)
+ self.names = names
+ self.location = location
+
+ def build(self, builder):
+ builder.setElidedFallbackName(self.names, self.location)
+
+ def asFea(self, indent=""):
+ indent += SHIFT
+ res = "ElidedFallbackName { \n"
+ res += ("\n" + indent).join([s.asFea(indent=indent) for s in self.names]) + "\n"
+ res += "};"
+ return res
+
+
+class ElidedFallbackNameID(Statement):
+ """STAT table ElidedFallbackNameID
+
+ Args:
+ value: an int pointing to an existing name table name ID
+ """
+
+ def __init__(self, value, location=None):
+ Statement.__init__(self, location)
+ self.value = value
+ self.location = location
+
+ def build(self, builder):
+ builder.setElidedFallbackName(self.value, self.location)
+
+ def asFea(self, indent=""):
+ return f"ElidedFallbackNameID {self.value};"
+
+
+class STATAxisValueStatement(Statement):
+ """A STAT table Axis Value Record
+
+ Args:
+ names (list): a list of :class:`STATNameStatement` objects
+ locations (list): a list of :class:`AxisValueLocationStatement` objects
+ flags (int): an int
+ """
+
+ def __init__(self, names, locations, flags, location=None):
+ Statement.__init__(self, location)
+ self.names = names
+ self.locations = locations
+ self.flags = flags
+
+ def build(self, builder):
+ builder.addAxisValueRecord(self, self.location)
+
+ def asFea(self, indent=""):
+ res = "AxisValue {\n"
+ for location in self.locations:
+ res += location.asFea()
+
+ for nameRecord in self.names:
+ res += nameRecord.asFea()
+ res += "\n"
+
+ if self.flags:
+ flags = ["OlderSiblingFontAttribute", "ElidableAxisValueName"]
+ flagStrings = []
+ curr = 1
+ for i in range(len(flags)):
+ if self.flags & curr != 0:
+ flagStrings.append(flags[i])
+ curr = curr << 1
+ res += f"flag {' '.join(flagStrings)};\n"
+ res += "};"
+ return res
+
+
+class AxisValueLocationStatement(Statement):
+ """
+ A STAT table Axis Value Location
+
+ Args:
+ tag (str): a 4 letter axis tag
+ values (list): a list of ints and/or floats
+ """
+
+ def __init__(self, tag, values, location=None):
+ Statement.__init__(self, location)
+ self.tag = tag
+ self.values = values
+
+ def asFea(self, res=""):
+ res += f"location {self.tag} "
+ res += f"{' '.join(str(i) for i in self.values)};\n"
+ return res
+
+
+class ConditionsetStatement(Statement):
+ """
+ A variable layout conditionset
+
+ Args:
+ name (str): the name of this conditionset
+ conditions (dict): a dictionary mapping axis tags to a
+ tuple of (min,max) userspace coordinates.
+ """
+
+ def __init__(self, name, conditions, location=None):
+ Statement.__init__(self, location)
+ self.name = name
+ self.conditions = conditions
+
+ def build(self, builder):
+ builder.add_conditionset(self.location, self.name, self.conditions)
+
+ def asFea(self, res="", indent=""):
+ res += indent + f"conditionset {self.name} " + "{\n"
+ for tag, (minvalue, maxvalue) in self.conditions.items():
+ res += indent + SHIFT + f"{tag} {minvalue} {maxvalue};\n"
+ res += indent + "}" + f" {self.name};\n"
+ return res
+
+
+class VariationBlock(Block):
+ """A variation feature block, applicable in a given set of conditions."""
+
+ def __init__(self, name, conditionset, use_extension=False, location=None):
+ Block.__init__(self, location)
+ self.name, self.conditionset, self.use_extension = (
+ name,
+ conditionset,
+ use_extension,
+ )
+
+ def build(self, builder):
+ """Call the ``start_feature`` callback on the builder object, visit
+ all the statements in this feature, and then call ``end_feature``."""
+ builder.start_feature(self.location, self.name)
+ if (
+ self.conditionset != "NULL"
+ and self.conditionset not in builder.conditionsets_
+ ):
+ raise FeatureLibError(
+ f"variation block used undefined conditionset {self.conditionset}",
+ self.location,
+ )
+
+ # language exclude_dflt statements modify builder.features_
+ # limit them to this block with temporary builder.features_
+ features = builder.features_
+ builder.features_ = {}
+ Block.build(self, builder)
+ for key, value in builder.features_.items():
+ items = builder.feature_variations_.setdefault(key, {}).setdefault(
+ self.conditionset, []
+ )
+ items.extend(value)
+ if key not in features:
+ features[key] = [] # Ensure we make a feature record
+ builder.features_ = features
+ builder.end_feature()
+
+ def asFea(self, indent=""):
+ res = indent + "variation %s " % self.name.strip()
+ res += self.conditionset + " "
+ if self.use_extension:
+ res += "useExtension "
+ res += "{\n"
+ res += Block.asFea(self, indent=indent)
+ res += indent + "} %s;\n" % self.name.strip()
+ return res
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/builder.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/builder.py
new file mode 100644
index 0000000000000000000000000000000000000000..1cfe1c3a137ebfc1c1b4bd8b437266638b284cab
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/builder.py
@@ -0,0 +1,1741 @@
+from fontTools.misc import sstruct
+from fontTools.misc.textTools import Tag, tostr, binary2num, safeEval
+from fontTools.feaLib.error import FeatureLibError
+from fontTools.feaLib.lookupDebugInfo import (
+ LookupDebugInfo,
+ LOOKUP_DEBUG_INFO_KEY,
+ LOOKUP_DEBUG_ENV_VAR,
+)
+from fontTools.feaLib.parser import Parser
+from fontTools.feaLib.ast import FeatureFile
+from fontTools.feaLib.variableScalar import VariableScalar
+from fontTools.otlLib import builder as otl
+from fontTools.otlLib.maxContextCalc import maxCtxFont
+from fontTools.ttLib import newTable, getTableModule
+from fontTools.ttLib.tables import otBase, otTables
+from fontTools.otlLib.builder import (
+ AlternateSubstBuilder,
+ ChainContextPosBuilder,
+ ChainContextSubstBuilder,
+ LigatureSubstBuilder,
+ MultipleSubstBuilder,
+ CursivePosBuilder,
+ MarkBasePosBuilder,
+ MarkLigPosBuilder,
+ MarkMarkPosBuilder,
+ ReverseChainSingleSubstBuilder,
+ SingleSubstBuilder,
+ ClassPairPosSubtableBuilder,
+ PairPosBuilder,
+ SinglePosBuilder,
+ ChainContextualRule,
+)
+from fontTools.otlLib.error import OpenTypeLibError
+from fontTools.varLib.varStore import OnlineVarStoreBuilder
+from fontTools.varLib.builder import buildVarDevTable
+from fontTools.varLib.featureVars import addFeatureVariationsRaw
+from fontTools.varLib.models import normalizeValue, piecewiseLinearMap
+from collections import defaultdict
+import copy
+import itertools
+from io import StringIO
+import logging
+import warnings
+import os
+
+
+log = logging.getLogger(__name__)
+
+
+def addOpenTypeFeatures(font, featurefile, tables=None, debug=False):
+ """Add features from a file to a font. Note that this replaces any features
+ currently present.
+
+ Args:
+ font (feaLib.ttLib.TTFont): The font object.
+ featurefile: Either a path or file object (in which case we
+ parse it into an AST), or a pre-parsed AST instance.
+ tables: If passed, restrict the set of affected tables to those in the
+ list.
+ debug: Whether to add source debugging information to the font in the
+ ``Debg`` table
+
+ """
+ builder = Builder(font, featurefile)
+ builder.build(tables=tables, debug=debug)
+
+
+def addOpenTypeFeaturesFromString(
+ font, features, filename=None, tables=None, debug=False
+):
+ """Add features from a string to a font. Note that this replaces any
+ features currently present.
+
+ Args:
+ font (feaLib.ttLib.TTFont): The font object.
+ features: A string containing feature code.
+ filename: The directory containing ``filename`` is used as the root of
+ relative ``include()`` paths; if ``None`` is provided, the current
+ directory is assumed.
+ tables: If passed, restrict the set of affected tables to those in the
+ list.
+ debug: Whether to add source debugging information to the font in the
+ ``Debg`` table
+
+ """
+
+ featurefile = StringIO(tostr(features))
+ if filename:
+ featurefile.name = filename
+ addOpenTypeFeatures(font, featurefile, tables=tables, debug=debug)
+
+
+class Builder(object):
+ supportedTables = frozenset(
+ Tag(tag)
+ for tag in [
+ "BASE",
+ "GDEF",
+ "GPOS",
+ "GSUB",
+ "OS/2",
+ "head",
+ "hhea",
+ "name",
+ "vhea",
+ "STAT",
+ ]
+ )
+
+ def __init__(self, font, featurefile):
+ self.font = font
+ # 'featurefile' can be either a path or file object (in which case we
+ # parse it into an AST), or a pre-parsed AST instance
+ if isinstance(featurefile, FeatureFile):
+ self.parseTree, self.file = featurefile, None
+ else:
+ self.parseTree, self.file = None, featurefile
+ self.glyphMap = font.getReverseGlyphMap()
+ self.varstorebuilder = None
+ if "fvar" in font:
+ self.axes = font["fvar"].axes
+ self.varstorebuilder = OnlineVarStoreBuilder(
+ [ax.axisTag for ax in self.axes]
+ )
+ self.default_language_systems_ = set()
+ self.script_ = None
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+ self.language_systems = set()
+ self.seen_non_DFLT_script_ = False
+ self.named_lookups_ = {}
+ self.cur_lookup_ = None
+ self.cur_lookup_name_ = None
+ self.cur_feature_name_ = None
+ self.lookups_ = []
+ self.lookup_locations = {"GSUB": {}, "GPOS": {}}
+ self.features_ = {} # ('latn', 'DEU ', 'smcp') --> [LookupBuilder*]
+ self.required_features_ = {} # ('latn', 'DEU ') --> 'scmp'
+ self.feature_variations_ = {}
+ # for feature 'aalt'
+ self.aalt_features_ = [] # [(location, featureName)*], for 'aalt'
+ self.aalt_location_ = None
+ self.aalt_alternates_ = {}
+ # for 'featureNames'
+ self.featureNames_ = set()
+ self.featureNames_ids_ = {}
+ # for 'cvParameters'
+ self.cv_parameters_ = set()
+ self.cv_parameters_ids_ = {}
+ self.cv_num_named_params_ = {}
+ self.cv_characters_ = defaultdict(list)
+ # for feature 'size'
+ self.size_parameters_ = None
+ # for table 'head'
+ self.fontRevision_ = None # 2.71
+ # for table 'name'
+ self.names_ = []
+ # for table 'BASE'
+ self.base_horiz_axis_ = None
+ self.base_vert_axis_ = None
+ # for table 'GDEF'
+ self.attachPoints_ = {} # "a" --> {3, 7}
+ self.ligCaretCoords_ = {} # "f_f_i" --> {300, 600}
+ self.ligCaretPoints_ = {} # "f_f_i" --> {3, 7}
+ self.glyphClassDefs_ = {} # "fi" --> (2, (file, line, column))
+ self.markAttach_ = {} # "acute" --> (4, (file, line, column))
+ self.markAttachClassID_ = {} # frozenset({"acute", "grave"}) --> 4
+ self.markFilterSets_ = {} # frozenset({"acute", "grave"}) --> 4
+ # for table 'OS/2'
+ self.os2_ = {}
+ # for table 'hhea'
+ self.hhea_ = {}
+ # for table 'vhea'
+ self.vhea_ = {}
+ # for table 'STAT'
+ self.stat_ = {}
+ # for conditionsets
+ self.conditionsets_ = {}
+ # We will often use exactly the same locations (i.e. the font's masters)
+ # for a large number of variable scalars. Instead of creating a model
+ # for each, let's share the models.
+ self.model_cache = {}
+
+ def build(self, tables=None, debug=False):
+ if self.parseTree is None:
+ self.parseTree = Parser(self.file, self.glyphMap).parse()
+ self.parseTree.build(self)
+ # by default, build all the supported tables
+ if tables is None:
+ tables = self.supportedTables
+ else:
+ tables = frozenset(tables)
+ unsupported = tables - self.supportedTables
+ if unsupported:
+ unsupported_string = ", ".join(sorted(unsupported))
+ raise NotImplementedError(
+ "The following tables were requested but are unsupported: "
+ f"{unsupported_string}."
+ )
+ if "GSUB" in tables:
+ self.build_feature_aalt_()
+ if "head" in tables:
+ self.build_head()
+ if "hhea" in tables:
+ self.build_hhea()
+ if "vhea" in tables:
+ self.build_vhea()
+ if "name" in tables:
+ self.build_name()
+ if "OS/2" in tables:
+ self.build_OS_2()
+ if "STAT" in tables:
+ self.build_STAT()
+ for tag in ("GPOS", "GSUB"):
+ if tag not in tables:
+ continue
+ table = self.makeTable(tag)
+ if self.feature_variations_:
+ self.makeFeatureVariations(table, tag)
+ if (
+ table.ScriptList.ScriptCount > 0
+ or table.FeatureList.FeatureCount > 0
+ or table.LookupList.LookupCount > 0
+ ):
+ fontTable = self.font[tag] = newTable(tag)
+ fontTable.table = table
+ elif tag in self.font:
+ del self.font[tag]
+ if any(tag in self.font for tag in ("GPOS", "GSUB")) and "OS/2" in self.font:
+ self.font["OS/2"].usMaxContext = maxCtxFont(self.font)
+ if "GDEF" in tables:
+ gdef = self.buildGDEF()
+ if gdef:
+ self.font["GDEF"] = gdef
+ elif "GDEF" in self.font:
+ del self.font["GDEF"]
+ if "BASE" in tables:
+ base = self.buildBASE()
+ if base:
+ self.font["BASE"] = base
+ elif "BASE" in self.font:
+ del self.font["BASE"]
+ if debug or os.environ.get(LOOKUP_DEBUG_ENV_VAR):
+ self.buildDebg()
+
+ def get_chained_lookup_(self, location, builder_class):
+ result = builder_class(self.font, location)
+ result.lookupflag = self.lookupflag_
+ result.markFilterSet = self.lookupflag_markFilterSet_
+ self.lookups_.append(result)
+ return result
+
+ def add_lookup_to_feature_(self, lookup, feature_name):
+ for script, lang in self.language_systems:
+ key = (script, lang, feature_name)
+ self.features_.setdefault(key, []).append(lookup)
+
+ def get_lookup_(self, location, builder_class):
+ if (
+ self.cur_lookup_
+ and type(self.cur_lookup_) == builder_class
+ and self.cur_lookup_.lookupflag == self.lookupflag_
+ and self.cur_lookup_.markFilterSet == self.lookupflag_markFilterSet_
+ ):
+ return self.cur_lookup_
+ if self.cur_lookup_name_ and self.cur_lookup_:
+ raise FeatureLibError(
+ "Within a named lookup block, all rules must be of "
+ "the same lookup type and flag",
+ location,
+ )
+ self.cur_lookup_ = builder_class(self.font, location)
+ self.cur_lookup_.lookupflag = self.lookupflag_
+ self.cur_lookup_.markFilterSet = self.lookupflag_markFilterSet_
+ self.lookups_.append(self.cur_lookup_)
+ if self.cur_lookup_name_:
+ # We are starting a lookup rule inside a named lookup block.
+ self.named_lookups_[self.cur_lookup_name_] = self.cur_lookup_
+ if self.cur_feature_name_:
+ # We are starting a lookup rule inside a feature. This includes
+ # lookup rules inside named lookups inside features.
+ self.add_lookup_to_feature_(self.cur_lookup_, self.cur_feature_name_)
+ return self.cur_lookup_
+
+ def build_feature_aalt_(self):
+ if not self.aalt_features_ and not self.aalt_alternates_:
+ return
+ # > alternate glyphs will be sorted in the order that the source features
+ # > are named in the aalt definition, not the order of the feature definitions
+ # > in the file. Alternates defined explicitly ... will precede all others.
+ # https://github.com/fonttools/fonttools/issues/836
+ alternates = {g: list(a) for g, a in self.aalt_alternates_.items()}
+ for location, name in self.aalt_features_ + [(None, "aalt")]:
+ feature = [
+ (script, lang, feature, lookups)
+ for (script, lang, feature), lookups in self.features_.items()
+ if feature == name
+ ]
+ # "aalt" does not have to specify its own lookups, but it might.
+ if not feature and name != "aalt":
+ warnings.warn("%s: Feature %s has not been defined" % (location, name))
+ continue
+ for script, lang, feature, lookups in feature:
+ for lookuplist in lookups:
+ if not isinstance(lookuplist, list):
+ lookuplist = [lookuplist]
+ for lookup in lookuplist:
+ for glyph, alts in lookup.getAlternateGlyphs().items():
+ alts_for_glyph = alternates.setdefault(glyph, [])
+ alts_for_glyph.extend(
+ g for g in alts if g not in alts_for_glyph
+ )
+ single = {
+ glyph: repl[0] for glyph, repl in alternates.items() if len(repl) == 1
+ }
+ multi = {glyph: repl for glyph, repl in alternates.items() if len(repl) > 1}
+ if not single and not multi:
+ return
+ self.features_ = {
+ (script, lang, feature): lookups
+ for (script, lang, feature), lookups in self.features_.items()
+ if feature != "aalt"
+ }
+ old_lookups = self.lookups_
+ self.lookups_ = []
+ self.start_feature(self.aalt_location_, "aalt")
+ if single:
+ single_lookup = self.get_lookup_(location, SingleSubstBuilder)
+ single_lookup.mapping = single
+ if multi:
+ multi_lookup = self.get_lookup_(location, AlternateSubstBuilder)
+ multi_lookup.alternates = multi
+ self.end_feature()
+ self.lookups_.extend(old_lookups)
+
+ def build_head(self):
+ if not self.fontRevision_:
+ return
+ table = self.font.get("head")
+ if not table: # this only happens for unit tests
+ table = self.font["head"] = newTable("head")
+ table.decompile(b"\0" * 54, self.font)
+ table.tableVersion = 1.0
+ table.created = table.modified = 3406620153 # 2011-12-13 11:22:33
+ table.fontRevision = self.fontRevision_
+
+ def build_hhea(self):
+ if not self.hhea_:
+ return
+ table = self.font.get("hhea")
+ if not table: # this only happens for unit tests
+ table = self.font["hhea"] = newTable("hhea")
+ table.decompile(b"\0" * 36, self.font)
+ table.tableVersion = 0x00010000
+ if "caretoffset" in self.hhea_:
+ table.caretOffset = self.hhea_["caretoffset"]
+ if "ascender" in self.hhea_:
+ table.ascent = self.hhea_["ascender"]
+ if "descender" in self.hhea_:
+ table.descent = self.hhea_["descender"]
+ if "linegap" in self.hhea_:
+ table.lineGap = self.hhea_["linegap"]
+
+ def build_vhea(self):
+ if not self.vhea_:
+ return
+ table = self.font.get("vhea")
+ if not table: # this only happens for unit tests
+ table = self.font["vhea"] = newTable("vhea")
+ table.decompile(b"\0" * 36, self.font)
+ table.tableVersion = 0x00011000
+ if "verttypoascender" in self.vhea_:
+ table.ascent = self.vhea_["verttypoascender"]
+ if "verttypodescender" in self.vhea_:
+ table.descent = self.vhea_["verttypodescender"]
+ if "verttypolinegap" in self.vhea_:
+ table.lineGap = self.vhea_["verttypolinegap"]
+
+ def get_user_name_id(self, table):
+ # Try to find first unused font-specific name id
+ nameIDs = [name.nameID for name in table.names]
+ for user_name_id in range(256, 32767):
+ if user_name_id not in nameIDs:
+ return user_name_id
+
+ def buildFeatureParams(self, tag):
+ params = None
+ if tag == "size":
+ params = otTables.FeatureParamsSize()
+ (
+ params.DesignSize,
+ params.SubfamilyID,
+ params.RangeStart,
+ params.RangeEnd,
+ ) = self.size_parameters_
+ if tag in self.featureNames_ids_:
+ params.SubfamilyNameID = self.featureNames_ids_[tag]
+ else:
+ params.SubfamilyNameID = 0
+ elif tag in self.featureNames_:
+ if not self.featureNames_ids_:
+ # name table wasn't selected among the tables to build; skip
+ pass
+ else:
+ assert tag in self.featureNames_ids_
+ params = otTables.FeatureParamsStylisticSet()
+ params.Version = 0
+ params.UINameID = self.featureNames_ids_[tag]
+ elif tag in self.cv_parameters_:
+ params = otTables.FeatureParamsCharacterVariants()
+ params.Format = 0
+ params.FeatUILabelNameID = self.cv_parameters_ids_.get(
+ (tag, "FeatUILabelNameID"), 0
+ )
+ params.FeatUITooltipTextNameID = self.cv_parameters_ids_.get(
+ (tag, "FeatUITooltipTextNameID"), 0
+ )
+ params.SampleTextNameID = self.cv_parameters_ids_.get(
+ (tag, "SampleTextNameID"), 0
+ )
+ params.NumNamedParameters = self.cv_num_named_params_.get(tag, 0)
+ params.FirstParamUILabelNameID = self.cv_parameters_ids_.get(
+ (tag, "ParamUILabelNameID_0"), 0
+ )
+ params.CharCount = len(self.cv_characters_[tag])
+ params.Character = self.cv_characters_[tag]
+ return params
+
+ def build_name(self):
+ if not self.names_:
+ return
+ table = self.font.get("name")
+ if not table: # this only happens for unit tests
+ table = self.font["name"] = newTable("name")
+ table.names = []
+ for name in self.names_:
+ nameID, platformID, platEncID, langID, string = name
+ # For featureNames block, nameID is 'feature tag'
+ # For cvParameters blocks, nameID is ('feature tag', 'block name')
+ if not isinstance(nameID, int):
+ tag = nameID
+ if tag in self.featureNames_:
+ if tag not in self.featureNames_ids_:
+ self.featureNames_ids_[tag] = self.get_user_name_id(table)
+ assert self.featureNames_ids_[tag] is not None
+ nameID = self.featureNames_ids_[tag]
+ elif tag[0] in self.cv_parameters_:
+ if tag not in self.cv_parameters_ids_:
+ self.cv_parameters_ids_[tag] = self.get_user_name_id(table)
+ assert self.cv_parameters_ids_[tag] is not None
+ nameID = self.cv_parameters_ids_[tag]
+ table.setName(string, nameID, platformID, platEncID, langID)
+ table.names.sort()
+
+ def build_OS_2(self):
+ if not self.os2_:
+ return
+ table = self.font.get("OS/2")
+ if not table: # this only happens for unit tests
+ table = self.font["OS/2"] = newTable("OS/2")
+ data = b"\0" * sstruct.calcsize(getTableModule("OS/2").OS2_format_0)
+ table.decompile(data, self.font)
+ version = 0
+ if "fstype" in self.os2_:
+ table.fsType = self.os2_["fstype"]
+ if "panose" in self.os2_:
+ panose = getTableModule("OS/2").Panose()
+ (
+ panose.bFamilyType,
+ panose.bSerifStyle,
+ panose.bWeight,
+ panose.bProportion,
+ panose.bContrast,
+ panose.bStrokeVariation,
+ panose.bArmStyle,
+ panose.bLetterForm,
+ panose.bMidline,
+ panose.bXHeight,
+ ) = self.os2_["panose"]
+ table.panose = panose
+ if "typoascender" in self.os2_:
+ table.sTypoAscender = self.os2_["typoascender"]
+ if "typodescender" in self.os2_:
+ table.sTypoDescender = self.os2_["typodescender"]
+ if "typolinegap" in self.os2_:
+ table.sTypoLineGap = self.os2_["typolinegap"]
+ if "winascent" in self.os2_:
+ table.usWinAscent = self.os2_["winascent"]
+ if "windescent" in self.os2_:
+ table.usWinDescent = self.os2_["windescent"]
+ if "vendor" in self.os2_:
+ table.achVendID = safeEval("'''" + self.os2_["vendor"] + "'''")
+ if "weightclass" in self.os2_:
+ table.usWeightClass = self.os2_["weightclass"]
+ if "widthclass" in self.os2_:
+ table.usWidthClass = self.os2_["widthclass"]
+ if "unicoderange" in self.os2_:
+ table.setUnicodeRanges(self.os2_["unicoderange"])
+ if "codepagerange" in self.os2_:
+ pages = self.build_codepages_(self.os2_["codepagerange"])
+ table.ulCodePageRange1, table.ulCodePageRange2 = pages
+ version = 1
+ if "xheight" in self.os2_:
+ table.sxHeight = self.os2_["xheight"]
+ version = 2
+ if "capheight" in self.os2_:
+ table.sCapHeight = self.os2_["capheight"]
+ version = 2
+ if "loweropsize" in self.os2_:
+ table.usLowerOpticalPointSize = self.os2_["loweropsize"]
+ version = 5
+ if "upperopsize" in self.os2_:
+ table.usUpperOpticalPointSize = self.os2_["upperopsize"]
+ version = 5
+
+ def checkattr(table, attrs):
+ for attr in attrs:
+ if not hasattr(table, attr):
+ setattr(table, attr, 0)
+
+ table.version = max(version, table.version)
+ # this only happens for unit tests
+ if version >= 1:
+ checkattr(table, ("ulCodePageRange1", "ulCodePageRange2"))
+ if version >= 2:
+ checkattr(
+ table,
+ (
+ "sxHeight",
+ "sCapHeight",
+ "usDefaultChar",
+ "usBreakChar",
+ "usMaxContext",
+ ),
+ )
+ if version >= 5:
+ checkattr(table, ("usLowerOpticalPointSize", "usUpperOpticalPointSize"))
+
+ def setElidedFallbackName(self, value, location):
+ # ElidedFallbackName is a convenience method for setting
+ # ElidedFallbackNameID so only one can be allowed
+ for token in ("ElidedFallbackName", "ElidedFallbackNameID"):
+ if token in self.stat_:
+ raise FeatureLibError(
+ f"{token} is already set.",
+ location,
+ )
+ if isinstance(value, int):
+ self.stat_["ElidedFallbackNameID"] = value
+ elif isinstance(value, list):
+ self.stat_["ElidedFallbackName"] = value
+ else:
+ raise AssertionError(value)
+
+ def addDesignAxis(self, designAxis, location):
+ if "DesignAxes" not in self.stat_:
+ self.stat_["DesignAxes"] = []
+ if designAxis.tag in (r.tag for r in self.stat_["DesignAxes"]):
+ raise FeatureLibError(
+ f'DesignAxis already defined for tag "{designAxis.tag}".',
+ location,
+ )
+ if designAxis.axisOrder in (r.axisOrder for r in self.stat_["DesignAxes"]):
+ raise FeatureLibError(
+ f"DesignAxis already defined for axis number {designAxis.axisOrder}.",
+ location,
+ )
+ self.stat_["DesignAxes"].append(designAxis)
+
+ def addAxisValueRecord(self, axisValueRecord, location):
+ if "AxisValueRecords" not in self.stat_:
+ self.stat_["AxisValueRecords"] = []
+ # Check for duplicate AxisValueRecords
+ for record_ in self.stat_["AxisValueRecords"]:
+ if (
+ {n.asFea() for n in record_.names}
+ == {n.asFea() for n in axisValueRecord.names}
+ and {n.asFea() for n in record_.locations}
+ == {n.asFea() for n in axisValueRecord.locations}
+ and record_.flags == axisValueRecord.flags
+ ):
+ raise FeatureLibError(
+ "An AxisValueRecord with these values is already defined.",
+ location,
+ )
+ self.stat_["AxisValueRecords"].append(axisValueRecord)
+
+ def build_STAT(self):
+ if not self.stat_:
+ return
+
+ axes = self.stat_.get("DesignAxes")
+ if not axes:
+ raise FeatureLibError("DesignAxes not defined", None)
+ axisValueRecords = self.stat_.get("AxisValueRecords")
+ axisValues = {}
+ format4_locations = []
+ for tag in axes:
+ axisValues[tag.tag] = []
+ if axisValueRecords is not None:
+ for avr in axisValueRecords:
+ valuesDict = {}
+ if avr.flags > 0:
+ valuesDict["flags"] = avr.flags
+ if len(avr.locations) == 1:
+ location = avr.locations[0]
+ values = location.values
+ if len(values) == 1: # format1
+ valuesDict.update({"value": values[0], "name": avr.names})
+ if len(values) == 2: # format3
+ valuesDict.update(
+ {
+ "value": values[0],
+ "linkedValue": values[1],
+ "name": avr.names,
+ }
+ )
+ if len(values) == 3: # format2
+ nominal, minVal, maxVal = values
+ valuesDict.update(
+ {
+ "nominalValue": nominal,
+ "rangeMinValue": minVal,
+ "rangeMaxValue": maxVal,
+ "name": avr.names,
+ }
+ )
+ axisValues[location.tag].append(valuesDict)
+ else:
+ valuesDict.update(
+ {
+ "location": {i.tag: i.values[0] for i in avr.locations},
+ "name": avr.names,
+ }
+ )
+ format4_locations.append(valuesDict)
+
+ designAxes = [
+ {
+ "ordering": a.axisOrder,
+ "tag": a.tag,
+ "name": a.names,
+ "values": axisValues[a.tag],
+ }
+ for a in axes
+ ]
+
+ nameTable = self.font.get("name")
+ if not nameTable: # this only happens for unit tests
+ nameTable = self.font["name"] = newTable("name")
+ nameTable.names = []
+
+ if "ElidedFallbackNameID" in self.stat_:
+ nameID = self.stat_["ElidedFallbackNameID"]
+ name = nameTable.getDebugName(nameID)
+ if not name:
+ raise FeatureLibError(
+ f"ElidedFallbackNameID {nameID} points "
+ "to a nameID that does not exist in the "
+ '"name" table',
+ None,
+ )
+ elif "ElidedFallbackName" in self.stat_:
+ nameID = self.stat_["ElidedFallbackName"]
+
+ otl.buildStatTable(
+ self.font,
+ designAxes,
+ locations=format4_locations,
+ elidedFallbackName=nameID,
+ )
+
+ def build_codepages_(self, pages):
+ pages2bits = {
+ 1252: 0,
+ 1250: 1,
+ 1251: 2,
+ 1253: 3,
+ 1254: 4,
+ 1255: 5,
+ 1256: 6,
+ 1257: 7,
+ 1258: 8,
+ 874: 16,
+ 932: 17,
+ 936: 18,
+ 949: 19,
+ 950: 20,
+ 1361: 21,
+ 869: 48,
+ 866: 49,
+ 865: 50,
+ 864: 51,
+ 863: 52,
+ 862: 53,
+ 861: 54,
+ 860: 55,
+ 857: 56,
+ 855: 57,
+ 852: 58,
+ 775: 59,
+ 737: 60,
+ 708: 61,
+ 850: 62,
+ 437: 63,
+ }
+ bits = [pages2bits[p] for p in pages if p in pages2bits]
+ pages = []
+ for i in range(2):
+ pages.append("")
+ for j in range(i * 32, (i + 1) * 32):
+ if j in bits:
+ pages[i] += "1"
+ else:
+ pages[i] += "0"
+ return [binary2num(p[::-1]) for p in pages]
+
+ def buildBASE(self):
+ if not self.base_horiz_axis_ and not self.base_vert_axis_:
+ return None
+ base = otTables.BASE()
+ base.Version = 0x00010000
+ base.HorizAxis = self.buildBASEAxis(self.base_horiz_axis_)
+ base.VertAxis = self.buildBASEAxis(self.base_vert_axis_)
+
+ result = newTable("BASE")
+ result.table = base
+ return result
+
+ def buildBASEAxis(self, axis):
+ if not axis:
+ return
+ bases, scripts = axis
+ axis = otTables.Axis()
+ axis.BaseTagList = otTables.BaseTagList()
+ axis.BaseTagList.BaselineTag = bases
+ axis.BaseTagList.BaseTagCount = len(bases)
+ axis.BaseScriptList = otTables.BaseScriptList()
+ axis.BaseScriptList.BaseScriptRecord = []
+ axis.BaseScriptList.BaseScriptCount = len(scripts)
+ for script in sorted(scripts):
+ record = otTables.BaseScriptRecord()
+ record.BaseScriptTag = script[0]
+ record.BaseScript = otTables.BaseScript()
+ record.BaseScript.BaseLangSysCount = 0
+ record.BaseScript.BaseValues = otTables.BaseValues()
+ record.BaseScript.BaseValues.DefaultIndex = bases.index(script[1])
+ record.BaseScript.BaseValues.BaseCoord = []
+ record.BaseScript.BaseValues.BaseCoordCount = len(script[2])
+ for c in script[2]:
+ coord = otTables.BaseCoord()
+ coord.Format = 1
+ coord.Coordinate = c
+ record.BaseScript.BaseValues.BaseCoord.append(coord)
+ axis.BaseScriptList.BaseScriptRecord.append(record)
+ return axis
+
+ def buildGDEF(self):
+ gdef = otTables.GDEF()
+ gdef.GlyphClassDef = self.buildGDEFGlyphClassDef_()
+ gdef.AttachList = otl.buildAttachList(self.attachPoints_, self.glyphMap)
+ gdef.LigCaretList = otl.buildLigCaretList(
+ self.ligCaretCoords_, self.ligCaretPoints_, self.glyphMap
+ )
+ gdef.MarkAttachClassDef = self.buildGDEFMarkAttachClassDef_()
+ gdef.MarkGlyphSetsDef = self.buildGDEFMarkGlyphSetsDef_()
+ gdef.Version = 0x00010002 if gdef.MarkGlyphSetsDef else 0x00010000
+ if self.varstorebuilder:
+ store = self.varstorebuilder.finish()
+ if store:
+ gdef.Version = 0x00010003
+ gdef.VarStore = store
+ varidx_map = store.optimize()
+
+ gdef.remap_device_varidxes(varidx_map)
+ if "GPOS" in self.font:
+ self.font["GPOS"].table.remap_device_varidxes(varidx_map)
+ self.model_cache.clear()
+ if any(
+ (
+ gdef.GlyphClassDef,
+ gdef.AttachList,
+ gdef.LigCaretList,
+ gdef.MarkAttachClassDef,
+ gdef.MarkGlyphSetsDef,
+ )
+ ) or hasattr(gdef, "VarStore"):
+ result = newTable("GDEF")
+ result.table = gdef
+ return result
+ else:
+ return None
+
+ def buildGDEFGlyphClassDef_(self):
+ if self.glyphClassDefs_:
+ classes = {g: c for (g, (c, _)) in self.glyphClassDefs_.items()}
+ else:
+ classes = {}
+ for lookup in self.lookups_:
+ classes.update(lookup.inferGlyphClasses())
+ for markClass in self.parseTree.markClasses.values():
+ for markClassDef in markClass.definitions:
+ for glyph in markClassDef.glyphSet():
+ classes[glyph] = 3
+ if classes:
+ result = otTables.GlyphClassDef()
+ result.classDefs = classes
+ return result
+ else:
+ return None
+
+ def buildGDEFMarkAttachClassDef_(self):
+ classDefs = {g: c for g, (c, _) in self.markAttach_.items()}
+ if not classDefs:
+ return None
+ result = otTables.MarkAttachClassDef()
+ result.classDefs = classDefs
+ return result
+
+ def buildGDEFMarkGlyphSetsDef_(self):
+ sets = []
+ for glyphs, id_ in sorted(
+ self.markFilterSets_.items(), key=lambda item: item[1]
+ ):
+ sets.append(glyphs)
+ return otl.buildMarkGlyphSetsDef(sets, self.glyphMap)
+
+ def buildDebg(self):
+ if "Debg" not in self.font:
+ self.font["Debg"] = newTable("Debg")
+ self.font["Debg"].data = {}
+ self.font["Debg"].data[LOOKUP_DEBUG_INFO_KEY] = self.lookup_locations
+
+ def buildLookups_(self, tag):
+ assert tag in ("GPOS", "GSUB"), tag
+ for lookup in self.lookups_:
+ lookup.lookup_index = None
+ lookups = []
+ for lookup in self.lookups_:
+ if lookup.table != tag:
+ continue
+ lookup.lookup_index = len(lookups)
+ self.lookup_locations[tag][str(lookup.lookup_index)] = LookupDebugInfo(
+ location=str(lookup.location),
+ name=self.get_lookup_name_(lookup),
+ feature=None,
+ )
+ lookups.append(lookup)
+ otLookups = []
+ for l in lookups:
+ try:
+ otLookups.append(l.build())
+ except OpenTypeLibError as e:
+ raise FeatureLibError(str(e), e.location) from e
+ except Exception as e:
+ location = self.lookup_locations[tag][str(l.lookup_index)].location
+ raise FeatureLibError(str(e), location) from e
+ return otLookups
+
+ def makeTable(self, tag):
+ table = getattr(otTables, tag, None)()
+ table.Version = 0x00010000
+ table.ScriptList = otTables.ScriptList()
+ table.ScriptList.ScriptRecord = []
+ table.FeatureList = otTables.FeatureList()
+ table.FeatureList.FeatureRecord = []
+ table.LookupList = otTables.LookupList()
+ table.LookupList.Lookup = self.buildLookups_(tag)
+
+ # Build a table for mapping (tag, lookup_indices) to feature_index.
+ # For example, ('liga', (2,3,7)) --> 23.
+ feature_indices = {}
+ required_feature_indices = {} # ('latn', 'DEU') --> 23
+ scripts = {} # 'latn' --> {'DEU': [23, 24]} for feature #23,24
+ # Sort the feature table by feature tag:
+ # https://github.com/fonttools/fonttools/issues/568
+ sortFeatureTag = lambda f: (f[0][2], f[0][1], f[0][0], f[1])
+ for key, lookups in sorted(self.features_.items(), key=sortFeatureTag):
+ script, lang, feature_tag = key
+ # l.lookup_index will be None when a lookup is not needed
+ # for the table under construction. For example, substitution
+ # rules will have no lookup_index while building GPOS tables.
+ # We also deduplicate lookup indices, as they only get applied once
+ # within a given feature:
+ # https://github.com/fonttools/fonttools/issues/2946
+ lookup_indices = tuple(
+ dict.fromkeys(
+ l.lookup_index for l in lookups if l.lookup_index is not None
+ )
+ )
+
+ size_feature = tag == "GPOS" and feature_tag == "size"
+ force_feature = self.any_feature_variations(feature_tag, tag)
+ if len(lookup_indices) == 0 and not size_feature and not force_feature:
+ continue
+
+ for ix in lookup_indices:
+ try:
+ self.lookup_locations[tag][str(ix)] = self.lookup_locations[tag][
+ str(ix)
+ ]._replace(feature=key)
+ except KeyError:
+ warnings.warn(
+ "feaLib.Builder subclass needs upgrading to "
+ "stash debug information. See fonttools#2065."
+ )
+
+ feature_key = (feature_tag, lookup_indices)
+ feature_index = feature_indices.get(feature_key)
+ if feature_index is None:
+ feature_index = len(table.FeatureList.FeatureRecord)
+ frec = otTables.FeatureRecord()
+ frec.FeatureTag = feature_tag
+ frec.Feature = otTables.Feature()
+ frec.Feature.FeatureParams = self.buildFeatureParams(feature_tag)
+ frec.Feature.LookupListIndex = list(lookup_indices)
+ frec.Feature.LookupCount = len(lookup_indices)
+ table.FeatureList.FeatureRecord.append(frec)
+ feature_indices[feature_key] = feature_index
+ scripts.setdefault(script, {}).setdefault(lang, []).append(feature_index)
+ if self.required_features_.get((script, lang)) == feature_tag:
+ required_feature_indices[(script, lang)] = feature_index
+
+ # Build ScriptList.
+ for script, lang_features in sorted(scripts.items()):
+ srec = otTables.ScriptRecord()
+ srec.ScriptTag = script
+ srec.Script = otTables.Script()
+ srec.Script.DefaultLangSys = None
+ srec.Script.LangSysRecord = []
+ for lang, feature_indices in sorted(lang_features.items()):
+ langrec = otTables.LangSysRecord()
+ langrec.LangSys = otTables.LangSys()
+ langrec.LangSys.LookupOrder = None
+
+ req_feature_index = required_feature_indices.get((script, lang))
+ if req_feature_index is None:
+ langrec.LangSys.ReqFeatureIndex = 0xFFFF
+ else:
+ langrec.LangSys.ReqFeatureIndex = req_feature_index
+
+ langrec.LangSys.FeatureIndex = [
+ i for i in feature_indices if i != req_feature_index
+ ]
+ langrec.LangSys.FeatureCount = len(langrec.LangSys.FeatureIndex)
+
+ if lang == "dflt":
+ srec.Script.DefaultLangSys = langrec.LangSys
+ else:
+ langrec.LangSysTag = lang
+ srec.Script.LangSysRecord.append(langrec)
+ srec.Script.LangSysCount = len(srec.Script.LangSysRecord)
+ table.ScriptList.ScriptRecord.append(srec)
+
+ table.ScriptList.ScriptCount = len(table.ScriptList.ScriptRecord)
+ table.FeatureList.FeatureCount = len(table.FeatureList.FeatureRecord)
+ table.LookupList.LookupCount = len(table.LookupList.Lookup)
+ return table
+
+ def makeFeatureVariations(self, table, table_tag):
+ feature_vars = {}
+ has_any_variations = False
+ # Sort out which lookups to build, gather their indices
+ for (_, _, feature_tag), variations in self.feature_variations_.items():
+ feature_vars[feature_tag] = []
+ for conditionset, builders in variations.items():
+ raw_conditionset = self.conditionsets_[conditionset]
+ indices = []
+ for b in builders:
+ if b.table != table_tag:
+ continue
+ assert b.lookup_index is not None
+ indices.append(b.lookup_index)
+ has_any_variations = True
+ feature_vars[feature_tag].append((raw_conditionset, indices))
+
+ if has_any_variations:
+ for feature_tag, conditions_and_lookups in feature_vars.items():
+ addFeatureVariationsRaw(
+ self.font, table, conditions_and_lookups, feature_tag
+ )
+
+ def any_feature_variations(self, feature_tag, table_tag):
+ for (_, _, feature), variations in self.feature_variations_.items():
+ if feature != feature_tag:
+ continue
+ for conditionset, builders in variations.items():
+ if any(b.table == table_tag for b in builders):
+ return True
+ return False
+
+ def get_lookup_name_(self, lookup):
+ rev = {v: k for k, v in self.named_lookups_.items()}
+ if lookup in rev:
+ return rev[lookup]
+ return None
+
+ def add_language_system(self, location, script, language):
+ # OpenType Feature File Specification, section 4.b.i
+ if script == "DFLT" and language == "dflt" and self.default_language_systems_:
+ raise FeatureLibError(
+ 'If "languagesystem DFLT dflt" is present, it must be '
+ "the first of the languagesystem statements",
+ location,
+ )
+ if script == "DFLT":
+ if self.seen_non_DFLT_script_:
+ raise FeatureLibError(
+ 'languagesystems using the "DFLT" script tag must '
+ "precede all other languagesystems",
+ location,
+ )
+ else:
+ self.seen_non_DFLT_script_ = True
+ if (script, language) in self.default_language_systems_:
+ raise FeatureLibError(
+ '"languagesystem %s %s" has already been specified'
+ % (script.strip(), language.strip()),
+ location,
+ )
+ self.default_language_systems_.add((script, language))
+
+ def get_default_language_systems_(self):
+ # OpenType Feature File specification, 4.b.i. languagesystem:
+ # If no "languagesystem" statement is present, then the
+ # implementation must behave exactly as though the following
+ # statement were present at the beginning of the feature file:
+ # languagesystem DFLT dflt;
+ if self.default_language_systems_:
+ return frozenset(self.default_language_systems_)
+ else:
+ return frozenset({("DFLT", "dflt")})
+
+ def start_feature(self, location, name):
+ self.language_systems = self.get_default_language_systems_()
+ self.script_ = "DFLT"
+ self.cur_lookup_ = None
+ self.cur_feature_name_ = name
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+ if name == "aalt":
+ self.aalt_location_ = location
+
+ def end_feature(self):
+ assert self.cur_feature_name_ is not None
+ self.cur_feature_name_ = None
+ self.language_systems = None
+ self.cur_lookup_ = None
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+
+ def start_lookup_block(self, location, name):
+ if name in self.named_lookups_:
+ raise FeatureLibError(
+ 'Lookup "%s" has already been defined' % name, location
+ )
+ if self.cur_feature_name_ == "aalt":
+ raise FeatureLibError(
+ "Lookup blocks cannot be placed inside 'aalt' features; "
+ "move it out, and then refer to it with a lookup statement",
+ location,
+ )
+ self.cur_lookup_name_ = name
+ self.named_lookups_[name] = None
+ self.cur_lookup_ = None
+ if self.cur_feature_name_ is None:
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+
+ def end_lookup_block(self):
+ assert self.cur_lookup_name_ is not None
+ self.cur_lookup_name_ = None
+ self.cur_lookup_ = None
+ if self.cur_feature_name_ is None:
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+
+ def add_lookup_call(self, lookup_name):
+ assert lookup_name in self.named_lookups_, lookup_name
+ self.cur_lookup_ = None
+ lookup = self.named_lookups_[lookup_name]
+ if lookup is not None: # skip empty named lookup
+ self.add_lookup_to_feature_(lookup, self.cur_feature_name_)
+
+ def set_font_revision(self, location, revision):
+ self.fontRevision_ = revision
+
+ def set_language(self, location, language, include_default, required):
+ assert len(language) == 4
+ if self.cur_feature_name_ in ("aalt", "size"):
+ raise FeatureLibError(
+ "Language statements are not allowed "
+ 'within "feature %s"' % self.cur_feature_name_,
+ location,
+ )
+ if self.cur_feature_name_ is None:
+ raise FeatureLibError(
+ "Language statements are not allowed "
+ "within standalone lookup blocks",
+ location,
+ )
+ self.cur_lookup_ = None
+
+ key = (self.script_, language, self.cur_feature_name_)
+ lookups = self.features_.get((key[0], "dflt", key[2]))
+ if (language == "dflt" or include_default) and lookups:
+ self.features_[key] = lookups[:]
+ else:
+ self.features_[key] = []
+ self.language_systems = frozenset([(self.script_, language)])
+
+ if required:
+ key = (self.script_, language)
+ if key in self.required_features_:
+ raise FeatureLibError(
+ "Language %s (script %s) has already "
+ "specified feature %s as its required feature"
+ % (
+ language.strip(),
+ self.script_.strip(),
+ self.required_features_[key].strip(),
+ ),
+ location,
+ )
+ self.required_features_[key] = self.cur_feature_name_
+
+ def getMarkAttachClass_(self, location, glyphs):
+ glyphs = frozenset(glyphs)
+ id_ = self.markAttachClassID_.get(glyphs)
+ if id_ is not None:
+ return id_
+ id_ = len(self.markAttachClassID_) + 1
+ self.markAttachClassID_[glyphs] = id_
+ for glyph in glyphs:
+ if glyph in self.markAttach_:
+ _, loc = self.markAttach_[glyph]
+ raise FeatureLibError(
+ "Glyph %s already has been assigned "
+ "a MarkAttachmentType at %s" % (glyph, loc),
+ location,
+ )
+ self.markAttach_[glyph] = (id_, location)
+ return id_
+
+ def getMarkFilterSet_(self, location, glyphs):
+ glyphs = frozenset(glyphs)
+ id_ = self.markFilterSets_.get(glyphs)
+ if id_ is not None:
+ return id_
+ id_ = len(self.markFilterSets_)
+ self.markFilterSets_[glyphs] = id_
+ return id_
+
+ def set_lookup_flag(self, location, value, markAttach, markFilter):
+ value = value & 0xFF
+ if markAttach:
+ markAttachClass = self.getMarkAttachClass_(location, markAttach)
+ value = value | (markAttachClass << 8)
+ if markFilter:
+ markFilterSet = self.getMarkFilterSet_(location, markFilter)
+ value = value | 0x10
+ self.lookupflag_markFilterSet_ = markFilterSet
+ else:
+ self.lookupflag_markFilterSet_ = None
+ self.lookupflag_ = value
+
+ def set_script(self, location, script):
+ if self.cur_feature_name_ in ("aalt", "size"):
+ raise FeatureLibError(
+ "Script statements are not allowed "
+ 'within "feature %s"' % self.cur_feature_name_,
+ location,
+ )
+ if self.cur_feature_name_ is None:
+ raise FeatureLibError(
+ "Script statements are not allowed " "within standalone lookup blocks",
+ location,
+ )
+ if self.language_systems == {(script, "dflt")}:
+ # Nothing to do.
+ return
+ self.cur_lookup_ = None
+ self.script_ = script
+ self.lookupflag_ = 0
+ self.lookupflag_markFilterSet_ = None
+ self.set_language(location, "dflt", include_default=True, required=False)
+
+ def find_lookup_builders_(self, lookups):
+ """Helper for building chain contextual substitutions
+
+ Given a list of lookup names, finds the LookupBuilder for each name.
+ If an input name is None, it gets mapped to a None LookupBuilder.
+ """
+ lookup_builders = []
+ for lookuplist in lookups:
+ if lookuplist is not None:
+ lookup_builders.append(
+ [self.named_lookups_.get(l.name) for l in lookuplist]
+ )
+ else:
+ lookup_builders.append(None)
+ return lookup_builders
+
+ def add_attach_points(self, location, glyphs, contourPoints):
+ for glyph in glyphs:
+ self.attachPoints_.setdefault(glyph, set()).update(contourPoints)
+
+ def add_feature_reference(self, location, featureName):
+ if self.cur_feature_name_ != "aalt":
+ raise FeatureLibError(
+ 'Feature references are only allowed inside "feature aalt"', location
+ )
+ self.aalt_features_.append((location, featureName))
+
+ def add_featureName(self, tag):
+ self.featureNames_.add(tag)
+
+ def add_cv_parameter(self, tag):
+ self.cv_parameters_.add(tag)
+
+ def add_to_cv_num_named_params(self, tag):
+ """Adds new items to ``self.cv_num_named_params_``
+ or increments the count of existing items."""
+ if tag in self.cv_num_named_params_:
+ self.cv_num_named_params_[tag] += 1
+ else:
+ self.cv_num_named_params_[tag] = 1
+
+ def add_cv_character(self, character, tag):
+ self.cv_characters_[tag].append(character)
+
+ def set_base_axis(self, bases, scripts, vertical):
+ if vertical:
+ self.base_vert_axis_ = (bases, scripts)
+ else:
+ self.base_horiz_axis_ = (bases, scripts)
+
+ def set_size_parameters(
+ self, location, DesignSize, SubfamilyID, RangeStart, RangeEnd
+ ):
+ if self.cur_feature_name_ != "size":
+ raise FeatureLibError(
+ "Parameters statements are not allowed "
+ 'within "feature %s"' % self.cur_feature_name_,
+ location,
+ )
+ self.size_parameters_ = [DesignSize, SubfamilyID, RangeStart, RangeEnd]
+ for script, lang in self.language_systems:
+ key = (script, lang, self.cur_feature_name_)
+ self.features_.setdefault(key, [])
+
+ # GSUB rules
+
+ # GSUB 1
+ def add_single_subst(self, location, prefix, suffix, mapping, forceChain):
+ if self.cur_feature_name_ == "aalt":
+ for from_glyph, to_glyph in mapping.items():
+ alts = self.aalt_alternates_.setdefault(from_glyph, [])
+ if to_glyph not in alts:
+ alts.append(to_glyph)
+ return
+ if prefix or suffix or forceChain:
+ self.add_single_subst_chained_(location, prefix, suffix, mapping)
+ return
+ lookup = self.get_lookup_(location, SingleSubstBuilder)
+ for from_glyph, to_glyph in mapping.items():
+ if from_glyph in lookup.mapping:
+ if to_glyph == lookup.mapping[from_glyph]:
+ log.info(
+ "Removing duplicate single substitution from glyph"
+ ' "%s" to "%s" at %s',
+ from_glyph,
+ to_glyph,
+ location,
+ )
+ else:
+ raise FeatureLibError(
+ 'Already defined rule for replacing glyph "%s" by "%s"'
+ % (from_glyph, lookup.mapping[from_glyph]),
+ location,
+ )
+ lookup.mapping[from_glyph] = to_glyph
+
+ # GSUB 2
+ def add_multiple_subst(
+ self, location, prefix, glyph, suffix, replacements, forceChain=False
+ ):
+ if prefix or suffix or forceChain:
+ self.add_multi_subst_chained_(location, prefix, glyph, suffix, replacements)
+ return
+ lookup = self.get_lookup_(location, MultipleSubstBuilder)
+ if glyph in lookup.mapping:
+ if replacements == lookup.mapping[glyph]:
+ log.info(
+ "Removing duplicate multiple substitution from glyph"
+ ' "%s" to %s%s',
+ glyph,
+ replacements,
+ f" at {location}" if location else "",
+ )
+ else:
+ raise FeatureLibError(
+ 'Already defined substitution for glyph "%s"' % glyph, location
+ )
+ lookup.mapping[glyph] = replacements
+
+ # GSUB 3
+ def add_alternate_subst(self, location, prefix, glyph, suffix, replacement):
+ if self.cur_feature_name_ == "aalt":
+ alts = self.aalt_alternates_.setdefault(glyph, [])
+ alts.extend(g for g in replacement if g not in alts)
+ return
+ if prefix or suffix:
+ chain = self.get_lookup_(location, ChainContextSubstBuilder)
+ lookup = self.get_chained_lookup_(location, AlternateSubstBuilder)
+ chain.rules.append(ChainContextualRule(prefix, [{glyph}], suffix, [lookup]))
+ else:
+ lookup = self.get_lookup_(location, AlternateSubstBuilder)
+ if glyph in lookup.alternates:
+ raise FeatureLibError(
+ 'Already defined alternates for glyph "%s"' % glyph, location
+ )
+ # We allow empty replacement glyphs here.
+ lookup.alternates[glyph] = replacement
+
+ # GSUB 4
+ def add_ligature_subst(
+ self, location, prefix, glyphs, suffix, replacement, forceChain
+ ):
+ if prefix or suffix or forceChain:
+ self.add_ligature_subst_chained_(
+ location, prefix, glyphs, suffix, replacement
+ )
+ return
+ else:
+ lookup = self.get_lookup_(location, LigatureSubstBuilder)
+
+ if not all(glyphs):
+ raise FeatureLibError("Empty glyph class in substitution", location)
+
+ # OpenType feature file syntax, section 5.d, "Ligature substitution":
+ # "Since the OpenType specification does not allow ligature
+ # substitutions to be specified on target sequences that contain
+ # glyph classes, the implementation software will enumerate
+ # all specific glyph sequences if glyph classes are detected"
+ for g in itertools.product(*glyphs):
+ lookup.ligatures[g] = replacement
+
+ # GSUB 5/6
+ def add_chain_context_subst(self, location, prefix, glyphs, suffix, lookups):
+ if not all(glyphs) or not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual substitution", location
+ )
+ lookup = self.get_lookup_(location, ChainContextSubstBuilder)
+ lookup.rules.append(
+ ChainContextualRule(
+ prefix, glyphs, suffix, self.find_lookup_builders_(lookups)
+ )
+ )
+
+ def add_single_subst_chained_(self, location, prefix, suffix, mapping):
+ if not mapping or not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual substitution", location
+ )
+ # https://github.com/fonttools/fonttools/issues/512
+ # https://github.com/fonttools/fonttools/issues/2150
+ chain = self.get_lookup_(location, ChainContextSubstBuilder)
+ sub = chain.find_chainable_subst(mapping, SingleSubstBuilder)
+ if sub is None:
+ sub = self.get_chained_lookup_(location, SingleSubstBuilder)
+ sub.mapping.update(mapping)
+ chain.rules.append(
+ ChainContextualRule(prefix, [list(mapping.keys())], suffix, [sub])
+ )
+
+ def add_multi_subst_chained_(self, location, prefix, glyph, suffix, replacements):
+ if not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual substitution", location
+ )
+ # https://github.com/fonttools/fonttools/issues/3551
+ chain = self.get_lookup_(location, ChainContextSubstBuilder)
+ sub = chain.find_chainable_subst({glyph: replacements}, MultipleSubstBuilder)
+ if sub is None:
+ sub = self.get_chained_lookup_(location, MultipleSubstBuilder)
+ sub.mapping[glyph] = replacements
+ chain.rules.append(ChainContextualRule(prefix, [{glyph}], suffix, [sub]))
+
+ def add_ligature_subst_chained_(
+ self, location, prefix, glyphs, suffix, replacement
+ ):
+ # https://github.com/fonttools/fonttools/issues/3701
+ if not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual substitution", location
+ )
+ chain = self.get_lookup_(location, ChainContextSubstBuilder)
+ sub = chain.find_chainable_ligature_subst(glyphs, replacement)
+ if sub is None:
+ sub = self.get_chained_lookup_(location, LigatureSubstBuilder)
+
+ for g in itertools.product(*glyphs):
+ sub.ligatures[g] = replacement
+
+ chain.rules.append(ChainContextualRule(prefix, glyphs, suffix, [sub]))
+
+ # GSUB 8
+ def add_reverse_chain_single_subst(self, location, old_prefix, old_suffix, mapping):
+ if not mapping:
+ raise FeatureLibError("Empty glyph class in substitution", location)
+ lookup = self.get_lookup_(location, ReverseChainSingleSubstBuilder)
+ lookup.rules.append((old_prefix, old_suffix, mapping))
+
+ # GPOS rules
+
+ # GPOS 1
+ def add_single_pos(self, location, prefix, suffix, pos, forceChain):
+ if prefix or suffix or forceChain:
+ self.add_single_pos_chained_(location, prefix, suffix, pos)
+ else:
+ lookup = self.get_lookup_(location, SinglePosBuilder)
+ for glyphs, value in pos:
+ if not glyphs:
+ raise FeatureLibError(
+ "Empty glyph class in positioning rule", location
+ )
+ otValueRecord = self.makeOpenTypeValueRecord(
+ location, value, pairPosContext=False
+ )
+ for glyph in glyphs:
+ try:
+ lookup.add_pos(location, glyph, otValueRecord)
+ except OpenTypeLibError as e:
+ raise FeatureLibError(str(e), e.location) from e
+
+ # GPOS 2
+ def add_class_pair_pos(self, location, glyphclass1, value1, glyphclass2, value2):
+ if not glyphclass1 or not glyphclass2:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ lookup = self.get_lookup_(location, PairPosBuilder)
+ v1 = self.makeOpenTypeValueRecord(location, value1, pairPosContext=True)
+ v2 = self.makeOpenTypeValueRecord(location, value2, pairPosContext=True)
+ lookup.addClassPair(location, glyphclass1, v1, glyphclass2, v2)
+
+ def add_specific_pair_pos(self, location, glyph1, value1, glyph2, value2):
+ if not glyph1 or not glyph2:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ lookup = self.get_lookup_(location, PairPosBuilder)
+ v1 = self.makeOpenTypeValueRecord(location, value1, pairPosContext=True)
+ v2 = self.makeOpenTypeValueRecord(location, value2, pairPosContext=True)
+ lookup.addGlyphPair(location, glyph1, v1, glyph2, v2)
+
+ # GPOS 3
+ def add_cursive_pos(self, location, glyphclass, entryAnchor, exitAnchor):
+ if not glyphclass:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ lookup = self.get_lookup_(location, CursivePosBuilder)
+ lookup.add_attachment(
+ location,
+ glyphclass,
+ self.makeOpenTypeAnchor(location, entryAnchor),
+ self.makeOpenTypeAnchor(location, exitAnchor),
+ )
+
+ # GPOS 4
+ def add_mark_base_pos(self, location, bases, marks):
+ builder = self.get_lookup_(location, MarkBasePosBuilder)
+ self.add_marks_(location, builder, marks)
+ if not bases:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ for baseAnchor, markClass in marks:
+ otBaseAnchor = self.makeOpenTypeAnchor(location, baseAnchor)
+ for base in bases:
+ builder.bases.setdefault(base, {})[markClass.name] = otBaseAnchor
+
+ # GPOS 5
+ def add_mark_lig_pos(self, location, ligatures, components):
+ builder = self.get_lookup_(location, MarkLigPosBuilder)
+ componentAnchors = []
+ if not ligatures:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ for marks in components:
+ anchors = {}
+ self.add_marks_(location, builder, marks)
+ for ligAnchor, markClass in marks:
+ anchors[markClass.name] = self.makeOpenTypeAnchor(location, ligAnchor)
+ componentAnchors.append(anchors)
+ for glyph in ligatures:
+ builder.ligatures[glyph] = componentAnchors
+
+ # GPOS 6
+ def add_mark_mark_pos(self, location, baseMarks, marks):
+ builder = self.get_lookup_(location, MarkMarkPosBuilder)
+ self.add_marks_(location, builder, marks)
+ if not baseMarks:
+ raise FeatureLibError("Empty glyph class in positioning rule", location)
+ for baseAnchor, markClass in marks:
+ otBaseAnchor = self.makeOpenTypeAnchor(location, baseAnchor)
+ for baseMark in baseMarks:
+ builder.baseMarks.setdefault(baseMark, {})[
+ markClass.name
+ ] = otBaseAnchor
+
+ # GPOS 7/8
+ def add_chain_context_pos(self, location, prefix, glyphs, suffix, lookups):
+ if not all(glyphs) or not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual positioning rule", location
+ )
+ lookup = self.get_lookup_(location, ChainContextPosBuilder)
+ lookup.rules.append(
+ ChainContextualRule(
+ prefix, glyphs, suffix, self.find_lookup_builders_(lookups)
+ )
+ )
+
+ def add_single_pos_chained_(self, location, prefix, suffix, pos):
+ if not pos or not all(prefix) or not all(suffix):
+ raise FeatureLibError(
+ "Empty glyph class in contextual positioning rule", location
+ )
+ # https://github.com/fonttools/fonttools/issues/514
+ chain = self.get_lookup_(location, ChainContextPosBuilder)
+ targets = []
+ for _, _, _, lookups in chain.rules:
+ targets.extend(lookups)
+ subs = []
+ for glyphs, value in pos:
+ if value is None:
+ subs.append(None)
+ continue
+ otValue = self.makeOpenTypeValueRecord(
+ location, value, pairPosContext=False
+ )
+ sub = chain.find_chainable_single_pos(targets, glyphs, otValue)
+ if sub is None:
+ sub = self.get_chained_lookup_(location, SinglePosBuilder)
+ targets.append(sub)
+ for glyph in glyphs:
+ sub.add_pos(location, glyph, otValue)
+ subs.append(sub)
+ assert len(pos) == len(subs), (pos, subs)
+ chain.rules.append(
+ ChainContextualRule(prefix, [g for g, v in pos], suffix, subs)
+ )
+
+ def add_marks_(self, location, lookupBuilder, marks):
+ """Helper for add_mark_{base,liga,mark}_pos."""
+ for _, markClass in marks:
+ for markClassDef in markClass.definitions:
+ for mark in markClassDef.glyphs.glyphSet():
+ if mark not in lookupBuilder.marks:
+ otMarkAnchor = self.makeOpenTypeAnchor(
+ location, copy.deepcopy(markClassDef.anchor)
+ )
+ lookupBuilder.marks[mark] = (markClass.name, otMarkAnchor)
+ else:
+ existingMarkClass = lookupBuilder.marks[mark][0]
+ if markClass.name != existingMarkClass:
+ raise FeatureLibError(
+ "Glyph %s cannot be in both @%s and @%s"
+ % (mark, existingMarkClass, markClass.name),
+ location,
+ )
+
+ def add_subtable_break(self, location):
+ self.cur_lookup_.add_subtable_break(location)
+
+ def setGlyphClass_(self, location, glyph, glyphClass):
+ oldClass, oldLocation = self.glyphClassDefs_.get(glyph, (None, None))
+ if oldClass and oldClass != glyphClass:
+ raise FeatureLibError(
+ "Glyph %s was assigned to a different class at %s"
+ % (glyph, oldLocation),
+ location,
+ )
+ self.glyphClassDefs_[glyph] = (glyphClass, location)
+
+ def add_glyphClassDef(
+ self, location, baseGlyphs, ligatureGlyphs, markGlyphs, componentGlyphs
+ ):
+ for glyph in baseGlyphs:
+ self.setGlyphClass_(location, glyph, 1)
+ for glyph in ligatureGlyphs:
+ self.setGlyphClass_(location, glyph, 2)
+ for glyph in markGlyphs:
+ self.setGlyphClass_(location, glyph, 3)
+ for glyph in componentGlyphs:
+ self.setGlyphClass_(location, glyph, 4)
+
+ def add_ligatureCaretByIndex_(self, location, glyphs, carets):
+ for glyph in glyphs:
+ if glyph not in self.ligCaretPoints_:
+ self.ligCaretPoints_[glyph] = carets
+
+ def makeLigCaret(self, location, caret):
+ if not isinstance(caret, VariableScalar):
+ return caret
+ default, device = self.makeVariablePos(location, caret)
+ if device is not None:
+ return (default, device)
+ return default
+
+ def add_ligatureCaretByPos_(self, location, glyphs, carets):
+ carets = [self.makeLigCaret(location, caret) for caret in carets]
+ for glyph in glyphs:
+ if glyph not in self.ligCaretCoords_:
+ self.ligCaretCoords_[glyph] = carets
+
+ def add_name_record(self, location, nameID, platformID, platEncID, langID, string):
+ self.names_.append([nameID, platformID, platEncID, langID, string])
+
+ def add_os2_field(self, key, value):
+ self.os2_[key] = value
+
+ def add_hhea_field(self, key, value):
+ self.hhea_[key] = value
+
+ def add_vhea_field(self, key, value):
+ self.vhea_[key] = value
+
+ def add_conditionset(self, location, key, value):
+ if "fvar" not in self.font:
+ raise FeatureLibError(
+ "Cannot add feature variations to a font without an 'fvar' table",
+ location,
+ )
+
+ # Normalize
+ axisMap = {
+ axis.axisTag: (axis.minValue, axis.defaultValue, axis.maxValue)
+ for axis in self.axes
+ }
+
+ value = {
+ tag: (
+ normalizeValue(bottom, axisMap[tag]),
+ normalizeValue(top, axisMap[tag]),
+ )
+ for tag, (bottom, top) in value.items()
+ }
+
+ # NOTE: This might result in rounding errors (off-by-ones) compared to
+ # rules in Designspace files, since we're working with what's in the
+ # `avar` table rather than the original values.
+ if "avar" in self.font:
+ mapping = self.font["avar"].segments
+ value = {
+ axis: tuple(
+ piecewiseLinearMap(v, mapping[axis]) if axis in mapping else v
+ for v in condition_range
+ )
+ for axis, condition_range in value.items()
+ }
+
+ self.conditionsets_[key] = value
+
+ def makeVariablePos(self, location, varscalar):
+ if not self.varstorebuilder:
+ raise FeatureLibError(
+ "Can't define a variable scalar in a non-variable font", location
+ )
+
+ varscalar.axes = self.axes
+ if not varscalar.does_vary:
+ return varscalar.default, None
+
+ default, index = varscalar.add_to_variation_store(
+ self.varstorebuilder, self.model_cache, self.font.get("avar")
+ )
+
+ device = None
+ if index is not None and index != 0xFFFFFFFF:
+ device = buildVarDevTable(index)
+
+ return default, device
+
+ def makeAnchorPos(self, varscalar, deviceTable, location):
+ device = None
+ if not isinstance(varscalar, VariableScalar):
+ if deviceTable is not None:
+ device = otl.buildDevice(dict(deviceTable))
+ return varscalar, device
+ default, device = self.makeVariablePos(location, varscalar)
+ if device is not None and deviceTable is not None:
+ raise FeatureLibError(
+ "Can't define a device coordinate and variable scalar", location
+ )
+ return default, device
+
+ def makeOpenTypeAnchor(self, location, anchor):
+ """ast.Anchor --> otTables.Anchor"""
+ if anchor is None:
+ return None
+ deviceX, deviceY = None, None
+ if anchor.xDeviceTable is not None:
+ deviceX = otl.buildDevice(dict(anchor.xDeviceTable))
+ if anchor.yDeviceTable is not None:
+ deviceY = otl.buildDevice(dict(anchor.yDeviceTable))
+ x, deviceX = self.makeAnchorPos(anchor.x, anchor.xDeviceTable, location)
+ y, deviceY = self.makeAnchorPos(anchor.y, anchor.yDeviceTable, location)
+ otlanchor = otl.buildAnchor(x, y, anchor.contourpoint, deviceX, deviceY)
+ return otlanchor
+
+ _VALUEREC_ATTRS = {
+ name[0].lower() + name[1:]: (name, isDevice)
+ for _, name, isDevice, _ in otBase.valueRecordFormat
+ if not name.startswith("Reserved")
+ }
+
+ def makeOpenTypeValueRecord(self, location, v, pairPosContext):
+ """ast.ValueRecord --> otBase.ValueRecord"""
+ if not v:
+ return None
+
+ vr = {}
+ for astName, (otName, isDevice) in self._VALUEREC_ATTRS.items():
+ val = getattr(v, astName, None)
+ if not val:
+ continue
+ if isDevice:
+ vr[otName] = otl.buildDevice(dict(val))
+ elif isinstance(val, VariableScalar):
+ otDeviceName = otName[0:4] + "Device"
+ feaDeviceName = otDeviceName[0].lower() + otDeviceName[1:]
+ if getattr(v, feaDeviceName):
+ raise FeatureLibError(
+ "Can't define a device coordinate and variable scalar", location
+ )
+ vr[otName], device = self.makeVariablePos(location, val)
+ if device is not None:
+ vr[otDeviceName] = device
+ else:
+ vr[otName] = val
+
+ if pairPosContext and not vr:
+ vr = {"YAdvance": 0} if v.vertical else {"XAdvance": 0}
+ valRec = otl.buildValue(vr)
+ return valRec
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.c b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.c
new file mode 100644
index 0000000000000000000000000000000000000000..f8ab1ee3da183eb48f18fe018f4dece051118a42
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.c
@@ -0,0 +1,17986 @@
+/* Generated by Cython 3.0.11 */
+
+/* BEGIN: Cython Metadata
+{
+ "distutils": {
+ "name": "fontTools.feaLib.lexer",
+ "sources": [
+ "Lib/fontTools/feaLib/lexer.py"
+ ]
+ },
+ "module_name": "fontTools.feaLib.lexer"
+}
+END: Cython Metadata */
+
+#ifndef PY_SSIZE_T_CLEAN
+#define PY_SSIZE_T_CLEAN
+#endif /* PY_SSIZE_T_CLEAN */
+#if defined(CYTHON_LIMITED_API) && 0
+ #ifndef Py_LIMITED_API
+ #if CYTHON_LIMITED_API+0 > 0x03030000
+ #define Py_LIMITED_API CYTHON_LIMITED_API
+ #else
+ #define Py_LIMITED_API 0x03030000
+ #endif
+ #endif
+#endif
+
+#include "Python.h"
+#ifndef Py_PYTHON_H
+ #error Python headers needed to compile C extensions, please install development version of Python.
+#elif PY_VERSION_HEX < 0x02070000 || (0x03000000 <= PY_VERSION_HEX && PY_VERSION_HEX < 0x03030000)
+ #error Cython requires Python 2.7+ or Python 3.3+.
+#else
+#if defined(CYTHON_LIMITED_API) && CYTHON_LIMITED_API
+#define __PYX_EXTRA_ABI_MODULE_NAME "limited"
+#else
+#define __PYX_EXTRA_ABI_MODULE_NAME ""
+#endif
+#define CYTHON_ABI "3_0_11" __PYX_EXTRA_ABI_MODULE_NAME
+#define __PYX_ABI_MODULE_NAME "_cython_" CYTHON_ABI
+#define __PYX_TYPE_MODULE_PREFIX __PYX_ABI_MODULE_NAME "."
+#define CYTHON_HEX_VERSION 0x03000BF0
+#define CYTHON_FUTURE_DIVISION 1
+#include
+#ifndef offsetof
+ #define offsetof(type, member) ( (size_t) & ((type*)0) -> member )
+#endif
+#if !defined(_WIN32) && !defined(WIN32) && !defined(MS_WINDOWS)
+ #ifndef __stdcall
+ #define __stdcall
+ #endif
+ #ifndef __cdecl
+ #define __cdecl
+ #endif
+ #ifndef __fastcall
+ #define __fastcall
+ #endif
+#endif
+#ifndef DL_IMPORT
+ #define DL_IMPORT(t) t
+#endif
+#ifndef DL_EXPORT
+ #define DL_EXPORT(t) t
+#endif
+#define __PYX_COMMA ,
+#ifndef HAVE_LONG_LONG
+ #define HAVE_LONG_LONG
+#endif
+#ifndef PY_LONG_LONG
+ #define PY_LONG_LONG LONG_LONG
+#endif
+#ifndef Py_HUGE_VAL
+ #define Py_HUGE_VAL HUGE_VAL
+#endif
+#define __PYX_LIMITED_VERSION_HEX PY_VERSION_HEX
+#if defined(GRAALVM_PYTHON)
+ /* For very preliminary testing purposes. Most variables are set the same as PyPy.
+ The existence of this section does not imply that anything works or is even tested */
+ #define CYTHON_COMPILING_IN_PYPY 0
+ #define CYTHON_COMPILING_IN_CPYTHON 0
+ #define CYTHON_COMPILING_IN_LIMITED_API 0
+ #define CYTHON_COMPILING_IN_GRAAL 1
+ #define CYTHON_COMPILING_IN_NOGIL 0
+ #undef CYTHON_USE_TYPE_SLOTS
+ #define CYTHON_USE_TYPE_SLOTS 0
+ #undef CYTHON_USE_TYPE_SPECS
+ #define CYTHON_USE_TYPE_SPECS 0
+ #undef CYTHON_USE_PYTYPE_LOOKUP
+ #define CYTHON_USE_PYTYPE_LOOKUP 0
+ #if PY_VERSION_HEX < 0x03050000
+ #undef CYTHON_USE_ASYNC_SLOTS
+ #define CYTHON_USE_ASYNC_SLOTS 0
+ #elif !defined(CYTHON_USE_ASYNC_SLOTS)
+ #define CYTHON_USE_ASYNC_SLOTS 1
+ #endif
+ #undef CYTHON_USE_PYLIST_INTERNALS
+ #define CYTHON_USE_PYLIST_INTERNALS 0
+ #undef CYTHON_USE_UNICODE_INTERNALS
+ #define CYTHON_USE_UNICODE_INTERNALS 0
+ #undef CYTHON_USE_UNICODE_WRITER
+ #define CYTHON_USE_UNICODE_WRITER 0
+ #undef CYTHON_USE_PYLONG_INTERNALS
+ #define CYTHON_USE_PYLONG_INTERNALS 0
+ #undef CYTHON_AVOID_BORROWED_REFS
+ #define CYTHON_AVOID_BORROWED_REFS 1
+ #undef CYTHON_ASSUME_SAFE_MACROS
+ #define CYTHON_ASSUME_SAFE_MACROS 0
+ #undef CYTHON_UNPACK_METHODS
+ #define CYTHON_UNPACK_METHODS 0
+ #undef CYTHON_FAST_THREAD_STATE
+ #define CYTHON_FAST_THREAD_STATE 0
+ #undef CYTHON_FAST_GIL
+ #define CYTHON_FAST_GIL 0
+ #undef CYTHON_METH_FASTCALL
+ #define CYTHON_METH_FASTCALL 0
+ #undef CYTHON_FAST_PYCALL
+ #define CYTHON_FAST_PYCALL 0
+ #ifndef CYTHON_PEP487_INIT_SUBCLASS
+ #define CYTHON_PEP487_INIT_SUBCLASS (PY_MAJOR_VERSION >= 3)
+ #endif
+ #undef CYTHON_PEP489_MULTI_PHASE_INIT
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 1
+ #undef CYTHON_USE_MODULE_STATE
+ #define CYTHON_USE_MODULE_STATE 0
+ #undef CYTHON_USE_TP_FINALIZE
+ #define CYTHON_USE_TP_FINALIZE 0
+ #undef CYTHON_USE_DICT_VERSIONS
+ #define CYTHON_USE_DICT_VERSIONS 0
+ #undef CYTHON_USE_EXC_INFO_STACK
+ #define CYTHON_USE_EXC_INFO_STACK 0
+ #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC
+ #define CYTHON_UPDATE_DESCRIPTOR_DOC 0
+ #endif
+ #undef CYTHON_USE_FREELISTS
+ #define CYTHON_USE_FREELISTS 0
+#elif defined(PYPY_VERSION)
+ #define CYTHON_COMPILING_IN_PYPY 1
+ #define CYTHON_COMPILING_IN_CPYTHON 0
+ #define CYTHON_COMPILING_IN_LIMITED_API 0
+ #define CYTHON_COMPILING_IN_GRAAL 0
+ #define CYTHON_COMPILING_IN_NOGIL 0
+ #undef CYTHON_USE_TYPE_SLOTS
+ #define CYTHON_USE_TYPE_SLOTS 0
+ #ifndef CYTHON_USE_TYPE_SPECS
+ #define CYTHON_USE_TYPE_SPECS 0
+ #endif
+ #undef CYTHON_USE_PYTYPE_LOOKUP
+ #define CYTHON_USE_PYTYPE_LOOKUP 0
+ #if PY_VERSION_HEX < 0x03050000
+ #undef CYTHON_USE_ASYNC_SLOTS
+ #define CYTHON_USE_ASYNC_SLOTS 0
+ #elif !defined(CYTHON_USE_ASYNC_SLOTS)
+ #define CYTHON_USE_ASYNC_SLOTS 1
+ #endif
+ #undef CYTHON_USE_PYLIST_INTERNALS
+ #define CYTHON_USE_PYLIST_INTERNALS 0
+ #undef CYTHON_USE_UNICODE_INTERNALS
+ #define CYTHON_USE_UNICODE_INTERNALS 0
+ #undef CYTHON_USE_UNICODE_WRITER
+ #define CYTHON_USE_UNICODE_WRITER 0
+ #undef CYTHON_USE_PYLONG_INTERNALS
+ #define CYTHON_USE_PYLONG_INTERNALS 0
+ #undef CYTHON_AVOID_BORROWED_REFS
+ #define CYTHON_AVOID_BORROWED_REFS 1
+ #undef CYTHON_ASSUME_SAFE_MACROS
+ #define CYTHON_ASSUME_SAFE_MACROS 0
+ #undef CYTHON_UNPACK_METHODS
+ #define CYTHON_UNPACK_METHODS 0
+ #undef CYTHON_FAST_THREAD_STATE
+ #define CYTHON_FAST_THREAD_STATE 0
+ #undef CYTHON_FAST_GIL
+ #define CYTHON_FAST_GIL 0
+ #undef CYTHON_METH_FASTCALL
+ #define CYTHON_METH_FASTCALL 0
+ #undef CYTHON_FAST_PYCALL
+ #define CYTHON_FAST_PYCALL 0
+ #ifndef CYTHON_PEP487_INIT_SUBCLASS
+ #define CYTHON_PEP487_INIT_SUBCLASS (PY_MAJOR_VERSION >= 3)
+ #endif
+ #if PY_VERSION_HEX < 0x03090000
+ #undef CYTHON_PEP489_MULTI_PHASE_INIT
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 0
+ #elif !defined(CYTHON_PEP489_MULTI_PHASE_INIT)
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 1
+ #endif
+ #undef CYTHON_USE_MODULE_STATE
+ #define CYTHON_USE_MODULE_STATE 0
+ #undef CYTHON_USE_TP_FINALIZE
+ #define CYTHON_USE_TP_FINALIZE (PY_VERSION_HEX >= 0x030400a1 && PYPY_VERSION_NUM >= 0x07030C00)
+ #undef CYTHON_USE_DICT_VERSIONS
+ #define CYTHON_USE_DICT_VERSIONS 0
+ #undef CYTHON_USE_EXC_INFO_STACK
+ #define CYTHON_USE_EXC_INFO_STACK 0
+ #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC
+ #define CYTHON_UPDATE_DESCRIPTOR_DOC 0
+ #endif
+ #undef CYTHON_USE_FREELISTS
+ #define CYTHON_USE_FREELISTS 0
+#elif defined(CYTHON_LIMITED_API)
+ #ifdef Py_LIMITED_API
+ #undef __PYX_LIMITED_VERSION_HEX
+ #define __PYX_LIMITED_VERSION_HEX Py_LIMITED_API
+ #endif
+ #define CYTHON_COMPILING_IN_PYPY 0
+ #define CYTHON_COMPILING_IN_CPYTHON 0
+ #define CYTHON_COMPILING_IN_LIMITED_API 1
+ #define CYTHON_COMPILING_IN_GRAAL 0
+ #define CYTHON_COMPILING_IN_NOGIL 0
+ #undef CYTHON_CLINE_IN_TRACEBACK
+ #define CYTHON_CLINE_IN_TRACEBACK 0
+ #undef CYTHON_USE_TYPE_SLOTS
+ #define CYTHON_USE_TYPE_SLOTS 0
+ #undef CYTHON_USE_TYPE_SPECS
+ #define CYTHON_USE_TYPE_SPECS 1
+ #undef CYTHON_USE_PYTYPE_LOOKUP
+ #define CYTHON_USE_PYTYPE_LOOKUP 0
+ #undef CYTHON_USE_ASYNC_SLOTS
+ #define CYTHON_USE_ASYNC_SLOTS 0
+ #undef CYTHON_USE_PYLIST_INTERNALS
+ #define CYTHON_USE_PYLIST_INTERNALS 0
+ #undef CYTHON_USE_UNICODE_INTERNALS
+ #define CYTHON_USE_UNICODE_INTERNALS 0
+ #ifndef CYTHON_USE_UNICODE_WRITER
+ #define CYTHON_USE_UNICODE_WRITER 0
+ #endif
+ #undef CYTHON_USE_PYLONG_INTERNALS
+ #define CYTHON_USE_PYLONG_INTERNALS 0
+ #ifndef CYTHON_AVOID_BORROWED_REFS
+ #define CYTHON_AVOID_BORROWED_REFS 0
+ #endif
+ #undef CYTHON_ASSUME_SAFE_MACROS
+ #define CYTHON_ASSUME_SAFE_MACROS 0
+ #undef CYTHON_UNPACK_METHODS
+ #define CYTHON_UNPACK_METHODS 0
+ #undef CYTHON_FAST_THREAD_STATE
+ #define CYTHON_FAST_THREAD_STATE 0
+ #undef CYTHON_FAST_GIL
+ #define CYTHON_FAST_GIL 0
+ #undef CYTHON_METH_FASTCALL
+ #define CYTHON_METH_FASTCALL 0
+ #undef CYTHON_FAST_PYCALL
+ #define CYTHON_FAST_PYCALL 0
+ #ifndef CYTHON_PEP487_INIT_SUBCLASS
+ #define CYTHON_PEP487_INIT_SUBCLASS 1
+ #endif
+ #undef CYTHON_PEP489_MULTI_PHASE_INIT
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 0
+ #undef CYTHON_USE_MODULE_STATE
+ #define CYTHON_USE_MODULE_STATE 1
+ #ifndef CYTHON_USE_TP_FINALIZE
+ #define CYTHON_USE_TP_FINALIZE 0
+ #endif
+ #undef CYTHON_USE_DICT_VERSIONS
+ #define CYTHON_USE_DICT_VERSIONS 0
+ #undef CYTHON_USE_EXC_INFO_STACK
+ #define CYTHON_USE_EXC_INFO_STACK 0
+ #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC
+ #define CYTHON_UPDATE_DESCRIPTOR_DOC 0
+ #endif
+ #undef CYTHON_USE_FREELISTS
+ #define CYTHON_USE_FREELISTS 0
+#elif defined(Py_GIL_DISABLED) || defined(Py_NOGIL)
+ #define CYTHON_COMPILING_IN_PYPY 0
+ #define CYTHON_COMPILING_IN_CPYTHON 0
+ #define CYTHON_COMPILING_IN_LIMITED_API 0
+ #define CYTHON_COMPILING_IN_GRAAL 0
+ #define CYTHON_COMPILING_IN_NOGIL 1
+ #ifndef CYTHON_USE_TYPE_SLOTS
+ #define CYTHON_USE_TYPE_SLOTS 1
+ #endif
+ #ifndef CYTHON_USE_TYPE_SPECS
+ #define CYTHON_USE_TYPE_SPECS 0
+ #endif
+ #undef CYTHON_USE_PYTYPE_LOOKUP
+ #define CYTHON_USE_PYTYPE_LOOKUP 0
+ #ifndef CYTHON_USE_ASYNC_SLOTS
+ #define CYTHON_USE_ASYNC_SLOTS 1
+ #endif
+ #ifndef CYTHON_USE_PYLONG_INTERNALS
+ #define CYTHON_USE_PYLONG_INTERNALS 0
+ #endif
+ #undef CYTHON_USE_PYLIST_INTERNALS
+ #define CYTHON_USE_PYLIST_INTERNALS 0
+ #ifndef CYTHON_USE_UNICODE_INTERNALS
+ #define CYTHON_USE_UNICODE_INTERNALS 1
+ #endif
+ #undef CYTHON_USE_UNICODE_WRITER
+ #define CYTHON_USE_UNICODE_WRITER 0
+ #ifndef CYTHON_AVOID_BORROWED_REFS
+ #define CYTHON_AVOID_BORROWED_REFS 0
+ #endif
+ #ifndef CYTHON_ASSUME_SAFE_MACROS
+ #define CYTHON_ASSUME_SAFE_MACROS 1
+ #endif
+ #ifndef CYTHON_UNPACK_METHODS
+ #define CYTHON_UNPACK_METHODS 1
+ #endif
+ #undef CYTHON_FAST_THREAD_STATE
+ #define CYTHON_FAST_THREAD_STATE 0
+ #undef CYTHON_FAST_GIL
+ #define CYTHON_FAST_GIL 0
+ #ifndef CYTHON_METH_FASTCALL
+ #define CYTHON_METH_FASTCALL 1
+ #endif
+ #undef CYTHON_FAST_PYCALL
+ #define CYTHON_FAST_PYCALL 0
+ #ifndef CYTHON_PEP487_INIT_SUBCLASS
+ #define CYTHON_PEP487_INIT_SUBCLASS 1
+ #endif
+ #ifndef CYTHON_PEP489_MULTI_PHASE_INIT
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 1
+ #endif
+ #ifndef CYTHON_USE_MODULE_STATE
+ #define CYTHON_USE_MODULE_STATE 0
+ #endif
+ #ifndef CYTHON_USE_TP_FINALIZE
+ #define CYTHON_USE_TP_FINALIZE 1
+ #endif
+ #undef CYTHON_USE_DICT_VERSIONS
+ #define CYTHON_USE_DICT_VERSIONS 0
+ #undef CYTHON_USE_EXC_INFO_STACK
+ #define CYTHON_USE_EXC_INFO_STACK 0
+ #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC
+ #define CYTHON_UPDATE_DESCRIPTOR_DOC 1
+ #endif
+ #ifndef CYTHON_USE_FREELISTS
+ #define CYTHON_USE_FREELISTS 0
+ #endif
+#else
+ #define CYTHON_COMPILING_IN_PYPY 0
+ #define CYTHON_COMPILING_IN_CPYTHON 1
+ #define CYTHON_COMPILING_IN_LIMITED_API 0
+ #define CYTHON_COMPILING_IN_GRAAL 0
+ #define CYTHON_COMPILING_IN_NOGIL 0
+ #ifndef CYTHON_USE_TYPE_SLOTS
+ #define CYTHON_USE_TYPE_SLOTS 1
+ #endif
+ #ifndef CYTHON_USE_TYPE_SPECS
+ #define CYTHON_USE_TYPE_SPECS 0
+ #endif
+ #ifndef CYTHON_USE_PYTYPE_LOOKUP
+ #define CYTHON_USE_PYTYPE_LOOKUP 1
+ #endif
+ #if PY_MAJOR_VERSION < 3
+ #undef CYTHON_USE_ASYNC_SLOTS
+ #define CYTHON_USE_ASYNC_SLOTS 0
+ #elif !defined(CYTHON_USE_ASYNC_SLOTS)
+ #define CYTHON_USE_ASYNC_SLOTS 1
+ #endif
+ #ifndef CYTHON_USE_PYLONG_INTERNALS
+ #define CYTHON_USE_PYLONG_INTERNALS 1
+ #endif
+ #ifndef CYTHON_USE_PYLIST_INTERNALS
+ #define CYTHON_USE_PYLIST_INTERNALS 1
+ #endif
+ #ifndef CYTHON_USE_UNICODE_INTERNALS
+ #define CYTHON_USE_UNICODE_INTERNALS 1
+ #endif
+ #if PY_VERSION_HEX < 0x030300F0 || PY_VERSION_HEX >= 0x030B00A2
+ #undef CYTHON_USE_UNICODE_WRITER
+ #define CYTHON_USE_UNICODE_WRITER 0
+ #elif !defined(CYTHON_USE_UNICODE_WRITER)
+ #define CYTHON_USE_UNICODE_WRITER 1
+ #endif
+ #ifndef CYTHON_AVOID_BORROWED_REFS
+ #define CYTHON_AVOID_BORROWED_REFS 0
+ #endif
+ #ifndef CYTHON_ASSUME_SAFE_MACROS
+ #define CYTHON_ASSUME_SAFE_MACROS 1
+ #endif
+ #ifndef CYTHON_UNPACK_METHODS
+ #define CYTHON_UNPACK_METHODS 1
+ #endif
+ #ifndef CYTHON_FAST_THREAD_STATE
+ #define CYTHON_FAST_THREAD_STATE 1
+ #endif
+ #ifndef CYTHON_FAST_GIL
+ #define CYTHON_FAST_GIL (PY_MAJOR_VERSION < 3 || PY_VERSION_HEX >= 0x03060000 && PY_VERSION_HEX < 0x030C00A6)
+ #endif
+ #ifndef CYTHON_METH_FASTCALL
+ #define CYTHON_METH_FASTCALL (PY_VERSION_HEX >= 0x030700A1)
+ #endif
+ #ifndef CYTHON_FAST_PYCALL
+ #define CYTHON_FAST_PYCALL 1
+ #endif
+ #ifndef CYTHON_PEP487_INIT_SUBCLASS
+ #define CYTHON_PEP487_INIT_SUBCLASS 1
+ #endif
+ #if PY_VERSION_HEX < 0x03050000
+ #undef CYTHON_PEP489_MULTI_PHASE_INIT
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 0
+ #elif !defined(CYTHON_PEP489_MULTI_PHASE_INIT)
+ #define CYTHON_PEP489_MULTI_PHASE_INIT 1
+ #endif
+ #ifndef CYTHON_USE_MODULE_STATE
+ #define CYTHON_USE_MODULE_STATE 0
+ #endif
+ #if PY_VERSION_HEX < 0x030400a1
+ #undef CYTHON_USE_TP_FINALIZE
+ #define CYTHON_USE_TP_FINALIZE 0
+ #elif !defined(CYTHON_USE_TP_FINALIZE)
+ #define CYTHON_USE_TP_FINALIZE 1
+ #endif
+ #if PY_VERSION_HEX < 0x030600B1
+ #undef CYTHON_USE_DICT_VERSIONS
+ #define CYTHON_USE_DICT_VERSIONS 0
+ #elif !defined(CYTHON_USE_DICT_VERSIONS)
+ #define CYTHON_USE_DICT_VERSIONS (PY_VERSION_HEX < 0x030C00A5)
+ #endif
+ #if PY_VERSION_HEX < 0x030700A3
+ #undef CYTHON_USE_EXC_INFO_STACK
+ #define CYTHON_USE_EXC_INFO_STACK 0
+ #elif !defined(CYTHON_USE_EXC_INFO_STACK)
+ #define CYTHON_USE_EXC_INFO_STACK 1
+ #endif
+ #ifndef CYTHON_UPDATE_DESCRIPTOR_DOC
+ #define CYTHON_UPDATE_DESCRIPTOR_DOC 1
+ #endif
+ #ifndef CYTHON_USE_FREELISTS
+ #define CYTHON_USE_FREELISTS 1
+ #endif
+#endif
+#if !defined(CYTHON_FAST_PYCCALL)
+#define CYTHON_FAST_PYCCALL (CYTHON_FAST_PYCALL && PY_VERSION_HEX >= 0x030600B1)
+#endif
+#if !defined(CYTHON_VECTORCALL)
+#define CYTHON_VECTORCALL (CYTHON_FAST_PYCCALL && PY_VERSION_HEX >= 0x030800B1)
+#endif
+#define CYTHON_BACKPORT_VECTORCALL (CYTHON_METH_FASTCALL && PY_VERSION_HEX < 0x030800B1)
+#if CYTHON_USE_PYLONG_INTERNALS
+ #if PY_MAJOR_VERSION < 3
+ #include "longintrepr.h"
+ #endif
+ #undef SHIFT
+ #undef BASE
+ #undef MASK
+ #ifdef SIZEOF_VOID_P
+ enum { __pyx_check_sizeof_voidp = 1 / (int)(SIZEOF_VOID_P == sizeof(void*)) };
+ #endif
+#endif
+#ifndef __has_attribute
+ #define __has_attribute(x) 0
+#endif
+#ifndef __has_cpp_attribute
+ #define __has_cpp_attribute(x) 0
+#endif
+#ifndef CYTHON_RESTRICT
+ #if defined(__GNUC__)
+ #define CYTHON_RESTRICT __restrict__
+ #elif defined(_MSC_VER) && _MSC_VER >= 1400
+ #define CYTHON_RESTRICT __restrict
+ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+ #define CYTHON_RESTRICT restrict
+ #else
+ #define CYTHON_RESTRICT
+ #endif
+#endif
+#ifndef CYTHON_UNUSED
+ #if defined(__cplusplus)
+ /* for clang __has_cpp_attribute(maybe_unused) is true even before C++17
+ * but leads to warnings with -pedantic, since it is a C++17 feature */
+ #if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
+ #if __has_cpp_attribute(maybe_unused)
+ #define CYTHON_UNUSED [[maybe_unused]]
+ #endif
+ #endif
+ #endif
+#endif
+#ifndef CYTHON_UNUSED
+# if defined(__GNUC__)
+# if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
+# define CYTHON_UNUSED __attribute__ ((__unused__))
+# else
+# define CYTHON_UNUSED
+# endif
+# elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER))
+# define CYTHON_UNUSED __attribute__ ((__unused__))
+# else
+# define CYTHON_UNUSED
+# endif
+#endif
+#ifndef CYTHON_UNUSED_VAR
+# if defined(__cplusplus)
+ template void CYTHON_UNUSED_VAR( const T& ) { }
+# else
+# define CYTHON_UNUSED_VAR(x) (void)(x)
+# endif
+#endif
+#ifndef CYTHON_MAYBE_UNUSED_VAR
+ #define CYTHON_MAYBE_UNUSED_VAR(x) CYTHON_UNUSED_VAR(x)
+#endif
+#ifndef CYTHON_NCP_UNUSED
+# if CYTHON_COMPILING_IN_CPYTHON
+# define CYTHON_NCP_UNUSED
+# else
+# define CYTHON_NCP_UNUSED CYTHON_UNUSED
+# endif
+#endif
+#ifndef CYTHON_USE_CPP_STD_MOVE
+ #if defined(__cplusplus) && (\
+ __cplusplus >= 201103L || (defined(_MSC_VER) && _MSC_VER >= 1600))
+ #define CYTHON_USE_CPP_STD_MOVE 1
+ #else
+ #define CYTHON_USE_CPP_STD_MOVE 0
+ #endif
+#endif
+#define __Pyx_void_to_None(void_result) ((void)(void_result), Py_INCREF(Py_None), Py_None)
+#ifdef _MSC_VER
+ #ifndef _MSC_STDINT_H_
+ #if _MSC_VER < 1300
+ typedef unsigned char uint8_t;
+ typedef unsigned short uint16_t;
+ typedef unsigned int uint32_t;
+ #else
+ typedef unsigned __int8 uint8_t;
+ typedef unsigned __int16 uint16_t;
+ typedef unsigned __int32 uint32_t;
+ #endif
+ #endif
+ #if _MSC_VER < 1300
+ #ifdef _WIN64
+ typedef unsigned long long __pyx_uintptr_t;
+ #else
+ typedef unsigned int __pyx_uintptr_t;
+ #endif
+ #else
+ #ifdef _WIN64
+ typedef unsigned __int64 __pyx_uintptr_t;
+ #else
+ typedef unsigned __int32 __pyx_uintptr_t;
+ #endif
+ #endif
+#else
+ #include
+ typedef uintptr_t __pyx_uintptr_t;
+#endif
+#ifndef CYTHON_FALLTHROUGH
+ #if defined(__cplusplus)
+ /* for clang __has_cpp_attribute(fallthrough) is true even before C++17
+ * but leads to warnings with -pedantic, since it is a C++17 feature */
+ #if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || __cplusplus >= 201703L)
+ #if __has_cpp_attribute(fallthrough)
+ #define CYTHON_FALLTHROUGH [[fallthrough]]
+ #endif
+ #endif
+ #ifndef CYTHON_FALLTHROUGH
+ #if __has_cpp_attribute(clang::fallthrough)
+ #define CYTHON_FALLTHROUGH [[clang::fallthrough]]
+ #elif __has_cpp_attribute(gnu::fallthrough)
+ #define CYTHON_FALLTHROUGH [[gnu::fallthrough]]
+ #endif
+ #endif
+ #endif
+ #ifndef CYTHON_FALLTHROUGH
+ #if __has_attribute(fallthrough)
+ #define CYTHON_FALLTHROUGH __attribute__((fallthrough))
+ #else
+ #define CYTHON_FALLTHROUGH
+ #endif
+ #endif
+ #if defined(__clang__) && defined(__apple_build_version__)
+ #if __apple_build_version__ < 7000000
+ #undef CYTHON_FALLTHROUGH
+ #define CYTHON_FALLTHROUGH
+ #endif
+ #endif
+#endif
+#ifdef __cplusplus
+ template
+ struct __PYX_IS_UNSIGNED_IMPL {static const bool value = T(0) < T(-1);};
+ #define __PYX_IS_UNSIGNED(type) (__PYX_IS_UNSIGNED_IMPL::value)
+#else
+ #define __PYX_IS_UNSIGNED(type) (((type)-1) > 0)
+#endif
+#if CYTHON_COMPILING_IN_PYPY == 1
+ #define __PYX_NEED_TP_PRINT_SLOT (PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x030A0000)
+#else
+ #define __PYX_NEED_TP_PRINT_SLOT (PY_VERSION_HEX >= 0x030800b4 && PY_VERSION_HEX < 0x03090000)
+#endif
+#define __PYX_REINTERPRET_FUNCION(func_pointer, other_pointer) ((func_pointer)(void(*)(void))(other_pointer))
+
+#ifndef CYTHON_INLINE
+ #if defined(__clang__)
+ #define CYTHON_INLINE __inline__ __attribute__ ((__unused__))
+ #elif defined(__GNUC__)
+ #define CYTHON_INLINE __inline__
+ #elif defined(_MSC_VER)
+ #define CYTHON_INLINE __inline
+ #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+ #define CYTHON_INLINE inline
+ #else
+ #define CYTHON_INLINE
+ #endif
+#endif
+
+#define __PYX_BUILD_PY_SSIZE_T "n"
+#define CYTHON_FORMAT_SSIZE_T "z"
+#if PY_MAJOR_VERSION < 3
+ #define __Pyx_BUILTIN_MODULE_NAME "__builtin__"
+ #define __Pyx_DefaultClassType PyClass_Type
+ #define __Pyx_PyCode_New(a, p, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\
+ PyCode_New(a+k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
+#else
+ #define __Pyx_BUILTIN_MODULE_NAME "builtins"
+ #define __Pyx_DefaultClassType PyType_Type
+#if CYTHON_COMPILING_IN_LIMITED_API
+ static CYTHON_INLINE PyObject* __Pyx_PyCode_New(int a, int p, int k, int l, int s, int f,
+ PyObject *code, PyObject *c, PyObject* n, PyObject *v,
+ PyObject *fv, PyObject *cell, PyObject* fn,
+ PyObject *name, int fline, PyObject *lnos) {
+ PyObject *exception_table = NULL;
+ PyObject *types_module=NULL, *code_type=NULL, *result=NULL;
+ #if __PYX_LIMITED_VERSION_HEX < 0x030B0000
+ PyObject *version_info;
+ PyObject *py_minor_version = NULL;
+ #endif
+ long minor_version = 0;
+ PyObject *type, *value, *traceback;
+ PyErr_Fetch(&type, &value, &traceback);
+ #if __PYX_LIMITED_VERSION_HEX >= 0x030B0000
+ minor_version = 11;
+ #else
+ if (!(version_info = PySys_GetObject("version_info"))) goto end;
+ if (!(py_minor_version = PySequence_GetItem(version_info, 1))) goto end;
+ minor_version = PyLong_AsLong(py_minor_version);
+ Py_DECREF(py_minor_version);
+ if (minor_version == -1 && PyErr_Occurred()) goto end;
+ #endif
+ if (!(types_module = PyImport_ImportModule("types"))) goto end;
+ if (!(code_type = PyObject_GetAttrString(types_module, "CodeType"))) goto end;
+ if (minor_version <= 7) {
+ (void)p;
+ result = PyObject_CallFunction(code_type, "iiiiiOOOOOOiOO", a, k, l, s, f, code,
+ c, n, v, fn, name, fline, lnos, fv, cell);
+ } else if (minor_version <= 10) {
+ result = PyObject_CallFunction(code_type, "iiiiiiOOOOOOiOO", a,p, k, l, s, f, code,
+ c, n, v, fn, name, fline, lnos, fv, cell);
+ } else {
+ if (!(exception_table = PyBytes_FromStringAndSize(NULL, 0))) goto end;
+ result = PyObject_CallFunction(code_type, "iiiiiiOOOOOOOiOO", a,p, k, l, s, f, code,
+ c, n, v, fn, name, name, fline, lnos, exception_table, fv, cell);
+ }
+ end:
+ Py_XDECREF(code_type);
+ Py_XDECREF(exception_table);
+ Py_XDECREF(types_module);
+ if (type) {
+ PyErr_Restore(type, value, traceback);
+ }
+ return result;
+ }
+ #ifndef CO_OPTIMIZED
+ #define CO_OPTIMIZED 0x0001
+ #endif
+ #ifndef CO_NEWLOCALS
+ #define CO_NEWLOCALS 0x0002
+ #endif
+ #ifndef CO_VARARGS
+ #define CO_VARARGS 0x0004
+ #endif
+ #ifndef CO_VARKEYWORDS
+ #define CO_VARKEYWORDS 0x0008
+ #endif
+ #ifndef CO_ASYNC_GENERATOR
+ #define CO_ASYNC_GENERATOR 0x0200
+ #endif
+ #ifndef CO_GENERATOR
+ #define CO_GENERATOR 0x0020
+ #endif
+ #ifndef CO_COROUTINE
+ #define CO_COROUTINE 0x0080
+ #endif
+#elif PY_VERSION_HEX >= 0x030B0000
+ static CYTHON_INLINE PyCodeObject* __Pyx_PyCode_New(int a, int p, int k, int l, int s, int f,
+ PyObject *code, PyObject *c, PyObject* n, PyObject *v,
+ PyObject *fv, PyObject *cell, PyObject* fn,
+ PyObject *name, int fline, PyObject *lnos) {
+ PyCodeObject *result;
+ PyObject *empty_bytes = PyBytes_FromStringAndSize("", 0);
+ if (!empty_bytes) return NULL;
+ result =
+ #if PY_VERSION_HEX >= 0x030C0000
+ PyUnstable_Code_NewWithPosOnlyArgs
+ #else
+ PyCode_NewWithPosOnlyArgs
+ #endif
+ (a, p, k, l, s, f, code, c, n, v, fv, cell, fn, name, name, fline, lnos, empty_bytes);
+ Py_DECREF(empty_bytes);
+ return result;
+ }
+#elif PY_VERSION_HEX >= 0x030800B2 && !CYTHON_COMPILING_IN_PYPY
+ #define __Pyx_PyCode_New(a, p, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\
+ PyCode_NewWithPosOnlyArgs(a, p, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
+#else
+ #define __Pyx_PyCode_New(a, p, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)\
+ PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
+#endif
+#endif
+#if PY_VERSION_HEX >= 0x030900A4 || defined(Py_IS_TYPE)
+ #define __Pyx_IS_TYPE(ob, type) Py_IS_TYPE(ob, type)
+#else
+ #define __Pyx_IS_TYPE(ob, type) (((const PyObject*)ob)->ob_type == (type))
+#endif
+#if PY_VERSION_HEX >= 0x030A00B1 || defined(Py_Is)
+ #define __Pyx_Py_Is(x, y) Py_Is(x, y)
+#else
+ #define __Pyx_Py_Is(x, y) ((x) == (y))
+#endif
+#if PY_VERSION_HEX >= 0x030A00B1 || defined(Py_IsNone)
+ #define __Pyx_Py_IsNone(ob) Py_IsNone(ob)
+#else
+ #define __Pyx_Py_IsNone(ob) __Pyx_Py_Is((ob), Py_None)
+#endif
+#if PY_VERSION_HEX >= 0x030A00B1 || defined(Py_IsTrue)
+ #define __Pyx_Py_IsTrue(ob) Py_IsTrue(ob)
+#else
+ #define __Pyx_Py_IsTrue(ob) __Pyx_Py_Is((ob), Py_True)
+#endif
+#if PY_VERSION_HEX >= 0x030A00B1 || defined(Py_IsFalse)
+ #define __Pyx_Py_IsFalse(ob) Py_IsFalse(ob)
+#else
+ #define __Pyx_Py_IsFalse(ob) __Pyx_Py_Is((ob), Py_False)
+#endif
+#define __Pyx_NoneAsNull(obj) (__Pyx_Py_IsNone(obj) ? NULL : (obj))
+#if PY_VERSION_HEX >= 0x030900F0 && !CYTHON_COMPILING_IN_PYPY
+ #define __Pyx_PyObject_GC_IsFinalized(o) PyObject_GC_IsFinalized(o)
+#else
+ #define __Pyx_PyObject_GC_IsFinalized(o) _PyGC_FINALIZED(o)
+#endif
+#ifndef CO_COROUTINE
+ #define CO_COROUTINE 0x80
+#endif
+#ifndef CO_ASYNC_GENERATOR
+ #define CO_ASYNC_GENERATOR 0x200
+#endif
+#ifndef Py_TPFLAGS_CHECKTYPES
+ #define Py_TPFLAGS_CHECKTYPES 0
+#endif
+#ifndef Py_TPFLAGS_HAVE_INDEX
+ #define Py_TPFLAGS_HAVE_INDEX 0
+#endif
+#ifndef Py_TPFLAGS_HAVE_NEWBUFFER
+ #define Py_TPFLAGS_HAVE_NEWBUFFER 0
+#endif
+#ifndef Py_TPFLAGS_HAVE_FINALIZE
+ #define Py_TPFLAGS_HAVE_FINALIZE 0
+#endif
+#ifndef Py_TPFLAGS_SEQUENCE
+ #define Py_TPFLAGS_SEQUENCE 0
+#endif
+#ifndef Py_TPFLAGS_MAPPING
+ #define Py_TPFLAGS_MAPPING 0
+#endif
+#ifndef METH_STACKLESS
+ #define METH_STACKLESS 0
+#endif
+#if PY_VERSION_HEX <= 0x030700A3 || !defined(METH_FASTCALL)
+ #ifndef METH_FASTCALL
+ #define METH_FASTCALL 0x80
+ #endif
+ typedef PyObject *(*__Pyx_PyCFunctionFast) (PyObject *self, PyObject *const *args, Py_ssize_t nargs);
+ typedef PyObject *(*__Pyx_PyCFunctionFastWithKeywords) (PyObject *self, PyObject *const *args,
+ Py_ssize_t nargs, PyObject *kwnames);
+#else
+ #if PY_VERSION_HEX >= 0x030d00A4
+ # define __Pyx_PyCFunctionFast PyCFunctionFast
+ # define __Pyx_PyCFunctionFastWithKeywords PyCFunctionFastWithKeywords
+ #else
+ # define __Pyx_PyCFunctionFast _PyCFunctionFast
+ # define __Pyx_PyCFunctionFastWithKeywords _PyCFunctionFastWithKeywords
+ #endif
+#endif
+#if CYTHON_METH_FASTCALL
+ #define __Pyx_METH_FASTCALL METH_FASTCALL
+ #define __Pyx_PyCFunction_FastCall __Pyx_PyCFunctionFast
+ #define __Pyx_PyCFunction_FastCallWithKeywords __Pyx_PyCFunctionFastWithKeywords
+#else
+ #define __Pyx_METH_FASTCALL METH_VARARGS
+ #define __Pyx_PyCFunction_FastCall PyCFunction
+ #define __Pyx_PyCFunction_FastCallWithKeywords PyCFunctionWithKeywords
+#endif
+#if CYTHON_VECTORCALL
+ #define __pyx_vectorcallfunc vectorcallfunc
+ #define __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET PY_VECTORCALL_ARGUMENTS_OFFSET
+ #define __Pyx_PyVectorcall_NARGS(n) PyVectorcall_NARGS((size_t)(n))
+#elif CYTHON_BACKPORT_VECTORCALL
+ typedef PyObject *(*__pyx_vectorcallfunc)(PyObject *callable, PyObject *const *args,
+ size_t nargsf, PyObject *kwnames);
+ #define __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET ((size_t)1 << (8 * sizeof(size_t) - 1))
+ #define __Pyx_PyVectorcall_NARGS(n) ((Py_ssize_t)(((size_t)(n)) & ~__Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET))
+#else
+ #define __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET 0
+ #define __Pyx_PyVectorcall_NARGS(n) ((Py_ssize_t)(n))
+#endif
+#if PY_MAJOR_VERSION >= 0x030900B1
+#define __Pyx_PyCFunction_CheckExact(func) PyCFunction_CheckExact(func)
+#else
+#define __Pyx_PyCFunction_CheckExact(func) PyCFunction_Check(func)
+#endif
+#define __Pyx_CyOrPyCFunction_Check(func) PyCFunction_Check(func)
+#if CYTHON_COMPILING_IN_CPYTHON
+#define __Pyx_CyOrPyCFunction_GET_FUNCTION(func) (((PyCFunctionObject*)(func))->m_ml->ml_meth)
+#elif !CYTHON_COMPILING_IN_LIMITED_API
+#define __Pyx_CyOrPyCFunction_GET_FUNCTION(func) PyCFunction_GET_FUNCTION(func)
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON
+#define __Pyx_CyOrPyCFunction_GET_FLAGS(func) (((PyCFunctionObject*)(func))->m_ml->ml_flags)
+static CYTHON_INLINE PyObject* __Pyx_CyOrPyCFunction_GET_SELF(PyObject *func) {
+ return (__Pyx_CyOrPyCFunction_GET_FLAGS(func) & METH_STATIC) ? NULL : ((PyCFunctionObject*)func)->m_self;
+}
+#endif
+static CYTHON_INLINE int __Pyx__IsSameCFunction(PyObject *func, void *cfunc) {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ return PyCFunction_Check(func) && PyCFunction_GetFunction(func) == (PyCFunction) cfunc;
+#else
+ return PyCFunction_Check(func) && PyCFunction_GET_FUNCTION(func) == (PyCFunction) cfunc;
+#endif
+}
+#define __Pyx_IsSameCFunction(func, cfunc) __Pyx__IsSameCFunction(func, cfunc)
+#if __PYX_LIMITED_VERSION_HEX < 0x030900B1
+ #define __Pyx_PyType_FromModuleAndSpec(m, s, b) ((void)m, PyType_FromSpecWithBases(s, b))
+ typedef PyObject *(*__Pyx_PyCMethod)(PyObject *, PyTypeObject *, PyObject *const *, size_t, PyObject *);
+#else
+ #define __Pyx_PyType_FromModuleAndSpec(m, s, b) PyType_FromModuleAndSpec(m, s, b)
+ #define __Pyx_PyCMethod PyCMethod
+#endif
+#ifndef METH_METHOD
+ #define METH_METHOD 0x200
+#endif
+#if CYTHON_COMPILING_IN_PYPY && !defined(PyObject_Malloc)
+ #define PyObject_Malloc(s) PyMem_Malloc(s)
+ #define PyObject_Free(p) PyMem_Free(p)
+ #define PyObject_Realloc(p) PyMem_Realloc(p)
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+ #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0)
+ #define __Pyx_PyFrame_SetLineNumber(frame, lineno)
+#else
+ #define __Pyx_PyCode_HasFreeVars(co) (PyCode_GetNumFree(co) > 0)
+ #define __Pyx_PyFrame_SetLineNumber(frame, lineno) (frame)->f_lineno = (lineno)
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+ #define __Pyx_PyThreadState_Current PyThreadState_Get()
+#elif !CYTHON_FAST_THREAD_STATE
+ #define __Pyx_PyThreadState_Current PyThreadState_GET()
+#elif PY_VERSION_HEX >= 0x030d00A1
+ #define __Pyx_PyThreadState_Current PyThreadState_GetUnchecked()
+#elif PY_VERSION_HEX >= 0x03060000
+ #define __Pyx_PyThreadState_Current _PyThreadState_UncheckedGet()
+#elif PY_VERSION_HEX >= 0x03000000
+ #define __Pyx_PyThreadState_Current PyThreadState_GET()
+#else
+ #define __Pyx_PyThreadState_Current _PyThreadState_Current
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+static CYTHON_INLINE void *__Pyx_PyModule_GetState(PyObject *op)
+{
+ void *result;
+ result = PyModule_GetState(op);
+ if (!result)
+ Py_FatalError("Couldn't find the module state");
+ return result;
+}
+#endif
+#define __Pyx_PyObject_GetSlot(obj, name, func_ctype) __Pyx_PyType_GetSlot(Py_TYPE(obj), name, func_ctype)
+#if CYTHON_COMPILING_IN_LIMITED_API
+ #define __Pyx_PyType_GetSlot(type, name, func_ctype) ((func_ctype) PyType_GetSlot((type), Py_##name))
+#else
+ #define __Pyx_PyType_GetSlot(type, name, func_ctype) ((type)->name)
+#endif
+#if PY_VERSION_HEX < 0x030700A2 && !defined(PyThread_tss_create) && !defined(Py_tss_NEEDS_INIT)
+#include "pythread.h"
+#define Py_tss_NEEDS_INIT 0
+typedef int Py_tss_t;
+static CYTHON_INLINE int PyThread_tss_create(Py_tss_t *key) {
+ *key = PyThread_create_key();
+ return 0;
+}
+static CYTHON_INLINE Py_tss_t * PyThread_tss_alloc(void) {
+ Py_tss_t *key = (Py_tss_t *)PyObject_Malloc(sizeof(Py_tss_t));
+ *key = Py_tss_NEEDS_INIT;
+ return key;
+}
+static CYTHON_INLINE void PyThread_tss_free(Py_tss_t *key) {
+ PyObject_Free(key);
+}
+static CYTHON_INLINE int PyThread_tss_is_created(Py_tss_t *key) {
+ return *key != Py_tss_NEEDS_INIT;
+}
+static CYTHON_INLINE void PyThread_tss_delete(Py_tss_t *key) {
+ PyThread_delete_key(*key);
+ *key = Py_tss_NEEDS_INIT;
+}
+static CYTHON_INLINE int PyThread_tss_set(Py_tss_t *key, void *value) {
+ return PyThread_set_key_value(*key, value);
+}
+static CYTHON_INLINE void * PyThread_tss_get(Py_tss_t *key) {
+ return PyThread_get_key_value(*key);
+}
+#endif
+#if PY_MAJOR_VERSION < 3
+ #if CYTHON_COMPILING_IN_PYPY
+ #if PYPY_VERSION_NUM < 0x07030600
+ #if defined(__cplusplus) && __cplusplus >= 201402L
+ [[deprecated("`with nogil:` inside a nogil function will not release the GIL in PyPy2 < 7.3.6")]]
+ #elif defined(__GNUC__) || defined(__clang__)
+ __attribute__ ((__deprecated__("`with nogil:` inside a nogil function will not release the GIL in PyPy2 < 7.3.6")))
+ #elif defined(_MSC_VER)
+ __declspec(deprecated("`with nogil:` inside a nogil function will not release the GIL in PyPy2 < 7.3.6"))
+ #endif
+ static CYTHON_INLINE int PyGILState_Check(void) {
+ return 0;
+ }
+ #else // PYPY_VERSION_NUM < 0x07030600
+ #endif // PYPY_VERSION_NUM < 0x07030600
+ #else
+ static CYTHON_INLINE int PyGILState_Check(void) {
+ PyThreadState * tstate = _PyThreadState_Current;
+ return tstate && (tstate == PyGILState_GetThisThreadState());
+ }
+ #endif
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030d0000 || defined(_PyDict_NewPresized)
+#define __Pyx_PyDict_NewPresized(n) ((n <= 8) ? PyDict_New() : _PyDict_NewPresized(n))
+#else
+#define __Pyx_PyDict_NewPresized(n) PyDict_New()
+#endif
+#if PY_MAJOR_VERSION >= 3 || CYTHON_FUTURE_DIVISION
+ #define __Pyx_PyNumber_Divide(x,y) PyNumber_TrueDivide(x,y)
+ #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceTrueDivide(x,y)
+#else
+ #define __Pyx_PyNumber_Divide(x,y) PyNumber_Divide(x,y)
+ #define __Pyx_PyNumber_InPlaceDivide(x,y) PyNumber_InPlaceDivide(x,y)
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX > 0x030600B4 && PY_VERSION_HEX < 0x030d0000 && CYTHON_USE_UNICODE_INTERNALS
+#define __Pyx_PyDict_GetItemStrWithError(dict, name) _PyDict_GetItem_KnownHash(dict, name, ((PyASCIIObject *) name)->hash)
+static CYTHON_INLINE PyObject * __Pyx_PyDict_GetItemStr(PyObject *dict, PyObject *name) {
+ PyObject *res = __Pyx_PyDict_GetItemStrWithError(dict, name);
+ if (res == NULL) PyErr_Clear();
+ return res;
+}
+#elif PY_MAJOR_VERSION >= 3 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07020000)
+#define __Pyx_PyDict_GetItemStrWithError PyDict_GetItemWithError
+#define __Pyx_PyDict_GetItemStr PyDict_GetItem
+#else
+static CYTHON_INLINE PyObject * __Pyx_PyDict_GetItemStrWithError(PyObject *dict, PyObject *name) {
+#if CYTHON_COMPILING_IN_PYPY
+ return PyDict_GetItem(dict, name);
+#else
+ PyDictEntry *ep;
+ PyDictObject *mp = (PyDictObject*) dict;
+ long hash = ((PyStringObject *) name)->ob_shash;
+ assert(hash != -1);
+ ep = (mp->ma_lookup)(mp, name, hash);
+ if (ep == NULL) {
+ return NULL;
+ }
+ return ep->me_value;
+#endif
+}
+#define __Pyx_PyDict_GetItemStr PyDict_GetItem
+#endif
+#if CYTHON_USE_TYPE_SLOTS
+ #define __Pyx_PyType_GetFlags(tp) (((PyTypeObject *)tp)->tp_flags)
+ #define __Pyx_PyType_HasFeature(type, feature) ((__Pyx_PyType_GetFlags(type) & (feature)) != 0)
+ #define __Pyx_PyObject_GetIterNextFunc(obj) (Py_TYPE(obj)->tp_iternext)
+#else
+ #define __Pyx_PyType_GetFlags(tp) (PyType_GetFlags((PyTypeObject *)tp))
+ #define __Pyx_PyType_HasFeature(type, feature) PyType_HasFeature(type, feature)
+ #define __Pyx_PyObject_GetIterNextFunc(obj) PyIter_Next
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+ #define __Pyx_SetItemOnTypeDict(tp, k, v) PyObject_GenericSetAttr((PyObject*)tp, k, v)
+#else
+ #define __Pyx_SetItemOnTypeDict(tp, k, v) PyDict_SetItem(tp->tp_dict, k, v)
+#endif
+#if CYTHON_USE_TYPE_SPECS && PY_VERSION_HEX >= 0x03080000
+#define __Pyx_PyHeapTypeObject_GC_Del(obj) {\
+ PyTypeObject *type = Py_TYPE((PyObject*)obj);\
+ assert(__Pyx_PyType_HasFeature(type, Py_TPFLAGS_HEAPTYPE));\
+ PyObject_GC_Del(obj);\
+ Py_DECREF(type);\
+}
+#else
+#define __Pyx_PyHeapTypeObject_GC_Del(obj) PyObject_GC_Del(obj)
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+ #define CYTHON_PEP393_ENABLED 1
+ #define __Pyx_PyUnicode_READY(op) (0)
+ #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GetLength(u)
+ #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_ReadChar(u, i)
+ #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((void)u, 1114111U)
+ #define __Pyx_PyUnicode_KIND(u) ((void)u, (0))
+ #define __Pyx_PyUnicode_DATA(u) ((void*)u)
+ #define __Pyx_PyUnicode_READ(k, d, i) ((void)k, PyUnicode_ReadChar((PyObject*)(d), i))
+ #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GetLength(u))
+#elif PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND)
+ #define CYTHON_PEP393_ENABLED 1
+ #if PY_VERSION_HEX >= 0x030C0000
+ #define __Pyx_PyUnicode_READY(op) (0)
+ #else
+ #define __Pyx_PyUnicode_READY(op) (likely(PyUnicode_IS_READY(op)) ?\
+ 0 : _PyUnicode_Ready((PyObject *)(op)))
+ #endif
+ #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_LENGTH(u)
+ #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i)
+ #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) PyUnicode_MAX_CHAR_VALUE(u)
+ #define __Pyx_PyUnicode_KIND(u) ((int)PyUnicode_KIND(u))
+ #define __Pyx_PyUnicode_DATA(u) PyUnicode_DATA(u)
+ #define __Pyx_PyUnicode_READ(k, d, i) PyUnicode_READ(k, d, i)
+ #define __Pyx_PyUnicode_WRITE(k, d, i, ch) PyUnicode_WRITE(k, d, i, (Py_UCS4) ch)
+ #if PY_VERSION_HEX >= 0x030C0000
+ #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_LENGTH(u))
+ #else
+ #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x03090000
+ #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : ((PyCompactUnicodeObject *)(u))->wstr_length))
+ #else
+ #define __Pyx_PyUnicode_IS_TRUE(u) (0 != (likely(PyUnicode_IS_READY(u)) ? PyUnicode_GET_LENGTH(u) : PyUnicode_GET_SIZE(u)))
+ #endif
+ #endif
+#else
+ #define CYTHON_PEP393_ENABLED 0
+ #define PyUnicode_1BYTE_KIND 1
+ #define PyUnicode_2BYTE_KIND 2
+ #define PyUnicode_4BYTE_KIND 4
+ #define __Pyx_PyUnicode_READY(op) (0)
+ #define __Pyx_PyUnicode_GET_LENGTH(u) PyUnicode_GET_SIZE(u)
+ #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i]))
+ #define __Pyx_PyUnicode_MAX_CHAR_VALUE(u) ((sizeof(Py_UNICODE) == 2) ? 65535U : 1114111U)
+ #define __Pyx_PyUnicode_KIND(u) ((int)sizeof(Py_UNICODE))
+ #define __Pyx_PyUnicode_DATA(u) ((void*)PyUnicode_AS_UNICODE(u))
+ #define __Pyx_PyUnicode_READ(k, d, i) ((void)(k), (Py_UCS4)(((Py_UNICODE*)d)[i]))
+ #define __Pyx_PyUnicode_WRITE(k, d, i, ch) (((void)(k)), ((Py_UNICODE*)d)[i] = (Py_UNICODE) ch)
+ #define __Pyx_PyUnicode_IS_TRUE(u) (0 != PyUnicode_GET_SIZE(u))
+#endif
+#if CYTHON_COMPILING_IN_PYPY
+ #define __Pyx_PyUnicode_Concat(a, b) PyNumber_Add(a, b)
+ #define __Pyx_PyUnicode_ConcatSafe(a, b) PyNumber_Add(a, b)
+#else
+ #define __Pyx_PyUnicode_Concat(a, b) PyUnicode_Concat(a, b)
+ #define __Pyx_PyUnicode_ConcatSafe(a, b) ((unlikely((a) == Py_None) || unlikely((b) == Py_None)) ?\
+ PyNumber_Add(a, b) : __Pyx_PyUnicode_Concat(a, b))
+#endif
+#if CYTHON_COMPILING_IN_PYPY
+ #if !defined(PyUnicode_DecodeUnicodeEscape)
+ #define PyUnicode_DecodeUnicodeEscape(s, size, errors) PyUnicode_Decode(s, size, "unicode_escape", errors)
+ #endif
+ #if !defined(PyUnicode_Contains) || (PY_MAJOR_VERSION == 2 && PYPY_VERSION_NUM < 0x07030500)
+ #undef PyUnicode_Contains
+ #define PyUnicode_Contains(u, s) PySequence_Contains(u, s)
+ #endif
+ #if !defined(PyByteArray_Check)
+ #define PyByteArray_Check(obj) PyObject_TypeCheck(obj, &PyByteArray_Type)
+ #endif
+ #if !defined(PyObject_Format)
+ #define PyObject_Format(obj, fmt) PyObject_CallMethod(obj, "__format__", "O", fmt)
+ #endif
+#endif
+#define __Pyx_PyString_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyString_Check(b) && !PyString_CheckExact(b)))) ? PyNumber_Remainder(a, b) : __Pyx_PyString_Format(a, b))
+#define __Pyx_PyUnicode_FormatSafe(a, b) ((unlikely((a) == Py_None || (PyUnicode_Check(b) && !PyUnicode_CheckExact(b)))) ? PyNumber_Remainder(a, b) : PyUnicode_Format(a, b))
+#if PY_MAJOR_VERSION >= 3
+ #define __Pyx_PyString_Format(a, b) PyUnicode_Format(a, b)
+#else
+ #define __Pyx_PyString_Format(a, b) PyString_Format(a, b)
+#endif
+#if PY_MAJOR_VERSION < 3 && !defined(PyObject_ASCII)
+ #define PyObject_ASCII(o) PyObject_Repr(o)
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyBaseString_Type PyUnicode_Type
+ #define PyStringObject PyUnicodeObject
+ #define PyString_Type PyUnicode_Type
+ #define PyString_Check PyUnicode_Check
+ #define PyString_CheckExact PyUnicode_CheckExact
+#ifndef PyObject_Unicode
+ #define PyObject_Unicode PyObject_Str
+#endif
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define __Pyx_PyBaseString_Check(obj) PyUnicode_Check(obj)
+ #define __Pyx_PyBaseString_CheckExact(obj) PyUnicode_CheckExact(obj)
+#else
+ #define __Pyx_PyBaseString_Check(obj) (PyString_Check(obj) || PyUnicode_Check(obj))
+ #define __Pyx_PyBaseString_CheckExact(obj) (PyString_CheckExact(obj) || PyUnicode_CheckExact(obj))
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON
+ #define __Pyx_PySequence_ListKeepNew(obj)\
+ (likely(PyList_CheckExact(obj) && Py_REFCNT(obj) == 1) ? __Pyx_NewRef(obj) : PySequence_List(obj))
+#else
+ #define __Pyx_PySequence_ListKeepNew(obj) PySequence_List(obj)
+#endif
+#ifndef PySet_CheckExact
+ #define PySet_CheckExact(obj) __Pyx_IS_TYPE(obj, &PySet_Type)
+#endif
+#if PY_VERSION_HEX >= 0x030900A4
+ #define __Pyx_SET_REFCNT(obj, refcnt) Py_SET_REFCNT(obj, refcnt)
+ #define __Pyx_SET_SIZE(obj, size) Py_SET_SIZE(obj, size)
+#else
+ #define __Pyx_SET_REFCNT(obj, refcnt) Py_REFCNT(obj) = (refcnt)
+ #define __Pyx_SET_SIZE(obj, size) Py_SIZE(obj) = (size)
+#endif
+#if CYTHON_ASSUME_SAFE_MACROS
+ #define __Pyx_PySequence_ITEM(o, i) PySequence_ITEM(o, i)
+ #define __Pyx_PySequence_SIZE(seq) Py_SIZE(seq)
+ #define __Pyx_PyTuple_SET_ITEM(o, i, v) (PyTuple_SET_ITEM(o, i, v), (0))
+ #define __Pyx_PyList_SET_ITEM(o, i, v) (PyList_SET_ITEM(o, i, v), (0))
+ #define __Pyx_PyTuple_GET_SIZE(o) PyTuple_GET_SIZE(o)
+ #define __Pyx_PyList_GET_SIZE(o) PyList_GET_SIZE(o)
+ #define __Pyx_PySet_GET_SIZE(o) PySet_GET_SIZE(o)
+ #define __Pyx_PyBytes_GET_SIZE(o) PyBytes_GET_SIZE(o)
+ #define __Pyx_PyByteArray_GET_SIZE(o) PyByteArray_GET_SIZE(o)
+#else
+ #define __Pyx_PySequence_ITEM(o, i) PySequence_GetItem(o, i)
+ #define __Pyx_PySequence_SIZE(seq) PySequence_Size(seq)
+ #define __Pyx_PyTuple_SET_ITEM(o, i, v) PyTuple_SetItem(o, i, v)
+ #define __Pyx_PyList_SET_ITEM(o, i, v) PyList_SetItem(o, i, v)
+ #define __Pyx_PyTuple_GET_SIZE(o) PyTuple_Size(o)
+ #define __Pyx_PyList_GET_SIZE(o) PyList_Size(o)
+ #define __Pyx_PySet_GET_SIZE(o) PySet_Size(o)
+ #define __Pyx_PyBytes_GET_SIZE(o) PyBytes_Size(o)
+ #define __Pyx_PyByteArray_GET_SIZE(o) PyByteArray_Size(o)
+#endif
+#if __PYX_LIMITED_VERSION_HEX >= 0x030d00A1
+ #define __Pyx_PyImport_AddModuleRef(name) PyImport_AddModuleRef(name)
+#else
+ static CYTHON_INLINE PyObject *__Pyx_PyImport_AddModuleRef(const char *name) {
+ PyObject *module = PyImport_AddModule(name);
+ Py_XINCREF(module);
+ return module;
+ }
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyIntObject PyLongObject
+ #define PyInt_Type PyLong_Type
+ #define PyInt_Check(op) PyLong_Check(op)
+ #define PyInt_CheckExact(op) PyLong_CheckExact(op)
+ #define __Pyx_Py3Int_Check(op) PyLong_Check(op)
+ #define __Pyx_Py3Int_CheckExact(op) PyLong_CheckExact(op)
+ #define PyInt_FromString PyLong_FromString
+ #define PyInt_FromUnicode PyLong_FromUnicode
+ #define PyInt_FromLong PyLong_FromLong
+ #define PyInt_FromSize_t PyLong_FromSize_t
+ #define PyInt_FromSsize_t PyLong_FromSsize_t
+ #define PyInt_AsLong PyLong_AsLong
+ #define PyInt_AS_LONG PyLong_AS_LONG
+ #define PyInt_AsSsize_t PyLong_AsSsize_t
+ #define PyInt_AsUnsignedLongMask PyLong_AsUnsignedLongMask
+ #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask
+ #define PyNumber_Int PyNumber_Long
+#else
+ #define __Pyx_Py3Int_Check(op) (PyLong_Check(op) || PyInt_Check(op))
+ #define __Pyx_Py3Int_CheckExact(op) (PyLong_CheckExact(op) || PyInt_CheckExact(op))
+#endif
+#if PY_MAJOR_VERSION >= 3
+ #define PyBoolObject PyLongObject
+#endif
+#if PY_MAJOR_VERSION >= 3 && CYTHON_COMPILING_IN_PYPY
+ #ifndef PyUnicode_InternFromString
+ #define PyUnicode_InternFromString(s) PyUnicode_FromString(s)
+ #endif
+#endif
+#if PY_VERSION_HEX < 0x030200A4
+ typedef long Py_hash_t;
+ #define __Pyx_PyInt_FromHash_t PyInt_FromLong
+ #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsHash_t
+#else
+ #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t
+ #define __Pyx_PyInt_AsHash_t __Pyx_PyIndex_AsSsize_t
+#endif
+#if CYTHON_USE_ASYNC_SLOTS
+ #if PY_VERSION_HEX >= 0x030500B1
+ #define __Pyx_PyAsyncMethodsStruct PyAsyncMethods
+ #define __Pyx_PyType_AsAsync(obj) (Py_TYPE(obj)->tp_as_async)
+ #else
+ #define __Pyx_PyType_AsAsync(obj) ((__Pyx_PyAsyncMethodsStruct*) (Py_TYPE(obj)->tp_reserved))
+ #endif
+#else
+ #define __Pyx_PyType_AsAsync(obj) NULL
+#endif
+#ifndef __Pyx_PyAsyncMethodsStruct
+ typedef struct {
+ unaryfunc am_await;
+ unaryfunc am_aiter;
+ unaryfunc am_anext;
+ } __Pyx_PyAsyncMethodsStruct;
+#endif
+
+#if defined(_WIN32) || defined(WIN32) || defined(MS_WINDOWS)
+ #if !defined(_USE_MATH_DEFINES)
+ #define _USE_MATH_DEFINES
+ #endif
+#endif
+#include
+#ifdef NAN
+#define __PYX_NAN() ((float) NAN)
+#else
+static CYTHON_INLINE float __PYX_NAN() {
+ float value;
+ memset(&value, 0xFF, sizeof(value));
+ return value;
+}
+#endif
+#if defined(__CYGWIN__) && defined(_LDBL_EQ_DBL)
+#define __Pyx_truncl trunc
+#else
+#define __Pyx_truncl truncl
+#endif
+
+#define __PYX_MARK_ERR_POS(f_index, lineno) \
+ { __pyx_filename = __pyx_f[f_index]; (void)__pyx_filename; __pyx_lineno = lineno; (void)__pyx_lineno; __pyx_clineno = __LINE__; (void)__pyx_clineno; }
+#define __PYX_ERR(f_index, lineno, Ln_error) \
+ { __PYX_MARK_ERR_POS(f_index, lineno) goto Ln_error; }
+
+#ifdef CYTHON_EXTERN_C
+ #undef __PYX_EXTERN_C
+ #define __PYX_EXTERN_C CYTHON_EXTERN_C
+#elif defined(__PYX_EXTERN_C)
+ #ifdef _MSC_VER
+ #pragma message ("Please do not define the '__PYX_EXTERN_C' macro externally. Use 'CYTHON_EXTERN_C' instead.")
+ #else
+ #warning Please do not define the '__PYX_EXTERN_C' macro externally. Use 'CYTHON_EXTERN_C' instead.
+ #endif
+#else
+ #ifdef __cplusplus
+ #define __PYX_EXTERN_C extern "C"
+ #else
+ #define __PYX_EXTERN_C extern
+ #endif
+#endif
+
+#define __PYX_HAVE__fontTools__feaLib__lexer
+#define __PYX_HAVE_API__fontTools__feaLib__lexer
+/* Early includes */
+#ifdef _OPENMP
+#include
+#endif /* _OPENMP */
+
+#if defined(PYREX_WITHOUT_ASSERTIONS) && !defined(CYTHON_WITHOUT_ASSERTIONS)
+#define CYTHON_WITHOUT_ASSERTIONS
+#endif
+
+typedef struct {PyObject **p; const char *s; const Py_ssize_t n; const char* encoding;
+ const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry;
+
+#define __PYX_DEFAULT_STRING_ENCODING_IS_ASCII 0
+#define __PYX_DEFAULT_STRING_ENCODING_IS_UTF8 0
+#define __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT (PY_MAJOR_VERSION >= 3 && __PYX_DEFAULT_STRING_ENCODING_IS_UTF8)
+#define __PYX_DEFAULT_STRING_ENCODING ""
+#define __Pyx_PyObject_FromString __Pyx_PyBytes_FromString
+#define __Pyx_PyObject_FromStringAndSize __Pyx_PyBytes_FromStringAndSize
+#define __Pyx_uchar_cast(c) ((unsigned char)c)
+#define __Pyx_long_cast(x) ((long)x)
+#define __Pyx_fits_Py_ssize_t(v, type, is_signed) (\
+ (sizeof(type) < sizeof(Py_ssize_t)) ||\
+ (sizeof(type) > sizeof(Py_ssize_t) &&\
+ likely(v < (type)PY_SSIZE_T_MAX ||\
+ v == (type)PY_SSIZE_T_MAX) &&\
+ (!is_signed || likely(v > (type)PY_SSIZE_T_MIN ||\
+ v == (type)PY_SSIZE_T_MIN))) ||\
+ (sizeof(type) == sizeof(Py_ssize_t) &&\
+ (is_signed || likely(v < (type)PY_SSIZE_T_MAX ||\
+ v == (type)PY_SSIZE_T_MAX))) )
+static CYTHON_INLINE int __Pyx_is_valid_index(Py_ssize_t i, Py_ssize_t limit) {
+ return (size_t) i < (size_t) limit;
+}
+#if defined (__cplusplus) && __cplusplus >= 201103L
+ #include
+ #define __Pyx_sst_abs(value) std::abs(value)
+#elif SIZEOF_INT >= SIZEOF_SIZE_T
+ #define __Pyx_sst_abs(value) abs(value)
+#elif SIZEOF_LONG >= SIZEOF_SIZE_T
+ #define __Pyx_sst_abs(value) labs(value)
+#elif defined (_MSC_VER)
+ #define __Pyx_sst_abs(value) ((Py_ssize_t)_abs64(value))
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
+ #define __Pyx_sst_abs(value) llabs(value)
+#elif defined (__GNUC__)
+ #define __Pyx_sst_abs(value) __builtin_llabs(value)
+#else
+ #define __Pyx_sst_abs(value) ((value<0) ? -value : value)
+#endif
+static CYTHON_INLINE Py_ssize_t __Pyx_ssize_strlen(const char *s);
+static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject*);
+static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject*, Py_ssize_t* length);
+static CYTHON_INLINE PyObject* __Pyx_PyByteArray_FromString(const char*);
+#define __Pyx_PyByteArray_FromStringAndSize(s, l) PyByteArray_FromStringAndSize((const char*)s, l)
+#define __Pyx_PyBytes_FromString PyBytes_FromString
+#define __Pyx_PyBytes_FromStringAndSize PyBytes_FromStringAndSize
+static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char*);
+#if PY_MAJOR_VERSION < 3
+ #define __Pyx_PyStr_FromString __Pyx_PyBytes_FromString
+ #define __Pyx_PyStr_FromStringAndSize __Pyx_PyBytes_FromStringAndSize
+#else
+ #define __Pyx_PyStr_FromString __Pyx_PyUnicode_FromString
+ #define __Pyx_PyStr_FromStringAndSize __Pyx_PyUnicode_FromStringAndSize
+#endif
+#define __Pyx_PyBytes_AsWritableString(s) ((char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyBytes_AsWritableSString(s) ((signed char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyBytes_AsWritableUString(s) ((unsigned char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyBytes_AsString(s) ((const char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyBytes_AsSString(s) ((const signed char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyBytes_AsUString(s) ((const unsigned char*) PyBytes_AS_STRING(s))
+#define __Pyx_PyObject_AsWritableString(s) ((char*)(__pyx_uintptr_t) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_AsWritableSString(s) ((signed char*)(__pyx_uintptr_t) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_AsWritableUString(s) ((unsigned char*)(__pyx_uintptr_t) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_AsSString(s) ((const signed char*) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_AsUString(s) ((const unsigned char*) __Pyx_PyObject_AsString(s))
+#define __Pyx_PyObject_FromCString(s) __Pyx_PyObject_FromString((const char*)s)
+#define __Pyx_PyBytes_FromCString(s) __Pyx_PyBytes_FromString((const char*)s)
+#define __Pyx_PyByteArray_FromCString(s) __Pyx_PyByteArray_FromString((const char*)s)
+#define __Pyx_PyStr_FromCString(s) __Pyx_PyStr_FromString((const char*)s)
+#define __Pyx_PyUnicode_FromCString(s) __Pyx_PyUnicode_FromString((const char*)s)
+#define __Pyx_PyUnicode_FromOrdinal(o) PyUnicode_FromOrdinal((int)o)
+#define __Pyx_PyUnicode_AsUnicode PyUnicode_AsUnicode
+#define __Pyx_NewRef(obj) (Py_INCREF(obj), obj)
+#define __Pyx_Owned_Py_None(b) __Pyx_NewRef(Py_None)
+static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b);
+static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*);
+static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject*);
+static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x);
+#define __Pyx_PySequence_Tuple(obj)\
+ (likely(PyTuple_CheckExact(obj)) ? __Pyx_NewRef(obj) : PySequence_Tuple(obj))
+static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*);
+static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t);
+static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject*);
+#if CYTHON_ASSUME_SAFE_MACROS
+#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x))
+#else
+#define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x)
+#endif
+#define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x))
+#if PY_MAJOR_VERSION >= 3
+#define __Pyx_PyNumber_Int(x) (PyLong_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Long(x))
+#else
+#define __Pyx_PyNumber_Int(x) (PyInt_CheckExact(x) ? __Pyx_NewRef(x) : PyNumber_Int(x))
+#endif
+#if CYTHON_USE_PYLONG_INTERNALS
+ #if PY_VERSION_HEX >= 0x030C00A7
+ #ifndef _PyLong_SIGN_MASK
+ #define _PyLong_SIGN_MASK 3
+ #endif
+ #ifndef _PyLong_NON_SIZE_BITS
+ #define _PyLong_NON_SIZE_BITS 3
+ #endif
+ #define __Pyx_PyLong_Sign(x) (((PyLongObject*)x)->long_value.lv_tag & _PyLong_SIGN_MASK)
+ #define __Pyx_PyLong_IsNeg(x) ((__Pyx_PyLong_Sign(x) & 2) != 0)
+ #define __Pyx_PyLong_IsNonNeg(x) (!__Pyx_PyLong_IsNeg(x))
+ #define __Pyx_PyLong_IsZero(x) (__Pyx_PyLong_Sign(x) & 1)
+ #define __Pyx_PyLong_IsPos(x) (__Pyx_PyLong_Sign(x) == 0)
+ #define __Pyx_PyLong_CompactValueUnsigned(x) (__Pyx_PyLong_Digits(x)[0])
+ #define __Pyx_PyLong_DigitCount(x) ((Py_ssize_t) (((PyLongObject*)x)->long_value.lv_tag >> _PyLong_NON_SIZE_BITS))
+ #define __Pyx_PyLong_SignedDigitCount(x)\
+ ((1 - (Py_ssize_t) __Pyx_PyLong_Sign(x)) * __Pyx_PyLong_DigitCount(x))
+ #if defined(PyUnstable_Long_IsCompact) && defined(PyUnstable_Long_CompactValue)
+ #define __Pyx_PyLong_IsCompact(x) PyUnstable_Long_IsCompact((PyLongObject*) x)
+ #define __Pyx_PyLong_CompactValue(x) PyUnstable_Long_CompactValue((PyLongObject*) x)
+ #else
+ #define __Pyx_PyLong_IsCompact(x) (((PyLongObject*)x)->long_value.lv_tag < (2 << _PyLong_NON_SIZE_BITS))
+ #define __Pyx_PyLong_CompactValue(x) ((1 - (Py_ssize_t) __Pyx_PyLong_Sign(x)) * (Py_ssize_t) __Pyx_PyLong_Digits(x)[0])
+ #endif
+ typedef Py_ssize_t __Pyx_compact_pylong;
+ typedef size_t __Pyx_compact_upylong;
+ #else
+ #define __Pyx_PyLong_IsNeg(x) (Py_SIZE(x) < 0)
+ #define __Pyx_PyLong_IsNonNeg(x) (Py_SIZE(x) >= 0)
+ #define __Pyx_PyLong_IsZero(x) (Py_SIZE(x) == 0)
+ #define __Pyx_PyLong_IsPos(x) (Py_SIZE(x) > 0)
+ #define __Pyx_PyLong_CompactValueUnsigned(x) ((Py_SIZE(x) == 0) ? 0 : __Pyx_PyLong_Digits(x)[0])
+ #define __Pyx_PyLong_DigitCount(x) __Pyx_sst_abs(Py_SIZE(x))
+ #define __Pyx_PyLong_SignedDigitCount(x) Py_SIZE(x)
+ #define __Pyx_PyLong_IsCompact(x) (Py_SIZE(x) == 0 || Py_SIZE(x) == 1 || Py_SIZE(x) == -1)
+ #define __Pyx_PyLong_CompactValue(x)\
+ ((Py_SIZE(x) == 0) ? (sdigit) 0 : ((Py_SIZE(x) < 0) ? -(sdigit)__Pyx_PyLong_Digits(x)[0] : (sdigit)__Pyx_PyLong_Digits(x)[0]))
+ typedef sdigit __Pyx_compact_pylong;
+ typedef digit __Pyx_compact_upylong;
+ #endif
+ #if PY_VERSION_HEX >= 0x030C00A5
+ #define __Pyx_PyLong_Digits(x) (((PyLongObject*)x)->long_value.ob_digit)
+ #else
+ #define __Pyx_PyLong_Digits(x) (((PyLongObject*)x)->ob_digit)
+ #endif
+#endif
+#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII
+#include
+static int __Pyx_sys_getdefaultencoding_not_ascii;
+static int __Pyx_init_sys_getdefaultencoding_params(void) {
+ PyObject* sys;
+ PyObject* default_encoding = NULL;
+ PyObject* ascii_chars_u = NULL;
+ PyObject* ascii_chars_b = NULL;
+ const char* default_encoding_c;
+ sys = PyImport_ImportModule("sys");
+ if (!sys) goto bad;
+ default_encoding = PyObject_CallMethod(sys, (char*) "getdefaultencoding", NULL);
+ Py_DECREF(sys);
+ if (!default_encoding) goto bad;
+ default_encoding_c = PyBytes_AsString(default_encoding);
+ if (!default_encoding_c) goto bad;
+ if (strcmp(default_encoding_c, "ascii") == 0) {
+ __Pyx_sys_getdefaultencoding_not_ascii = 0;
+ } else {
+ char ascii_chars[128];
+ int c;
+ for (c = 0; c < 128; c++) {
+ ascii_chars[c] = (char) c;
+ }
+ __Pyx_sys_getdefaultencoding_not_ascii = 1;
+ ascii_chars_u = PyUnicode_DecodeASCII(ascii_chars, 128, NULL);
+ if (!ascii_chars_u) goto bad;
+ ascii_chars_b = PyUnicode_AsEncodedString(ascii_chars_u, default_encoding_c, NULL);
+ if (!ascii_chars_b || !PyBytes_Check(ascii_chars_b) || memcmp(ascii_chars, PyBytes_AS_STRING(ascii_chars_b), 128) != 0) {
+ PyErr_Format(
+ PyExc_ValueError,
+ "This module compiled with c_string_encoding=ascii, but default encoding '%.200s' is not a superset of ascii.",
+ default_encoding_c);
+ goto bad;
+ }
+ Py_DECREF(ascii_chars_u);
+ Py_DECREF(ascii_chars_b);
+ }
+ Py_DECREF(default_encoding);
+ return 0;
+bad:
+ Py_XDECREF(default_encoding);
+ Py_XDECREF(ascii_chars_u);
+ Py_XDECREF(ascii_chars_b);
+ return -1;
+}
+#endif
+#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT && PY_MAJOR_VERSION >= 3
+#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_DecodeUTF8(c_str, size, NULL)
+#else
+#define __Pyx_PyUnicode_FromStringAndSize(c_str, size) PyUnicode_Decode(c_str, size, __PYX_DEFAULT_STRING_ENCODING, NULL)
+#if __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT
+#include
+static char* __PYX_DEFAULT_STRING_ENCODING;
+static int __Pyx_init_sys_getdefaultencoding_params(void) {
+ PyObject* sys;
+ PyObject* default_encoding = NULL;
+ char* default_encoding_c;
+ sys = PyImport_ImportModule("sys");
+ if (!sys) goto bad;
+ default_encoding = PyObject_CallMethod(sys, (char*) (const char*) "getdefaultencoding", NULL);
+ Py_DECREF(sys);
+ if (!default_encoding) goto bad;
+ default_encoding_c = PyBytes_AsString(default_encoding);
+ if (!default_encoding_c) goto bad;
+ __PYX_DEFAULT_STRING_ENCODING = (char*) malloc(strlen(default_encoding_c) + 1);
+ if (!__PYX_DEFAULT_STRING_ENCODING) goto bad;
+ strcpy(__PYX_DEFAULT_STRING_ENCODING, default_encoding_c);
+ Py_DECREF(default_encoding);
+ return 0;
+bad:
+ Py_XDECREF(default_encoding);
+ return -1;
+}
+#endif
+#endif
+
+
+/* Test for GCC > 2.95 */
+#if defined(__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95)))
+ #define likely(x) __builtin_expect(!!(x), 1)
+ #define unlikely(x) __builtin_expect(!!(x), 0)
+#else /* !__GNUC__ or GCC < 2.95 */
+ #define likely(x) (x)
+ #define unlikely(x) (x)
+#endif /* __GNUC__ */
+static CYTHON_INLINE void __Pyx_pretend_to_initialize(void* ptr) { (void)ptr; }
+
+#if !CYTHON_USE_MODULE_STATE
+static PyObject *__pyx_m = NULL;
+#endif
+static int __pyx_lineno;
+static int __pyx_clineno = 0;
+static const char * __pyx_cfilenm = __FILE__;
+static const char *__pyx_filename;
+
+/* #### Code section: filename_table ### */
+
+static const char *__pyx_f[] = {
+ "Lib/fontTools/feaLib/lexer.py",
+};
+/* #### Code section: utility_code_proto_before_types ### */
+/* ForceInitThreads.proto */
+#ifndef __PYX_FORCE_INIT_THREADS
+ #define __PYX_FORCE_INIT_THREADS 0
+#endif
+
+/* #### Code section: numeric_typedefs ### */
+/* #### Code section: complex_type_declarations ### */
+/* #### Code section: type_declarations ### */
+
+/*--- Type declarations ---*/
+/* #### Code section: utility_code_proto ### */
+
+/* --- Runtime support code (head) --- */
+/* Refnanny.proto */
+#ifndef CYTHON_REFNANNY
+ #define CYTHON_REFNANNY 0
+#endif
+#if CYTHON_REFNANNY
+ typedef struct {
+ void (*INCREF)(void*, PyObject*, Py_ssize_t);
+ void (*DECREF)(void*, PyObject*, Py_ssize_t);
+ void (*GOTREF)(void*, PyObject*, Py_ssize_t);
+ void (*GIVEREF)(void*, PyObject*, Py_ssize_t);
+ void* (*SetupContext)(const char*, Py_ssize_t, const char*);
+ void (*FinishContext)(void**);
+ } __Pyx_RefNannyAPIStruct;
+ static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL;
+ static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname);
+ #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL;
+#ifdef WITH_THREAD
+ #define __Pyx_RefNannySetupContext(name, acquire_gil)\
+ if (acquire_gil) {\
+ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), (__LINE__), (__FILE__));\
+ PyGILState_Release(__pyx_gilstate_save);\
+ } else {\
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), (__LINE__), (__FILE__));\
+ }
+ #define __Pyx_RefNannyFinishContextNogil() {\
+ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\
+ __Pyx_RefNannyFinishContext();\
+ PyGILState_Release(__pyx_gilstate_save);\
+ }
+#else
+ #define __Pyx_RefNannySetupContext(name, acquire_gil)\
+ __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), (__LINE__), (__FILE__))
+ #define __Pyx_RefNannyFinishContextNogil() __Pyx_RefNannyFinishContext()
+#endif
+ #define __Pyx_RefNannyFinishContextNogil() {\
+ PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure();\
+ __Pyx_RefNannyFinishContext();\
+ PyGILState_Release(__pyx_gilstate_save);\
+ }
+ #define __Pyx_RefNannyFinishContext()\
+ __Pyx_RefNanny->FinishContext(&__pyx_refnanny)
+ #define __Pyx_INCREF(r) __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), (__LINE__))
+ #define __Pyx_DECREF(r) __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), (__LINE__))
+ #define __Pyx_GOTREF(r) __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), (__LINE__))
+ #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), (__LINE__))
+ #define __Pyx_XINCREF(r) do { if((r) == NULL); else {__Pyx_INCREF(r); }} while(0)
+ #define __Pyx_XDECREF(r) do { if((r) == NULL); else {__Pyx_DECREF(r); }} while(0)
+ #define __Pyx_XGOTREF(r) do { if((r) == NULL); else {__Pyx_GOTREF(r); }} while(0)
+ #define __Pyx_XGIVEREF(r) do { if((r) == NULL); else {__Pyx_GIVEREF(r);}} while(0)
+#else
+ #define __Pyx_RefNannyDeclarations
+ #define __Pyx_RefNannySetupContext(name, acquire_gil)
+ #define __Pyx_RefNannyFinishContextNogil()
+ #define __Pyx_RefNannyFinishContext()
+ #define __Pyx_INCREF(r) Py_INCREF(r)
+ #define __Pyx_DECREF(r) Py_DECREF(r)
+ #define __Pyx_GOTREF(r)
+ #define __Pyx_GIVEREF(r)
+ #define __Pyx_XINCREF(r) Py_XINCREF(r)
+ #define __Pyx_XDECREF(r) Py_XDECREF(r)
+ #define __Pyx_XGOTREF(r)
+ #define __Pyx_XGIVEREF(r)
+#endif
+#define __Pyx_Py_XDECREF_SET(r, v) do {\
+ PyObject *tmp = (PyObject *) r;\
+ r = v; Py_XDECREF(tmp);\
+ } while (0)
+#define __Pyx_XDECREF_SET(r, v) do {\
+ PyObject *tmp = (PyObject *) r;\
+ r = v; __Pyx_XDECREF(tmp);\
+ } while (0)
+#define __Pyx_DECREF_SET(r, v) do {\
+ PyObject *tmp = (PyObject *) r;\
+ r = v; __Pyx_DECREF(tmp);\
+ } while (0)
+#define __Pyx_CLEAR(r) do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0)
+#define __Pyx_XCLEAR(r) do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0)
+
+/* PyErrExceptionMatches.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_PyErr_ExceptionMatches(err) __Pyx_PyErr_ExceptionMatchesInState(__pyx_tstate, err)
+static CYTHON_INLINE int __Pyx_PyErr_ExceptionMatchesInState(PyThreadState* tstate, PyObject* err);
+#else
+#define __Pyx_PyErr_ExceptionMatches(err) PyErr_ExceptionMatches(err)
+#endif
+
+/* PyThreadStateGet.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_PyThreadState_declare PyThreadState *__pyx_tstate;
+#define __Pyx_PyThreadState_assign __pyx_tstate = __Pyx_PyThreadState_Current;
+#if PY_VERSION_HEX >= 0x030C00A6
+#define __Pyx_PyErr_Occurred() (__pyx_tstate->current_exception != NULL)
+#define __Pyx_PyErr_CurrentExceptionType() (__pyx_tstate->current_exception ? (PyObject*) Py_TYPE(__pyx_tstate->current_exception) : (PyObject*) NULL)
+#else
+#define __Pyx_PyErr_Occurred() (__pyx_tstate->curexc_type != NULL)
+#define __Pyx_PyErr_CurrentExceptionType() (__pyx_tstate->curexc_type)
+#endif
+#else
+#define __Pyx_PyThreadState_declare
+#define __Pyx_PyThreadState_assign
+#define __Pyx_PyErr_Occurred() (PyErr_Occurred() != NULL)
+#define __Pyx_PyErr_CurrentExceptionType() PyErr_Occurred()
+#endif
+
+/* PyErrFetchRestore.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_PyErr_Clear() __Pyx_ErrRestore(NULL, NULL, NULL)
+#define __Pyx_ErrRestoreWithState(type, value, tb) __Pyx_ErrRestoreInState(PyThreadState_GET(), type, value, tb)
+#define __Pyx_ErrFetchWithState(type, value, tb) __Pyx_ErrFetchInState(PyThreadState_GET(), type, value, tb)
+#define __Pyx_ErrRestore(type, value, tb) __Pyx_ErrRestoreInState(__pyx_tstate, type, value, tb)
+#define __Pyx_ErrFetch(type, value, tb) __Pyx_ErrFetchInState(__pyx_tstate, type, value, tb)
+static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb);
+static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb);
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030C00A6
+#define __Pyx_PyErr_SetNone(exc) (Py_INCREF(exc), __Pyx_ErrRestore((exc), NULL, NULL))
+#else
+#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc)
+#endif
+#else
+#define __Pyx_PyErr_Clear() PyErr_Clear()
+#define __Pyx_PyErr_SetNone(exc) PyErr_SetNone(exc)
+#define __Pyx_ErrRestoreWithState(type, value, tb) PyErr_Restore(type, value, tb)
+#define __Pyx_ErrFetchWithState(type, value, tb) PyErr_Fetch(type, value, tb)
+#define __Pyx_ErrRestoreInState(tstate, type, value, tb) PyErr_Restore(type, value, tb)
+#define __Pyx_ErrFetchInState(tstate, type, value, tb) PyErr_Fetch(type, value, tb)
+#define __Pyx_ErrRestore(type, value, tb) PyErr_Restore(type, value, tb)
+#define __Pyx_ErrFetch(type, value, tb) PyErr_Fetch(type, value, tb)
+#endif
+
+/* PyObjectGetAttrStr.proto */
+#if CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name);
+#else
+#define __Pyx_PyObject_GetAttrStr(o,n) PyObject_GetAttr(o,n)
+#endif
+
+/* PyObjectGetAttrStrNoError.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name);
+
+/* GetBuiltinName.proto */
+static PyObject *__Pyx_GetBuiltinName(PyObject *name);
+
+/* TupleAndListFromArray.proto */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyList_FromArray(PyObject *const *src, Py_ssize_t n);
+static CYTHON_INLINE PyObject* __Pyx_PyTuple_FromArray(PyObject *const *src, Py_ssize_t n);
+#endif
+
+/* IncludeStringH.proto */
+#include
+
+/* BytesEquals.proto */
+static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals);
+
+/* UnicodeEquals.proto */
+static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals);
+
+/* fastcall.proto */
+#if CYTHON_AVOID_BORROWED_REFS
+ #define __Pyx_Arg_VARARGS(args, i) PySequence_GetItem(args, i)
+#elif CYTHON_ASSUME_SAFE_MACROS
+ #define __Pyx_Arg_VARARGS(args, i) PyTuple_GET_ITEM(args, i)
+#else
+ #define __Pyx_Arg_VARARGS(args, i) PyTuple_GetItem(args, i)
+#endif
+#if CYTHON_AVOID_BORROWED_REFS
+ #define __Pyx_Arg_NewRef_VARARGS(arg) __Pyx_NewRef(arg)
+ #define __Pyx_Arg_XDECREF_VARARGS(arg) Py_XDECREF(arg)
+#else
+ #define __Pyx_Arg_NewRef_VARARGS(arg) arg
+ #define __Pyx_Arg_XDECREF_VARARGS(arg)
+#endif
+#define __Pyx_NumKwargs_VARARGS(kwds) PyDict_Size(kwds)
+#define __Pyx_KwValues_VARARGS(args, nargs) NULL
+#define __Pyx_GetKwValue_VARARGS(kw, kwvalues, s) __Pyx_PyDict_GetItemStrWithError(kw, s)
+#define __Pyx_KwargsAsDict_VARARGS(kw, kwvalues) PyDict_Copy(kw)
+#if CYTHON_METH_FASTCALL
+ #define __Pyx_Arg_FASTCALL(args, i) args[i]
+ #define __Pyx_NumKwargs_FASTCALL(kwds) PyTuple_GET_SIZE(kwds)
+ #define __Pyx_KwValues_FASTCALL(args, nargs) ((args) + (nargs))
+ static CYTHON_INLINE PyObject * __Pyx_GetKwValue_FASTCALL(PyObject *kwnames, PyObject *const *kwvalues, PyObject *s);
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030d0000
+ CYTHON_UNUSED static PyObject *__Pyx_KwargsAsDict_FASTCALL(PyObject *kwnames, PyObject *const *kwvalues);
+ #else
+ #define __Pyx_KwargsAsDict_FASTCALL(kw, kwvalues) _PyStack_AsDict(kwvalues, kw)
+ #endif
+ #define __Pyx_Arg_NewRef_FASTCALL(arg) arg /* no-op, __Pyx_Arg_FASTCALL is direct and this needs
+ to have the same reference counting */
+ #define __Pyx_Arg_XDECREF_FASTCALL(arg)
+#else
+ #define __Pyx_Arg_FASTCALL __Pyx_Arg_VARARGS
+ #define __Pyx_NumKwargs_FASTCALL __Pyx_NumKwargs_VARARGS
+ #define __Pyx_KwValues_FASTCALL __Pyx_KwValues_VARARGS
+ #define __Pyx_GetKwValue_FASTCALL __Pyx_GetKwValue_VARARGS
+ #define __Pyx_KwargsAsDict_FASTCALL __Pyx_KwargsAsDict_VARARGS
+ #define __Pyx_Arg_NewRef_FASTCALL(arg) __Pyx_Arg_NewRef_VARARGS(arg)
+ #define __Pyx_Arg_XDECREF_FASTCALL(arg) __Pyx_Arg_XDECREF_VARARGS(arg)
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON && CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+#define __Pyx_ArgsSlice_VARARGS(args, start, stop) __Pyx_PyTuple_FromArray(&__Pyx_Arg_VARARGS(args, start), stop - start)
+#define __Pyx_ArgsSlice_FASTCALL(args, start, stop) __Pyx_PyTuple_FromArray(&__Pyx_Arg_FASTCALL(args, start), stop - start)
+#else
+#define __Pyx_ArgsSlice_VARARGS(args, start, stop) PyTuple_GetSlice(args, start, stop)
+#define __Pyx_ArgsSlice_FASTCALL(args, start, stop) PyTuple_GetSlice(args, start, stop)
+#endif
+
+/* RaiseArgTupleInvalid.proto */
+static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact,
+ Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found);
+
+/* RaiseDoubleKeywords.proto */
+static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name);
+
+/* ParseKeywords.proto */
+static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject *const *kwvalues,
+ PyObject **argnames[],
+ PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args,
+ const char* function_name);
+
+/* PyObjectSetAttrStr.proto */
+#if CYTHON_USE_TYPE_SLOTS
+#define __Pyx_PyObject_DelAttrStr(o,n) __Pyx_PyObject_SetAttrStr(o, n, NULL)
+static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value);
+#else
+#define __Pyx_PyObject_DelAttrStr(o,n) PyObject_DelAttr(o,n)
+#define __Pyx_PyObject_SetAttrStr(o,n,v) PyObject_SetAttr(o,n,v)
+#endif
+
+/* PyDictVersioning.proto */
+#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS
+#define __PYX_DICT_VERSION_INIT ((PY_UINT64_T) -1)
+#define __PYX_GET_DICT_VERSION(dict) (((PyDictObject*)(dict))->ma_version_tag)
+#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)\
+ (version_var) = __PYX_GET_DICT_VERSION(dict);\
+ (cache_var) = (value);
+#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) {\
+ static PY_UINT64_T __pyx_dict_version = 0;\
+ static PyObject *__pyx_dict_cached_value = NULL;\
+ if (likely(__PYX_GET_DICT_VERSION(DICT) == __pyx_dict_version)) {\
+ (VAR) = __pyx_dict_cached_value;\
+ } else {\
+ (VAR) = __pyx_dict_cached_value = (LOOKUP);\
+ __pyx_dict_version = __PYX_GET_DICT_VERSION(DICT);\
+ }\
+}
+static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj);
+static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj);
+static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version);
+#else
+#define __PYX_GET_DICT_VERSION(dict) (0)
+#define __PYX_UPDATE_DICT_CACHE(dict, value, cache_var, version_var)
+#define __PYX_PY_DICT_LOOKUP_IF_MODIFIED(VAR, DICT, LOOKUP) (VAR) = (LOOKUP);
+#endif
+
+/* GetModuleGlobalName.proto */
+#if CYTHON_USE_DICT_VERSIONS
+#define __Pyx_GetModuleGlobalName(var, name) do {\
+ static PY_UINT64_T __pyx_dict_version = 0;\
+ static PyObject *__pyx_dict_cached_value = NULL;\
+ (var) = (likely(__pyx_dict_version == __PYX_GET_DICT_VERSION(__pyx_d))) ?\
+ (likely(__pyx_dict_cached_value) ? __Pyx_NewRef(__pyx_dict_cached_value) : __Pyx_GetBuiltinName(name)) :\
+ __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\
+} while(0)
+#define __Pyx_GetModuleGlobalNameUncached(var, name) do {\
+ PY_UINT64_T __pyx_dict_version;\
+ PyObject *__pyx_dict_cached_value;\
+ (var) = __Pyx__GetModuleGlobalName(name, &__pyx_dict_version, &__pyx_dict_cached_value);\
+} while(0)
+static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value);
+#else
+#define __Pyx_GetModuleGlobalName(var, name) (var) = __Pyx__GetModuleGlobalName(name)
+#define __Pyx_GetModuleGlobalNameUncached(var, name) (var) = __Pyx__GetModuleGlobalName(name)
+static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name);
+#endif
+
+/* PyFunctionFastCall.proto */
+#if CYTHON_FAST_PYCALL
+#if !CYTHON_VECTORCALL
+#define __Pyx_PyFunction_FastCall(func, args, nargs)\
+ __Pyx_PyFunction_FastCallDict((func), (args), (nargs), NULL)
+static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs);
+#endif
+#define __Pyx_BUILD_ASSERT_EXPR(cond)\
+ (sizeof(char [1 - 2*!(cond)]) - 1)
+#ifndef Py_MEMBER_SIZE
+#define Py_MEMBER_SIZE(type, member) sizeof(((type *)0)->member)
+#endif
+#if !CYTHON_VECTORCALL
+#if PY_VERSION_HEX >= 0x03080000
+ #include "frameobject.h"
+#if PY_VERSION_HEX >= 0x030b00a6 && !CYTHON_COMPILING_IN_LIMITED_API
+ #ifndef Py_BUILD_CORE
+ #define Py_BUILD_CORE 1
+ #endif
+ #include "internal/pycore_frame.h"
+#endif
+ #define __Pxy_PyFrame_Initialize_Offsets()
+ #define __Pyx_PyFrame_GetLocalsplus(frame) ((frame)->f_localsplus)
+#else
+ static size_t __pyx_pyframe_localsplus_offset = 0;
+ #include "frameobject.h"
+ #define __Pxy_PyFrame_Initialize_Offsets()\
+ ((void)__Pyx_BUILD_ASSERT_EXPR(sizeof(PyFrameObject) == offsetof(PyFrameObject, f_localsplus) + Py_MEMBER_SIZE(PyFrameObject, f_localsplus)),\
+ (void)(__pyx_pyframe_localsplus_offset = ((size_t)PyFrame_Type.tp_basicsize) - Py_MEMBER_SIZE(PyFrameObject, f_localsplus)))
+ #define __Pyx_PyFrame_GetLocalsplus(frame)\
+ (assert(__pyx_pyframe_localsplus_offset), (PyObject **)(((char *)(frame)) + __pyx_pyframe_localsplus_offset))
+#endif
+#endif
+#endif
+
+/* PyObjectCall.proto */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw);
+#else
+#define __Pyx_PyObject_Call(func, arg, kw) PyObject_Call(func, arg, kw)
+#endif
+
+/* PyObjectCallMethO.proto */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg);
+#endif
+
+/* PyObjectFastCall.proto */
+#define __Pyx_PyObject_FastCall(func, args, nargs) __Pyx_PyObject_FastCallDict(func, args, (size_t)(nargs), NULL)
+static CYTHON_INLINE PyObject* __Pyx_PyObject_FastCallDict(PyObject *func, PyObject **args, size_t nargs, PyObject *kwargs);
+
+/* RaiseTooManyValuesToUnpack.proto */
+static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected);
+
+/* RaiseNeedMoreValuesToUnpack.proto */
+static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index);
+
+/* IterFinish.proto */
+static CYTHON_INLINE int __Pyx_IterFinish(void);
+
+/* UnpackItemEndCheck.proto */
+static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected);
+
+/* PyIntBinop.proto */
+#if !CYTHON_COMPILING_IN_PYPY
+static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check);
+#else
+#define __Pyx_PyInt_AddObjC(op1, op2, intval, inplace, zerodivision_check)\
+ (inplace ? PyNumber_InPlaceAdd(op1, op2) : PyNumber_Add(op1, op2))
+#endif
+
+/* PyObjectCallNoArg.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func);
+
+/* RaiseException.proto */
+static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause);
+
+/* GetItemInt.proto */
+#define __Pyx_GetItemInt(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\
+ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\
+ __Pyx_GetItemInt_Fast(o, (Py_ssize_t)i, is_list, wraparound, boundscheck) :\
+ (is_list ? (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL) :\
+ __Pyx_GetItemInt_Generic(o, to_py_func(i))))
+#define __Pyx_GetItemInt_List(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\
+ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\
+ __Pyx_GetItemInt_List_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\
+ (PyErr_SetString(PyExc_IndexError, "list index out of range"), (PyObject*)NULL))
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i,
+ int wraparound, int boundscheck);
+#define __Pyx_GetItemInt_Tuple(o, i, type, is_signed, to_py_func, is_list, wraparound, boundscheck)\
+ (__Pyx_fits_Py_ssize_t(i, type, is_signed) ?\
+ __Pyx_GetItemInt_Tuple_Fast(o, (Py_ssize_t)i, wraparound, boundscheck) :\
+ (PyErr_SetString(PyExc_IndexError, "tuple index out of range"), (PyObject*)NULL))
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i,
+ int wraparound, int boundscheck);
+static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j);
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i,
+ int is_list, int wraparound, int boundscheck);
+
+/* PyObjectCallOneArg.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg);
+
+/* ObjectGetItem.proto */
+#if CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject *key);
+#else
+#define __Pyx_PyObject_GetItem(obj, key) PyObject_GetItem(obj, key)
+#endif
+
+/* SliceObject.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice(
+ PyObject* obj, Py_ssize_t cstart, Py_ssize_t cstop,
+ PyObject** py_start, PyObject** py_stop, PyObject** py_slice,
+ int has_cstart, int has_cstop, int wraparound);
+
+/* PyIntBinop.proto */
+#if !CYTHON_COMPILING_IN_PYPY
+static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check);
+#else
+#define __Pyx_PyInt_SubtractObjC(op1, op2, intval, inplace, zerodivision_check)\
+ (inplace ? PyNumber_InPlaceSubtract(op1, op2) : PyNumber_Subtract(op1, op2))
+#endif
+
+/* PySequenceContains.proto */
+static CYTHON_INLINE int __Pyx_PySequence_ContainsTF(PyObject* item, PyObject* seq, int eq) {
+ int result = PySequence_Contains(seq, item);
+ return unlikely(result < 0) ? result : (result == (eq == Py_EQ));
+}
+
+/* PyUnicodeContains.proto */
+static CYTHON_INLINE int __Pyx_PyUnicode_ContainsTF(PyObject* substring, PyObject* text, int eq) {
+ int result = PyUnicode_Contains(text, substring);
+ return unlikely(result < 0) ? result : (result == (eq == Py_EQ));
+}
+
+/* pybytes_as_double.proto */
+static double __Pyx_SlowPyString_AsDouble(PyObject *obj);
+static double __Pyx__PyBytes_AsDouble(PyObject *obj, const char* start, Py_ssize_t length);
+static CYTHON_INLINE double __Pyx_PyBytes_AsDouble(PyObject *obj) {
+ char* as_c_string;
+ Py_ssize_t size;
+#if CYTHON_ASSUME_SAFE_MACROS
+ as_c_string = PyBytes_AS_STRING(obj);
+ size = PyBytes_GET_SIZE(obj);
+#else
+ if (PyBytes_AsStringAndSize(obj, &as_c_string, &size) < 0) {
+ return (double)-1;
+ }
+#endif
+ return __Pyx__PyBytes_AsDouble(obj, as_c_string, size);
+}
+static CYTHON_INLINE double __Pyx_PyByteArray_AsDouble(PyObject *obj) {
+ char* as_c_string;
+ Py_ssize_t size;
+#if CYTHON_ASSUME_SAFE_MACROS
+ as_c_string = PyByteArray_AS_STRING(obj);
+ size = PyByteArray_GET_SIZE(obj);
+#else
+ as_c_string = PyByteArray_AsString(obj);
+ if (as_c_string == NULL) {
+ return (double)-1;
+ }
+ size = PyByteArray_Size(obj);
+#endif
+ return __Pyx__PyBytes_AsDouble(obj, as_c_string, size);
+}
+
+/* pyunicode_as_double.proto */
+#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY && CYTHON_ASSUME_SAFE_MACROS
+static const char* __Pyx__PyUnicode_AsDouble_Copy(const void* data, const int kind, char* buffer, Py_ssize_t start, Py_ssize_t end) {
+ int last_was_punctuation;
+ Py_ssize_t i;
+ last_was_punctuation = 1;
+ for (i=start; i <= end; i++) {
+ Py_UCS4 chr = PyUnicode_READ(kind, data, i);
+ int is_punctuation = (chr == '_') | (chr == '.');
+ *buffer = (char)chr;
+ buffer += (chr != '_');
+ if (unlikely(chr > 127)) goto parse_failure;
+ if (unlikely(last_was_punctuation & is_punctuation)) goto parse_failure;
+ last_was_punctuation = is_punctuation;
+ }
+ if (unlikely(last_was_punctuation)) goto parse_failure;
+ *buffer = '\0';
+ return buffer;
+parse_failure:
+ return NULL;
+}
+static double __Pyx__PyUnicode_AsDouble_inf_nan(const void* data, int kind, Py_ssize_t start, Py_ssize_t length) {
+ int matches = 1;
+ Py_UCS4 chr;
+ Py_UCS4 sign = PyUnicode_READ(kind, data, start);
+ int is_signed = (sign == '-') | (sign == '+');
+ start += is_signed;
+ length -= is_signed;
+ switch (PyUnicode_READ(kind, data, start)) {
+ #ifdef Py_NAN
+ case 'n':
+ case 'N':
+ if (unlikely(length != 3)) goto parse_failure;
+ chr = PyUnicode_READ(kind, data, start+1);
+ matches &= (chr == 'a') | (chr == 'A');
+ chr = PyUnicode_READ(kind, data, start+2);
+ matches &= (chr == 'n') | (chr == 'N');
+ if (unlikely(!matches)) goto parse_failure;
+ return (sign == '-') ? -Py_NAN : Py_NAN;
+ #endif
+ case 'i':
+ case 'I':
+ if (unlikely(length < 3)) goto parse_failure;
+ chr = PyUnicode_READ(kind, data, start+1);
+ matches &= (chr == 'n') | (chr == 'N');
+ chr = PyUnicode_READ(kind, data, start+2);
+ matches &= (chr == 'f') | (chr == 'F');
+ if (likely(length == 3 && matches))
+ return (sign == '-') ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ if (unlikely(length != 8)) goto parse_failure;
+ chr = PyUnicode_READ(kind, data, start+3);
+ matches &= (chr == 'i') | (chr == 'I');
+ chr = PyUnicode_READ(kind, data, start+4);
+ matches &= (chr == 'n') | (chr == 'N');
+ chr = PyUnicode_READ(kind, data, start+5);
+ matches &= (chr == 'i') | (chr == 'I');
+ chr = PyUnicode_READ(kind, data, start+6);
+ matches &= (chr == 't') | (chr == 'T');
+ chr = PyUnicode_READ(kind, data, start+7);
+ matches &= (chr == 'y') | (chr == 'Y');
+ if (unlikely(!matches)) goto parse_failure;
+ return (sign == '-') ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ case '.': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
+ break;
+ default:
+ goto parse_failure;
+ }
+ return 0.0;
+parse_failure:
+ return -1.0;
+}
+static double __Pyx_PyUnicode_AsDouble_WithSpaces(PyObject *obj) {
+ double value;
+ const char *last;
+ char *end;
+ Py_ssize_t start, length = PyUnicode_GET_LENGTH(obj);
+ const int kind = PyUnicode_KIND(obj);
+ const void* data = PyUnicode_DATA(obj);
+ start = 0;
+ while (Py_UNICODE_ISSPACE(PyUnicode_READ(kind, data, start)))
+ start++;
+ while (start < length - 1 && Py_UNICODE_ISSPACE(PyUnicode_READ(kind, data, length - 1)))
+ length--;
+ length -= start;
+ if (unlikely(length <= 0)) goto fallback;
+ value = __Pyx__PyUnicode_AsDouble_inf_nan(data, kind, start, length);
+ if (unlikely(value == -1.0)) goto fallback;
+ if (value != 0.0) return value;
+ if (length < 40) {
+ char number[40];
+ last = __Pyx__PyUnicode_AsDouble_Copy(data, kind, number, start, start + length);
+ if (unlikely(!last)) goto fallback;
+ value = PyOS_string_to_double(number, &end, NULL);
+ } else {
+ char *number = (char*) PyMem_Malloc((length + 1) * sizeof(char));
+ if (unlikely(!number)) goto fallback;
+ last = __Pyx__PyUnicode_AsDouble_Copy(data, kind, number, start, start + length);
+ if (unlikely(!last)) {
+ PyMem_Free(number);
+ goto fallback;
+ }
+ value = PyOS_string_to_double(number, &end, NULL);
+ PyMem_Free(number);
+ }
+ if (likely(end == last) || (value == (double)-1 && PyErr_Occurred())) {
+ return value;
+ }
+fallback:
+ return __Pyx_SlowPyString_AsDouble(obj);
+}
+#endif
+static CYTHON_INLINE double __Pyx_PyUnicode_AsDouble(PyObject *obj) {
+#if PY_MAJOR_VERSION >= 3 && !CYTHON_COMPILING_IN_PYPY && CYTHON_ASSUME_SAFE_MACROS
+ if (unlikely(__Pyx_PyUnicode_READY(obj) == -1))
+ return (double)-1;
+ if (likely(PyUnicode_IS_ASCII(obj))) {
+ const char *s;
+ Py_ssize_t length;
+ s = PyUnicode_AsUTF8AndSize(obj, &length);
+ return __Pyx__PyBytes_AsDouble(obj, s, length);
+ }
+ return __Pyx_PyUnicode_AsDouble_WithSpaces(obj);
+#else
+ return __Pyx_SlowPyString_AsDouble(obj);
+#endif
+}
+
+/* pynumber_float.proto */
+static CYTHON_INLINE PyObject* __Pyx__PyNumber_Float(PyObject* obj);
+#define __Pyx_PyNumber_Float(x) (PyFloat_CheckExact(x) ? __Pyx_NewRef(x) : __Pyx__PyNumber_Float(x))
+
+/* IterNext.proto */
+#define __Pyx_PyIter_Next(obj) __Pyx_PyIter_Next2(obj, NULL)
+static CYTHON_INLINE PyObject *__Pyx_PyIter_Next2(PyObject *, PyObject *);
+
+/* GetTopmostException.proto */
+#if CYTHON_USE_EXC_INFO_STACK && CYTHON_FAST_THREAD_STATE
+static _PyErr_StackItem * __Pyx_PyErr_GetTopmostException(PyThreadState *tstate);
+#endif
+
+/* SaveResetException.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_ExceptionSave(type, value, tb) __Pyx__ExceptionSave(__pyx_tstate, type, value, tb)
+static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb);
+#define __Pyx_ExceptionReset(type, value, tb) __Pyx__ExceptionReset(__pyx_tstate, type, value, tb)
+static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb);
+#else
+#define __Pyx_ExceptionSave(type, value, tb) PyErr_GetExcInfo(type, value, tb)
+#define __Pyx_ExceptionReset(type, value, tb) PyErr_SetExcInfo(type, value, tb)
+#endif
+
+/* GetException.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_GetException(type, value, tb) __Pyx__GetException(__pyx_tstate, type, value, tb)
+static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb);
+#else
+static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb);
+#endif
+
+/* PyObjectGetMethod.proto */
+static int __Pyx_PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method);
+
+/* PyObjectCallMethod0.proto */
+static PyObject* __Pyx_PyObject_CallMethod0(PyObject* obj, PyObject* method_name);
+
+/* pop.proto */
+static CYTHON_INLINE PyObject* __Pyx__PyObject_Pop(PyObject* L);
+#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS
+static CYTHON_INLINE PyObject* __Pyx_PyList_Pop(PyObject* L);
+#define __Pyx_PyObject_Pop(L) (likely(PyList_CheckExact(L)) ?\
+ __Pyx_PyList_Pop(L) : __Pyx__PyObject_Pop(L))
+#else
+#define __Pyx_PyList_Pop(L) __Pyx__PyObject_Pop(L)
+#define __Pyx_PyObject_Pop(L) __Pyx__PyObject_Pop(L)
+#endif
+
+/* UnpackUnboundCMethod.proto */
+typedef struct {
+ PyObject *type;
+ PyObject **method_name;
+ PyCFunction func;
+ PyObject *method;
+ int flag;
+} __Pyx_CachedCFunction;
+
+/* CallUnboundCMethod0.proto */
+static PyObject* __Pyx__CallUnboundCMethod0(__Pyx_CachedCFunction* cfunc, PyObject* self);
+#if CYTHON_COMPILING_IN_CPYTHON
+#define __Pyx_CallUnboundCMethod0(cfunc, self)\
+ (likely((cfunc)->func) ?\
+ (likely((cfunc)->flag == METH_NOARGS) ? (*((cfunc)->func))(self, NULL) :\
+ (PY_VERSION_HEX >= 0x030600B1 && likely((cfunc)->flag == METH_FASTCALL) ?\
+ (PY_VERSION_HEX >= 0x030700A0 ?\
+ (*(__Pyx_PyCFunctionFast)(void*)(PyCFunction)(cfunc)->func)(self, &__pyx_empty_tuple, 0) :\
+ (*(__Pyx_PyCFunctionFastWithKeywords)(void*)(PyCFunction)(cfunc)->func)(self, &__pyx_empty_tuple, 0, NULL)) :\
+ (PY_VERSION_HEX >= 0x030700A0 && (cfunc)->flag == (METH_FASTCALL | METH_KEYWORDS) ?\
+ (*(__Pyx_PyCFunctionFastWithKeywords)(void*)(PyCFunction)(cfunc)->func)(self, &__pyx_empty_tuple, 0, NULL) :\
+ (likely((cfunc)->flag == (METH_VARARGS | METH_KEYWORDS)) ? ((*(PyCFunctionWithKeywords)(void*)(PyCFunction)(cfunc)->func)(self, __pyx_empty_tuple, NULL)) :\
+ ((cfunc)->flag == METH_VARARGS ? (*((cfunc)->func))(self, __pyx_empty_tuple) :\
+ __Pyx__CallUnboundCMethod0(cfunc, self)))))) :\
+ __Pyx__CallUnboundCMethod0(cfunc, self))
+#else
+#define __Pyx_CallUnboundCMethod0(cfunc, self) __Pyx__CallUnboundCMethod0(cfunc, self)
+#endif
+
+/* ListAppend.proto */
+#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS
+static CYTHON_INLINE int __Pyx_PyList_Append(PyObject* list, PyObject* x) {
+ PyListObject* L = (PyListObject*) list;
+ Py_ssize_t len = Py_SIZE(list);
+ if (likely(L->allocated > len) & likely(len > (L->allocated >> 1))) {
+ Py_INCREF(x);
+ #if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030d0000
+ L->ob_item[len] = x;
+ #else
+ PyList_SET_ITEM(list, len, x);
+ #endif
+ __Pyx_SET_SIZE(list, len + 1);
+ return 0;
+ }
+ return PyList_Append(list, x);
+}
+#else
+#define __Pyx_PyList_Append(L,x) PyList_Append(L,x)
+#endif
+
+/* PyObjectCall2Args.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2);
+
+/* PyObjectCallMethod1.proto */
+static PyObject* __Pyx_PyObject_CallMethod1(PyObject* obj, PyObject* method_name, PyObject* arg);
+
+/* append.proto */
+static CYTHON_INLINE int __Pyx_PyObject_Append(PyObject* L, PyObject* x);
+
+/* FastTypeChecks.proto */
+#if CYTHON_COMPILING_IN_CPYTHON
+#define __Pyx_TypeCheck(obj, type) __Pyx_IsSubtype(Py_TYPE(obj), (PyTypeObject *)type)
+#define __Pyx_TypeCheck2(obj, type1, type2) __Pyx_IsAnySubtype2(Py_TYPE(obj), (PyTypeObject *)type1, (PyTypeObject *)type2)
+static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b);
+static CYTHON_INLINE int __Pyx_IsAnySubtype2(PyTypeObject *cls, PyTypeObject *a, PyTypeObject *b);
+static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches(PyObject *err, PyObject *type);
+static CYTHON_INLINE int __Pyx_PyErr_GivenExceptionMatches2(PyObject *err, PyObject *type1, PyObject *type2);
+#else
+#define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type)
+#define __Pyx_TypeCheck2(obj, type1, type2) (PyObject_TypeCheck(obj, (PyTypeObject *)type1) || PyObject_TypeCheck(obj, (PyTypeObject *)type2))
+#define __Pyx_PyErr_GivenExceptionMatches(err, type) PyErr_GivenExceptionMatches(err, type)
+#define __Pyx_PyErr_GivenExceptionMatches2(err, type1, type2) (PyErr_GivenExceptionMatches(err, type1) || PyErr_GivenExceptionMatches(err, type2))
+#endif
+#define __Pyx_PyErr_ExceptionMatches2(err1, err2) __Pyx_PyErr_GivenExceptionMatches2(__Pyx_PyErr_CurrentExceptionType(), err1, err2)
+#define __Pyx_PyException_Check(obj) __Pyx_TypeCheck(obj, PyExc_Exception)
+
+/* SwapException.proto */
+#if CYTHON_FAST_THREAD_STATE
+#define __Pyx_ExceptionSwap(type, value, tb) __Pyx__ExceptionSwap(__pyx_tstate, type, value, tb)
+static CYTHON_INLINE void __Pyx__ExceptionSwap(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb);
+#else
+static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb);
+#endif
+
+/* GetAttr.proto */
+static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *, PyObject *);
+
+/* HasAttr.proto */
+static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *);
+
+/* GetAttr3.proto */
+static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *);
+
+/* Import.proto */
+static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level);
+
+/* ImportFrom.proto */
+static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name);
+
+/* ImportDottedModule.proto */
+static PyObject *__Pyx_ImportDottedModule(PyObject *name, PyObject *parts_tuple);
+#if PY_MAJOR_VERSION >= 3
+static PyObject *__Pyx_ImportDottedModule_WalkParts(PyObject *module, PyObject *name, PyObject *parts_tuple);
+#endif
+
+/* Py3UpdateBases.proto */
+static PyObject* __Pyx_PEP560_update_bases(PyObject *bases);
+
+/* CalculateMetaclass.proto */
+static PyObject *__Pyx_CalculateMetaclass(PyTypeObject *metaclass, PyObject *bases);
+
+/* SetNameInClass.proto */
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && PY_VERSION_HEX < 0x030d0000
+#define __Pyx_SetNameInClass(ns, name, value)\
+ (likely(PyDict_CheckExact(ns)) ? _PyDict_SetItem_KnownHash(ns, name, value, ((PyASCIIObject *) name)->hash) : PyObject_SetItem(ns, name, value))
+#elif CYTHON_COMPILING_IN_CPYTHON
+#define __Pyx_SetNameInClass(ns, name, value)\
+ (likely(PyDict_CheckExact(ns)) ? PyDict_SetItem(ns, name, value) : PyObject_SetItem(ns, name, value))
+#else
+#define __Pyx_SetNameInClass(ns, name, value) PyObject_SetItem(ns, name, value)
+#endif
+
+/* IncludeStructmemberH.proto */
+#include
+
+/* FixUpExtensionType.proto */
+#if CYTHON_USE_TYPE_SPECS
+static int __Pyx_fix_up_extension_type_from_spec(PyType_Spec *spec, PyTypeObject *type);
+#endif
+
+/* FetchSharedCythonModule.proto */
+static PyObject *__Pyx_FetchSharedCythonABIModule(void);
+
+/* FetchCommonType.proto */
+#if !CYTHON_USE_TYPE_SPECS
+static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type);
+#else
+static PyTypeObject* __Pyx_FetchCommonTypeFromSpec(PyObject *module, PyType_Spec *spec, PyObject *bases);
+#endif
+
+/* PyMethodNew.proto */
+#if CYTHON_COMPILING_IN_LIMITED_API
+static PyObject *__Pyx_PyMethod_New(PyObject *func, PyObject *self, PyObject *typ) {
+ PyObject *typesModule=NULL, *methodType=NULL, *result=NULL;
+ CYTHON_UNUSED_VAR(typ);
+ if (!self)
+ return __Pyx_NewRef(func);
+ typesModule = PyImport_ImportModule("types");
+ if (!typesModule) return NULL;
+ methodType = PyObject_GetAttrString(typesModule, "MethodType");
+ Py_DECREF(typesModule);
+ if (!methodType) return NULL;
+ result = PyObject_CallFunctionObjArgs(methodType, func, self, NULL);
+ Py_DECREF(methodType);
+ return result;
+}
+#elif PY_MAJOR_VERSION >= 3
+static PyObject *__Pyx_PyMethod_New(PyObject *func, PyObject *self, PyObject *typ) {
+ CYTHON_UNUSED_VAR(typ);
+ if (!self)
+ return __Pyx_NewRef(func);
+ return PyMethod_New(func, self);
+}
+#else
+ #define __Pyx_PyMethod_New PyMethod_New
+#endif
+
+/* PyVectorcallFastCallDict.proto */
+#if CYTHON_METH_FASTCALL
+static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw);
+#endif
+
+/* CythonFunctionShared.proto */
+#define __Pyx_CyFunction_USED
+#define __Pyx_CYFUNCTION_STATICMETHOD 0x01
+#define __Pyx_CYFUNCTION_CLASSMETHOD 0x02
+#define __Pyx_CYFUNCTION_CCLASS 0x04
+#define __Pyx_CYFUNCTION_COROUTINE 0x08
+#define __Pyx_CyFunction_GetClosure(f)\
+ (((__pyx_CyFunctionObject *) (f))->func_closure)
+#if PY_VERSION_HEX < 0x030900B1 || CYTHON_COMPILING_IN_LIMITED_API
+ #define __Pyx_CyFunction_GetClassObj(f)\
+ (((__pyx_CyFunctionObject *) (f))->func_classobj)
+#else
+ #define __Pyx_CyFunction_GetClassObj(f)\
+ ((PyObject*) ((PyCMethodObject *) (f))->mm_class)
+#endif
+#define __Pyx_CyFunction_SetClassObj(f, classobj)\
+ __Pyx__CyFunction_SetClassObj((__pyx_CyFunctionObject *) (f), (classobj))
+#define __Pyx_CyFunction_Defaults(type, f)\
+ ((type *)(((__pyx_CyFunctionObject *) (f))->defaults))
+#define __Pyx_CyFunction_SetDefaultsGetter(f, g)\
+ ((__pyx_CyFunctionObject *) (f))->defaults_getter = (g)
+typedef struct {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ PyObject_HEAD
+ PyObject *func;
+#elif PY_VERSION_HEX < 0x030900B1
+ PyCFunctionObject func;
+#else
+ PyCMethodObject func;
+#endif
+#if CYTHON_BACKPORT_VECTORCALL
+ __pyx_vectorcallfunc func_vectorcall;
+#endif
+#if PY_VERSION_HEX < 0x030500A0 || CYTHON_COMPILING_IN_LIMITED_API
+ PyObject *func_weakreflist;
+#endif
+ PyObject *func_dict;
+ PyObject *func_name;
+ PyObject *func_qualname;
+ PyObject *func_doc;
+ PyObject *func_globals;
+ PyObject *func_code;
+ PyObject *func_closure;
+#if PY_VERSION_HEX < 0x030900B1 || CYTHON_COMPILING_IN_LIMITED_API
+ PyObject *func_classobj;
+#endif
+ void *defaults;
+ int defaults_pyobjects;
+ size_t defaults_size;
+ int flags;
+ PyObject *defaults_tuple;
+ PyObject *defaults_kwdict;
+ PyObject *(*defaults_getter)(PyObject *);
+ PyObject *func_annotations;
+ PyObject *func_is_coroutine;
+} __pyx_CyFunctionObject;
+#undef __Pyx_CyOrPyCFunction_Check
+#define __Pyx_CyFunction_Check(obj) __Pyx_TypeCheck(obj, __pyx_CyFunctionType)
+#define __Pyx_CyOrPyCFunction_Check(obj) __Pyx_TypeCheck2(obj, __pyx_CyFunctionType, &PyCFunction_Type)
+#define __Pyx_CyFunction_CheckExact(obj) __Pyx_IS_TYPE(obj, __pyx_CyFunctionType)
+static CYTHON_INLINE int __Pyx__IsSameCyOrCFunction(PyObject *func, void *cfunc);
+#undef __Pyx_IsSameCFunction
+#define __Pyx_IsSameCFunction(func, cfunc) __Pyx__IsSameCyOrCFunction(func, cfunc)
+static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject* op, PyMethodDef *ml,
+ int flags, PyObject* qualname,
+ PyObject *closure,
+ PyObject *module, PyObject *globals,
+ PyObject* code);
+static CYTHON_INLINE void __Pyx__CyFunction_SetClassObj(__pyx_CyFunctionObject* f, PyObject* classobj);
+static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *m,
+ size_t size,
+ int pyobjects);
+static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *m,
+ PyObject *tuple);
+static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *m,
+ PyObject *dict);
+static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *m,
+ PyObject *dict);
+static int __pyx_CyFunction_init(PyObject *module);
+#if CYTHON_METH_FASTCALL
+static PyObject * __Pyx_CyFunction_Vectorcall_NOARGS(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames);
+static PyObject * __Pyx_CyFunction_Vectorcall_O(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames);
+static PyObject * __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames);
+static PyObject * __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames);
+#if CYTHON_BACKPORT_VECTORCALL
+#define __Pyx_CyFunction_func_vectorcall(f) (((__pyx_CyFunctionObject*)f)->func_vectorcall)
+#else
+#define __Pyx_CyFunction_func_vectorcall(f) (((PyCFunctionObject*)f)->vectorcall)
+#endif
+#endif
+
+/* CythonFunction.proto */
+static PyObject *__Pyx_CyFunction_New(PyMethodDef *ml,
+ int flags, PyObject* qualname,
+ PyObject *closure,
+ PyObject *module, PyObject *globals,
+ PyObject* code);
+
+/* PyObjectLookupSpecial.proto */
+#if CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS
+#define __Pyx_PyObject_LookupSpecialNoError(obj, attr_name) __Pyx__PyObject_LookupSpecial(obj, attr_name, 0)
+#define __Pyx_PyObject_LookupSpecial(obj, attr_name) __Pyx__PyObject_LookupSpecial(obj, attr_name, 1)
+static CYTHON_INLINE PyObject* __Pyx__PyObject_LookupSpecial(PyObject* obj, PyObject* attr_name, int with_error);
+#else
+#define __Pyx_PyObject_LookupSpecialNoError(o,n) __Pyx_PyObject_GetAttrStrNoError(o,n)
+#define __Pyx_PyObject_LookupSpecial(o,n) __Pyx_PyObject_GetAttrStr(o,n)
+#endif
+
+/* Py3ClassCreate.proto */
+static PyObject *__Pyx_Py3MetaclassPrepare(PyObject *metaclass, PyObject *bases, PyObject *name, PyObject *qualname,
+ PyObject *mkw, PyObject *modname, PyObject *doc);
+static PyObject *__Pyx_Py3ClassCreate(PyObject *metaclass, PyObject *name, PyObject *bases, PyObject *dict,
+ PyObject *mkw, int calculate_metaclass, int allow_py2_metaclass);
+
+/* CLineInTraceback.proto */
+#ifdef CYTHON_CLINE_IN_TRACEBACK
+#define __Pyx_CLineForTraceback(tstate, c_line) (((CYTHON_CLINE_IN_TRACEBACK)) ? c_line : 0)
+#else
+static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line);
+#endif
+
+/* CodeObjectCache.proto */
+#if !CYTHON_COMPILING_IN_LIMITED_API
+typedef struct {
+ PyCodeObject* code_object;
+ int code_line;
+} __Pyx_CodeObjectCacheEntry;
+struct __Pyx_CodeObjectCache {
+ int count;
+ int max_count;
+ __Pyx_CodeObjectCacheEntry* entries;
+};
+static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL};
+static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line);
+static PyCodeObject *__pyx_find_code_object(int code_line);
+static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object);
+#endif
+
+/* AddTraceback.proto */
+static void __Pyx_AddTraceback(const char *funcname, int c_line,
+ int py_line, const char *filename);
+
+/* GCCDiagnostics.proto */
+#if !defined(__INTEL_COMPILER) && defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))
+#define __Pyx_HAS_GCC_DIAGNOSTIC
+#endif
+
+/* CIntToPy.proto */
+static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value);
+
+/* FormatTypeName.proto */
+#if CYTHON_COMPILING_IN_LIMITED_API
+typedef PyObject *__Pyx_TypeName;
+#define __Pyx_FMT_TYPENAME "%U"
+static __Pyx_TypeName __Pyx_PyType_GetName(PyTypeObject* tp);
+#define __Pyx_DECREF_TypeName(obj) Py_XDECREF(obj)
+#else
+typedef const char *__Pyx_TypeName;
+#define __Pyx_FMT_TYPENAME "%.200s"
+#define __Pyx_PyType_GetName(tp) ((tp)->tp_name)
+#define __Pyx_DECREF_TypeName(obj)
+#endif
+
+/* CIntFromPy.proto */
+static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *);
+
+/* CIntFromPy.proto */
+static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *);
+
+/* CheckBinaryVersion.proto */
+static unsigned long __Pyx_get_runtime_version(void);
+static int __Pyx_check_binary_version(unsigned long ct_version, unsigned long rt_version, int allow_newer);
+
+/* InitStrings.proto */
+static int __Pyx_InitStrings(__Pyx_StringTabEntry *t);
+
+/* #### Code section: module_declarations ### */
+
+/* Module declarations from "cython" */
+
+/* Module declarations from "fontTools.feaLib.lexer" */
+/* #### Code section: typeinfo ### */
+/* #### Code section: before_global_var ### */
+#define __Pyx_MODULE_NAME "fontTools.feaLib.lexer"
+extern int __pyx_module_is_main_fontTools__feaLib__lexer;
+int __pyx_module_is_main_fontTools__feaLib__lexer = 0;
+
+/* Implementation of "fontTools.feaLib.lexer" */
+/* #### Code section: global_var ### */
+static PyObject *__pyx_builtin_ImportError;
+static PyObject *__pyx_builtin_object;
+static PyObject *__pyx_builtin_staticmethod;
+static PyObject *__pyx_builtin_StopIteration;
+static PyObject *__pyx_builtin_open;
+/* #### Code section: string_decls ### */
+static const char __pyx_k_[] = "\n";
+static const char __pyx_k_0[] = "0";
+static const char __pyx_k_p[] = "p";
+static const char __pyx_k_r[] = "r";
+static const char __pyx_k_s[] = "}\\s*";
+static const char __pyx_k__2[] = "\r";
+static const char __pyx_k__3[] = "#";
+static const char __pyx_k__4[] = "(";
+static const char __pyx_k__5[] = ")";
+static const char __pyx_k__6[] = "\\";
+static const char __pyx_k__7[] = "@";
+static const char __pyx_k__8[] = ".";
+static const char __pyx_k__9[] = "-";
+static const char __pyx_k_os[] = "os";
+static const char __pyx_k_re[] = "re";
+static const char __pyx_k_xX[] = "xX";
+static const char __pyx_k_CID[] = "CID";
+static const char __pyx_k__10[] = "\"";
+static const char __pyx_k__11[] = "[\r\n]";
+static const char __pyx_k__12[] = "";
+static const char __pyx_k__13[] = "*";
+static const char __pyx_k__16[] = " \t";
+static const char __pyx_k__17[] = "\r\n";
+static const char __pyx_k__18[] = ",;:-+'{}[]<>()=";
+static const char __pyx_k__19[] = "_+*:.^~!\\";
+static const char __pyx_k__20[] = "_.+*:^~!/-";
+static const char __pyx_k__51[] = "?";
+static const char __pyx_k_doc[] = "__doc__";
+static const char __pyx_k_err[] = "err";
+static const char __pyx_k_pop[] = "pop";
+static const char __pyx_k_pos[] = "pos_";
+static const char __pyx_k_s_2[] = "\\s*;";
+static const char __pyx_k_sub[] = "sub";
+static const char __pyx_k_tag[] = "tag";
+static const char __pyx_k_NAME[] = "NAME";
+static const char __pyx_k_data[] = "data";
+static const char __pyx_k_dict[] = "__dict__";
+static const char __pyx_k_init[] = "__init__";
+static const char __pyx_k_iter[] = "__iter__";
+static const char __pyx_k_join[] = "join";
+static const char __pyx_k_line[] = "line_";
+static const char __pyx_k_main[] = "__main__";
+static const char __pyx_k_mode[] = "mode_";
+static const char __pyx_k_name[] = "name";
+static const char __pyx_k_next[] = "__next__";
+static const char __pyx_k_open[] = "open";
+static const char __pyx_k_path[] = "path";
+static const char __pyx_k_read[] = "read";
+static const char __pyx_k_self[] = "self";
+static const char __pyx_k_spec[] = "__spec__";
+static const char __pyx_k_test[] = "__test__";
+static const char __pyx_k_text[] = "text";
+static const char __pyx_k_FLOAT[] = "FLOAT";
+static const char __pyx_k_Lexer[] = "Lexer";
+static const char __pyx_k_OCTAL[] = "OCTAL";
+static const char __pyx_k_close[] = "close";
+static const char __pyx_k_isabs[] = "isabs";
+static const char __pyx_k_lexer[] = "lexer";
+static const char __pyx_k_limit[] = "limit";
+static const char __pyx_k_match[] = "match";
+static const char __pyx_k_split[] = "split";
+static const char __pyx_k_start[] = "start";
+static const char __pyx_k_strip[] = "strip";
+static const char __pyx_k_super[] = "super";
+static const char __pyx_k_token[] = "token";
+static const char __pyx_k_valid[] = "valid";
+static const char __pyx_k_NORMAL[] = "NORMAL";
+static const char __pyx_k_NUMBER[] = "NUMBER";
+static const char __pyx_k_STRING[] = "STRING";
+static const char __pyx_k_SYMBOL[] = "SYMBOL";
+static const char __pyx_k_append[] = "append";
+static const char __pyx_k_column[] = "column";
+static const char __pyx_k_getcwd[] = "getcwd";
+static const char __pyx_k_import[] = "__import__";
+static const char __pyx_k_lexers[] = "lexers_";
+static const char __pyx_k_module[] = "__module__";
+static const char __pyx_k_name_2[] = "__name__";
+static const char __pyx_k_next_2[] = "next_";
+static const char __pyx_k_next_3[] = "next";
+static const char __pyx_k_object[] = "object";
+static const char __pyx_k_regexp[] = "regexp";
+static const char __pyx_k_string[] = "string";
+static const char __pyx_k_text_2[] = "text_";
+static const char __pyx_k_COMMENT[] = "COMMENT";
+static const char __pyx_k_NEWLINE[] = "NEWLINE";
+static const char __pyx_k_NUMBERS[] = "NUMBERS";
+static const char __pyx_k_closing[] = "closing";
+static const char __pyx_k_compile[] = "compile";
+static const char __pyx_k_curpath[] = "curpath";
+static const char __pyx_k_dirname[] = "dirname";
+static const char __pyx_k_fileobj[] = "fileobj";
+static const char __pyx_k_include[] = "include";
+static const char __pyx_k_prepare[] = "__prepare__";
+static const char __pyx_k_stop_at[] = "stop_at";
+static const char __pyx_k_FILENAME[] = "FILENAME";
+static const char __pyx_k_cur_char[] = "cur_char";
+static const char __pyx_k_encoding[] = "encoding";
+static const char __pyx_k_features[] = "";
+static const char __pyx_k_filename[] = "filename";
+static const char __pyx_k_location[] = "location_";
+static const char __pyx_k_maxsplit[] = "maxsplit";
+static const char __pyx_k_qualname[] = "__qualname__";
+static const char __pyx_k_set_name[] = "__set_name__";
+static const char __pyx_k_metaclass[] = "__metaclass__";
+static const char __pyx_k_next_char[] = "next_char";
+static const char __pyx_k_scan_over[] = "scan_over_";
+static const char __pyx_k_utf_8_sig[] = "utf-8-sig";
+static const char __pyx_k_0123456789[] = "0123456789";
+static const char __pyx_k_A_Za_z_0_9[] = "^[A-Za-z_0-9.\\-]+$";
+static const char __pyx_k_CHAR_DIGIT[] = "CHAR_DIGIT_";
+static const char __pyx_k_GLYPHCLASS[] = "GLYPHCLASS";
+static const char __pyx_k_Lexer_next[] = "Lexer.next";
+static const char __pyx_k_filename_2[] = "filename_";
+static const char __pyx_k_fname_type[] = "fname_type";
+static const char __pyx_k_glyphclass[] = "glyphclass";
+static const char __pyx_k_includeDir[] = "includeDir";
+static const char __pyx_k_line_start[] = "line_start_";
+static const char __pyx_k_location_2[] = "location";
+static const char __pyx_k_make_lexer[] = "make_lexer_";
+static const char __pyx_k_scan_until[] = "scan_until_";
+static const char __pyx_k_token_type[] = "token_type";
+static const char __pyx_k_CHAR_LETTER[] = "CHAR_LETTER_";
+static const char __pyx_k_CHAR_SYMBOL[] = "CHAR_SYMBOL_";
+static const char __pyx_k_HEXADECIMAL[] = "HEXADECIMAL";
+static const char __pyx_k_ImportError[] = "ImportError";
+static const char __pyx_k_MODE_NORMAL[] = "MODE_NORMAL_";
+static const char __pyx_k_featurefile[] = "featurefile";
+static const char __pyx_k_fname_token[] = "fname_token";
+static const char __pyx_k_mro_entries[] = "__mro_entries__";
+static const char __pyx_k_text_length[] = "text_length_";
+static const char __pyx_k_CHAR_NEWLINE[] = "CHAR_NEWLINE_";
+static const char __pyx_k_Lexer___init[] = "Lexer.__init__";
+static const char __pyx_k_Lexer___iter[] = "Lexer.__iter__";
+static const char __pyx_k_Lexer___next[] = "Lexer.__next__";
+static const char __pyx_k_Lexer_next_2[] = "Lexer.next_";
+static const char __pyx_k_file_or_path[] = "file_or_path";
+static const char __pyx_k_initializing[] = "_initializing";
+static const char __pyx_k_is_coroutine[] = "_is_coroutine";
+static const char __pyx_k_staticmethod[] = "staticmethod";
+static const char __pyx_k_CHAR_HEXDIGIT[] = "CHAR_HEXDIGIT_";
+static const char __pyx_k_MODE_FILENAME[] = "MODE_FILENAME_";
+static const char __pyx_k_RE_GLYPHCLASS[] = "RE_GLYPHCLASS";
+static const char __pyx_k_StopIteration[] = "StopIteration";
+static const char __pyx_k_class_getitem[] = "__class_getitem__";
+static const char __pyx_k_init_subclass[] = "__init_subclass__";
+static const char __pyx_k_IncludingLexer[] = "IncludingLexer";
+static const char __pyx_k_Lexer_location[] = "Lexer.location_";
+static const char __pyx_k_fname_location[] = "fname_location";
+static const char __pyx_k_ANONYMOUS_BLOCK[] = "ANONYMOUS_BLOCK";
+static const char __pyx_k_CHAR_NAME_START[] = "CHAR_NAME_START_";
+static const char __pyx_k_CHAR_WHITESPACE[] = "CHAR_WHITESPACE_";
+static const char __pyx_k_FeatureLibError[] = "FeatureLibError";
+static const char __pyx_k_Lexer_scan_over[] = "Lexer.scan_over_";
+static const char __pyx_k_featurefilepath[] = "featurefilepath";
+static const char __pyx_k_Lexer_scan_until[] = "Lexer.scan_until_";
+static const char __pyx_k_FileNotFoundError[] = "FileNotFoundError";
+static const char __pyx_k_NonIncludingLexer[] = "NonIncludingLexer";
+static const char __pyx_k_Expected_file_name[] = "Expected file name";
+static const char __pyx_k_FeatureLibLocation[] = "FeatureLibLocation";
+static const char __pyx_k_asyncio_coroutines[] = "asyncio.coroutines";
+static const char __pyx_k_cline_in_traceback[] = "cline_in_traceback";
+static const char __pyx_k_IncludedFeaNotFound[] = "IncludedFeaNotFound";
+static const char __pyx_k_IncludingLexer_next[] = "IncludingLexer.next";
+static const char __pyx_k_scan_anonymous_block[] = "scan_anonymous_block";
+static const char __pyx_k_IncludingLexer___init[] = "IncludingLexer.__init__";
+static const char __pyx_k_IncludingLexer___iter[] = "IncludingLexer.__iter__";
+static const char __pyx_k_IncludingLexer___next[] = "IncludingLexer.__next__";
+static const char __pyx_k_0123456789ABCDEFabcdef[] = "0123456789ABCDEFabcdef";
+static const char __pyx_k_CHAR_NAME_CONTINUATION[] = "CHAR_NAME_CONTINUATION_";
+static const char __pyx_k_Unexpected_character_r[] = "Unexpected character: %r";
+static const char __pyx_k_fontTools_feaLib_error[] = "fontTools.feaLib.error";
+static const char __pyx_k_fontTools_feaLib_lexer[] = "fontTools.feaLib.lexer";
+static const char __pyx_k_Expected_after_file_name[] = "Expected ')' after file name";
+static const char __pyx_k_NonIncludingLexer___next[] = "NonIncludingLexer.__next__";
+static const char __pyx_k_Expected_before_file_name[] = "Expected '(' before file name";
+static const char __pyx_k_Expected_glyph_class_name[] = "Expected glyph class name";
+static const char __pyx_k_IncludingLexer_make_lexer[] = "IncludingLexer.make_lexer_";
+static const char __pyx_k_fontTools_feaLib_location[] = "fontTools.feaLib.location";
+static const char __pyx_k_Lexer_scan_anonymous_block[] = "Lexer.scan_anonymous_block";
+static const char __pyx_k_Too_many_recursive_includes[] = "Too many recursive includes";
+static const char __pyx_k_Expected_to_terminate_string[] = "Expected '\"' to terminate string";
+static const char __pyx_k_Lib_fontTools_feaLib_lexer_py[] = "Lib/fontTools/feaLib/lexer.py";
+static const char __pyx_k_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
+static const char __pyx_k_A_Lexer_that_follows_include_sta[] = "A Lexer that follows include statements.\n\n The OpenType feature file specification states that due to\n historical reasons, relative imports should be resolved in this\n order:\n\n 1. If the source font is UFO format, then relative to the UFO's\n font directory\n 2. relative to the top-level include file\n 3. relative to the parent include file\n\n We only support 1 (via includeDir) and 2.\n ";
+static const char __pyx_k_Expected_s_to_terminate_anonymou[] = "Expected '} %s;' to terminate anonymous block";
+static const char __pyx_k_Glyph_class_names_must_consist_o[] = "Glyph class names must consist of letters, digits, underscore, period or hyphen";
+static const char __pyx_k_IncludingLexer_scan_anonymous_bl[] = "IncludingLexer.scan_anonymous_block";
+static const char __pyx_k_Lexer_that_does_not_follow_inclu[] = "Lexer that does not follow `include` statements, emits them as-is.";
+/* #### Code section: decls ### */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer___init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_text, PyObject *__pyx_v_filename); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_2__iter__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_4next(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_6__next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_8location_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_10next_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_12scan_over_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_valid); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_14scan_until_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_stop_at); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_16scan_anonymous_block(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_tag); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer___init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_featurefile, PyObject *__pyx_v_includeDir); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_2__iter__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_4next(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_6__next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_8make_lexer_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_file_or_path); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_10scan_anonymous_block(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_tag); /* proto */
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_17NonIncludingLexer___next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self); /* proto */
+static __Pyx_CachedCFunction __pyx_umethod_PyList_Type_pop = {0, 0, 0, 0, 0};
+/* #### Code section: late_includes ### */
+/* #### Code section: module_state ### */
+typedef struct {
+ PyObject *__pyx_d;
+ PyObject *__pyx_b;
+ PyObject *__pyx_cython_runtime;
+ PyObject *__pyx_empty_tuple;
+ PyObject *__pyx_empty_bytes;
+ PyObject *__pyx_empty_unicode;
+ #ifdef __Pyx_CyFunction_USED
+ PyTypeObject *__pyx_CyFunctionType;
+ #endif
+ #ifdef __Pyx_FusedFunction_USED
+ PyTypeObject *__pyx_FusedFunctionType;
+ #endif
+ #ifdef __Pyx_Generator_USED
+ PyTypeObject *__pyx_GeneratorType;
+ #endif
+ #ifdef __Pyx_IterableCoroutine_USED
+ PyTypeObject *__pyx_IterableCoroutineType;
+ #endif
+ #ifdef __Pyx_Coroutine_USED
+ PyTypeObject *__pyx_CoroutineAwaitType;
+ #endif
+ #ifdef __Pyx_Coroutine_USED
+ PyTypeObject *__pyx_CoroutineType;
+ #endif
+ #if CYTHON_USE_MODULE_STATE
+ #endif
+ #if CYTHON_USE_MODULE_STATE
+ #endif
+ PyObject *__pyx_kp_u_;
+ PyObject *__pyx_kp_u_0;
+ PyObject *__pyx_kp_u_0123456789;
+ PyObject *__pyx_kp_u_0123456789ABCDEFabcdef;
+ PyObject *__pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef;
+ PyObject *__pyx_n_s_ANONYMOUS_BLOCK;
+ PyObject *__pyx_n_u_ANONYMOUS_BLOCK;
+ PyObject *__pyx_kp_s_A_Lexer_that_follows_include_sta;
+ PyObject *__pyx_kp_u_A_Za_z_0_9;
+ PyObject *__pyx_n_s_CHAR_DIGIT;
+ PyObject *__pyx_n_s_CHAR_HEXDIGIT;
+ PyObject *__pyx_n_s_CHAR_LETTER;
+ PyObject *__pyx_n_s_CHAR_NAME_CONTINUATION;
+ PyObject *__pyx_n_s_CHAR_NAME_START;
+ PyObject *__pyx_n_s_CHAR_NEWLINE;
+ PyObject *__pyx_n_s_CHAR_SYMBOL;
+ PyObject *__pyx_n_s_CHAR_WHITESPACE;
+ PyObject *__pyx_n_s_CID;
+ PyObject *__pyx_n_u_CID;
+ PyObject *__pyx_n_s_COMMENT;
+ PyObject *__pyx_n_u_COMMENT;
+ PyObject *__pyx_kp_u_Expected_after_file_name;
+ PyObject *__pyx_kp_u_Expected_before_file_name;
+ PyObject *__pyx_kp_u_Expected_file_name;
+ PyObject *__pyx_kp_u_Expected_glyph_class_name;
+ PyObject *__pyx_kp_u_Expected_s_to_terminate_anonymou;
+ PyObject *__pyx_kp_u_Expected_to_terminate_string;
+ PyObject *__pyx_n_s_FILENAME;
+ PyObject *__pyx_n_u_FILENAME;
+ PyObject *__pyx_n_s_FLOAT;
+ PyObject *__pyx_n_u_FLOAT;
+ PyObject *__pyx_n_s_FeatureLibError;
+ PyObject *__pyx_n_s_FeatureLibLocation;
+ PyObject *__pyx_n_s_FileNotFoundError;
+ PyObject *__pyx_n_s_GLYPHCLASS;
+ PyObject *__pyx_n_u_GLYPHCLASS;
+ PyObject *__pyx_kp_u_Glyph_class_names_must_consist_o;
+ PyObject *__pyx_n_s_HEXADECIMAL;
+ PyObject *__pyx_n_u_HEXADECIMAL;
+ PyObject *__pyx_n_s_ImportError;
+ PyObject *__pyx_n_s_IncludedFeaNotFound;
+ PyObject *__pyx_n_s_IncludingLexer;
+ PyObject *__pyx_n_s_IncludingLexer___init;
+ PyObject *__pyx_n_s_IncludingLexer___iter;
+ PyObject *__pyx_n_s_IncludingLexer___next;
+ PyObject *__pyx_n_s_IncludingLexer_make_lexer;
+ PyObject *__pyx_n_s_IncludingLexer_next;
+ PyObject *__pyx_n_s_IncludingLexer_scan_anonymous_bl;
+ PyObject *__pyx_n_s_Lexer;
+ PyObject *__pyx_n_s_Lexer___init;
+ PyObject *__pyx_n_s_Lexer___iter;
+ PyObject *__pyx_n_s_Lexer___next;
+ PyObject *__pyx_n_s_Lexer_location;
+ PyObject *__pyx_n_s_Lexer_next;
+ PyObject *__pyx_n_s_Lexer_next_2;
+ PyObject *__pyx_n_s_Lexer_scan_anonymous_block;
+ PyObject *__pyx_n_s_Lexer_scan_over;
+ PyObject *__pyx_n_s_Lexer_scan_until;
+ PyObject *__pyx_kp_s_Lexer_that_does_not_follow_inclu;
+ PyObject *__pyx_kp_s_Lib_fontTools_feaLib_lexer_py;
+ PyObject *__pyx_n_s_MODE_FILENAME;
+ PyObject *__pyx_n_s_MODE_NORMAL;
+ PyObject *__pyx_n_s_NAME;
+ PyObject *__pyx_n_u_NAME;
+ PyObject *__pyx_n_s_NEWLINE;
+ PyObject *__pyx_n_u_NEWLINE;
+ PyObject *__pyx_n_u_NORMAL;
+ PyObject *__pyx_n_s_NUMBER;
+ PyObject *__pyx_n_u_NUMBER;
+ PyObject *__pyx_n_s_NUMBERS;
+ PyObject *__pyx_n_s_NonIncludingLexer;
+ PyObject *__pyx_n_s_NonIncludingLexer___next;
+ PyObject *__pyx_n_s_OCTAL;
+ PyObject *__pyx_n_u_OCTAL;
+ PyObject *__pyx_n_s_RE_GLYPHCLASS;
+ PyObject *__pyx_n_s_STRING;
+ PyObject *__pyx_n_u_STRING;
+ PyObject *__pyx_n_s_SYMBOL;
+ PyObject *__pyx_n_u_SYMBOL;
+ PyObject *__pyx_n_s_StopIteration;
+ PyObject *__pyx_kp_u_Too_many_recursive_includes;
+ PyObject *__pyx_kp_u_Unexpected_character_r;
+ PyObject *__pyx_kp_u__10;
+ PyObject *__pyx_kp_u__11;
+ PyObject *__pyx_kp_u__12;
+ PyObject *__pyx_n_s__13;
+ PyObject *__pyx_kp_u__16;
+ PyObject *__pyx_kp_u__17;
+ PyObject *__pyx_kp_u__18;
+ PyObject *__pyx_kp_u__19;
+ PyObject *__pyx_kp_u__2;
+ PyObject *__pyx_kp_u__20;
+ PyObject *__pyx_kp_u__3;
+ PyObject *__pyx_kp_u__4;
+ PyObject *__pyx_kp_u__5;
+ PyObject *__pyx_n_s__51;
+ PyObject *__pyx_kp_u__6;
+ PyObject *__pyx_kp_u__7;
+ PyObject *__pyx_kp_u__8;
+ PyObject *__pyx_kp_u__9;
+ PyObject *__pyx_n_s_append;
+ PyObject *__pyx_n_s_asyncio_coroutines;
+ PyObject *__pyx_n_s_class_getitem;
+ PyObject *__pyx_n_s_cline_in_traceback;
+ PyObject *__pyx_n_s_close;
+ PyObject *__pyx_n_s_closing;
+ PyObject *__pyx_n_s_column;
+ PyObject *__pyx_n_s_compile;
+ PyObject *__pyx_n_s_cur_char;
+ PyObject *__pyx_n_s_curpath;
+ PyObject *__pyx_n_s_data;
+ PyObject *__pyx_n_s_dict;
+ PyObject *__pyx_n_s_dirname;
+ PyObject *__pyx_n_s_doc;
+ PyObject *__pyx_n_s_encoding;
+ PyObject *__pyx_n_s_err;
+ PyObject *__pyx_n_s_featurefile;
+ PyObject *__pyx_n_s_featurefilepath;
+ PyObject *__pyx_kp_u_features;
+ PyObject *__pyx_n_s_file_or_path;
+ PyObject *__pyx_n_s_filename;
+ PyObject *__pyx_n_s_filename_2;
+ PyObject *__pyx_n_s_fileobj;
+ PyObject *__pyx_n_s_fname_location;
+ PyObject *__pyx_n_s_fname_token;
+ PyObject *__pyx_n_s_fname_type;
+ PyObject *__pyx_n_s_fontTools_feaLib_error;
+ PyObject *__pyx_n_s_fontTools_feaLib_lexer;
+ PyObject *__pyx_n_s_fontTools_feaLib_location;
+ PyObject *__pyx_n_s_getcwd;
+ PyObject *__pyx_n_s_glyphclass;
+ PyObject *__pyx_n_s_import;
+ PyObject *__pyx_n_u_include;
+ PyObject *__pyx_n_s_includeDir;
+ PyObject *__pyx_n_s_init;
+ PyObject *__pyx_n_s_init_subclass;
+ PyObject *__pyx_n_s_initializing;
+ PyObject *__pyx_n_s_is_coroutine;
+ PyObject *__pyx_n_s_isabs;
+ PyObject *__pyx_n_s_iter;
+ PyObject *__pyx_n_s_join;
+ PyObject *__pyx_n_s_lexer;
+ PyObject *__pyx_n_s_lexers;
+ PyObject *__pyx_n_s_limit;
+ PyObject *__pyx_n_s_line;
+ PyObject *__pyx_n_s_line_start;
+ PyObject *__pyx_n_s_location;
+ PyObject *__pyx_n_s_location_2;
+ PyObject *__pyx_n_s_main;
+ PyObject *__pyx_n_s_make_lexer;
+ PyObject *__pyx_n_s_match;
+ PyObject *__pyx_n_s_maxsplit;
+ PyObject *__pyx_n_s_metaclass;
+ PyObject *__pyx_n_s_mode;
+ PyObject *__pyx_n_s_module;
+ PyObject *__pyx_n_s_mro_entries;
+ PyObject *__pyx_n_u_name;
+ PyObject *__pyx_n_s_name_2;
+ PyObject *__pyx_n_s_next;
+ PyObject *__pyx_n_s_next_2;
+ PyObject *__pyx_n_s_next_3;
+ PyObject *__pyx_n_s_next_char;
+ PyObject *__pyx_n_s_object;
+ PyObject *__pyx_n_s_open;
+ PyObject *__pyx_n_s_os;
+ PyObject *__pyx_n_s_p;
+ PyObject *__pyx_n_s_path;
+ PyObject *__pyx_n_s_pop;
+ PyObject *__pyx_n_s_pos;
+ PyObject *__pyx_n_s_prepare;
+ PyObject *__pyx_n_s_qualname;
+ PyObject *__pyx_n_u_r;
+ PyObject *__pyx_n_s_re;
+ PyObject *__pyx_n_s_read;
+ PyObject *__pyx_n_u_read;
+ PyObject *__pyx_n_s_regexp;
+ PyObject *__pyx_kp_u_s;
+ PyObject *__pyx_kp_u_s_2;
+ PyObject *__pyx_n_s_scan_anonymous_block;
+ PyObject *__pyx_n_s_scan_over;
+ PyObject *__pyx_n_s_scan_until;
+ PyObject *__pyx_n_s_self;
+ PyObject *__pyx_n_s_set_name;
+ PyObject *__pyx_n_s_spec;
+ PyObject *__pyx_n_s_split;
+ PyObject *__pyx_n_s_start;
+ PyObject *__pyx_n_s_staticmethod;
+ PyObject *__pyx_n_s_stop_at;
+ PyObject *__pyx_n_s_string;
+ PyObject *__pyx_n_s_strip;
+ PyObject *__pyx_n_s_sub;
+ PyObject *__pyx_n_s_super;
+ PyObject *__pyx_n_s_tag;
+ PyObject *__pyx_n_s_test;
+ PyObject *__pyx_n_s_text;
+ PyObject *__pyx_n_s_text_2;
+ PyObject *__pyx_n_s_text_length;
+ PyObject *__pyx_n_s_token;
+ PyObject *__pyx_n_s_token_type;
+ PyObject *__pyx_kp_u_utf_8_sig;
+ PyObject *__pyx_n_s_valid;
+ PyObject *__pyx_n_u_xX;
+ PyObject *__pyx_int_0;
+ PyObject *__pyx_int_1;
+ PyObject *__pyx_int_2;
+ PyObject *__pyx_int_8;
+ PyObject *__pyx_int_10;
+ PyObject *__pyx_int_16;
+ PyObject *__pyx_tuple__14;
+ PyObject *__pyx_tuple__15;
+ PyObject *__pyx_tuple__21;
+ PyObject *__pyx_tuple__23;
+ PyObject *__pyx_tuple__26;
+ PyObject *__pyx_tuple__28;
+ PyObject *__pyx_tuple__30;
+ PyObject *__pyx_tuple__32;
+ PyObject *__pyx_tuple__34;
+ PyObject *__pyx_tuple__36;
+ PyObject *__pyx_tuple__38;
+ PyObject *__pyx_tuple__39;
+ PyObject *__pyx_tuple__40;
+ PyObject *__pyx_tuple__44;
+ PyObject *__pyx_tuple__46;
+ PyObject *__pyx_tuple__48;
+ PyObject *__pyx_codeobj__22;
+ PyObject *__pyx_codeobj__24;
+ PyObject *__pyx_codeobj__25;
+ PyObject *__pyx_codeobj__27;
+ PyObject *__pyx_codeobj__29;
+ PyObject *__pyx_codeobj__31;
+ PyObject *__pyx_codeobj__33;
+ PyObject *__pyx_codeobj__35;
+ PyObject *__pyx_codeobj__37;
+ PyObject *__pyx_codeobj__41;
+ PyObject *__pyx_codeobj__42;
+ PyObject *__pyx_codeobj__43;
+ PyObject *__pyx_codeobj__45;
+ PyObject *__pyx_codeobj__47;
+ PyObject *__pyx_codeobj__49;
+ PyObject *__pyx_codeobj__50;
+} __pyx_mstate;
+
+#if CYTHON_USE_MODULE_STATE
+#ifdef __cplusplus
+namespace {
+ extern struct PyModuleDef __pyx_moduledef;
+} /* anonymous namespace */
+#else
+static struct PyModuleDef __pyx_moduledef;
+#endif
+
+#define __pyx_mstate(o) ((__pyx_mstate *)__Pyx_PyModule_GetState(o))
+
+#define __pyx_mstate_global (__pyx_mstate(PyState_FindModule(&__pyx_moduledef)))
+
+#define __pyx_m (PyState_FindModule(&__pyx_moduledef))
+#else
+static __pyx_mstate __pyx_mstate_global_static =
+#ifdef __cplusplus
+ {};
+#else
+ {0};
+#endif
+static __pyx_mstate *__pyx_mstate_global = &__pyx_mstate_global_static;
+#endif
+/* #### Code section: module_state_clear ### */
+#if CYTHON_USE_MODULE_STATE
+static int __pyx_m_clear(PyObject *m) {
+ __pyx_mstate *clear_module_state = __pyx_mstate(m);
+ if (!clear_module_state) return 0;
+ Py_CLEAR(clear_module_state->__pyx_d);
+ Py_CLEAR(clear_module_state->__pyx_b);
+ Py_CLEAR(clear_module_state->__pyx_cython_runtime);
+ Py_CLEAR(clear_module_state->__pyx_empty_tuple);
+ Py_CLEAR(clear_module_state->__pyx_empty_bytes);
+ Py_CLEAR(clear_module_state->__pyx_empty_unicode);
+ #ifdef __Pyx_CyFunction_USED
+ Py_CLEAR(clear_module_state->__pyx_CyFunctionType);
+ #endif
+ #ifdef __Pyx_FusedFunction_USED
+ Py_CLEAR(clear_module_state->__pyx_FusedFunctionType);
+ #endif
+ Py_CLEAR(clear_module_state->__pyx_kp_u_);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_0);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_0123456789);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_0123456789ABCDEFabcdef);
+ Py_CLEAR(clear_module_state->__pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef);
+ Py_CLEAR(clear_module_state->__pyx_n_s_ANONYMOUS_BLOCK);
+ Py_CLEAR(clear_module_state->__pyx_n_u_ANONYMOUS_BLOCK);
+ Py_CLEAR(clear_module_state->__pyx_kp_s_A_Lexer_that_follows_include_sta);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_A_Za_z_0_9);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_DIGIT);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_HEXDIGIT);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_LETTER);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_NAME_CONTINUATION);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_NAME_START);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_NEWLINE);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_SYMBOL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CHAR_WHITESPACE);
+ Py_CLEAR(clear_module_state->__pyx_n_s_CID);
+ Py_CLEAR(clear_module_state->__pyx_n_u_CID);
+ Py_CLEAR(clear_module_state->__pyx_n_s_COMMENT);
+ Py_CLEAR(clear_module_state->__pyx_n_u_COMMENT);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_after_file_name);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_before_file_name);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_file_name);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_glyph_class_name);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_s_to_terminate_anonymou);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Expected_to_terminate_string);
+ Py_CLEAR(clear_module_state->__pyx_n_s_FILENAME);
+ Py_CLEAR(clear_module_state->__pyx_n_u_FILENAME);
+ Py_CLEAR(clear_module_state->__pyx_n_s_FLOAT);
+ Py_CLEAR(clear_module_state->__pyx_n_u_FLOAT);
+ Py_CLEAR(clear_module_state->__pyx_n_s_FeatureLibError);
+ Py_CLEAR(clear_module_state->__pyx_n_s_FeatureLibLocation);
+ Py_CLEAR(clear_module_state->__pyx_n_s_FileNotFoundError);
+ Py_CLEAR(clear_module_state->__pyx_n_s_GLYPHCLASS);
+ Py_CLEAR(clear_module_state->__pyx_n_u_GLYPHCLASS);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Glyph_class_names_must_consist_o);
+ Py_CLEAR(clear_module_state->__pyx_n_s_HEXADECIMAL);
+ Py_CLEAR(clear_module_state->__pyx_n_u_HEXADECIMAL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_ImportError);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludedFeaNotFound);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer___init);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer___iter);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer___next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer_make_lexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer_next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_IncludingLexer_scan_anonymous_bl);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer___init);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer___iter);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer___next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_location);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_next_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_scan_anonymous_block);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_scan_over);
+ Py_CLEAR(clear_module_state->__pyx_n_s_Lexer_scan_until);
+ Py_CLEAR(clear_module_state->__pyx_kp_s_Lexer_that_does_not_follow_inclu);
+ Py_CLEAR(clear_module_state->__pyx_kp_s_Lib_fontTools_feaLib_lexer_py);
+ Py_CLEAR(clear_module_state->__pyx_n_s_MODE_FILENAME);
+ Py_CLEAR(clear_module_state->__pyx_n_s_MODE_NORMAL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NAME);
+ Py_CLEAR(clear_module_state->__pyx_n_u_NAME);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NEWLINE);
+ Py_CLEAR(clear_module_state->__pyx_n_u_NEWLINE);
+ Py_CLEAR(clear_module_state->__pyx_n_u_NORMAL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NUMBER);
+ Py_CLEAR(clear_module_state->__pyx_n_u_NUMBER);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NUMBERS);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NonIncludingLexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_NonIncludingLexer___next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_OCTAL);
+ Py_CLEAR(clear_module_state->__pyx_n_u_OCTAL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_RE_GLYPHCLASS);
+ Py_CLEAR(clear_module_state->__pyx_n_s_STRING);
+ Py_CLEAR(clear_module_state->__pyx_n_u_STRING);
+ Py_CLEAR(clear_module_state->__pyx_n_s_SYMBOL);
+ Py_CLEAR(clear_module_state->__pyx_n_u_SYMBOL);
+ Py_CLEAR(clear_module_state->__pyx_n_s_StopIteration);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Too_many_recursive_includes);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_Unexpected_character_r);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__10);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__11);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__12);
+ Py_CLEAR(clear_module_state->__pyx_n_s__13);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__16);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__17);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__18);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__19);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__2);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__20);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__3);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__4);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__5);
+ Py_CLEAR(clear_module_state->__pyx_n_s__51);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__6);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__7);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__8);
+ Py_CLEAR(clear_module_state->__pyx_kp_u__9);
+ Py_CLEAR(clear_module_state->__pyx_n_s_append);
+ Py_CLEAR(clear_module_state->__pyx_n_s_asyncio_coroutines);
+ Py_CLEAR(clear_module_state->__pyx_n_s_class_getitem);
+ Py_CLEAR(clear_module_state->__pyx_n_s_cline_in_traceback);
+ Py_CLEAR(clear_module_state->__pyx_n_s_close);
+ Py_CLEAR(clear_module_state->__pyx_n_s_closing);
+ Py_CLEAR(clear_module_state->__pyx_n_s_column);
+ Py_CLEAR(clear_module_state->__pyx_n_s_compile);
+ Py_CLEAR(clear_module_state->__pyx_n_s_cur_char);
+ Py_CLEAR(clear_module_state->__pyx_n_s_curpath);
+ Py_CLEAR(clear_module_state->__pyx_n_s_data);
+ Py_CLEAR(clear_module_state->__pyx_n_s_dict);
+ Py_CLEAR(clear_module_state->__pyx_n_s_dirname);
+ Py_CLEAR(clear_module_state->__pyx_n_s_doc);
+ Py_CLEAR(clear_module_state->__pyx_n_s_encoding);
+ Py_CLEAR(clear_module_state->__pyx_n_s_err);
+ Py_CLEAR(clear_module_state->__pyx_n_s_featurefile);
+ Py_CLEAR(clear_module_state->__pyx_n_s_featurefilepath);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_features);
+ Py_CLEAR(clear_module_state->__pyx_n_s_file_or_path);
+ Py_CLEAR(clear_module_state->__pyx_n_s_filename);
+ Py_CLEAR(clear_module_state->__pyx_n_s_filename_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fileobj);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fname_location);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fname_token);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fname_type);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fontTools_feaLib_error);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fontTools_feaLib_lexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_fontTools_feaLib_location);
+ Py_CLEAR(clear_module_state->__pyx_n_s_getcwd);
+ Py_CLEAR(clear_module_state->__pyx_n_s_glyphclass);
+ Py_CLEAR(clear_module_state->__pyx_n_s_import);
+ Py_CLEAR(clear_module_state->__pyx_n_u_include);
+ Py_CLEAR(clear_module_state->__pyx_n_s_includeDir);
+ Py_CLEAR(clear_module_state->__pyx_n_s_init);
+ Py_CLEAR(clear_module_state->__pyx_n_s_init_subclass);
+ Py_CLEAR(clear_module_state->__pyx_n_s_initializing);
+ Py_CLEAR(clear_module_state->__pyx_n_s_is_coroutine);
+ Py_CLEAR(clear_module_state->__pyx_n_s_isabs);
+ Py_CLEAR(clear_module_state->__pyx_n_s_iter);
+ Py_CLEAR(clear_module_state->__pyx_n_s_join);
+ Py_CLEAR(clear_module_state->__pyx_n_s_lexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_lexers);
+ Py_CLEAR(clear_module_state->__pyx_n_s_limit);
+ Py_CLEAR(clear_module_state->__pyx_n_s_line);
+ Py_CLEAR(clear_module_state->__pyx_n_s_line_start);
+ Py_CLEAR(clear_module_state->__pyx_n_s_location);
+ Py_CLEAR(clear_module_state->__pyx_n_s_location_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_main);
+ Py_CLEAR(clear_module_state->__pyx_n_s_make_lexer);
+ Py_CLEAR(clear_module_state->__pyx_n_s_match);
+ Py_CLEAR(clear_module_state->__pyx_n_s_maxsplit);
+ Py_CLEAR(clear_module_state->__pyx_n_s_metaclass);
+ Py_CLEAR(clear_module_state->__pyx_n_s_mode);
+ Py_CLEAR(clear_module_state->__pyx_n_s_module);
+ Py_CLEAR(clear_module_state->__pyx_n_s_mro_entries);
+ Py_CLEAR(clear_module_state->__pyx_n_u_name);
+ Py_CLEAR(clear_module_state->__pyx_n_s_name_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_next);
+ Py_CLEAR(clear_module_state->__pyx_n_s_next_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_next_3);
+ Py_CLEAR(clear_module_state->__pyx_n_s_next_char);
+ Py_CLEAR(clear_module_state->__pyx_n_s_object);
+ Py_CLEAR(clear_module_state->__pyx_n_s_open);
+ Py_CLEAR(clear_module_state->__pyx_n_s_os);
+ Py_CLEAR(clear_module_state->__pyx_n_s_p);
+ Py_CLEAR(clear_module_state->__pyx_n_s_path);
+ Py_CLEAR(clear_module_state->__pyx_n_s_pop);
+ Py_CLEAR(clear_module_state->__pyx_n_s_pos);
+ Py_CLEAR(clear_module_state->__pyx_n_s_prepare);
+ Py_CLEAR(clear_module_state->__pyx_n_s_qualname);
+ Py_CLEAR(clear_module_state->__pyx_n_u_r);
+ Py_CLEAR(clear_module_state->__pyx_n_s_re);
+ Py_CLEAR(clear_module_state->__pyx_n_s_read);
+ Py_CLEAR(clear_module_state->__pyx_n_u_read);
+ Py_CLEAR(clear_module_state->__pyx_n_s_regexp);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_s);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_s_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_scan_anonymous_block);
+ Py_CLEAR(clear_module_state->__pyx_n_s_scan_over);
+ Py_CLEAR(clear_module_state->__pyx_n_s_scan_until);
+ Py_CLEAR(clear_module_state->__pyx_n_s_self);
+ Py_CLEAR(clear_module_state->__pyx_n_s_set_name);
+ Py_CLEAR(clear_module_state->__pyx_n_s_spec);
+ Py_CLEAR(clear_module_state->__pyx_n_s_split);
+ Py_CLEAR(clear_module_state->__pyx_n_s_start);
+ Py_CLEAR(clear_module_state->__pyx_n_s_staticmethod);
+ Py_CLEAR(clear_module_state->__pyx_n_s_stop_at);
+ Py_CLEAR(clear_module_state->__pyx_n_s_string);
+ Py_CLEAR(clear_module_state->__pyx_n_s_strip);
+ Py_CLEAR(clear_module_state->__pyx_n_s_sub);
+ Py_CLEAR(clear_module_state->__pyx_n_s_super);
+ Py_CLEAR(clear_module_state->__pyx_n_s_tag);
+ Py_CLEAR(clear_module_state->__pyx_n_s_test);
+ Py_CLEAR(clear_module_state->__pyx_n_s_text);
+ Py_CLEAR(clear_module_state->__pyx_n_s_text_2);
+ Py_CLEAR(clear_module_state->__pyx_n_s_text_length);
+ Py_CLEAR(clear_module_state->__pyx_n_s_token);
+ Py_CLEAR(clear_module_state->__pyx_n_s_token_type);
+ Py_CLEAR(clear_module_state->__pyx_kp_u_utf_8_sig);
+ Py_CLEAR(clear_module_state->__pyx_n_s_valid);
+ Py_CLEAR(clear_module_state->__pyx_n_u_xX);
+ Py_CLEAR(clear_module_state->__pyx_int_0);
+ Py_CLEAR(clear_module_state->__pyx_int_1);
+ Py_CLEAR(clear_module_state->__pyx_int_2);
+ Py_CLEAR(clear_module_state->__pyx_int_8);
+ Py_CLEAR(clear_module_state->__pyx_int_10);
+ Py_CLEAR(clear_module_state->__pyx_int_16);
+ Py_CLEAR(clear_module_state->__pyx_tuple__14);
+ Py_CLEAR(clear_module_state->__pyx_tuple__15);
+ Py_CLEAR(clear_module_state->__pyx_tuple__21);
+ Py_CLEAR(clear_module_state->__pyx_tuple__23);
+ Py_CLEAR(clear_module_state->__pyx_tuple__26);
+ Py_CLEAR(clear_module_state->__pyx_tuple__28);
+ Py_CLEAR(clear_module_state->__pyx_tuple__30);
+ Py_CLEAR(clear_module_state->__pyx_tuple__32);
+ Py_CLEAR(clear_module_state->__pyx_tuple__34);
+ Py_CLEAR(clear_module_state->__pyx_tuple__36);
+ Py_CLEAR(clear_module_state->__pyx_tuple__38);
+ Py_CLEAR(clear_module_state->__pyx_tuple__39);
+ Py_CLEAR(clear_module_state->__pyx_tuple__40);
+ Py_CLEAR(clear_module_state->__pyx_tuple__44);
+ Py_CLEAR(clear_module_state->__pyx_tuple__46);
+ Py_CLEAR(clear_module_state->__pyx_tuple__48);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__22);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__24);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__25);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__27);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__29);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__31);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__33);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__35);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__37);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__41);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__42);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__43);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__45);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__47);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__49);
+ Py_CLEAR(clear_module_state->__pyx_codeobj__50);
+ return 0;
+}
+#endif
+/* #### Code section: module_state_traverse ### */
+#if CYTHON_USE_MODULE_STATE
+static int __pyx_m_traverse(PyObject *m, visitproc visit, void *arg) {
+ __pyx_mstate *traverse_module_state = __pyx_mstate(m);
+ if (!traverse_module_state) return 0;
+ Py_VISIT(traverse_module_state->__pyx_d);
+ Py_VISIT(traverse_module_state->__pyx_b);
+ Py_VISIT(traverse_module_state->__pyx_cython_runtime);
+ Py_VISIT(traverse_module_state->__pyx_empty_tuple);
+ Py_VISIT(traverse_module_state->__pyx_empty_bytes);
+ Py_VISIT(traverse_module_state->__pyx_empty_unicode);
+ #ifdef __Pyx_CyFunction_USED
+ Py_VISIT(traverse_module_state->__pyx_CyFunctionType);
+ #endif
+ #ifdef __Pyx_FusedFunction_USED
+ Py_VISIT(traverse_module_state->__pyx_FusedFunctionType);
+ #endif
+ Py_VISIT(traverse_module_state->__pyx_kp_u_);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_0);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_0123456789);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_0123456789ABCDEFabcdef);
+ Py_VISIT(traverse_module_state->__pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef);
+ Py_VISIT(traverse_module_state->__pyx_n_s_ANONYMOUS_BLOCK);
+ Py_VISIT(traverse_module_state->__pyx_n_u_ANONYMOUS_BLOCK);
+ Py_VISIT(traverse_module_state->__pyx_kp_s_A_Lexer_that_follows_include_sta);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_A_Za_z_0_9);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_DIGIT);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_HEXDIGIT);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_LETTER);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_NAME_CONTINUATION);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_NAME_START);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_NEWLINE);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_SYMBOL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CHAR_WHITESPACE);
+ Py_VISIT(traverse_module_state->__pyx_n_s_CID);
+ Py_VISIT(traverse_module_state->__pyx_n_u_CID);
+ Py_VISIT(traverse_module_state->__pyx_n_s_COMMENT);
+ Py_VISIT(traverse_module_state->__pyx_n_u_COMMENT);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_after_file_name);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_before_file_name);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_file_name);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_glyph_class_name);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_s_to_terminate_anonymou);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Expected_to_terminate_string);
+ Py_VISIT(traverse_module_state->__pyx_n_s_FILENAME);
+ Py_VISIT(traverse_module_state->__pyx_n_u_FILENAME);
+ Py_VISIT(traverse_module_state->__pyx_n_s_FLOAT);
+ Py_VISIT(traverse_module_state->__pyx_n_u_FLOAT);
+ Py_VISIT(traverse_module_state->__pyx_n_s_FeatureLibError);
+ Py_VISIT(traverse_module_state->__pyx_n_s_FeatureLibLocation);
+ Py_VISIT(traverse_module_state->__pyx_n_s_FileNotFoundError);
+ Py_VISIT(traverse_module_state->__pyx_n_s_GLYPHCLASS);
+ Py_VISIT(traverse_module_state->__pyx_n_u_GLYPHCLASS);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Glyph_class_names_must_consist_o);
+ Py_VISIT(traverse_module_state->__pyx_n_s_HEXADECIMAL);
+ Py_VISIT(traverse_module_state->__pyx_n_u_HEXADECIMAL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_ImportError);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludedFeaNotFound);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer___init);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer___iter);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer___next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer_make_lexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer_next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_IncludingLexer_scan_anonymous_bl);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer___init);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer___iter);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer___next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_location);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_next_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_scan_anonymous_block);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_scan_over);
+ Py_VISIT(traverse_module_state->__pyx_n_s_Lexer_scan_until);
+ Py_VISIT(traverse_module_state->__pyx_kp_s_Lexer_that_does_not_follow_inclu);
+ Py_VISIT(traverse_module_state->__pyx_kp_s_Lib_fontTools_feaLib_lexer_py);
+ Py_VISIT(traverse_module_state->__pyx_n_s_MODE_FILENAME);
+ Py_VISIT(traverse_module_state->__pyx_n_s_MODE_NORMAL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NAME);
+ Py_VISIT(traverse_module_state->__pyx_n_u_NAME);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NEWLINE);
+ Py_VISIT(traverse_module_state->__pyx_n_u_NEWLINE);
+ Py_VISIT(traverse_module_state->__pyx_n_u_NORMAL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NUMBER);
+ Py_VISIT(traverse_module_state->__pyx_n_u_NUMBER);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NUMBERS);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NonIncludingLexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_NonIncludingLexer___next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_OCTAL);
+ Py_VISIT(traverse_module_state->__pyx_n_u_OCTAL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_RE_GLYPHCLASS);
+ Py_VISIT(traverse_module_state->__pyx_n_s_STRING);
+ Py_VISIT(traverse_module_state->__pyx_n_u_STRING);
+ Py_VISIT(traverse_module_state->__pyx_n_s_SYMBOL);
+ Py_VISIT(traverse_module_state->__pyx_n_u_SYMBOL);
+ Py_VISIT(traverse_module_state->__pyx_n_s_StopIteration);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Too_many_recursive_includes);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_Unexpected_character_r);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__10);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__11);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__12);
+ Py_VISIT(traverse_module_state->__pyx_n_s__13);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__16);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__17);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__18);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__19);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__2);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__20);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__3);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__4);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__5);
+ Py_VISIT(traverse_module_state->__pyx_n_s__51);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__6);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__7);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__8);
+ Py_VISIT(traverse_module_state->__pyx_kp_u__9);
+ Py_VISIT(traverse_module_state->__pyx_n_s_append);
+ Py_VISIT(traverse_module_state->__pyx_n_s_asyncio_coroutines);
+ Py_VISIT(traverse_module_state->__pyx_n_s_class_getitem);
+ Py_VISIT(traverse_module_state->__pyx_n_s_cline_in_traceback);
+ Py_VISIT(traverse_module_state->__pyx_n_s_close);
+ Py_VISIT(traverse_module_state->__pyx_n_s_closing);
+ Py_VISIT(traverse_module_state->__pyx_n_s_column);
+ Py_VISIT(traverse_module_state->__pyx_n_s_compile);
+ Py_VISIT(traverse_module_state->__pyx_n_s_cur_char);
+ Py_VISIT(traverse_module_state->__pyx_n_s_curpath);
+ Py_VISIT(traverse_module_state->__pyx_n_s_data);
+ Py_VISIT(traverse_module_state->__pyx_n_s_dict);
+ Py_VISIT(traverse_module_state->__pyx_n_s_dirname);
+ Py_VISIT(traverse_module_state->__pyx_n_s_doc);
+ Py_VISIT(traverse_module_state->__pyx_n_s_encoding);
+ Py_VISIT(traverse_module_state->__pyx_n_s_err);
+ Py_VISIT(traverse_module_state->__pyx_n_s_featurefile);
+ Py_VISIT(traverse_module_state->__pyx_n_s_featurefilepath);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_features);
+ Py_VISIT(traverse_module_state->__pyx_n_s_file_or_path);
+ Py_VISIT(traverse_module_state->__pyx_n_s_filename);
+ Py_VISIT(traverse_module_state->__pyx_n_s_filename_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fileobj);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fname_location);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fname_token);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fname_type);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fontTools_feaLib_error);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fontTools_feaLib_lexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_fontTools_feaLib_location);
+ Py_VISIT(traverse_module_state->__pyx_n_s_getcwd);
+ Py_VISIT(traverse_module_state->__pyx_n_s_glyphclass);
+ Py_VISIT(traverse_module_state->__pyx_n_s_import);
+ Py_VISIT(traverse_module_state->__pyx_n_u_include);
+ Py_VISIT(traverse_module_state->__pyx_n_s_includeDir);
+ Py_VISIT(traverse_module_state->__pyx_n_s_init);
+ Py_VISIT(traverse_module_state->__pyx_n_s_init_subclass);
+ Py_VISIT(traverse_module_state->__pyx_n_s_initializing);
+ Py_VISIT(traverse_module_state->__pyx_n_s_is_coroutine);
+ Py_VISIT(traverse_module_state->__pyx_n_s_isabs);
+ Py_VISIT(traverse_module_state->__pyx_n_s_iter);
+ Py_VISIT(traverse_module_state->__pyx_n_s_join);
+ Py_VISIT(traverse_module_state->__pyx_n_s_lexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_lexers);
+ Py_VISIT(traverse_module_state->__pyx_n_s_limit);
+ Py_VISIT(traverse_module_state->__pyx_n_s_line);
+ Py_VISIT(traverse_module_state->__pyx_n_s_line_start);
+ Py_VISIT(traverse_module_state->__pyx_n_s_location);
+ Py_VISIT(traverse_module_state->__pyx_n_s_location_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_main);
+ Py_VISIT(traverse_module_state->__pyx_n_s_make_lexer);
+ Py_VISIT(traverse_module_state->__pyx_n_s_match);
+ Py_VISIT(traverse_module_state->__pyx_n_s_maxsplit);
+ Py_VISIT(traverse_module_state->__pyx_n_s_metaclass);
+ Py_VISIT(traverse_module_state->__pyx_n_s_mode);
+ Py_VISIT(traverse_module_state->__pyx_n_s_module);
+ Py_VISIT(traverse_module_state->__pyx_n_s_mro_entries);
+ Py_VISIT(traverse_module_state->__pyx_n_u_name);
+ Py_VISIT(traverse_module_state->__pyx_n_s_name_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_next);
+ Py_VISIT(traverse_module_state->__pyx_n_s_next_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_next_3);
+ Py_VISIT(traverse_module_state->__pyx_n_s_next_char);
+ Py_VISIT(traverse_module_state->__pyx_n_s_object);
+ Py_VISIT(traverse_module_state->__pyx_n_s_open);
+ Py_VISIT(traverse_module_state->__pyx_n_s_os);
+ Py_VISIT(traverse_module_state->__pyx_n_s_p);
+ Py_VISIT(traverse_module_state->__pyx_n_s_path);
+ Py_VISIT(traverse_module_state->__pyx_n_s_pop);
+ Py_VISIT(traverse_module_state->__pyx_n_s_pos);
+ Py_VISIT(traverse_module_state->__pyx_n_s_prepare);
+ Py_VISIT(traverse_module_state->__pyx_n_s_qualname);
+ Py_VISIT(traverse_module_state->__pyx_n_u_r);
+ Py_VISIT(traverse_module_state->__pyx_n_s_re);
+ Py_VISIT(traverse_module_state->__pyx_n_s_read);
+ Py_VISIT(traverse_module_state->__pyx_n_u_read);
+ Py_VISIT(traverse_module_state->__pyx_n_s_regexp);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_s);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_s_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_scan_anonymous_block);
+ Py_VISIT(traverse_module_state->__pyx_n_s_scan_over);
+ Py_VISIT(traverse_module_state->__pyx_n_s_scan_until);
+ Py_VISIT(traverse_module_state->__pyx_n_s_self);
+ Py_VISIT(traverse_module_state->__pyx_n_s_set_name);
+ Py_VISIT(traverse_module_state->__pyx_n_s_spec);
+ Py_VISIT(traverse_module_state->__pyx_n_s_split);
+ Py_VISIT(traverse_module_state->__pyx_n_s_start);
+ Py_VISIT(traverse_module_state->__pyx_n_s_staticmethod);
+ Py_VISIT(traverse_module_state->__pyx_n_s_stop_at);
+ Py_VISIT(traverse_module_state->__pyx_n_s_string);
+ Py_VISIT(traverse_module_state->__pyx_n_s_strip);
+ Py_VISIT(traverse_module_state->__pyx_n_s_sub);
+ Py_VISIT(traverse_module_state->__pyx_n_s_super);
+ Py_VISIT(traverse_module_state->__pyx_n_s_tag);
+ Py_VISIT(traverse_module_state->__pyx_n_s_test);
+ Py_VISIT(traverse_module_state->__pyx_n_s_text);
+ Py_VISIT(traverse_module_state->__pyx_n_s_text_2);
+ Py_VISIT(traverse_module_state->__pyx_n_s_text_length);
+ Py_VISIT(traverse_module_state->__pyx_n_s_token);
+ Py_VISIT(traverse_module_state->__pyx_n_s_token_type);
+ Py_VISIT(traverse_module_state->__pyx_kp_u_utf_8_sig);
+ Py_VISIT(traverse_module_state->__pyx_n_s_valid);
+ Py_VISIT(traverse_module_state->__pyx_n_u_xX);
+ Py_VISIT(traverse_module_state->__pyx_int_0);
+ Py_VISIT(traverse_module_state->__pyx_int_1);
+ Py_VISIT(traverse_module_state->__pyx_int_2);
+ Py_VISIT(traverse_module_state->__pyx_int_8);
+ Py_VISIT(traverse_module_state->__pyx_int_10);
+ Py_VISIT(traverse_module_state->__pyx_int_16);
+ Py_VISIT(traverse_module_state->__pyx_tuple__14);
+ Py_VISIT(traverse_module_state->__pyx_tuple__15);
+ Py_VISIT(traverse_module_state->__pyx_tuple__21);
+ Py_VISIT(traverse_module_state->__pyx_tuple__23);
+ Py_VISIT(traverse_module_state->__pyx_tuple__26);
+ Py_VISIT(traverse_module_state->__pyx_tuple__28);
+ Py_VISIT(traverse_module_state->__pyx_tuple__30);
+ Py_VISIT(traverse_module_state->__pyx_tuple__32);
+ Py_VISIT(traverse_module_state->__pyx_tuple__34);
+ Py_VISIT(traverse_module_state->__pyx_tuple__36);
+ Py_VISIT(traverse_module_state->__pyx_tuple__38);
+ Py_VISIT(traverse_module_state->__pyx_tuple__39);
+ Py_VISIT(traverse_module_state->__pyx_tuple__40);
+ Py_VISIT(traverse_module_state->__pyx_tuple__44);
+ Py_VISIT(traverse_module_state->__pyx_tuple__46);
+ Py_VISIT(traverse_module_state->__pyx_tuple__48);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__22);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__24);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__25);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__27);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__29);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__31);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__33);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__35);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__37);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__41);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__42);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__43);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__45);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__47);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__49);
+ Py_VISIT(traverse_module_state->__pyx_codeobj__50);
+ return 0;
+}
+#endif
+/* #### Code section: module_state_defines ### */
+#define __pyx_d __pyx_mstate_global->__pyx_d
+#define __pyx_b __pyx_mstate_global->__pyx_b
+#define __pyx_cython_runtime __pyx_mstate_global->__pyx_cython_runtime
+#define __pyx_empty_tuple __pyx_mstate_global->__pyx_empty_tuple
+#define __pyx_empty_bytes __pyx_mstate_global->__pyx_empty_bytes
+#define __pyx_empty_unicode __pyx_mstate_global->__pyx_empty_unicode
+#ifdef __Pyx_CyFunction_USED
+#define __pyx_CyFunctionType __pyx_mstate_global->__pyx_CyFunctionType
+#endif
+#ifdef __Pyx_FusedFunction_USED
+#define __pyx_FusedFunctionType __pyx_mstate_global->__pyx_FusedFunctionType
+#endif
+#ifdef __Pyx_Generator_USED
+#define __pyx_GeneratorType __pyx_mstate_global->__pyx_GeneratorType
+#endif
+#ifdef __Pyx_IterableCoroutine_USED
+#define __pyx_IterableCoroutineType __pyx_mstate_global->__pyx_IterableCoroutineType
+#endif
+#ifdef __Pyx_Coroutine_USED
+#define __pyx_CoroutineAwaitType __pyx_mstate_global->__pyx_CoroutineAwaitType
+#endif
+#ifdef __Pyx_Coroutine_USED
+#define __pyx_CoroutineType __pyx_mstate_global->__pyx_CoroutineType
+#endif
+#if CYTHON_USE_MODULE_STATE
+#endif
+#if CYTHON_USE_MODULE_STATE
+#endif
+#define __pyx_kp_u_ __pyx_mstate_global->__pyx_kp_u_
+#define __pyx_kp_u_0 __pyx_mstate_global->__pyx_kp_u_0
+#define __pyx_kp_u_0123456789 __pyx_mstate_global->__pyx_kp_u_0123456789
+#define __pyx_kp_u_0123456789ABCDEFabcdef __pyx_mstate_global->__pyx_kp_u_0123456789ABCDEFabcdef
+#define __pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef __pyx_mstate_global->__pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef
+#define __pyx_n_s_ANONYMOUS_BLOCK __pyx_mstate_global->__pyx_n_s_ANONYMOUS_BLOCK
+#define __pyx_n_u_ANONYMOUS_BLOCK __pyx_mstate_global->__pyx_n_u_ANONYMOUS_BLOCK
+#define __pyx_kp_s_A_Lexer_that_follows_include_sta __pyx_mstate_global->__pyx_kp_s_A_Lexer_that_follows_include_sta
+#define __pyx_kp_u_A_Za_z_0_9 __pyx_mstate_global->__pyx_kp_u_A_Za_z_0_9
+#define __pyx_n_s_CHAR_DIGIT __pyx_mstate_global->__pyx_n_s_CHAR_DIGIT
+#define __pyx_n_s_CHAR_HEXDIGIT __pyx_mstate_global->__pyx_n_s_CHAR_HEXDIGIT
+#define __pyx_n_s_CHAR_LETTER __pyx_mstate_global->__pyx_n_s_CHAR_LETTER
+#define __pyx_n_s_CHAR_NAME_CONTINUATION __pyx_mstate_global->__pyx_n_s_CHAR_NAME_CONTINUATION
+#define __pyx_n_s_CHAR_NAME_START __pyx_mstate_global->__pyx_n_s_CHAR_NAME_START
+#define __pyx_n_s_CHAR_NEWLINE __pyx_mstate_global->__pyx_n_s_CHAR_NEWLINE
+#define __pyx_n_s_CHAR_SYMBOL __pyx_mstate_global->__pyx_n_s_CHAR_SYMBOL
+#define __pyx_n_s_CHAR_WHITESPACE __pyx_mstate_global->__pyx_n_s_CHAR_WHITESPACE
+#define __pyx_n_s_CID __pyx_mstate_global->__pyx_n_s_CID
+#define __pyx_n_u_CID __pyx_mstate_global->__pyx_n_u_CID
+#define __pyx_n_s_COMMENT __pyx_mstate_global->__pyx_n_s_COMMENT
+#define __pyx_n_u_COMMENT __pyx_mstate_global->__pyx_n_u_COMMENT
+#define __pyx_kp_u_Expected_after_file_name __pyx_mstate_global->__pyx_kp_u_Expected_after_file_name
+#define __pyx_kp_u_Expected_before_file_name __pyx_mstate_global->__pyx_kp_u_Expected_before_file_name
+#define __pyx_kp_u_Expected_file_name __pyx_mstate_global->__pyx_kp_u_Expected_file_name
+#define __pyx_kp_u_Expected_glyph_class_name __pyx_mstate_global->__pyx_kp_u_Expected_glyph_class_name
+#define __pyx_kp_u_Expected_s_to_terminate_anonymou __pyx_mstate_global->__pyx_kp_u_Expected_s_to_terminate_anonymou
+#define __pyx_kp_u_Expected_to_terminate_string __pyx_mstate_global->__pyx_kp_u_Expected_to_terminate_string
+#define __pyx_n_s_FILENAME __pyx_mstate_global->__pyx_n_s_FILENAME
+#define __pyx_n_u_FILENAME __pyx_mstate_global->__pyx_n_u_FILENAME
+#define __pyx_n_s_FLOAT __pyx_mstate_global->__pyx_n_s_FLOAT
+#define __pyx_n_u_FLOAT __pyx_mstate_global->__pyx_n_u_FLOAT
+#define __pyx_n_s_FeatureLibError __pyx_mstate_global->__pyx_n_s_FeatureLibError
+#define __pyx_n_s_FeatureLibLocation __pyx_mstate_global->__pyx_n_s_FeatureLibLocation
+#define __pyx_n_s_FileNotFoundError __pyx_mstate_global->__pyx_n_s_FileNotFoundError
+#define __pyx_n_s_GLYPHCLASS __pyx_mstate_global->__pyx_n_s_GLYPHCLASS
+#define __pyx_n_u_GLYPHCLASS __pyx_mstate_global->__pyx_n_u_GLYPHCLASS
+#define __pyx_kp_u_Glyph_class_names_must_consist_o __pyx_mstate_global->__pyx_kp_u_Glyph_class_names_must_consist_o
+#define __pyx_n_s_HEXADECIMAL __pyx_mstate_global->__pyx_n_s_HEXADECIMAL
+#define __pyx_n_u_HEXADECIMAL __pyx_mstate_global->__pyx_n_u_HEXADECIMAL
+#define __pyx_n_s_ImportError __pyx_mstate_global->__pyx_n_s_ImportError
+#define __pyx_n_s_IncludedFeaNotFound __pyx_mstate_global->__pyx_n_s_IncludedFeaNotFound
+#define __pyx_n_s_IncludingLexer __pyx_mstate_global->__pyx_n_s_IncludingLexer
+#define __pyx_n_s_IncludingLexer___init __pyx_mstate_global->__pyx_n_s_IncludingLexer___init
+#define __pyx_n_s_IncludingLexer___iter __pyx_mstate_global->__pyx_n_s_IncludingLexer___iter
+#define __pyx_n_s_IncludingLexer___next __pyx_mstate_global->__pyx_n_s_IncludingLexer___next
+#define __pyx_n_s_IncludingLexer_make_lexer __pyx_mstate_global->__pyx_n_s_IncludingLexer_make_lexer
+#define __pyx_n_s_IncludingLexer_next __pyx_mstate_global->__pyx_n_s_IncludingLexer_next
+#define __pyx_n_s_IncludingLexer_scan_anonymous_bl __pyx_mstate_global->__pyx_n_s_IncludingLexer_scan_anonymous_bl
+#define __pyx_n_s_Lexer __pyx_mstate_global->__pyx_n_s_Lexer
+#define __pyx_n_s_Lexer___init __pyx_mstate_global->__pyx_n_s_Lexer___init
+#define __pyx_n_s_Lexer___iter __pyx_mstate_global->__pyx_n_s_Lexer___iter
+#define __pyx_n_s_Lexer___next __pyx_mstate_global->__pyx_n_s_Lexer___next
+#define __pyx_n_s_Lexer_location __pyx_mstate_global->__pyx_n_s_Lexer_location
+#define __pyx_n_s_Lexer_next __pyx_mstate_global->__pyx_n_s_Lexer_next
+#define __pyx_n_s_Lexer_next_2 __pyx_mstate_global->__pyx_n_s_Lexer_next_2
+#define __pyx_n_s_Lexer_scan_anonymous_block __pyx_mstate_global->__pyx_n_s_Lexer_scan_anonymous_block
+#define __pyx_n_s_Lexer_scan_over __pyx_mstate_global->__pyx_n_s_Lexer_scan_over
+#define __pyx_n_s_Lexer_scan_until __pyx_mstate_global->__pyx_n_s_Lexer_scan_until
+#define __pyx_kp_s_Lexer_that_does_not_follow_inclu __pyx_mstate_global->__pyx_kp_s_Lexer_that_does_not_follow_inclu
+#define __pyx_kp_s_Lib_fontTools_feaLib_lexer_py __pyx_mstate_global->__pyx_kp_s_Lib_fontTools_feaLib_lexer_py
+#define __pyx_n_s_MODE_FILENAME __pyx_mstate_global->__pyx_n_s_MODE_FILENAME
+#define __pyx_n_s_MODE_NORMAL __pyx_mstate_global->__pyx_n_s_MODE_NORMAL
+#define __pyx_n_s_NAME __pyx_mstate_global->__pyx_n_s_NAME
+#define __pyx_n_u_NAME __pyx_mstate_global->__pyx_n_u_NAME
+#define __pyx_n_s_NEWLINE __pyx_mstate_global->__pyx_n_s_NEWLINE
+#define __pyx_n_u_NEWLINE __pyx_mstate_global->__pyx_n_u_NEWLINE
+#define __pyx_n_u_NORMAL __pyx_mstate_global->__pyx_n_u_NORMAL
+#define __pyx_n_s_NUMBER __pyx_mstate_global->__pyx_n_s_NUMBER
+#define __pyx_n_u_NUMBER __pyx_mstate_global->__pyx_n_u_NUMBER
+#define __pyx_n_s_NUMBERS __pyx_mstate_global->__pyx_n_s_NUMBERS
+#define __pyx_n_s_NonIncludingLexer __pyx_mstate_global->__pyx_n_s_NonIncludingLexer
+#define __pyx_n_s_NonIncludingLexer___next __pyx_mstate_global->__pyx_n_s_NonIncludingLexer___next
+#define __pyx_n_s_OCTAL __pyx_mstate_global->__pyx_n_s_OCTAL
+#define __pyx_n_u_OCTAL __pyx_mstate_global->__pyx_n_u_OCTAL
+#define __pyx_n_s_RE_GLYPHCLASS __pyx_mstate_global->__pyx_n_s_RE_GLYPHCLASS
+#define __pyx_n_s_STRING __pyx_mstate_global->__pyx_n_s_STRING
+#define __pyx_n_u_STRING __pyx_mstate_global->__pyx_n_u_STRING
+#define __pyx_n_s_SYMBOL __pyx_mstate_global->__pyx_n_s_SYMBOL
+#define __pyx_n_u_SYMBOL __pyx_mstate_global->__pyx_n_u_SYMBOL
+#define __pyx_n_s_StopIteration __pyx_mstate_global->__pyx_n_s_StopIteration
+#define __pyx_kp_u_Too_many_recursive_includes __pyx_mstate_global->__pyx_kp_u_Too_many_recursive_includes
+#define __pyx_kp_u_Unexpected_character_r __pyx_mstate_global->__pyx_kp_u_Unexpected_character_r
+#define __pyx_kp_u__10 __pyx_mstate_global->__pyx_kp_u__10
+#define __pyx_kp_u__11 __pyx_mstate_global->__pyx_kp_u__11
+#define __pyx_kp_u__12 __pyx_mstate_global->__pyx_kp_u__12
+#define __pyx_n_s__13 __pyx_mstate_global->__pyx_n_s__13
+#define __pyx_kp_u__16 __pyx_mstate_global->__pyx_kp_u__16
+#define __pyx_kp_u__17 __pyx_mstate_global->__pyx_kp_u__17
+#define __pyx_kp_u__18 __pyx_mstate_global->__pyx_kp_u__18
+#define __pyx_kp_u__19 __pyx_mstate_global->__pyx_kp_u__19
+#define __pyx_kp_u__2 __pyx_mstate_global->__pyx_kp_u__2
+#define __pyx_kp_u__20 __pyx_mstate_global->__pyx_kp_u__20
+#define __pyx_kp_u__3 __pyx_mstate_global->__pyx_kp_u__3
+#define __pyx_kp_u__4 __pyx_mstate_global->__pyx_kp_u__4
+#define __pyx_kp_u__5 __pyx_mstate_global->__pyx_kp_u__5
+#define __pyx_n_s__51 __pyx_mstate_global->__pyx_n_s__51
+#define __pyx_kp_u__6 __pyx_mstate_global->__pyx_kp_u__6
+#define __pyx_kp_u__7 __pyx_mstate_global->__pyx_kp_u__7
+#define __pyx_kp_u__8 __pyx_mstate_global->__pyx_kp_u__8
+#define __pyx_kp_u__9 __pyx_mstate_global->__pyx_kp_u__9
+#define __pyx_n_s_append __pyx_mstate_global->__pyx_n_s_append
+#define __pyx_n_s_asyncio_coroutines __pyx_mstate_global->__pyx_n_s_asyncio_coroutines
+#define __pyx_n_s_class_getitem __pyx_mstate_global->__pyx_n_s_class_getitem
+#define __pyx_n_s_cline_in_traceback __pyx_mstate_global->__pyx_n_s_cline_in_traceback
+#define __pyx_n_s_close __pyx_mstate_global->__pyx_n_s_close
+#define __pyx_n_s_closing __pyx_mstate_global->__pyx_n_s_closing
+#define __pyx_n_s_column __pyx_mstate_global->__pyx_n_s_column
+#define __pyx_n_s_compile __pyx_mstate_global->__pyx_n_s_compile
+#define __pyx_n_s_cur_char __pyx_mstate_global->__pyx_n_s_cur_char
+#define __pyx_n_s_curpath __pyx_mstate_global->__pyx_n_s_curpath
+#define __pyx_n_s_data __pyx_mstate_global->__pyx_n_s_data
+#define __pyx_n_s_dict __pyx_mstate_global->__pyx_n_s_dict
+#define __pyx_n_s_dirname __pyx_mstate_global->__pyx_n_s_dirname
+#define __pyx_n_s_doc __pyx_mstate_global->__pyx_n_s_doc
+#define __pyx_n_s_encoding __pyx_mstate_global->__pyx_n_s_encoding
+#define __pyx_n_s_err __pyx_mstate_global->__pyx_n_s_err
+#define __pyx_n_s_featurefile __pyx_mstate_global->__pyx_n_s_featurefile
+#define __pyx_n_s_featurefilepath __pyx_mstate_global->__pyx_n_s_featurefilepath
+#define __pyx_kp_u_features __pyx_mstate_global->__pyx_kp_u_features
+#define __pyx_n_s_file_or_path __pyx_mstate_global->__pyx_n_s_file_or_path
+#define __pyx_n_s_filename __pyx_mstate_global->__pyx_n_s_filename
+#define __pyx_n_s_filename_2 __pyx_mstate_global->__pyx_n_s_filename_2
+#define __pyx_n_s_fileobj __pyx_mstate_global->__pyx_n_s_fileobj
+#define __pyx_n_s_fname_location __pyx_mstate_global->__pyx_n_s_fname_location
+#define __pyx_n_s_fname_token __pyx_mstate_global->__pyx_n_s_fname_token
+#define __pyx_n_s_fname_type __pyx_mstate_global->__pyx_n_s_fname_type
+#define __pyx_n_s_fontTools_feaLib_error __pyx_mstate_global->__pyx_n_s_fontTools_feaLib_error
+#define __pyx_n_s_fontTools_feaLib_lexer __pyx_mstate_global->__pyx_n_s_fontTools_feaLib_lexer
+#define __pyx_n_s_fontTools_feaLib_location __pyx_mstate_global->__pyx_n_s_fontTools_feaLib_location
+#define __pyx_n_s_getcwd __pyx_mstate_global->__pyx_n_s_getcwd
+#define __pyx_n_s_glyphclass __pyx_mstate_global->__pyx_n_s_glyphclass
+#define __pyx_n_s_import __pyx_mstate_global->__pyx_n_s_import
+#define __pyx_n_u_include __pyx_mstate_global->__pyx_n_u_include
+#define __pyx_n_s_includeDir __pyx_mstate_global->__pyx_n_s_includeDir
+#define __pyx_n_s_init __pyx_mstate_global->__pyx_n_s_init
+#define __pyx_n_s_init_subclass __pyx_mstate_global->__pyx_n_s_init_subclass
+#define __pyx_n_s_initializing __pyx_mstate_global->__pyx_n_s_initializing
+#define __pyx_n_s_is_coroutine __pyx_mstate_global->__pyx_n_s_is_coroutine
+#define __pyx_n_s_isabs __pyx_mstate_global->__pyx_n_s_isabs
+#define __pyx_n_s_iter __pyx_mstate_global->__pyx_n_s_iter
+#define __pyx_n_s_join __pyx_mstate_global->__pyx_n_s_join
+#define __pyx_n_s_lexer __pyx_mstate_global->__pyx_n_s_lexer
+#define __pyx_n_s_lexers __pyx_mstate_global->__pyx_n_s_lexers
+#define __pyx_n_s_limit __pyx_mstate_global->__pyx_n_s_limit
+#define __pyx_n_s_line __pyx_mstate_global->__pyx_n_s_line
+#define __pyx_n_s_line_start __pyx_mstate_global->__pyx_n_s_line_start
+#define __pyx_n_s_location __pyx_mstate_global->__pyx_n_s_location
+#define __pyx_n_s_location_2 __pyx_mstate_global->__pyx_n_s_location_2
+#define __pyx_n_s_main __pyx_mstate_global->__pyx_n_s_main
+#define __pyx_n_s_make_lexer __pyx_mstate_global->__pyx_n_s_make_lexer
+#define __pyx_n_s_match __pyx_mstate_global->__pyx_n_s_match
+#define __pyx_n_s_maxsplit __pyx_mstate_global->__pyx_n_s_maxsplit
+#define __pyx_n_s_metaclass __pyx_mstate_global->__pyx_n_s_metaclass
+#define __pyx_n_s_mode __pyx_mstate_global->__pyx_n_s_mode
+#define __pyx_n_s_module __pyx_mstate_global->__pyx_n_s_module
+#define __pyx_n_s_mro_entries __pyx_mstate_global->__pyx_n_s_mro_entries
+#define __pyx_n_u_name __pyx_mstate_global->__pyx_n_u_name
+#define __pyx_n_s_name_2 __pyx_mstate_global->__pyx_n_s_name_2
+#define __pyx_n_s_next __pyx_mstate_global->__pyx_n_s_next
+#define __pyx_n_s_next_2 __pyx_mstate_global->__pyx_n_s_next_2
+#define __pyx_n_s_next_3 __pyx_mstate_global->__pyx_n_s_next_3
+#define __pyx_n_s_next_char __pyx_mstate_global->__pyx_n_s_next_char
+#define __pyx_n_s_object __pyx_mstate_global->__pyx_n_s_object
+#define __pyx_n_s_open __pyx_mstate_global->__pyx_n_s_open
+#define __pyx_n_s_os __pyx_mstate_global->__pyx_n_s_os
+#define __pyx_n_s_p __pyx_mstate_global->__pyx_n_s_p
+#define __pyx_n_s_path __pyx_mstate_global->__pyx_n_s_path
+#define __pyx_n_s_pop __pyx_mstate_global->__pyx_n_s_pop
+#define __pyx_n_s_pos __pyx_mstate_global->__pyx_n_s_pos
+#define __pyx_n_s_prepare __pyx_mstate_global->__pyx_n_s_prepare
+#define __pyx_n_s_qualname __pyx_mstate_global->__pyx_n_s_qualname
+#define __pyx_n_u_r __pyx_mstate_global->__pyx_n_u_r
+#define __pyx_n_s_re __pyx_mstate_global->__pyx_n_s_re
+#define __pyx_n_s_read __pyx_mstate_global->__pyx_n_s_read
+#define __pyx_n_u_read __pyx_mstate_global->__pyx_n_u_read
+#define __pyx_n_s_regexp __pyx_mstate_global->__pyx_n_s_regexp
+#define __pyx_kp_u_s __pyx_mstate_global->__pyx_kp_u_s
+#define __pyx_kp_u_s_2 __pyx_mstate_global->__pyx_kp_u_s_2
+#define __pyx_n_s_scan_anonymous_block __pyx_mstate_global->__pyx_n_s_scan_anonymous_block
+#define __pyx_n_s_scan_over __pyx_mstate_global->__pyx_n_s_scan_over
+#define __pyx_n_s_scan_until __pyx_mstate_global->__pyx_n_s_scan_until
+#define __pyx_n_s_self __pyx_mstate_global->__pyx_n_s_self
+#define __pyx_n_s_set_name __pyx_mstate_global->__pyx_n_s_set_name
+#define __pyx_n_s_spec __pyx_mstate_global->__pyx_n_s_spec
+#define __pyx_n_s_split __pyx_mstate_global->__pyx_n_s_split
+#define __pyx_n_s_start __pyx_mstate_global->__pyx_n_s_start
+#define __pyx_n_s_staticmethod __pyx_mstate_global->__pyx_n_s_staticmethod
+#define __pyx_n_s_stop_at __pyx_mstate_global->__pyx_n_s_stop_at
+#define __pyx_n_s_string __pyx_mstate_global->__pyx_n_s_string
+#define __pyx_n_s_strip __pyx_mstate_global->__pyx_n_s_strip
+#define __pyx_n_s_sub __pyx_mstate_global->__pyx_n_s_sub
+#define __pyx_n_s_super __pyx_mstate_global->__pyx_n_s_super
+#define __pyx_n_s_tag __pyx_mstate_global->__pyx_n_s_tag
+#define __pyx_n_s_test __pyx_mstate_global->__pyx_n_s_test
+#define __pyx_n_s_text __pyx_mstate_global->__pyx_n_s_text
+#define __pyx_n_s_text_2 __pyx_mstate_global->__pyx_n_s_text_2
+#define __pyx_n_s_text_length __pyx_mstate_global->__pyx_n_s_text_length
+#define __pyx_n_s_token __pyx_mstate_global->__pyx_n_s_token
+#define __pyx_n_s_token_type __pyx_mstate_global->__pyx_n_s_token_type
+#define __pyx_kp_u_utf_8_sig __pyx_mstate_global->__pyx_kp_u_utf_8_sig
+#define __pyx_n_s_valid __pyx_mstate_global->__pyx_n_s_valid
+#define __pyx_n_u_xX __pyx_mstate_global->__pyx_n_u_xX
+#define __pyx_int_0 __pyx_mstate_global->__pyx_int_0
+#define __pyx_int_1 __pyx_mstate_global->__pyx_int_1
+#define __pyx_int_2 __pyx_mstate_global->__pyx_int_2
+#define __pyx_int_8 __pyx_mstate_global->__pyx_int_8
+#define __pyx_int_10 __pyx_mstate_global->__pyx_int_10
+#define __pyx_int_16 __pyx_mstate_global->__pyx_int_16
+#define __pyx_tuple__14 __pyx_mstate_global->__pyx_tuple__14
+#define __pyx_tuple__15 __pyx_mstate_global->__pyx_tuple__15
+#define __pyx_tuple__21 __pyx_mstate_global->__pyx_tuple__21
+#define __pyx_tuple__23 __pyx_mstate_global->__pyx_tuple__23
+#define __pyx_tuple__26 __pyx_mstate_global->__pyx_tuple__26
+#define __pyx_tuple__28 __pyx_mstate_global->__pyx_tuple__28
+#define __pyx_tuple__30 __pyx_mstate_global->__pyx_tuple__30
+#define __pyx_tuple__32 __pyx_mstate_global->__pyx_tuple__32
+#define __pyx_tuple__34 __pyx_mstate_global->__pyx_tuple__34
+#define __pyx_tuple__36 __pyx_mstate_global->__pyx_tuple__36
+#define __pyx_tuple__38 __pyx_mstate_global->__pyx_tuple__38
+#define __pyx_tuple__39 __pyx_mstate_global->__pyx_tuple__39
+#define __pyx_tuple__40 __pyx_mstate_global->__pyx_tuple__40
+#define __pyx_tuple__44 __pyx_mstate_global->__pyx_tuple__44
+#define __pyx_tuple__46 __pyx_mstate_global->__pyx_tuple__46
+#define __pyx_tuple__48 __pyx_mstate_global->__pyx_tuple__48
+#define __pyx_codeobj__22 __pyx_mstate_global->__pyx_codeobj__22
+#define __pyx_codeobj__24 __pyx_mstate_global->__pyx_codeobj__24
+#define __pyx_codeobj__25 __pyx_mstate_global->__pyx_codeobj__25
+#define __pyx_codeobj__27 __pyx_mstate_global->__pyx_codeobj__27
+#define __pyx_codeobj__29 __pyx_mstate_global->__pyx_codeobj__29
+#define __pyx_codeobj__31 __pyx_mstate_global->__pyx_codeobj__31
+#define __pyx_codeobj__33 __pyx_mstate_global->__pyx_codeobj__33
+#define __pyx_codeobj__35 __pyx_mstate_global->__pyx_codeobj__35
+#define __pyx_codeobj__37 __pyx_mstate_global->__pyx_codeobj__37
+#define __pyx_codeobj__41 __pyx_mstate_global->__pyx_codeobj__41
+#define __pyx_codeobj__42 __pyx_mstate_global->__pyx_codeobj__42
+#define __pyx_codeobj__43 __pyx_mstate_global->__pyx_codeobj__43
+#define __pyx_codeobj__45 __pyx_mstate_global->__pyx_codeobj__45
+#define __pyx_codeobj__47 __pyx_mstate_global->__pyx_codeobj__47
+#define __pyx_codeobj__49 __pyx_mstate_global->__pyx_codeobj__49
+#define __pyx_codeobj__50 __pyx_mstate_global->__pyx_codeobj__50
+/* #### Code section: module_code ### */
+
+/* "fontTools/feaLib/lexer.py":43
+ * MODE_FILENAME_ = "FILENAME"
+ *
+ * def __init__(self, text, filename): # <<<<<<<<<<<<<<
+ * self.filename_ = filename
+ * self.line_ = 1
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_1__init__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer___init__, "Lexer.__init__(self, text, filename)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_1__init__ = {"__init__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_1__init__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer___init__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_1__init__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_text = 0;
+ PyObject *__pyx_v_filename = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[3] = {0,0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_text,&__pyx_n_s_filename,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 3: values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
+ CYTHON_FALLTHROUGH;
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_text)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("__init__", 1, 3, 3, 1); __PYX_ERR(0, 43, __pyx_L3_error)
+ }
+ CYTHON_FALLTHROUGH;
+ case 2:
+ if (likely((values[2] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_filename)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[2]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 43, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("__init__", 1, 3, 3, 2); __PYX_ERR(0, 43, __pyx_L3_error)
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__init__") < 0)) __PYX_ERR(0, 43, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 3)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ values[2] = __Pyx_Arg_FASTCALL(__pyx_args, 2);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_text = values[1];
+ __pyx_v_filename = values[2];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__init__", 1, 3, 3, __pyx_nargs); __PYX_ERR(0, 43, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer___init__(__pyx_self, __pyx_v_self, __pyx_v_text, __pyx_v_filename);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer___init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_text, PyObject *__pyx_v_filename) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ Py_ssize_t __pyx_t_1;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__init__", 1);
+
+ /* "fontTools/feaLib/lexer.py":44
+ *
+ * def __init__(self, text, filename):
+ * self.filename_ = filename # <<<<<<<<<<<<<<
+ * self.line_ = 1
+ * self.pos_ = 0
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_filename_2, __pyx_v_filename) < 0) __PYX_ERR(0, 44, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":45
+ * def __init__(self, text, filename):
+ * self.filename_ = filename
+ * self.line_ = 1 # <<<<<<<<<<<<<<
+ * self.pos_ = 0
+ * self.line_start_ = 0
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line, __pyx_int_1) < 0) __PYX_ERR(0, 45, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":46
+ * self.filename_ = filename
+ * self.line_ = 1
+ * self.pos_ = 0 # <<<<<<<<<<<<<<
+ * self.line_start_ = 0
+ * self.text_ = text
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_int_0) < 0) __PYX_ERR(0, 46, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":47
+ * self.line_ = 1
+ * self.pos_ = 0
+ * self.line_start_ = 0 # <<<<<<<<<<<<<<
+ * self.text_ = text
+ * self.text_length_ = len(text)
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line_start, __pyx_int_0) < 0) __PYX_ERR(0, 47, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":48
+ * self.pos_ = 0
+ * self.line_start_ = 0
+ * self.text_ = text # <<<<<<<<<<<<<<
+ * self.text_length_ = len(text)
+ * self.mode_ = Lexer.MODE_NORMAL_
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_text_2, __pyx_v_text) < 0) __PYX_ERR(0, 48, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":49
+ * self.line_start_ = 0
+ * self.text_ = text
+ * self.text_length_ = len(text) # <<<<<<<<<<<<<<
+ * self.mode_ = Lexer.MODE_NORMAL_
+ *
+ */
+ __pyx_t_1 = PyObject_Length(__pyx_v_text); if (unlikely(__pyx_t_1 == ((Py_ssize_t)-1))) __PYX_ERR(0, 49, __pyx_L1_error)
+ __pyx_t_2 = PyInt_FromSsize_t(__pyx_t_1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 49, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_text_length, __pyx_t_2) < 0) __PYX_ERR(0, 49, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":50
+ * self.text_ = text
+ * self.text_length_ = len(text)
+ * self.mode_ = Lexer.MODE_NORMAL_ # <<<<<<<<<<<<<<
+ *
+ * def __iter__(self):
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 50, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_MODE_NORMAL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 50, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_mode, __pyx_t_3) < 0) __PYX_ERR(0, 50, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":43
+ * MODE_FILENAME_ = "FILENAME"
+ *
+ * def __init__(self, text, filename): # <<<<<<<<<<<<<<
+ * self.filename_ = filename
+ * self.line_ = 1
+ */
+
+ /* function exit code */
+ __pyx_r = Py_None; __Pyx_INCREF(Py_None);
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":52
+ * self.mode_ = Lexer.MODE_NORMAL_
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_3__iter__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_2__iter__, "Lexer.__iter__(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_3__iter__ = {"__iter__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_3__iter__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_2__iter__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_3__iter__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__iter__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 52, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__iter__") < 0)) __PYX_ERR(0, 52, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__iter__", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 52, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.__iter__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_2__iter__(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_2__iter__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__iter__", 1);
+
+ /* "fontTools/feaLib/lexer.py":53
+ *
+ * def __iter__(self):
+ * return self # <<<<<<<<<<<<<<
+ *
+ * def next(self): # Python 2
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_INCREF(__pyx_v_self);
+ __pyx_r = __pyx_v_self;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":52
+ * self.mode_ = Lexer.MODE_NORMAL_
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+
+ /* function exit code */
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":55
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_5next(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_4next, "Lexer.next(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_5next = {"next", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_5next, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_4next};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_5next(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("next (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 55, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "next") < 0)) __PYX_ERR(0, 55, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("next", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 55, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.next", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_4next(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_4next(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("next", 1);
+
+ /* "fontTools/feaLib/lexer.py":56
+ *
+ * def next(self): # Python 2
+ * return self.__next__() # <<<<<<<<<<<<<<
+ *
+ * def __next__(self): # Python 3
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_next); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 56, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 0+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 56, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":55
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.next", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":58
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while True:
+ * token_type, token, location = self.next_()
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_7__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_6__next__, "Lexer.__next__(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_7__next__ = {"__next__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_7__next__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_6__next__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_7__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__next__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 58, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__next__") < 0)) __PYX_ERR(0, 58, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__next__", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 58, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_6__next__(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_6__next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_v_token_type = NULL;
+ PyObject *__pyx_v_token = NULL;
+ PyObject *__pyx_v_location = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ PyObject *__pyx_t_5 = NULL;
+ PyObject *__pyx_t_6 = NULL;
+ PyObject *(*__pyx_t_7)(PyObject *);
+ int __pyx_t_8;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__next__", 1);
+
+ /* "fontTools/feaLib/lexer.py":59
+ *
+ * def __next__(self): # Python 3
+ * while True: # <<<<<<<<<<<<<<
+ * token_type, token, location = self.next_()
+ * if token_type != Lexer.NEWLINE:
+ */
+ while (1) {
+
+ /* "fontTools/feaLib/lexer.py":60
+ * def __next__(self): # Python 3
+ * while True:
+ * token_type, token, location = self.next_() # <<<<<<<<<<<<<<
+ * if token_type != Lexer.NEWLINE:
+ * return (token_type, token, location)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_next_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 0+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ if ((likely(PyTuple_CheckExact(__pyx_t_1))) || (PyList_CheckExact(__pyx_t_1))) {
+ PyObject* sequence = __pyx_t_1;
+ Py_ssize_t size = __Pyx_PySequence_SIZE(sequence);
+ if (unlikely(size != 3)) {
+ if (size > 3) __Pyx_RaiseTooManyValuesError(3);
+ else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
+ __PYX_ERR(0, 60, __pyx_L1_error)
+ }
+ #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ if (likely(PyTuple_CheckExact(sequence))) {
+ __pyx_t_2 = PyTuple_GET_ITEM(sequence, 0);
+ __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_5 = PyTuple_GET_ITEM(sequence, 2);
+ } else {
+ __pyx_t_2 = PyList_GET_ITEM(sequence, 0);
+ __pyx_t_3 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_5 = PyList_GET_ITEM(sequence, 2);
+ }
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_5);
+ #else
+ __pyx_t_2 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_5 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ #endif
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ } else {
+ Py_ssize_t index = -1;
+ __pyx_t_6 = PyObject_GetIter(__pyx_t_1); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 60, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_6);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_6);
+ index = 0; __pyx_t_2 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_2)) goto __pyx_L5_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_2);
+ index = 1; __pyx_t_3 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_3)) goto __pyx_L5_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_3);
+ index = 2; __pyx_t_5 = __pyx_t_7(__pyx_t_6); if (unlikely(!__pyx_t_5)) goto __pyx_L5_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_5);
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_7(__pyx_t_6), 3) < 0) __PYX_ERR(0, 60, __pyx_L1_error)
+ __pyx_t_7 = NULL;
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ goto __pyx_L6_unpacking_done;
+ __pyx_L5_unpacking_failed:;
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __pyx_t_7 = NULL;
+ if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
+ __PYX_ERR(0, 60, __pyx_L1_error)
+ __pyx_L6_unpacking_done:;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_token_type, __pyx_t_2);
+ __pyx_t_2 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_token, __pyx_t_3);
+ __pyx_t_3 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_location, __pyx_t_5);
+ __pyx_t_5 = 0;
+
+ /* "fontTools/feaLib/lexer.py":61
+ * while True:
+ * token_type, token, location = self.next_()
+ * if token_type != Lexer.NEWLINE: # <<<<<<<<<<<<<<
+ * return (token_type, token, location)
+ *
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 61, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_NEWLINE); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 61, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyObject_RichCompare(__pyx_v_token_type, __pyx_t_5, Py_NE); __Pyx_XGOTREF(__pyx_t_1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 61, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_t_8 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 61, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":62
+ * token_type, token, location = self.next_()
+ * if token_type != Lexer.NEWLINE:
+ * return (token_type, token, location) # <<<<<<<<<<<<<<
+ *
+ * def location_(self):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 62, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_INCREF(__pyx_v_token_type);
+ __Pyx_GIVEREF(__pyx_v_token_type);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_v_token_type)) __PYX_ERR(0, 62, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_token);
+ __Pyx_GIVEREF(__pyx_v_token);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_v_token)) __PYX_ERR(0, 62, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_location)) __PYX_ERR(0, 62, __pyx_L1_error);
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":61
+ * while True:
+ * token_type, token, location = self.next_()
+ * if token_type != Lexer.NEWLINE: # <<<<<<<<<<<<<<
+ * return (token_type, token, location)
+ *
+ */
+ }
+ }
+
+ /* "fontTools/feaLib/lexer.py":58
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while True:
+ * token_type, token, location = self.next_()
+ */
+
+ /* function exit code */
+ __pyx_r = Py_None; __Pyx_INCREF(Py_None);
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_6);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_token_type);
+ __Pyx_XDECREF(__pyx_v_token);
+ __Pyx_XDECREF(__pyx_v_location);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":64
+ * return (token_type, token, location)
+ *
+ * def location_(self): # <<<<<<<<<<<<<<
+ * column = self.pos_ - self.line_start_ + 1
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_9location_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_8location_, "Lexer.location_(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_9location_ = {"location_", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_9location_, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_8location_};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_9location_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("location_ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 64, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "location_") < 0)) __PYX_ERR(0, 64, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("location_", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 64, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.location_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_8location_(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_8location_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_v_column = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ PyObject *__pyx_t_4 = NULL;
+ int __pyx_t_5;
+ PyObject *__pyx_t_6 = NULL;
+ unsigned int __pyx_t_7;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("location_", 1);
+
+ /* "fontTools/feaLib/lexer.py":65
+ *
+ * def location_(self):
+ * column = self.pos_ - self.line_start_ + 1 # <<<<<<<<<<<<<<
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ *
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 65, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_line_start); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 65, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = PyNumber_Subtract(__pyx_t_1, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 65, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 65, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_v_column = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":66
+ * def location_(self):
+ * column = self.pos_ - self.line_start_ + 1
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column) # <<<<<<<<<<<<<<
+ *
+ * def next_(self):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibLocation); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 66, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_filename_2); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 66, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_5 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_5 < 0))) __PYX_ERR(0, 66, __pyx_L1_error)
+ if (!__pyx_t_5) {
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ } else {
+ __Pyx_INCREF(__pyx_t_4);
+ __pyx_t_1 = __pyx_t_4;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ goto __pyx_L3_bool_binop_done;
+ }
+ __Pyx_INCREF(__pyx_kp_u_features);
+ __pyx_t_1 = __pyx_kp_u_features;
+ __pyx_L3_bool_binop_done:;
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_line); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 66, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_6 = NULL;
+ __pyx_t_7 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_6)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_6);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_7 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[4] = {__pyx_t_6, __pyx_t_1, __pyx_t_4, __pyx_v_column};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_7, 3+__pyx_t_7);
+ __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 66, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":64
+ * return (token_type, token, location)
+ *
+ * def location_(self): # <<<<<<<<<<<<<<
+ * column = self.pos_ - self.line_start_ + 1
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_6);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.location_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_column);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":68
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ *
+ * def next_(self): # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_()
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_11next_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_10next_, "Lexer.next_(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_11next_ = {"next_", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_11next_, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_10next_};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_11next_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("next_ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 68, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "next_") < 0)) __PYX_ERR(0, 68, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("next_", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 68, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.next_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_10next_(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_10next_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_v_location = NULL;
+ PyObject *__pyx_v_start = NULL;
+ PyObject *__pyx_v_text = NULL;
+ Py_ssize_t __pyx_v_limit;
+ PyObject *__pyx_v_cur_char = NULL;
+ PyObject *__pyx_v_next_char = NULL;
+ PyObject *__pyx_v_glyphclass = NULL;
+ PyObject *__pyx_v_token = NULL;
+ PyObject *__pyx_v_string = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ PyObject *__pyx_t_4 = NULL;
+ unsigned int __pyx_t_5;
+ Py_ssize_t __pyx_t_6;
+ int __pyx_t_7;
+ int __pyx_t_8;
+ PyObject *__pyx_t_9 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("next_", 1);
+
+ /* "fontTools/feaLib/lexer.py":69
+ *
+ * def next_(self):
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_) # <<<<<<<<<<<<<<
+ * location = self.location_()
+ * start = self.pos_
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 69, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 69, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_CHAR_WHITESPACE); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 69, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_t_4};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 69, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":70
+ * def next_(self):
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_() # <<<<<<<<<<<<<<
+ * start = self.pos_
+ * text = self.text_
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_location); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 70, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 0+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 70, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_v_location = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":71
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_()
+ * start = self.pos_ # <<<<<<<<<<<<<<
+ * text = self.text_
+ * limit = len(text)
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 71, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_v_start = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":72
+ * location = self.location_()
+ * start = self.pos_
+ * text = self.text_ # <<<<<<<<<<<<<<
+ * limit = len(text)
+ * if start >= limit:
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 72, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_v_text = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":73
+ * start = self.pos_
+ * text = self.text_
+ * limit = len(text) # <<<<<<<<<<<<<<
+ * if start >= limit:
+ * raise StopIteration()
+ */
+ __pyx_t_6 = PyObject_Length(__pyx_v_text); if (unlikely(__pyx_t_6 == ((Py_ssize_t)-1))) __PYX_ERR(0, 73, __pyx_L1_error)
+ __pyx_v_limit = __pyx_t_6;
+
+ /* "fontTools/feaLib/lexer.py":74
+ * text = self.text_
+ * limit = len(text)
+ * if start >= limit: # <<<<<<<<<<<<<<
+ * raise StopIteration()
+ * cur_char = text[start]
+ */
+ __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_limit); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 74, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = PyObject_RichCompare(__pyx_v_start, __pyx_t_1, Py_GE); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 74, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 74, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(__pyx_t_7)) {
+
+ /* "fontTools/feaLib/lexer.py":75
+ * limit = len(text)
+ * if start >= limit:
+ * raise StopIteration() # <<<<<<<<<<<<<<
+ * cur_char = text[start]
+ * next_char = text[start + 1] if start + 1 < limit else None
+ */
+ __pyx_t_2 = __Pyx_PyObject_CallNoArg(__pyx_builtin_StopIteration); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 75, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_Raise(__pyx_t_2, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __PYX_ERR(0, 75, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":74
+ * text = self.text_
+ * limit = len(text)
+ * if start >= limit: # <<<<<<<<<<<<<<
+ * raise StopIteration()
+ * cur_char = text[start]
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":76
+ * if start >= limit:
+ * raise StopIteration()
+ * cur_char = text[start] # <<<<<<<<<<<<<<
+ * next_char = text[start + 1] if start + 1 < limit else None
+ *
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetItem(__pyx_v_text, __pyx_v_start); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 76, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_v_cur_char = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":77
+ * raise StopIteration()
+ * cur_char = text[start]
+ * next_char = text[start + 1] if start + 1 < limit else None # <<<<<<<<<<<<<<
+ *
+ * if cur_char == "\n":
+ */
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = PyInt_FromSsize_t(__pyx_v_limit); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = PyObject_RichCompare(__pyx_t_1, __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_7) {
+ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetItem(__pyx_v_text, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 77, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_2 = __pyx_t_4;
+ __pyx_t_4 = 0;
+ } else {
+ __Pyx_INCREF(Py_None);
+ __pyx_t_2 = Py_None;
+ }
+ __pyx_v_next_char = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":79
+ * next_char = text[start + 1] if start + 1 < limit else None
+ *
+ * if cur_char == "\n": # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.line_ += 1
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u_, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 79, __pyx_L1_error)
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":80
+ *
+ * if cur_char == "\n":
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.line_ += 1
+ * self.line_start_ = self.pos_
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 80, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_t_2, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 80, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_4) < 0) __PYX_ERR(0, 80, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":81
+ * if cur_char == "\n":
+ * self.pos_ += 1
+ * self.line_ += 1 # <<<<<<<<<<<<<<
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_line); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 81, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_t_4, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 81, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line, __pyx_t_2) < 0) __PYX_ERR(0, 81, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":82
+ * self.pos_ += 1
+ * self.line_ += 1
+ * self.line_start_ = self.pos_ # <<<<<<<<<<<<<<
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "\r":
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 82, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line_start, __pyx_t_2) < 0) __PYX_ERR(0, 82, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":83
+ * self.line_ += 1
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location) # <<<<<<<<<<<<<<
+ * if cur_char == "\r":
+ * self.pos_ += 2 if next_char == "\n" else 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 83, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_NEWLINE); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 83, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 83, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_4);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_4)) __PYX_ERR(0, 83, __pyx_L1_error);
+ __Pyx_INCREF(Py_None);
+ __Pyx_GIVEREF(Py_None);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, Py_None)) __PYX_ERR(0, 83, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_location)) __PYX_ERR(0, 83, __pyx_L1_error);
+ __pyx_t_4 = 0;
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":79
+ * next_char = text[start + 1] if start + 1 < limit else None
+ *
+ * if cur_char == "\n": # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.line_ += 1
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":84
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "\r": # <<<<<<<<<<<<<<
+ * self.pos_ += 2 if next_char == "\n" else 1
+ * self.line_ += 1
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__2, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 84, __pyx_L1_error)
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":85
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "\r":
+ * self.pos_ += 2 if next_char == "\n" else 1 # <<<<<<<<<<<<<<
+ * self.line_ += 1
+ * self.line_start_ = self.pos_
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 85, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_next_char, __pyx_kp_u_, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 85, __pyx_L1_error)
+ if (__pyx_t_7) {
+ __Pyx_INCREF(__pyx_int_2);
+ __pyx_t_4 = __pyx_int_2;
+ } else {
+ __Pyx_INCREF(__pyx_int_1);
+ __pyx_t_4 = __pyx_int_1;
+ }
+ __pyx_t_3 = PyNumber_InPlaceAdd(__pyx_t_2, __pyx_t_4); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 85, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_3) < 0) __PYX_ERR(0, 85, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":86
+ * if cur_char == "\r":
+ * self.pos_ += 2 if next_char == "\n" else 1
+ * self.line_ += 1 # <<<<<<<<<<<<<<
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_line); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 86, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 86, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line, __pyx_t_4) < 0) __PYX_ERR(0, 86, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":87
+ * self.pos_ += 2 if next_char == "\n" else 1
+ * self.line_ += 1
+ * self.line_start_ = self.pos_ # <<<<<<<<<<<<<<
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "#":
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 87, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_line_start, __pyx_t_4) < 0) __PYX_ERR(0, 87, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":88
+ * self.line_ += 1
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location) # <<<<<<<<<<<<<<
+ * if cur_char == "#":
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 88, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_NEWLINE); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 88, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 88, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3)) __PYX_ERR(0, 88, __pyx_L1_error);
+ __Pyx_INCREF(Py_None);
+ __Pyx_GIVEREF(Py_None);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 1, Py_None)) __PYX_ERR(0, 88, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_v_location)) __PYX_ERR(0, 88, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":84
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "\r": # <<<<<<<<<<<<<<
+ * self.pos_ += 2 if next_char == "\n" else 1
+ * self.line_ += 1
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":89
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "#": # <<<<<<<<<<<<<<
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * return (Lexer.COMMENT, text[start : self.pos_], location)
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__3, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 89, __pyx_L1_error)
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":90
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "#":
+ * self.scan_until_(Lexer.CHAR_NEWLINE_) # <<<<<<<<<<<<<<
+ * return (Lexer.COMMENT, text[start : self.pos_], location)
+ *
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_until); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 90, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 90, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_CHAR_NEWLINE); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 90, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_t_1};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 90, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":91
+ * if cur_char == "#":
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * return (Lexer.COMMENT, text[start : self.pos_], location) # <<<<<<<<<<<<<<
+ *
+ * if self.mode_ is Lexer.MODE_FILENAME_:
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 91, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_COMMENT); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 91, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 91, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_4, NULL, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 91, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3)) __PYX_ERR(0, 91, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_1)) __PYX_ERR(0, 91, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_v_location)) __PYX_ERR(0, 91, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":89
+ * self.line_start_ = self.pos_
+ * return (Lexer.NEWLINE, None, location)
+ * if cur_char == "#": # <<<<<<<<<<<<<<
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * return (Lexer.COMMENT, text[start : self.pos_], location)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":93
+ * return (Lexer.COMMENT, text[start : self.pos_], location)
+ *
+ * if self.mode_ is Lexer.MODE_FILENAME_: # <<<<<<<<<<<<<<
+ * if cur_char != "(":
+ * raise FeatureLibError("Expected '(' before file name", location)
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_mode); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 93, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 93, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_MODE_FILENAME); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 93, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = (__pyx_t_4 == __pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":94
+ *
+ * if self.mode_ is Lexer.MODE_FILENAME_:
+ * if cur_char != "(": # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected '(' before file name", location)
+ * self.scan_until_(")")
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__4, Py_NE)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 94, __pyx_L1_error)
+ if (unlikely(__pyx_t_7)) {
+
+ /* "fontTools/feaLib/lexer.py":95
+ * if self.mode_ is Lexer.MODE_FILENAME_:
+ * if cur_char != "(":
+ * raise FeatureLibError("Expected '(' before file name", location) # <<<<<<<<<<<<<<
+ * self.scan_until_(")")
+ * cur_char = text[self.pos_] if self.pos_ < limit else None
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 95, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_4))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_4, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_1, __pyx_kp_u_Expected_before_file_name, __pyx_v_location};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 95, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ }
+ __Pyx_Raise(__pyx_t_3, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __PYX_ERR(0, 95, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":94
+ *
+ * if self.mode_ is Lexer.MODE_FILENAME_:
+ * if cur_char != "(": # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected '(' before file name", location)
+ * self.scan_until_(")")
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":96
+ * if cur_char != "(":
+ * raise FeatureLibError("Expected '(' before file name", location)
+ * self.scan_until_(")") # <<<<<<<<<<<<<<
+ * cur_char = text[self.pos_] if self.pos_ < limit else None
+ * if cur_char != ")":
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_until); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 96, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_4))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_4);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_4, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_kp_u__5};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 96, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":97
+ * raise FeatureLibError("Expected '(' before file name", location)
+ * self.scan_until_(")")
+ * cur_char = text[self.pos_] if self.pos_ < limit else None # <<<<<<<<<<<<<<
+ * if cur_char != ")":
+ * raise FeatureLibError("Expected ')' after file name", location)
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_limit); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = PyObject_RichCompare(__pyx_t_4, __pyx_t_1, Py_LT); __Pyx_XGOTREF(__pyx_t_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__pyx_t_7) {
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_v_text, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 97, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_3 = __pyx_t_1;
+ __pyx_t_1 = 0;
+ } else {
+ __Pyx_INCREF(Py_None);
+ __pyx_t_3 = Py_None;
+ }
+ __Pyx_DECREF_SET(__pyx_v_cur_char, __pyx_t_3);
+ __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":98
+ * self.scan_until_(")")
+ * cur_char = text[self.pos_] if self.pos_ < limit else None
+ * if cur_char != ")": # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected ')' after file name", location)
+ * self.pos_ += 1
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__5, Py_NE)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 98, __pyx_L1_error)
+ if (unlikely(__pyx_t_7)) {
+
+ /* "fontTools/feaLib/lexer.py":99
+ * cur_char = text[self.pos_] if self.pos_ < limit else None
+ * if cur_char != ")":
+ * raise FeatureLibError("Expected ')' after file name", location) # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.mode_ = Lexer.MODE_NORMAL_
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 99, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_1))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_1);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_1, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_2, __pyx_kp_u_Expected_after_file_name, __pyx_v_location};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 99, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ }
+ __Pyx_Raise(__pyx_t_3, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __PYX_ERR(0, 99, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":98
+ * self.scan_until_(")")
+ * cur_char = text[self.pos_] if self.pos_ < limit else None
+ * if cur_char != ")": # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected ')' after file name", location)
+ * self.pos_ += 1
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":100
+ * if cur_char != ")":
+ * raise FeatureLibError("Expected ')' after file name", location)
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.mode_ = Lexer.MODE_NORMAL_
+ * return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 100, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 100, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_1) < 0) __PYX_ERR(0, 100, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":101
+ * raise FeatureLibError("Expected ')' after file name", location)
+ * self.pos_ += 1
+ * self.mode_ = Lexer.MODE_NORMAL_ # <<<<<<<<<<<<<<
+ * return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
+ *
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 101, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_MODE_NORMAL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 101, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_mode, __pyx_t_3) < 0) __PYX_ERR(0, 101, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":102
+ * self.pos_ += 1
+ * self.mode_ = Lexer.MODE_NORMAL_
+ * return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location) # <<<<<<<<<<<<<<
+ *
+ * if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_:
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_FILENAME); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyInt_SubtractObjC(__pyx_t_2, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_t_3, &__pyx_t_4, NULL, 0, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 102, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1)) __PYX_ERR(0, 102, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_2)) __PYX_ERR(0, 102, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_v_location)) __PYX_ERR(0, 102, __pyx_L1_error);
+ __pyx_t_1 = 0;
+ __pyx_t_2 = 0;
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":93
+ * return (Lexer.COMMENT, text[start : self.pos_], location)
+ *
+ * if self.mode_ is Lexer.MODE_FILENAME_: # <<<<<<<<<<<<<<
+ * if cur_char != "(":
+ * raise FeatureLibError("Expected '(' before file name", location)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":104
+ * return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
+ *
+ * if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __pyx_t_8 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__6, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 104, __pyx_L1_error)
+ if (__pyx_t_8) {
+ } else {
+ __pyx_t_7 = __pyx_t_8;
+ goto __pyx_L11_bool_binop_done;
+ }
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 104, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 104, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_8 = (__Pyx_PySequence_ContainsTF(__pyx_v_next_char, __pyx_t_2, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 104, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_7 = __pyx_t_8;
+ __pyx_L11_bool_binop_done:;
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":105
+ *
+ * if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_:
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 105, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_t_2, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 105, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_4) < 0) __PYX_ERR(0, 105, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":106
+ * if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_:
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ * if cur_char == "@":
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 106, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 106, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 106, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_t_3};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 106, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":107
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location) # <<<<<<<<<<<<<<
+ * if cur_char == "@":
+ * self.pos_ += 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CID); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_t_4, &__pyx_t_3, NULL, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_int_10);
+ __Pyx_GIVEREF(__pyx_int_10);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_10)) __PYX_ERR(0, 107, __pyx_L1_error);
+ __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)(&PyInt_Type)), __pyx_t_3, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 107, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2)) __PYX_ERR(0, 107, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1)) __PYX_ERR(0, 107, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_v_location)) __PYX_ERR(0, 107, __pyx_L1_error);
+ __pyx_t_2 = 0;
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_3;
+ __pyx_t_3 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":104
+ * return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
+ *
+ * if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":108
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ * if cur_char == "@": # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__7, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 108, __pyx_L1_error)
+ if (__pyx_t_7) {
+
+ /* "fontTools/feaLib/lexer.py":109
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ * if cur_char == "@":
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * glyphclass = text[start + 1 : self.pos_]
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 109, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 109, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_1) < 0) __PYX_ERR(0, 109, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":110
+ * if cur_char == "@":
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_) # <<<<<<<<<<<<<<
+ * glyphclass = text[start + 1 : self.pos_]
+ * if len(glyphclass) < 1:
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 110, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 110, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_CHAR_NAME_CONTINUATION); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 110, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_t_4};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 110, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":111
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * glyphclass = text[start + 1 : self.pos_] # <<<<<<<<<<<<<<
+ * if len(glyphclass) < 1:
+ * raise FeatureLibError("Expected glyph class name", location)
+ */
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 111, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 111, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_t_1, &__pyx_t_3, NULL, 0, 0, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 111, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_v_glyphclass = __pyx_t_4;
+ __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":112
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * glyphclass = text[start + 1 : self.pos_]
+ * if len(glyphclass) < 1: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected glyph class name", location)
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass):
+ */
+ __pyx_t_6 = PyObject_Length(__pyx_v_glyphclass); if (unlikely(__pyx_t_6 == ((Py_ssize_t)-1))) __PYX_ERR(0, 112, __pyx_L1_error)
+ __pyx_t_7 = (__pyx_t_6 < 1);
+ if (unlikely(__pyx_t_7)) {
+
+ /* "fontTools/feaLib/lexer.py":113
+ * glyphclass = text[start + 1 : self.pos_]
+ * if len(glyphclass) < 1:
+ * raise FeatureLibError("Expected glyph class name", location) # <<<<<<<<<<<<<<
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass):
+ * raise FeatureLibError(
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 113, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_1, __pyx_kp_u_Expected_glyph_class_name, __pyx_v_location};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 113, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_Raise(__pyx_t_4, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __PYX_ERR(0, 113, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":112
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * glyphclass = text[start + 1 : self.pos_]
+ * if len(glyphclass) < 1: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected glyph class name", location)
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass):
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":114
+ * if len(glyphclass) < 1:
+ * raise FeatureLibError("Expected glyph class name", location)
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass): # <<<<<<<<<<<<<<
+ * raise FeatureLibError(
+ * "Glyph class names must consist of letters, digits, "
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 114, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_RE_GLYPHCLASS); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 114, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_match); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 114, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_v_glyphclass};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 114, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 114, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_8 = (!__pyx_t_7);
+ if (unlikely(__pyx_t_8)) {
+
+ /* "fontTools/feaLib/lexer.py":115
+ * raise FeatureLibError("Expected glyph class name", location)
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass):
+ * raise FeatureLibError( # <<<<<<<<<<<<<<
+ * "Glyph class names must consist of letters, digits, "
+ * "underscore, period or hyphen",
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 115, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+
+ /* "fontTools/feaLib/lexer.py":118
+ * "Glyph class names must consist of letters, digits, "
+ * "underscore, period or hyphen",
+ * location, # <<<<<<<<<<<<<<
+ * )
+ * return (Lexer.GLYPHCLASS, glyphclass, location)
+ */
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_1, __pyx_kp_u_Glyph_class_names_must_consist_o, __pyx_v_location};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 115, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_Raise(__pyx_t_4, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __PYX_ERR(0, 115, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":114
+ * if len(glyphclass) < 1:
+ * raise FeatureLibError("Expected glyph class name", location)
+ * if not Lexer.RE_GLYPHCLASS.match(glyphclass): # <<<<<<<<<<<<<<
+ * raise FeatureLibError(
+ * "Glyph class names must consist of letters, digits, "
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":120
+ * location,
+ * )
+ * return (Lexer.GLYPHCLASS, glyphclass, location) # <<<<<<<<<<<<<<
+ * if cur_char in Lexer.CHAR_NAME_START_:
+ * self.pos_ += 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 120, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_GLYPHCLASS); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 120, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 120, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3)) __PYX_ERR(0, 120, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_glyphclass);
+ __Pyx_GIVEREF(__pyx_v_glyphclass);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_glyphclass)) __PYX_ERR(0, 120, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_v_location)) __PYX_ERR(0, 120, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":108
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ * if cur_char == "@": # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":121
+ * )
+ * return (Lexer.GLYPHCLASS, glyphclass, location)
+ * if cur_char in Lexer.CHAR_NAME_START_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 121, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CHAR_NAME_START); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 121, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_8 = (__Pyx_PySequence_ContainsTF(__pyx_v_cur_char, __pyx_t_3, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 121, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":122
+ * return (Lexer.GLYPHCLASS, glyphclass, location)
+ * if cur_char in Lexer.CHAR_NAME_START_:
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * token = text[start : self.pos_]
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 122, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyInt_AddObjC(__pyx_t_3, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 122, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_4) < 0) __PYX_ERR(0, 122, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":123
+ * if cur_char in Lexer.CHAR_NAME_START_:
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_) # <<<<<<<<<<<<<<
+ * token = text[start : self.pos_]
+ * if token == "include":
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 123, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 123, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_CHAR_NAME_CONTINUATION); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 123, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_1, __pyx_t_2};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 123, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":124
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * token = text[start : self.pos_] # <<<<<<<<<<<<<<
+ * if token == "include":
+ * self.mode_ = Lexer.MODE_FILENAME_
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 124, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_4, NULL, 0, 0, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 124, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_v_token = __pyx_t_3;
+ __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":125
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * token = text[start : self.pos_]
+ * if token == "include": # <<<<<<<<<<<<<<
+ * self.mode_ = Lexer.MODE_FILENAME_
+ * return (Lexer.NAME, token, location)
+ */
+ __pyx_t_8 = (__Pyx_PyUnicode_Equals(__pyx_v_token, __pyx_n_u_include, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 125, __pyx_L1_error)
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":126
+ * token = text[start : self.pos_]
+ * if token == "include":
+ * self.mode_ = Lexer.MODE_FILENAME_ # <<<<<<<<<<<<<<
+ * return (Lexer.NAME, token, location)
+ * if cur_char == "0" and next_char in "xX":
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 126, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_MODE_FILENAME); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 126, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_mode, __pyx_t_4) < 0) __PYX_ERR(0, 126, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":125
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ * token = text[start : self.pos_]
+ * if token == "include": # <<<<<<<<<<<<<<
+ * self.mode_ = Lexer.MODE_FILENAME_
+ * return (Lexer.NAME, token, location)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":127
+ * if token == "include":
+ * self.mode_ = Lexer.MODE_FILENAME_
+ * return (Lexer.NAME, token, location) # <<<<<<<<<<<<<<
+ * if cur_char == "0" and next_char in "xX":
+ * self.pos_ += 2
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 127, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_NAME); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 127, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = PyTuple_New(3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 127, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_3)) __PYX_ERR(0, 127, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_token);
+ __Pyx_GIVEREF(__pyx_v_token);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_v_token)) __PYX_ERR(0, 127, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_4, 2, __pyx_v_location)) __PYX_ERR(0, 127, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":121
+ * )
+ * return (Lexer.GLYPHCLASS, glyphclass, location)
+ * if cur_char in Lexer.CHAR_NAME_START_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":128
+ * self.mode_ = Lexer.MODE_FILENAME_
+ * return (Lexer.NAME, token, location)
+ * if cur_char == "0" and next_char in "xX": # <<<<<<<<<<<<<<
+ * self.pos_ += 2
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u_0, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 128, __pyx_L1_error)
+ if (__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L19_bool_binop_done;
+ }
+ __pyx_t_7 = (__Pyx_PyUnicode_ContainsTF(__pyx_v_next_char, __pyx_n_u_xX, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 128, __pyx_L1_error)
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L19_bool_binop_done:;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":129
+ * return (Lexer.NAME, token, location)
+ * if cur_char == "0" and next_char in "xX":
+ * self.pos_ += 2 # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 129, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_t_4, __pyx_int_2, 2, 1, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 129, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_3) < 0) __PYX_ERR(0, 129, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":130
+ * if cur_char == "0" and next_char in "xX":
+ * self.pos_ += 2
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_) # <<<<<<<<<<<<<<
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
+ */
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 130, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 130, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_CHAR_HEXDIGIT); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 130, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_4))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_4);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_4, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_t_1};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_4, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 130, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":131
+ * self.pos_ += 2
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location) # <<<<<<<<<<<<<<
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_HEXADECIMAL); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_3, NULL, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1)) __PYX_ERR(0, 131, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_int_16);
+ __Pyx_GIVEREF(__pyx_int_16);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_int_16)) __PYX_ERR(0, 131, __pyx_L1_error);
+ __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_Call(((PyObject *)(&PyInt_Type)), __pyx_t_3, NULL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 131, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_4);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4)) __PYX_ERR(0, 131, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1)) __PYX_ERR(0, 131, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_v_location)) __PYX_ERR(0, 131, __pyx_L1_error);
+ __pyx_t_4 = 0;
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_3;
+ __pyx_t_3 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":128
+ * self.mode_ = Lexer.MODE_FILENAME_
+ * return (Lexer.NAME, token, location)
+ * if cur_char == "0" and next_char in "xX": # <<<<<<<<<<<<<<
+ * self.pos_ += 2
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":132
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u_0, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 132, __pyx_L1_error)
+ if (__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L22_bool_binop_done;
+ }
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 132, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 132, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_7 = (__Pyx_PySequence_ContainsTF(__pyx_v_next_char, __pyx_t_1, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 132, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L22_bool_binop_done:;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":133
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ * if cur_char in Lexer.CHAR_DIGIT_:
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 133, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 133, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 133, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_2};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 133, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":134
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location) # <<<<<<<<<<<<<<
+ * if cur_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_OCTAL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_1, NULL, 0, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_int_8);
+ __Pyx_GIVEREF(__pyx_int_8);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_8)) __PYX_ERR(0, 134, __pyx_L1_error);
+ __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)(&PyInt_Type)), __pyx_t_1, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 134, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_3)) __PYX_ERR(0, 134, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_2)) __PYX_ERR(0, 134, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_location)) __PYX_ERR(0, 134, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_t_2 = 0;
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":132
+ * self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ * return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ * if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":135
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ * if cur_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 135, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 135, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = (__Pyx_PySequence_ContainsTF(__pyx_v_cur_char, __pyx_t_2, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 135, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":136
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ * if cur_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 136, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 136, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 136, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_1))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_1);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_1, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_t_4};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 136, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":137
+ * if cur_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".": # <<<<<<<<<<<<<<
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_limit); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = PyObject_RichCompare(__pyx_t_2, __pyx_t_1, Py_GE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (!__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L26_bool_binop_done;
+ }
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_v_text, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_t_1, __pyx_kp_u__8, Py_NE)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 137, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L26_bool_binop_done:;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":138
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location) # <<<<<<<<<<<<<<
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_NUMBER); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_1, NULL, 0, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_2)) __PYX_ERR(0, 138, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_int_10);
+ __Pyx_GIVEREF(__pyx_int_10);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_10)) __PYX_ERR(0, 138, __pyx_L1_error);
+ __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_Call(((PyObject *)(&PyInt_Type)), __pyx_t_1, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 138, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_4);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_4)) __PYX_ERR(0, 138, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_2)) __PYX_ERR(0, 138, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_location)) __PYX_ERR(0, 138, __pyx_L1_error);
+ __pyx_t_4 = 0;
+ __pyx_t_2 = 0;
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":137
+ * if cur_char in Lexer.CHAR_DIGIT_:
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".": # <<<<<<<<<<<<<<
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":139
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".") # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 139, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_kp_u__8};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 139, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":140
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 140, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 140, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 140, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_3};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 140, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":141
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location) # <<<<<<<<<<<<<<
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
+ * self.pos_ += 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_FLOAT); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_1, NULL, 0, 0, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyNumber_Float(__pyx_t_3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 141, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2)) __PYX_ERR(0, 141, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_1)) __PYX_ERR(0, 141, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_v_location)) __PYX_ERR(0, 141, __pyx_L1_error);
+ __pyx_t_2 = 0;
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_3;
+ __pyx_t_3 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":135
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ * if cur_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":142
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__9, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 142, __pyx_L1_error)
+ if (__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L29_bool_binop_done;
+ }
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 142, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 142, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_7 = (__Pyx_PySequence_ContainsTF(__pyx_v_next_char, __pyx_t_1, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 142, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L29_bool_binop_done:;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":143
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 143, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyInt_AddObjC(__pyx_t_1, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 143, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_3) < 0) __PYX_ERR(0, 143, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":144
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 144, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 144, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 144, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_1))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_1);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_1, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, __pyx_t_4};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 144, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":145
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".": # <<<<<<<<<<<<<<
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = PyInt_FromSsize_t(__pyx_v_limit); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = PyObject_RichCompare(__pyx_t_3, __pyx_t_1, Py_GE); __Pyx_XGOTREF(__pyx_t_4); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_4); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (!__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L32_bool_binop_done;
+ }
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_v_text, __pyx_t_4); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_t_1, __pyx_kp_u__8, Py_NE)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 145, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L32_bool_binop_done:;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":146
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location) # <<<<<<<<<<<<<<
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_NUMBER); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_1, NULL, 0, 0, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_3)) __PYX_ERR(0, 146, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_int_10);
+ __Pyx_GIVEREF(__pyx_int_10);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_int_10)) __PYX_ERR(0, 146, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyObject_Call(((PyObject *)(&PyInt_Type)), __pyx_t_1, NULL); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = PyTuple_New(3); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 146, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_GIVEREF(__pyx_t_4);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 0, __pyx_t_4)) __PYX_ERR(0, 146, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 1, __pyx_t_3)) __PYX_ERR(0, 146, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_1, 2, __pyx_v_location)) __PYX_ERR(0, 146, __pyx_L1_error);
+ __pyx_t_4 = 0;
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":145
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * if self.pos_ >= limit or text[self.pos_] != ".": # <<<<<<<<<<<<<<
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":147
+ * if self.pos_ >= limit or text[self.pos_] != ".":
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".") # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 147, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_kp_u__8};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 147, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":148
+ * return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_) # <<<<<<<<<<<<<<
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char in Lexer.CHAR_SYMBOL_:
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 148, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GetModuleGlobalName(__pyx_t_4, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 148, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_CHAR_DIGIT); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 148, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_4, __pyx_t_2};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 148, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":149
+ * self.scan_over_(".")
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location) # <<<<<<<<<<<<<<
+ * if cur_char in Lexer.CHAR_SYMBOL_:
+ * self.pos_ += 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_FLOAT); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_v_start, &__pyx_t_1, NULL, 0, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyNumber_Float(__pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 149, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3)) __PYX_ERR(0, 149, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_1)) __PYX_ERR(0, 149, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_location)) __PYX_ERR(0, 149, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":142
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":150
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char in Lexer.CHAR_SYMBOL_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * return (Lexer.SYMBOL, cur_char, location)
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 150, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_CHAR_SYMBOL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 150, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_8 = (__Pyx_PySequence_ContainsTF(__pyx_v_cur_char, __pyx_t_1, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 150, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":151
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char in Lexer.CHAR_SYMBOL_:
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * return (Lexer.SYMBOL, cur_char, location)
+ * if cur_char == '"':
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 151, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_t_1, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 151, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_2) < 0) __PYX_ERR(0, 151, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":152
+ * if cur_char in Lexer.CHAR_SYMBOL_:
+ * self.pos_ += 1
+ * return (Lexer.SYMBOL, cur_char, location) # <<<<<<<<<<<<<<
+ * if cur_char == '"':
+ * self.pos_ += 1
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 152, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_SYMBOL); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 152, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 152, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1)) __PYX_ERR(0, 152, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_cur_char);
+ __Pyx_GIVEREF(__pyx_v_cur_char);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_cur_char)) __PYX_ERR(0, 152, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_location)) __PYX_ERR(0, 152, __pyx_L1_error);
+ __pyx_t_1 = 0;
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":150
+ * self.scan_over_(Lexer.CHAR_DIGIT_)
+ * return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ * if cur_char in Lexer.CHAR_SYMBOL_: # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * return (Lexer.SYMBOL, cur_char, location)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":153
+ * self.pos_ += 1
+ * return (Lexer.SYMBOL, cur_char, location)
+ * if cur_char == '"': # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_until_('"')
+ */
+ __pyx_t_8 = (__Pyx_PyUnicode_Equals(__pyx_v_cur_char, __pyx_kp_u__10, Py_EQ)); if (unlikely((__pyx_t_8 < 0))) __PYX_ERR(0, 153, __pyx_L1_error)
+ if (__pyx_t_8) {
+
+ /* "fontTools/feaLib/lexer.py":154
+ * return (Lexer.SYMBOL, cur_char, location)
+ * if cur_char == '"':
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * self.scan_until_('"')
+ * if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"':
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 154, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_t_2, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 154, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_1) < 0) __PYX_ERR(0, 154, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":155
+ * if cur_char == '"':
+ * self.pos_ += 1
+ * self.scan_until_('"') # <<<<<<<<<<<<<<
+ * if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"':
+ * self.pos_ += 1
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_until); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 155, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_kp_u__10};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_5, 1+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 155, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":156
+ * self.pos_ += 1
+ * self.scan_until_('"')
+ * if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"': # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * # strip newlines embedded within a string
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_length); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = PyObject_RichCompare(__pyx_t_1, __pyx_t_2, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_7) {
+ } else {
+ __pyx_t_8 = __pyx_t_7;
+ goto __pyx_L37_bool_binop_done;
+ }
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_7 = (__Pyx_PyUnicode_Equals(__pyx_t_1, __pyx_kp_u__10, Py_EQ)); if (unlikely((__pyx_t_7 < 0))) __PYX_ERR(0, 156, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_8 = __pyx_t_7;
+ __pyx_L37_bool_binop_done:;
+ if (likely(__pyx_t_8)) {
+
+ /* "fontTools/feaLib/lexer.py":157
+ * self.scan_until_('"')
+ * if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"':
+ * self.pos_ += 1 # <<<<<<<<<<<<<<
+ * # strip newlines embedded within a string
+ * string = re.sub("[\r\n]", "", text[start + 1 : self.pos_ - 1])
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 157, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyInt_AddObjC(__pyx_t_1, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 157, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_2) < 0) __PYX_ERR(0, 157, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":159
+ * self.pos_ += 1
+ * # strip newlines embedded within a string
+ * string = re.sub("[\r\n]", "", text[start + 1 : self.pos_ - 1]) # <<<<<<<<<<<<<<
+ * return (Lexer.STRING, string, location)
+ * else:
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_re); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_sub); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_start, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_9 = __Pyx_PyInt_SubtractObjC(__pyx_t_4, __pyx_int_1, 1, 0, 0); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_4 = __Pyx_PyObject_GetSlice(__pyx_v_text, 0, 0, &__pyx_t_1, &__pyx_t_9, NULL, 0, 0, 1); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __pyx_t_9 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_9)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_9);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[4] = {__pyx_t_9, __pyx_kp_u__11, __pyx_kp_u__12, __pyx_t_4};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 3+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 159, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __pyx_v_string = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":160
+ * # strip newlines embedded within a string
+ * string = re.sub("[\r\n]", "", text[start + 1 : self.pos_ - 1])
+ * return (Lexer.STRING, string, location) # <<<<<<<<<<<<<<
+ * else:
+ * raise FeatureLibError("Expected '\"' to terminate string", location)
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 160, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_STRING); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 160, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 160, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_3)) __PYX_ERR(0, 160, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_string);
+ __Pyx_GIVEREF(__pyx_v_string);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_v_string)) __PYX_ERR(0, 160, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_location)) __PYX_ERR(0, 160, __pyx_L1_error);
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":156
+ * self.pos_ += 1
+ * self.scan_until_('"')
+ * if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"': # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * # strip newlines embedded within a string
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":162
+ * return (Lexer.STRING, string, location)
+ * else:
+ * raise FeatureLibError("Expected '\"' to terminate string", location) # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+ *
+ */
+ /*else*/ {
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 162, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_4)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_4);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_4, __pyx_kp_u_Expected_to_terminate_string, __pyx_v_location};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 162, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_Raise(__pyx_t_2, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __PYX_ERR(0, 162, __pyx_L1_error)
+ }
+
+ /* "fontTools/feaLib/lexer.py":153
+ * self.pos_ += 1
+ * return (Lexer.SYMBOL, cur_char, location)
+ * if cur_char == '"': # <<<<<<<<<<<<<<
+ * self.pos_ += 1
+ * self.scan_until_('"')
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":163
+ * else:
+ * raise FeatureLibError("Expected '\"' to terminate string", location)
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location) # <<<<<<<<<<<<<<
+ *
+ * def scan_over_(self, valid):
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 163, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_4 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_Unexpected_character_r, __pyx_v_cur_char); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 163, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_9 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_9 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_9)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_9);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_9, __pyx_t_4, __pyx_v_location};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 163, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_Raise(__pyx_t_2, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __PYX_ERR(0, 163, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":68
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ *
+ * def next_(self): # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_()
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_9);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.next_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_location);
+ __Pyx_XDECREF(__pyx_v_start);
+ __Pyx_XDECREF(__pyx_v_text);
+ __Pyx_XDECREF(__pyx_v_cur_char);
+ __Pyx_XDECREF(__pyx_v_next_char);
+ __Pyx_XDECREF(__pyx_v_glyphclass);
+ __Pyx_XDECREF(__pyx_v_token);
+ __Pyx_XDECREF(__pyx_v_string);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":165
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+ *
+ * def scan_over_(self, valid): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid:
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_13scan_over_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_12scan_over_, "Lexer.scan_over_(self, valid)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_13scan_over_ = {"scan_over_", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_13scan_over_, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_12scan_over_};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_13scan_over_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_valid = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[2] = {0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("scan_over_ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_valid,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 165, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_valid)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 165, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("scan_over_", 1, 2, 2, 1); __PYX_ERR(0, 165, __pyx_L3_error)
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "scan_over_") < 0)) __PYX_ERR(0, 165, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 2)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_valid = values[1];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("scan_over_", 1, 2, 2, __pyx_nargs); __PYX_ERR(0, 165, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_over_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_12scan_over_(__pyx_self, __pyx_v_self, __pyx_v_valid);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_12scan_over_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_valid) {
+ PyObject *__pyx_v_p = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_t_2;
+ PyObject *__pyx_t_3 = NULL;
+ int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("scan_over_", 1);
+
+ /* "fontTools/feaLib/lexer.py":166
+ *
+ * def scan_over_(self, valid):
+ * p = self.pos_ # <<<<<<<<<<<<<<
+ * while p < self.text_length_ and self.text_[p] in valid:
+ * p += 1
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 166, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_v_p = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":167
+ * def scan_over_(self, valid):
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid: # <<<<<<<<<<<<<<
+ * p += 1
+ * self.pos_ = p
+ */
+ while (1) {
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_length); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = PyObject_RichCompare(__pyx_v_p, __pyx_t_1, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_4) {
+ } else {
+ __pyx_t_2 = __pyx_t_4;
+ goto __pyx_L5_bool_binop_done;
+ }
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_v_p); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_4 = (__Pyx_PySequence_ContainsTF(__pyx_t_1, __pyx_v_valid, Py_EQ)); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 167, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_2 = __pyx_t_4;
+ __pyx_L5_bool_binop_done:;
+ if (!__pyx_t_2) break;
+
+ /* "fontTools/feaLib/lexer.py":168
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid:
+ * p += 1 # <<<<<<<<<<<<<<
+ * self.pos_ = p
+ *
+ */
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_p, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 168, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_1);
+ __pyx_t_1 = 0;
+ }
+
+ /* "fontTools/feaLib/lexer.py":169
+ * while p < self.text_length_ and self.text_[p] in valid:
+ * p += 1
+ * self.pos_ = p # <<<<<<<<<<<<<<
+ *
+ * def scan_until_(self, stop_at):
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_v_p) < 0) __PYX_ERR(0, 169, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":165
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+ *
+ * def scan_over_(self, valid): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid:
+ */
+
+ /* function exit code */
+ __pyx_r = Py_None; __Pyx_INCREF(Py_None);
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_over_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_p);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":171
+ * self.pos_ = p
+ *
+ * def scan_until_(self, stop_at): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_15scan_until_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_14scan_until_, "Lexer.scan_until_(self, stop_at)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_15scan_until_ = {"scan_until_", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_15scan_until_, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_14scan_until_};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_15scan_until_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_stop_at = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[2] = {0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("scan_until_ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_stop_at,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 171, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_stop_at)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 171, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("scan_until_", 1, 2, 2, 1); __PYX_ERR(0, 171, __pyx_L3_error)
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "scan_until_") < 0)) __PYX_ERR(0, 171, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 2)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_stop_at = values[1];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("scan_until_", 1, 2, 2, __pyx_nargs); __PYX_ERR(0, 171, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_until_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_14scan_until_(__pyx_self, __pyx_v_self, __pyx_v_stop_at);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_14scan_until_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_stop_at) {
+ PyObject *__pyx_v_p = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_t_2;
+ PyObject *__pyx_t_3 = NULL;
+ int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("scan_until_", 1);
+
+ /* "fontTools/feaLib/lexer.py":172
+ *
+ * def scan_until_(self, stop_at):
+ * p = self.pos_ # <<<<<<<<<<<<<<
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ * p += 1
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 172, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_v_p = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":173
+ * def scan_until_(self, stop_at):
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at: # <<<<<<<<<<<<<<
+ * p += 1
+ * self.pos_ = p
+ */
+ while (1) {
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_length); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = PyObject_RichCompare(__pyx_v_p, __pyx_t_1, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (__pyx_t_4) {
+ } else {
+ __pyx_t_2 = __pyx_t_4;
+ goto __pyx_L5_bool_binop_done;
+ }
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = __Pyx_PyObject_GetItem(__pyx_t_3, __pyx_v_p); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_4 = (__Pyx_PySequence_ContainsTF(__pyx_t_1, __pyx_v_stop_at, Py_NE)); if (unlikely((__pyx_t_4 < 0))) __PYX_ERR(0, 173, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_2 = __pyx_t_4;
+ __pyx_L5_bool_binop_done:;
+ if (!__pyx_t_2) break;
+
+ /* "fontTools/feaLib/lexer.py":174
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ * p += 1 # <<<<<<<<<<<<<<
+ * self.pos_ = p
+ *
+ */
+ __pyx_t_1 = __Pyx_PyInt_AddObjC(__pyx_v_p, __pyx_int_1, 1, 1, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 174, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF_SET(__pyx_v_p, __pyx_t_1);
+ __pyx_t_1 = 0;
+ }
+
+ /* "fontTools/feaLib/lexer.py":175
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ * p += 1
+ * self.pos_ = p # <<<<<<<<<<<<<<
+ *
+ * def scan_anonymous_block(self, tag):
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_v_p) < 0) __PYX_ERR(0, 175, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":171
+ * self.pos_ = p
+ *
+ * def scan_until_(self, stop_at): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ */
+
+ /* function exit code */
+ __pyx_r = Py_None; __Pyx_INCREF(Py_None);
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_until_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_p);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":177
+ * self.pos_ = p
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * location = self.location_()
+ * tag = tag.strip()
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_17scan_anonymous_block(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_16scan_anonymous_block, "Lexer.scan_anonymous_block(self, tag)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_17scan_anonymous_block = {"scan_anonymous_block", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_17scan_anonymous_block, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_5Lexer_16scan_anonymous_block};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_5Lexer_17scan_anonymous_block(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_tag = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[2] = {0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("scan_anonymous_block (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_tag,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 177, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_tag)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 177, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("scan_anonymous_block", 1, 2, 2, 1); __PYX_ERR(0, 177, __pyx_L3_error)
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "scan_anonymous_block") < 0)) __PYX_ERR(0, 177, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 2)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_tag = values[1];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("scan_anonymous_block", 1, 2, 2, __pyx_nargs); __PYX_ERR(0, 177, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_anonymous_block", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_16scan_anonymous_block(__pyx_self, __pyx_v_self, __pyx_v_tag);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_5Lexer_16scan_anonymous_block(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_tag) {
+ PyObject *__pyx_v_location = NULL;
+ PyObject *__pyx_v_regexp = NULL;
+ PyObject *__pyx_v_split = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ PyObject *__pyx_t_5 = NULL;
+ Py_ssize_t __pyx_t_6;
+ int __pyx_t_7;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("scan_anonymous_block", 0);
+ __Pyx_INCREF(__pyx_v_tag);
+
+ /* "fontTools/feaLib/lexer.py":178
+ *
+ * def scan_anonymous_block(self, tag):
+ * location = self.location_() # <<<<<<<<<<<<<<
+ * tag = tag.strip()
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_location); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 178, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 0+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 178, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_v_location = __pyx_t_1;
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":179
+ * def scan_anonymous_block(self, tag):
+ * location = self.location_()
+ * tag = tag.strip() # <<<<<<<<<<<<<<
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * self.scan_over_(Lexer.CHAR_NEWLINE_)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_tag, __pyx_n_s_strip); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 179, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 0+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 179, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF_SET(__pyx_v_tag, __pyx_t_1);
+ __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":180
+ * location = self.location_()
+ * tag = tag.strip()
+ * self.scan_until_(Lexer.CHAR_NEWLINE_) # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_NEWLINE_)
+ * regexp = r"}\s*" + tag + r"\s*;"
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_until); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 180, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 180, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_CHAR_NEWLINE); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 180, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_t_5};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 1+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 180, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":181
+ * tag = tag.strip()
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * self.scan_over_(Lexer.CHAR_NEWLINE_) # <<<<<<<<<<<<<<
+ * regexp = r"}\s*" + tag + r"\s*;"
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_scan_over); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 181, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 181, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_CHAR_NEWLINE); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 181, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_t_5 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_5)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_5);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_5, __pyx_t_3};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 1+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 181, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+
+ /* "fontTools/feaLib/lexer.py":182
+ * self.scan_until_(Lexer.CHAR_NEWLINE_)
+ * self.scan_over_(Lexer.CHAR_NEWLINE_)
+ * regexp = r"}\s*" + tag + r"\s*;" # <<<<<<<<<<<<<<
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ * if len(split) != 2:
+ */
+ __pyx_t_1 = PyNumber_Add(__pyx_kp_u_s, __pyx_v_tag); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 182, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = PyNumber_Add(__pyx_t_1, __pyx_kp_u_s_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 182, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_v_regexp = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":183
+ * self.scan_over_(Lexer.CHAR_NEWLINE_)
+ * regexp = r"}\s*" + tag + r"\s*;"
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1) # <<<<<<<<<<<<<<
+ * if len(split) != 2:
+ * raise FeatureLibError(
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_re); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_t_2, __pyx_n_s_split); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_text_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_5 = __Pyx_PyObject_GetSlice(__pyx_t_2, 0, 0, &__pyx_t_3, NULL, NULL, 0, 0, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_v_regexp);
+ __Pyx_GIVEREF(__pyx_v_regexp);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_regexp)) __PYX_ERR(0, 183, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_5);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error);
+ __pyx_t_5 = 0;
+ __pyx_t_5 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ if (PyDict_SetItem(__pyx_t_5, __pyx_n_s_maxsplit, __pyx_int_1) < 0) __PYX_ERR(0, 183, __pyx_L1_error)
+ __pyx_t_2 = __Pyx_PyObject_Call(__pyx_t_1, __pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 183, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_v_split = __pyx_t_2;
+ __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":184
+ * regexp = r"}\s*" + tag + r"\s*;"
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ * if len(split) != 2: # <<<<<<<<<<<<<<
+ * raise FeatureLibError(
+ * "Expected '} %s;' to terminate anonymous block" % tag, location
+ */
+ __pyx_t_6 = PyObject_Length(__pyx_v_split); if (unlikely(__pyx_t_6 == ((Py_ssize_t)-1))) __PYX_ERR(0, 184, __pyx_L1_error)
+ __pyx_t_7 = (__pyx_t_6 != 2);
+ if (unlikely(__pyx_t_7)) {
+
+ /* "fontTools/feaLib/lexer.py":185
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ * if len(split) != 2:
+ * raise FeatureLibError( # <<<<<<<<<<<<<<
+ * "Expected '} %s;' to terminate anonymous block" % tag, location
+ * )
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_5, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 185, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+
+ /* "fontTools/feaLib/lexer.py":186
+ * if len(split) != 2:
+ * raise FeatureLibError(
+ * "Expected '} %s;' to terminate anonymous block" % tag, location # <<<<<<<<<<<<<<
+ * )
+ * self.pos_ += len(split[0])
+ */
+ __pyx_t_3 = __Pyx_PyUnicode_FormatSafe(__pyx_kp_u_Expected_s_to_terminate_anonymou, __pyx_v_tag); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 186, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_1 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_5))) {
+ __pyx_t_1 = PyMethod_GET_SELF(__pyx_t_5);
+ if (likely(__pyx_t_1)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5);
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_5, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_1, __pyx_t_3, __pyx_v_location};
+ __pyx_t_2 = __Pyx_PyObject_FastCall(__pyx_t_5, __pyx_callargs+1-__pyx_t_4, 2+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 185, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ }
+ __Pyx_Raise(__pyx_t_2, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __PYX_ERR(0, 185, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":184
+ * regexp = r"}\s*" + tag + r"\s*;"
+ * split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ * if len(split) != 2: # <<<<<<<<<<<<<<
+ * raise FeatureLibError(
+ * "Expected '} %s;' to terminate anonymous block" % tag, location
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":188
+ * "Expected '} %s;' to terminate anonymous block" % tag, location
+ * )
+ * self.pos_ += len(split[0]) # <<<<<<<<<<<<<<
+ * return (Lexer.ANONYMOUS_BLOCK, split[0], location)
+ *
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_pos); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_5 = __Pyx_GetItemInt(__pyx_v_split, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __pyx_t_6 = PyObject_Length(__pyx_t_5); if (unlikely(__pyx_t_6 == ((Py_ssize_t)-1))) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_t_5 = PyInt_FromSsize_t(__pyx_t_6); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __pyx_t_3 = PyNumber_InPlaceAdd(__pyx_t_2, __pyx_t_5); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_pos, __pyx_t_3) < 0) __PYX_ERR(0, 188, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":189
+ * )
+ * self.pos_ += len(split[0])
+ * return (Lexer.ANONYMOUS_BLOCK, split[0], location) # <<<<<<<<<<<<<<
+ *
+ *
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 189, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_ANONYMOUS_BLOCK); if (unlikely(!__pyx_t_5)) __PYX_ERR(0, 189, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_GetItemInt(__pyx_v_split, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 189, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = PyTuple_New(3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 189, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_5);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_5)) __PYX_ERR(0, 189, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_3);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_t_3)) __PYX_ERR(0, 189, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 2, __pyx_v_location)) __PYX_ERR(0, 189, __pyx_L1_error);
+ __pyx_t_5 = 0;
+ __pyx_t_3 = 0;
+ __pyx_r = __pyx_t_2;
+ __pyx_t_2 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":177
+ * self.pos_ = p
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * location = self.location_()
+ * tag = tag.strip()
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_5);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.Lexer.scan_anonymous_block", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_location);
+ __Pyx_XDECREF(__pyx_v_regexp);
+ __Pyx_XDECREF(__pyx_v_split);
+ __Pyx_XDECREF(__pyx_v_tag);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":207
+ * """
+ *
+ * def __init__(self, featurefile, *, includeDir=None): # <<<<<<<<<<<<<<
+ * """Initializes an IncludingLexer.
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_1__init__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer___init__, "IncludingLexer.__init__(self, featurefile, *, includeDir=None)\nInitializes an IncludingLexer.\n\n Behavior:\n If includeDir is passed, it will be used to determine the top-level\n include directory to use for all encountered include statements. If it is\n not passed, ``os.path.dirname(featurefile)`` will be considered the\n include directory.\n ");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_1__init__ = {"__init__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_1__init__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer___init__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_1__init__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_featurefile = 0;
+ PyObject *__pyx_v_includeDir = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[3] = {0,0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_featurefile,&__pyx_n_s_includeDir,0};
+ values[2] = __Pyx_Arg_NewRef_FASTCALL(((PyObject *)Py_None));
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 207, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_featurefile)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 207, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("__init__", 1, 2, 2, 1); __PYX_ERR(0, 207, __pyx_L3_error)
+ }
+ }
+ if (kw_args == 1) {
+ const Py_ssize_t index = 2;
+ PyObject* value = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, *__pyx_pyargnames[index]);
+ if (value) { values[index] = __Pyx_Arg_NewRef_FASTCALL(value); kw_args--; }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 207, __pyx_L3_error)
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__init__") < 0)) __PYX_ERR(0, 207, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 2)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_featurefile = values[1];
+ __pyx_v_includeDir = values[2];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__init__", 1, 2, 2, __pyx_nargs); __PYX_ERR(0, 207, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer___init__(__pyx_self, __pyx_v_self, __pyx_v_featurefile, __pyx_v_includeDir);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer___init__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_featurefile, PyObject *__pyx_v_includeDir) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__init__", 1);
+
+ /* "fontTools/feaLib/lexer.py":217
+ * """
+ *
+ * self.lexers_ = [self.make_lexer_(featurefile)] # <<<<<<<<<<<<<<
+ * self.featurefilepath = self.lexers_[0].filename_
+ * self.includeDir = includeDir
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_make_lexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 217, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_v_featurefile};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 1+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 217, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_t_2 = PyList_New(1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 217, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_GIVEREF(__pyx_t_1);
+ if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 0, __pyx_t_1)) __PYX_ERR(0, 217, __pyx_L1_error);
+ __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_lexers, __pyx_t_2) < 0) __PYX_ERR(0, 217, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":218
+ *
+ * self.lexers_ = [self.make_lexer_(featurefile)]
+ * self.featurefilepath = self.lexers_[0].filename_ # <<<<<<<<<<<<<<
+ * self.includeDir = includeDir
+ *
+ */
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 218, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_1 = __Pyx_GetItemInt(__pyx_t_2, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 218, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_filename_2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 218, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_featurefilepath, __pyx_t_2) < 0) __PYX_ERR(0, 218, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":219
+ * self.lexers_ = [self.make_lexer_(featurefile)]
+ * self.featurefilepath = self.lexers_[0].filename_
+ * self.includeDir = includeDir # <<<<<<<<<<<<<<
+ *
+ * def __iter__(self):
+ */
+ if (__Pyx_PyObject_SetAttrStr(__pyx_v_self, __pyx_n_s_includeDir, __pyx_v_includeDir) < 0) __PYX_ERR(0, 219, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":207
+ * """
+ *
+ * def __init__(self, featurefile, *, includeDir=None): # <<<<<<<<<<<<<<
+ * """Initializes an IncludingLexer.
+ *
+ */
+
+ /* function exit code */
+ __pyx_r = Py_None; __Pyx_INCREF(Py_None);
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":221
+ * self.includeDir = includeDir
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_3__iter__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_2__iter__, "IncludingLexer.__iter__(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_3__iter__ = {"__iter__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_3__iter__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_2__iter__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_3__iter__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__iter__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 221, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__iter__") < 0)) __PYX_ERR(0, 221, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__iter__", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 221, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__iter__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_2__iter__(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_2__iter__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__iter__", 1);
+
+ /* "fontTools/feaLib/lexer.py":222
+ *
+ * def __iter__(self):
+ * return self # <<<<<<<<<<<<<<
+ *
+ * def next(self): # Python 2
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_INCREF(__pyx_v_self);
+ __pyx_r = __pyx_v_self;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":221
+ * self.includeDir = includeDir
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+
+ /* function exit code */
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":224
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_5next(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_4next, "IncludingLexer.next(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_5next = {"next", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_5next, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_4next};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_5next(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("next (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 224, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "next") < 0)) __PYX_ERR(0, 224, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("next", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 224, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.next", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_4next(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_4next(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("next", 1);
+
+ /* "fontTools/feaLib/lexer.py":225
+ *
+ * def next(self): # Python 2
+ * return self.__next__() # <<<<<<<<<<<<<<
+ *
+ * def __next__(self): # Python 3
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_next); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 225, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 0+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 225, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":224
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.next", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":227
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_7__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_6__next__, "IncludingLexer.__next__(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_7__next__ = {"__next__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_7__next__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_6__next__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_7__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__next__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 227, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__next__") < 0)) __PYX_ERR(0, 227, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__next__", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 227, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_6__next__(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_6__next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_v_lexer = NULL;
+ PyObject *__pyx_v_token_type = NULL;
+ PyObject *__pyx_v_token = NULL;
+ PyObject *__pyx_v_location = NULL;
+ PyObject *__pyx_v_fname_type = NULL;
+ PyObject *__pyx_v_fname_token = NULL;
+ PyObject *__pyx_v_fname_location = NULL;
+ PyObject *__pyx_v_path = NULL;
+ PyObject *__pyx_v_curpath = NULL;
+ PyObject *__pyx_v_err = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ int __pyx_t_2;
+ PyObject *__pyx_t_3 = NULL;
+ PyObject *__pyx_t_4 = NULL;
+ PyObject *__pyx_t_5 = NULL;
+ PyObject *__pyx_t_6 = NULL;
+ PyObject *__pyx_t_7 = NULL;
+ PyObject *__pyx_t_8 = NULL;
+ PyObject *__pyx_t_9 = NULL;
+ PyObject *(*__pyx_t_10)(PyObject *);
+ int __pyx_t_11;
+ int __pyx_t_12;
+ unsigned int __pyx_t_13;
+ Py_ssize_t __pyx_t_14;
+ int __pyx_t_15;
+ PyObject *__pyx_t_16 = NULL;
+ int __pyx_t_17;
+ char const *__pyx_t_18;
+ PyObject *__pyx_t_19 = NULL;
+ PyObject *__pyx_t_20 = NULL;
+ PyObject *__pyx_t_21 = NULL;
+ PyObject *__pyx_t_22 = NULL;
+ PyObject *__pyx_t_23 = NULL;
+ PyObject *__pyx_t_24 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__next__", 1);
+
+ /* "fontTools/feaLib/lexer.py":228
+ *
+ * def __next__(self): # Python 3
+ * while self.lexers_: # <<<<<<<<<<<<<<
+ * lexer = self.lexers_[-1]
+ * try:
+ */
+ while (1) {
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 228, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_1); if (unlikely((__pyx_t_2 < 0))) __PYX_ERR(0, 228, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ if (!__pyx_t_2) break;
+
+ /* "fontTools/feaLib/lexer.py":229
+ * def __next__(self): # Python 3
+ * while self.lexers_:
+ * lexer = self.lexers_[-1] # <<<<<<<<<<<<<<
+ * try:
+ * token_type, token, location = next(lexer)
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 229, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_1, -1L, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 229, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_lexer, __pyx_t_3);
+ __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":230
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ * try: # <<<<<<<<<<<<<<
+ * token_type, token, location = next(lexer)
+ * except StopIteration:
+ */
+ {
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ __Pyx_ExceptionSave(&__pyx_t_4, &__pyx_t_5, &__pyx_t_6);
+ __Pyx_XGOTREF(__pyx_t_4);
+ __Pyx_XGOTREF(__pyx_t_5);
+ __Pyx_XGOTREF(__pyx_t_6);
+ /*try:*/ {
+
+ /* "fontTools/feaLib/lexer.py":231
+ * lexer = self.lexers_[-1]
+ * try:
+ * token_type, token, location = next(lexer) # <<<<<<<<<<<<<<
+ * except StopIteration:
+ * self.lexers_.pop()
+ */
+ __pyx_t_3 = __Pyx_PyIter_Next(__pyx_v_lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 231, __pyx_L5_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ if ((likely(PyTuple_CheckExact(__pyx_t_3))) || (PyList_CheckExact(__pyx_t_3))) {
+ PyObject* sequence = __pyx_t_3;
+ Py_ssize_t size = __Pyx_PySequence_SIZE(sequence);
+ if (unlikely(size != 3)) {
+ if (size > 3) __Pyx_RaiseTooManyValuesError(3);
+ else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
+ __PYX_ERR(0, 231, __pyx_L5_error)
+ }
+ #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ if (likely(PyTuple_CheckExact(sequence))) {
+ __pyx_t_1 = PyTuple_GET_ITEM(sequence, 0);
+ __pyx_t_7 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_8 = PyTuple_GET_ITEM(sequence, 2);
+ } else {
+ __pyx_t_1 = PyList_GET_ITEM(sequence, 0);
+ __pyx_t_7 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_8 = PyList_GET_ITEM(sequence, 2);
+ }
+ __Pyx_INCREF(__pyx_t_1);
+ __Pyx_INCREF(__pyx_t_7);
+ __Pyx_INCREF(__pyx_t_8);
+ #else
+ __pyx_t_1 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 231, __pyx_L5_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_7 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 231, __pyx_L5_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_8 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 231, __pyx_L5_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ #endif
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ } else {
+ Py_ssize_t index = -1;
+ __pyx_t_9 = PyObject_GetIter(__pyx_t_3); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 231, __pyx_L5_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_10 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_9);
+ index = 0; __pyx_t_1 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_1)) goto __pyx_L13_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_1);
+ index = 1; __pyx_t_7 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_7)) goto __pyx_L13_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_7);
+ index = 2; __pyx_t_8 = __pyx_t_10(__pyx_t_9); if (unlikely(!__pyx_t_8)) goto __pyx_L13_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_8);
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_10(__pyx_t_9), 3) < 0) __PYX_ERR(0, 231, __pyx_L5_error)
+ __pyx_t_10 = NULL;
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ goto __pyx_L14_unpacking_done;
+ __pyx_L13_unpacking_failed:;
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __pyx_t_10 = NULL;
+ if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
+ __PYX_ERR(0, 231, __pyx_L5_error)
+ __pyx_L14_unpacking_done:;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_token_type, __pyx_t_1);
+ __pyx_t_1 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_token, __pyx_t_7);
+ __pyx_t_7 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_location, __pyx_t_8);
+ __pyx_t_8 = 0;
+
+ /* "fontTools/feaLib/lexer.py":230
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ * try: # <<<<<<<<<<<<<<
+ * token_type, token, location = next(lexer)
+ * except StopIteration:
+ */
+ }
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0;
+ goto __pyx_L12_try_end;
+ __pyx_L5_error:;
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":232
+ * try:
+ * token_type, token, location = next(lexer)
+ * except StopIteration: # <<<<<<<<<<<<<<
+ * self.lexers_.pop()
+ * continue
+ */
+ __pyx_t_11 = __Pyx_PyErr_ExceptionMatches(__pyx_builtin_StopIteration);
+ if (__pyx_t_11) {
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ if (__Pyx_GetException(&__pyx_t_3, &__pyx_t_8, &__pyx_t_7) < 0) __PYX_ERR(0, 232, __pyx_L7_except_error)
+ __Pyx_XGOTREF(__pyx_t_3);
+ __Pyx_XGOTREF(__pyx_t_8);
+ __Pyx_XGOTREF(__pyx_t_7);
+
+ /* "fontTools/feaLib/lexer.py":233
+ * token_type, token, location = next(lexer)
+ * except StopIteration:
+ * self.lexers_.pop() # <<<<<<<<<<<<<<
+ * continue
+ * if token_type is Lexer.NAME and token == "include":
+ */
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 233, __pyx_L7_except_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_9 = __Pyx_PyObject_Pop(__pyx_t_1); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 233, __pyx_L7_except_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":234
+ * except StopIteration:
+ * self.lexers_.pop()
+ * continue # <<<<<<<<<<<<<<
+ * if token_type is Lexer.NAME and token == "include":
+ * fname_type, fname_token, fname_location = lexer.next()
+ */
+ goto __pyx_L15_except_continue;
+ __pyx_L15_except_continue:;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ goto __pyx_L11_try_continue;
+ }
+ goto __pyx_L7_except_error;
+
+ /* "fontTools/feaLib/lexer.py":230
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ * try: # <<<<<<<<<<<<<<
+ * token_type, token, location = next(lexer)
+ * except StopIteration:
+ */
+ __pyx_L7_except_error:;
+ __Pyx_XGIVEREF(__pyx_t_4);
+ __Pyx_XGIVEREF(__pyx_t_5);
+ __Pyx_XGIVEREF(__pyx_t_6);
+ __Pyx_ExceptionReset(__pyx_t_4, __pyx_t_5, __pyx_t_6);
+ goto __pyx_L1_error;
+ __pyx_L11_try_continue:;
+ __Pyx_XGIVEREF(__pyx_t_4);
+ __Pyx_XGIVEREF(__pyx_t_5);
+ __Pyx_XGIVEREF(__pyx_t_6);
+ __Pyx_ExceptionReset(__pyx_t_4, __pyx_t_5, __pyx_t_6);
+ goto __pyx_L3_continue;
+ __pyx_L12_try_end:;
+ }
+
+ /* "fontTools/feaLib/lexer.py":235
+ * self.lexers_.pop()
+ * continue
+ * if token_type is Lexer.NAME and token == "include": # <<<<<<<<<<<<<<
+ * fname_type, fname_token, fname_location = lexer.next()
+ * if fname_type is not Lexer.FILENAME:
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 235, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_7, __pyx_n_s_NAME); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 235, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __pyx_t_12 = (__pyx_v_token_type == __pyx_t_8);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (__pyx_t_12) {
+ } else {
+ __pyx_t_2 = __pyx_t_12;
+ goto __pyx_L18_bool_binop_done;
+ }
+ __pyx_t_12 = (__Pyx_PyUnicode_Equals(__pyx_v_token, __pyx_n_u_include, Py_EQ)); if (unlikely((__pyx_t_12 < 0))) __PYX_ERR(0, 235, __pyx_L1_error)
+ __pyx_t_2 = __pyx_t_12;
+ __pyx_L18_bool_binop_done:;
+ if (__pyx_t_2) {
+
+ /* "fontTools/feaLib/lexer.py":236
+ * continue
+ * if token_type is Lexer.NAME and token == "include":
+ * fname_type, fname_token, fname_location = lexer.next() # <<<<<<<<<<<<<<
+ * if fname_type is not Lexer.FILENAME:
+ * raise FeatureLibError("Expected file name", fname_location)
+ */
+ __pyx_t_7 = __Pyx_PyObject_GetAttrStr(__pyx_v_lexer, __pyx_n_s_next_3); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_3 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_7))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_7);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_7);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_7, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, NULL};
+ __pyx_t_8 = __Pyx_PyObject_FastCall(__pyx_t_7, __pyx_callargs+1-__pyx_t_13, 0+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ }
+ if ((likely(PyTuple_CheckExact(__pyx_t_8))) || (PyList_CheckExact(__pyx_t_8))) {
+ PyObject* sequence = __pyx_t_8;
+ Py_ssize_t size = __Pyx_PySequence_SIZE(sequence);
+ if (unlikely(size != 3)) {
+ if (size > 3) __Pyx_RaiseTooManyValuesError(3);
+ else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
+ __PYX_ERR(0, 236, __pyx_L1_error)
+ }
+ #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ if (likely(PyTuple_CheckExact(sequence))) {
+ __pyx_t_7 = PyTuple_GET_ITEM(sequence, 0);
+ __pyx_t_3 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_9 = PyTuple_GET_ITEM(sequence, 2);
+ } else {
+ __pyx_t_7 = PyList_GET_ITEM(sequence, 0);
+ __pyx_t_3 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_9 = PyList_GET_ITEM(sequence, 2);
+ }
+ __Pyx_INCREF(__pyx_t_7);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_9);
+ #else
+ __pyx_t_7 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_3 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_9 = PySequence_ITEM(sequence, 2); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ #endif
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ } else {
+ Py_ssize_t index = -1;
+ __pyx_t_1 = PyObject_GetIter(__pyx_t_8); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 236, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_10 = __Pyx_PyObject_GetIterNextFunc(__pyx_t_1);
+ index = 0; __pyx_t_7 = __pyx_t_10(__pyx_t_1); if (unlikely(!__pyx_t_7)) goto __pyx_L20_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_7);
+ index = 1; __pyx_t_3 = __pyx_t_10(__pyx_t_1); if (unlikely(!__pyx_t_3)) goto __pyx_L20_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_3);
+ index = 2; __pyx_t_9 = __pyx_t_10(__pyx_t_1); if (unlikely(!__pyx_t_9)) goto __pyx_L20_unpacking_failed;
+ __Pyx_GOTREF(__pyx_t_9);
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_10(__pyx_t_1), 3) < 0) __PYX_ERR(0, 236, __pyx_L1_error)
+ __pyx_t_10 = NULL;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ goto __pyx_L21_unpacking_done;
+ __pyx_L20_unpacking_failed:;
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_10 = NULL;
+ if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
+ __PYX_ERR(0, 236, __pyx_L1_error)
+ __pyx_L21_unpacking_done:;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_fname_type, __pyx_t_7);
+ __pyx_t_7 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_fname_token, __pyx_t_3);
+ __pyx_t_3 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_fname_location, __pyx_t_9);
+ __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":237
+ * if token_type is Lexer.NAME and token == "include":
+ * fname_type, fname_token, fname_location = lexer.next()
+ * if fname_type is not Lexer.FILENAME: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected file name", fname_location)
+ * # semi_type, semi_token, semi_location = lexer.next()
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 237, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_FILENAME); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 237, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_2 = (__pyx_v_fname_type != __pyx_t_9);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ if (unlikely(__pyx_t_2)) {
+
+ /* "fontTools/feaLib/lexer.py":238
+ * fname_type, fname_token, fname_location = lexer.next()
+ * if fname_type is not Lexer.FILENAME:
+ * raise FeatureLibError("Expected file name", fname_location) # <<<<<<<<<<<<<<
+ * # semi_type, semi_token, semi_location = lexer.next()
+ * # if semi_type is not Lexer.SYMBOL or semi_token != ";":
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 238, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_3 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_8))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_8);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_8, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_3, __pyx_kp_u_Expected_file_name, __pyx_v_fname_location};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_8, __pyx_callargs+1-__pyx_t_13, 2+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 238, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ }
+ __Pyx_Raise(__pyx_t_9, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __PYX_ERR(0, 238, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":237
+ * if token_type is Lexer.NAME and token == "include":
+ * fname_type, fname_token, fname_location = lexer.next()
+ * if fname_type is not Lexer.FILENAME: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Expected file name", fname_location)
+ * # semi_type, semi_token, semi_location = lexer.next()
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":242
+ * # if semi_type is not Lexer.SYMBOL or semi_token != ";":
+ * # raise FeatureLibError("Expected ';'", semi_location)
+ * if os.path.isabs(fname_token): # <<<<<<<<<<<<<<
+ * path = fname_token
+ * else:
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_os); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 242, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_path); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 242, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_isabs); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 242, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_8))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_8);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_8, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_v_fname_token};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_8, __pyx_callargs+1-__pyx_t_13, 1+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 242, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ }
+ __pyx_t_2 = __Pyx_PyObject_IsTrue(__pyx_t_9); if (unlikely((__pyx_t_2 < 0))) __PYX_ERR(0, 242, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ if (__pyx_t_2) {
+
+ /* "fontTools/feaLib/lexer.py":243
+ * # raise FeatureLibError("Expected ';'", semi_location)
+ * if os.path.isabs(fname_token):
+ * path = fname_token # <<<<<<<<<<<<<<
+ * else:
+ * if self.includeDir is not None:
+ */
+ __Pyx_INCREF(__pyx_v_fname_token);
+ __Pyx_XDECREF_SET(__pyx_v_path, __pyx_v_fname_token);
+
+ /* "fontTools/feaLib/lexer.py":242
+ * # if semi_type is not Lexer.SYMBOL or semi_token != ";":
+ * # raise FeatureLibError("Expected ';'", semi_location)
+ * if os.path.isabs(fname_token): # <<<<<<<<<<<<<<
+ * path = fname_token
+ * else:
+ */
+ goto __pyx_L23;
+ }
+
+ /* "fontTools/feaLib/lexer.py":245
+ * path = fname_token
+ * else:
+ * if self.includeDir is not None: # <<<<<<<<<<<<<<
+ * curpath = self.includeDir
+ * elif self.featurefilepath is not None:
+ */
+ /*else*/ {
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_includeDir); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 245, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_2 = (__pyx_t_9 != Py_None);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ if (__pyx_t_2) {
+
+ /* "fontTools/feaLib/lexer.py":246
+ * else:
+ * if self.includeDir is not None:
+ * curpath = self.includeDir # <<<<<<<<<<<<<<
+ * elif self.featurefilepath is not None:
+ * curpath = os.path.dirname(self.featurefilepath)
+ */
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_includeDir); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 246, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_XDECREF_SET(__pyx_v_curpath, __pyx_t_9);
+ __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":245
+ * path = fname_token
+ * else:
+ * if self.includeDir is not None: # <<<<<<<<<<<<<<
+ * curpath = self.includeDir
+ * elif self.featurefilepath is not None:
+ */
+ goto __pyx_L24;
+ }
+
+ /* "fontTools/feaLib/lexer.py":247
+ * if self.includeDir is not None:
+ * curpath = self.includeDir
+ * elif self.featurefilepath is not None: # <<<<<<<<<<<<<<
+ * curpath = os.path.dirname(self.featurefilepath)
+ * else:
+ */
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_featurefilepath); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 247, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_2 = (__pyx_t_9 != Py_None);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ if (__pyx_t_2) {
+
+ /* "fontTools/feaLib/lexer.py":248
+ * curpath = self.includeDir
+ * elif self.featurefilepath is not None:
+ * curpath = os.path.dirname(self.featurefilepath) # <<<<<<<<<<<<<<
+ * else:
+ * # if the IncludingLexer was initialized from an in-memory
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_os); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 248, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_path); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 248, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_dirname); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 248, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_featurefilepath); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 248, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_7 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_8))) {
+ __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_8);
+ if (likely(__pyx_t_7)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8);
+ __Pyx_INCREF(__pyx_t_7);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_8, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_7, __pyx_t_3};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_8, __pyx_callargs+1-__pyx_t_13, 1+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 248, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_curpath, __pyx_t_9);
+ __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":247
+ * if self.includeDir is not None:
+ * curpath = self.includeDir
+ * elif self.featurefilepath is not None: # <<<<<<<<<<<<<<
+ * curpath = os.path.dirname(self.featurefilepath)
+ * else:
+ */
+ goto __pyx_L24;
+ }
+
+ /* "fontTools/feaLib/lexer.py":254
+ * # its filesystem path, therefore we fall back to using the
+ * # current working directory to resolve relative includes
+ * curpath = os.getcwd() # <<<<<<<<<<<<<<
+ * path = os.path.join(curpath, fname_token)
+ * if len(self.lexers_) >= 5:
+ */
+ /*else*/ {
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_os); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 254, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_getcwd); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 254, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_8 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_8)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_8);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_8, NULL};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_13, 0+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 254, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_curpath, __pyx_t_9);
+ __pyx_t_9 = 0;
+ }
+ __pyx_L24:;
+
+ /* "fontTools/feaLib/lexer.py":255
+ * # current working directory to resolve relative includes
+ * curpath = os.getcwd()
+ * path = os.path.join(curpath, fname_token) # <<<<<<<<<<<<<<
+ * if len(self.lexers_) >= 5:
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_os); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 255, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_path); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 255, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_join); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 255, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_8 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_8)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_8);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_8, __pyx_v_curpath, __pyx_v_fname_token};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_13, 2+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 255, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_XDECREF_SET(__pyx_v_path, __pyx_t_9);
+ __pyx_t_9 = 0;
+ }
+ __pyx_L23:;
+
+ /* "fontTools/feaLib/lexer.py":256
+ * curpath = os.getcwd()
+ * path = os.path.join(curpath, fname_token)
+ * if len(self.lexers_) >= 5: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try:
+ */
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 256, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_14 = PyObject_Length(__pyx_t_9); if (unlikely(__pyx_t_14 == ((Py_ssize_t)-1))) __PYX_ERR(0, 256, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __pyx_t_2 = (__pyx_t_14 >= 5);
+ if (unlikely(__pyx_t_2)) {
+
+ /* "fontTools/feaLib/lexer.py":257
+ * path = os.path.join(curpath, fname_token)
+ * if len(self.lexers_) >= 5:
+ * raise FeatureLibError("Too many recursive includes", fname_location) # <<<<<<<<<<<<<<
+ * try:
+ * self.lexers_.append(self.make_lexer_(path))
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 257, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_8 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_8)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_8);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_8, __pyx_kp_u_Too_many_recursive_includes, __pyx_v_fname_location};
+ __pyx_t_9 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_13, 2+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 257, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_Raise(__pyx_t_9, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __PYX_ERR(0, 257, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":256
+ * curpath = os.getcwd()
+ * path = os.path.join(curpath, fname_token)
+ * if len(self.lexers_) >= 5: # <<<<<<<<<<<<<<
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try:
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":258
+ * if len(self.lexers_) >= 5:
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try: # <<<<<<<<<<<<<<
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err:
+ */
+ {
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ __Pyx_ExceptionSave(&__pyx_t_6, &__pyx_t_5, &__pyx_t_4);
+ __Pyx_XGOTREF(__pyx_t_6);
+ __Pyx_XGOTREF(__pyx_t_5);
+ __Pyx_XGOTREF(__pyx_t_4);
+ /*try:*/ {
+
+ /* "fontTools/feaLib/lexer.py":259
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try:
+ * self.lexers_.append(self.make_lexer_(path)) # <<<<<<<<<<<<<<
+ * except FileNotFoundError as err:
+ * raise IncludedFeaNotFound(fname_token, fname_location) from err
+ */
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 259, __pyx_L26_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_8 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_make_lexer); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 259, __pyx_L26_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_7 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_8))) {
+ __pyx_t_7 = PyMethod_GET_SELF(__pyx_t_8);
+ if (likely(__pyx_t_7)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_8);
+ __Pyx_INCREF(__pyx_t_7);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_8, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_7, __pyx_v_path};
+ __pyx_t_3 = __Pyx_PyObject_FastCall(__pyx_t_8, __pyx_callargs+1-__pyx_t_13, 1+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 259, __pyx_L26_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ }
+ __pyx_t_15 = __Pyx_PyObject_Append(__pyx_t_9, __pyx_t_3); if (unlikely(__pyx_t_15 == ((int)-1))) __PYX_ERR(0, 259, __pyx_L26_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":258
+ * if len(self.lexers_) >= 5:
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try: # <<<<<<<<<<<<<<
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err:
+ */
+ }
+ __Pyx_XDECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __Pyx_XDECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __Pyx_XDECREF(__pyx_t_4); __pyx_t_4 = 0;
+ goto __pyx_L33_try_end;
+ __pyx_L26_error:;
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __Pyx_XDECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":260
+ * try:
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err: # <<<<<<<<<<<<<<
+ * raise IncludedFeaNotFound(fname_token, fname_location) from err
+ * else:
+ */
+ __Pyx_ErrFetch(&__pyx_t_3, &__pyx_t_9, &__pyx_t_8);
+ __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_FileNotFoundError); if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 260, __pyx_L28_except_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_11 = __Pyx_PyErr_GivenExceptionMatches(__pyx_t_3, __pyx_t_7);
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __Pyx_ErrRestore(__pyx_t_3, __pyx_t_9, __pyx_t_8);
+ __pyx_t_3 = 0; __pyx_t_9 = 0; __pyx_t_8 = 0;
+ if (__pyx_t_11) {
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ if (__Pyx_GetException(&__pyx_t_8, &__pyx_t_9, &__pyx_t_3) < 0) __PYX_ERR(0, 260, __pyx_L28_except_error)
+ __Pyx_XGOTREF(__pyx_t_8);
+ __Pyx_XGOTREF(__pyx_t_9);
+ __Pyx_XGOTREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_9);
+ __pyx_v_err = __pyx_t_9;
+ /*try:*/ {
+
+ /* "fontTools/feaLib/lexer.py":261
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err:
+ * raise IncludedFeaNotFound(fname_token, fname_location) from err # <<<<<<<<<<<<<<
+ * else:
+ * return (token_type, token, location)
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_1, __pyx_n_s_IncludedFeaNotFound); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 261, __pyx_L39_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_16 = NULL;
+ __pyx_t_13 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_1))) {
+ __pyx_t_16 = PyMethod_GET_SELF(__pyx_t_1);
+ if (likely(__pyx_t_16)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_1);
+ __Pyx_INCREF(__pyx_t_16);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_1, function);
+ __pyx_t_13 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_16, __pyx_v_fname_token, __pyx_v_fname_location};
+ __pyx_t_7 = __Pyx_PyObject_FastCall(__pyx_t_1, __pyx_callargs+1-__pyx_t_13, 2+__pyx_t_13);
+ __Pyx_XDECREF(__pyx_t_16); __pyx_t_16 = 0;
+ if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 261, __pyx_L39_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ }
+ __Pyx_Raise(__pyx_t_7, 0, 0, __pyx_v_err);
+ __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
+ __PYX_ERR(0, 261, __pyx_L39_error)
+ }
+
+ /* "fontTools/feaLib/lexer.py":260
+ * try:
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err: # <<<<<<<<<<<<<<
+ * raise IncludedFeaNotFound(fname_token, fname_location) from err
+ * else:
+ */
+ /*finally:*/ {
+ __pyx_L39_error:;
+ /*exception exit:*/{
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ __pyx_t_19 = 0; __pyx_t_20 = 0; __pyx_t_21 = 0; __pyx_t_22 = 0; __pyx_t_23 = 0; __pyx_t_24 = 0;
+ __Pyx_XDECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __Pyx_XDECREF(__pyx_t_16); __pyx_t_16 = 0;
+ __Pyx_XDECREF(__pyx_t_7); __pyx_t_7 = 0;
+ if (PY_MAJOR_VERSION >= 3) __Pyx_ExceptionSwap(&__pyx_t_22, &__pyx_t_23, &__pyx_t_24);
+ if ((PY_MAJOR_VERSION < 3) || unlikely(__Pyx_GetException(&__pyx_t_19, &__pyx_t_20, &__pyx_t_21) < 0)) __Pyx_ErrFetch(&__pyx_t_19, &__pyx_t_20, &__pyx_t_21);
+ __Pyx_XGOTREF(__pyx_t_19);
+ __Pyx_XGOTREF(__pyx_t_20);
+ __Pyx_XGOTREF(__pyx_t_21);
+ __Pyx_XGOTREF(__pyx_t_22);
+ __Pyx_XGOTREF(__pyx_t_23);
+ __Pyx_XGOTREF(__pyx_t_24);
+ __pyx_t_11 = __pyx_lineno; __pyx_t_17 = __pyx_clineno; __pyx_t_18 = __pyx_filename;
+ {
+ __Pyx_DECREF(__pyx_v_err); __pyx_v_err = 0;
+ }
+ if (PY_MAJOR_VERSION >= 3) {
+ __Pyx_XGIVEREF(__pyx_t_22);
+ __Pyx_XGIVEREF(__pyx_t_23);
+ __Pyx_XGIVEREF(__pyx_t_24);
+ __Pyx_ExceptionReset(__pyx_t_22, __pyx_t_23, __pyx_t_24);
+ }
+ __Pyx_XGIVEREF(__pyx_t_19);
+ __Pyx_XGIVEREF(__pyx_t_20);
+ __Pyx_XGIVEREF(__pyx_t_21);
+ __Pyx_ErrRestore(__pyx_t_19, __pyx_t_20, __pyx_t_21);
+ __pyx_t_19 = 0; __pyx_t_20 = 0; __pyx_t_21 = 0; __pyx_t_22 = 0; __pyx_t_23 = 0; __pyx_t_24 = 0;
+ __pyx_lineno = __pyx_t_11; __pyx_clineno = __pyx_t_17; __pyx_filename = __pyx_t_18;
+ goto __pyx_L28_except_error;
+ }
+ }
+ }
+ goto __pyx_L28_except_error;
+
+ /* "fontTools/feaLib/lexer.py":258
+ * if len(self.lexers_) >= 5:
+ * raise FeatureLibError("Too many recursive includes", fname_location)
+ * try: # <<<<<<<<<<<<<<
+ * self.lexers_.append(self.make_lexer_(path))
+ * except FileNotFoundError as err:
+ */
+ __pyx_L28_except_error:;
+ __Pyx_XGIVEREF(__pyx_t_6);
+ __Pyx_XGIVEREF(__pyx_t_5);
+ __Pyx_XGIVEREF(__pyx_t_4);
+ __Pyx_ExceptionReset(__pyx_t_6, __pyx_t_5, __pyx_t_4);
+ goto __pyx_L1_error;
+ __pyx_L33_try_end:;
+ }
+
+ /* "fontTools/feaLib/lexer.py":235
+ * self.lexers_.pop()
+ * continue
+ * if token_type is Lexer.NAME and token == "include": # <<<<<<<<<<<<<<
+ * fname_type, fname_token, fname_location = lexer.next()
+ * if fname_type is not Lexer.FILENAME:
+ */
+ goto __pyx_L17;
+ }
+
+ /* "fontTools/feaLib/lexer.py":263
+ * raise IncludedFeaNotFound(fname_token, fname_location) from err
+ * else:
+ * return (token_type, token, location) # <<<<<<<<<<<<<<
+ * raise StopIteration()
+ *
+ */
+ /*else*/ {
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 263, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_v_token_type);
+ __Pyx_GIVEREF(__pyx_v_token_type);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_v_token_type)) __PYX_ERR(0, 263, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_token);
+ __Pyx_GIVEREF(__pyx_v_token);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_v_token)) __PYX_ERR(0, 263, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_v_location);
+ __Pyx_GIVEREF(__pyx_v_location);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_v_location)) __PYX_ERR(0, 263, __pyx_L1_error);
+ __pyx_r = __pyx_t_3;
+ __pyx_t_3 = 0;
+ goto __pyx_L0;
+ }
+ __pyx_L17:;
+ __pyx_L3_continue:;
+ }
+
+ /* "fontTools/feaLib/lexer.py":264
+ * else:
+ * return (token_type, token, location)
+ * raise StopIteration() # <<<<<<<<<<<<<<
+ *
+ * @staticmethod
+ */
+ __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_builtin_StopIteration); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 264, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_Raise(__pyx_t_3, 0, 0, 0);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __PYX_ERR(0, 264, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":227
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_7);
+ __Pyx_XDECREF(__pyx_t_8);
+ __Pyx_XDECREF(__pyx_t_9);
+ __Pyx_XDECREF(__pyx_t_16);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_lexer);
+ __Pyx_XDECREF(__pyx_v_token_type);
+ __Pyx_XDECREF(__pyx_v_token);
+ __Pyx_XDECREF(__pyx_v_location);
+ __Pyx_XDECREF(__pyx_v_fname_type);
+ __Pyx_XDECREF(__pyx_v_fname_token);
+ __Pyx_XDECREF(__pyx_v_fname_location);
+ __Pyx_XDECREF(__pyx_v_path);
+ __Pyx_XDECREF(__pyx_v_curpath);
+ __Pyx_XDECREF(__pyx_v_err);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":266
+ * raise StopIteration()
+ *
+ * @staticmethod # <<<<<<<<<<<<<<
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"):
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_9make_lexer_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_8make_lexer_, "IncludingLexer.make_lexer_(file_or_path)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_9make_lexer_ = {"make_lexer_", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_9make_lexer_, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_8make_lexer_};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_9make_lexer_(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_file_or_path = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("make_lexer_ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_file_or_path,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_file_or_path)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 266, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "make_lexer_") < 0)) __PYX_ERR(0, 266, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_file_or_path = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("make_lexer_", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 266, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.make_lexer_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_8make_lexer_(__pyx_self, __pyx_v_file_or_path);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_8make_lexer_(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_file_or_path) {
+ PyObject *__pyx_v_fileobj = NULL;
+ int __pyx_v_closing;
+ PyObject *__pyx_v_filename = NULL;
+ PyObject *__pyx_v_data = NULL;
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ int __pyx_t_1;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ PyObject *__pyx_t_4 = NULL;
+ unsigned int __pyx_t_5;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("make_lexer_", 1);
+
+ /* "fontTools/feaLib/lexer.py":268
+ * @staticmethod
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"): # <<<<<<<<<<<<<<
+ * fileobj, closing = file_or_path, False
+ * else:
+ */
+ __pyx_t_1 = __Pyx_HasAttr(__pyx_v_file_or_path, __pyx_n_u_read); if (unlikely(__pyx_t_1 == ((int)-1))) __PYX_ERR(0, 268, __pyx_L1_error)
+ if (__pyx_t_1) {
+
+ /* "fontTools/feaLib/lexer.py":269
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"):
+ * fileobj, closing = file_or_path, False # <<<<<<<<<<<<<<
+ * else:
+ * filename, closing = file_or_path, True
+ */
+ __pyx_t_2 = __pyx_v_file_or_path;
+ __Pyx_INCREF(__pyx_t_2);
+ __pyx_t_1 = 0;
+ __pyx_v_fileobj = __pyx_t_2;
+ __pyx_t_2 = 0;
+ __pyx_v_closing = __pyx_t_1;
+
+ /* "fontTools/feaLib/lexer.py":268
+ * @staticmethod
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"): # <<<<<<<<<<<<<<
+ * fileobj, closing = file_or_path, False
+ * else:
+ */
+ goto __pyx_L3;
+ }
+
+ /* "fontTools/feaLib/lexer.py":271
+ * fileobj, closing = file_or_path, False
+ * else:
+ * filename, closing = file_or_path, True # <<<<<<<<<<<<<<
+ * fileobj = open(filename, "r", encoding="utf-8-sig")
+ * data = fileobj.read()
+ */
+ /*else*/ {
+ __pyx_t_2 = __pyx_v_file_or_path;
+ __Pyx_INCREF(__pyx_t_2);
+ __pyx_t_1 = 1;
+ __pyx_v_filename = __pyx_t_2;
+ __pyx_t_2 = 0;
+ __pyx_v_closing = __pyx_t_1;
+
+ /* "fontTools/feaLib/lexer.py":272
+ * else:
+ * filename, closing = file_or_path, True
+ * fileobj = open(filename, "r", encoding="utf-8-sig") # <<<<<<<<<<<<<<
+ * data = fileobj.read()
+ * filename = getattr(fileobj, "name", None)
+ */
+ __pyx_t_2 = PyTuple_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 272, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_INCREF(__pyx_v_filename);
+ __Pyx_GIVEREF(__pyx_v_filename);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_v_filename)) __PYX_ERR(0, 272, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_n_u_r);
+ __Pyx_GIVEREF(__pyx_n_u_r);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_2, 1, __pyx_n_u_r)) __PYX_ERR(0, 272, __pyx_L1_error);
+ __pyx_t_3 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 272, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ if (PyDict_SetItem(__pyx_t_3, __pyx_n_s_encoding, __pyx_kp_u_utf_8_sig) < 0) __PYX_ERR(0, 272, __pyx_L1_error)
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_open, __pyx_t_2, __pyx_t_3); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 272, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_v_fileobj = __pyx_t_4;
+ __pyx_t_4 = 0;
+ }
+ __pyx_L3:;
+
+ /* "fontTools/feaLib/lexer.py":273
+ * filename, closing = file_or_path, True
+ * fileobj = open(filename, "r", encoding="utf-8-sig")
+ * data = fileobj.read() # <<<<<<<<<<<<<<
+ * filename = getattr(fileobj, "name", None)
+ * if closing:
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_fileobj, __pyx_n_s_read); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 273, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, NULL};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 0+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 273, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __pyx_v_data = __pyx_t_4;
+ __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":274
+ * fileobj = open(filename, "r", encoding="utf-8-sig")
+ * data = fileobj.read()
+ * filename = getattr(fileobj, "name", None) # <<<<<<<<<<<<<<
+ * if closing:
+ * fileobj.close()
+ */
+ __pyx_t_4 = __Pyx_GetAttr3(__pyx_v_fileobj, __pyx_n_u_name, Py_None); if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 274, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_XDECREF_SET(__pyx_v_filename, __pyx_t_4);
+ __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":275
+ * data = fileobj.read()
+ * filename = getattr(fileobj, "name", None)
+ * if closing: # <<<<<<<<<<<<<<
+ * fileobj.close()
+ * return Lexer(data, filename)
+ */
+ if (__pyx_v_closing) {
+
+ /* "fontTools/feaLib/lexer.py":276
+ * filename = getattr(fileobj, "name", None)
+ * if closing:
+ * fileobj.close() # <<<<<<<<<<<<<<
+ * return Lexer(data, filename)
+ *
+ */
+ __pyx_t_3 = __Pyx_PyObject_GetAttrStr(__pyx_v_fileobj, __pyx_n_s_close); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 276, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_2, NULL};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 0+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 276, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+
+ /* "fontTools/feaLib/lexer.py":275
+ * data = fileobj.read()
+ * filename = getattr(fileobj, "name", None)
+ * if closing: # <<<<<<<<<<<<<<
+ * fileobj.close()
+ * return Lexer(data, filename)
+ */
+ }
+
+ /* "fontTools/feaLib/lexer.py":277
+ * if closing:
+ * fileobj.close()
+ * return Lexer(data, filename) # <<<<<<<<<<<<<<
+ *
+ * def scan_anonymous_block(self, tag):
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __Pyx_GetModuleGlobalName(__pyx_t_3, __pyx_n_s_Lexer); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 277, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_2 = NULL;
+ __pyx_t_5 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_3))) {
+ __pyx_t_2 = PyMethod_GET_SELF(__pyx_t_3);
+ if (likely(__pyx_t_2)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_3);
+ __Pyx_INCREF(__pyx_t_2);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_3, function);
+ __pyx_t_5 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[3] = {__pyx_t_2, __pyx_v_data, __pyx_v_filename};
+ __pyx_t_4 = __Pyx_PyObject_FastCall(__pyx_t_3, __pyx_callargs+1-__pyx_t_5, 2+__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_2); __pyx_t_2 = 0;
+ if (unlikely(!__pyx_t_4)) __PYX_ERR(0, 277, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ }
+ __pyx_r = __pyx_t_4;
+ __pyx_t_4 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":266
+ * raise StopIteration()
+ *
+ * @staticmethod # <<<<<<<<<<<<<<
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"):
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_4);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.make_lexer_", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XDECREF(__pyx_v_fileobj);
+ __Pyx_XDECREF(__pyx_v_filename);
+ __Pyx_XDECREF(__pyx_v_data);
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":279
+ * return Lexer(data, filename)
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * return self.lexers_[-1].scan_anonymous_block(tag)
+ *
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_11scan_anonymous_block(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_10scan_anonymous_block, "IncludingLexer.scan_anonymous_block(self, tag)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_11scan_anonymous_block = {"scan_anonymous_block", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_11scan_anonymous_block, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_14IncludingLexer_10scan_anonymous_block};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_14IncludingLexer_11scan_anonymous_block(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ PyObject *__pyx_v_tag = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[2] = {0,0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("scan_anonymous_block (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,&__pyx_n_s_tag,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 2: values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ CYTHON_FALLTHROUGH;
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 279, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ CYTHON_FALLTHROUGH;
+ case 1:
+ if (likely((values[1] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_tag)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[1]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 279, __pyx_L3_error)
+ else {
+ __Pyx_RaiseArgtupleInvalid("scan_anonymous_block", 1, 2, 2, 1); __PYX_ERR(0, 279, __pyx_L3_error)
+ }
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "scan_anonymous_block") < 0)) __PYX_ERR(0, 279, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 2)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ values[1] = __Pyx_Arg_FASTCALL(__pyx_args, 1);
+ }
+ __pyx_v_self = values[0];
+ __pyx_v_tag = values[1];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("scan_anonymous_block", 1, 2, 2, __pyx_nargs); __PYX_ERR(0, 279, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.scan_anonymous_block", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_10scan_anonymous_block(__pyx_self, __pyx_v_self, __pyx_v_tag);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_14IncludingLexer_10scan_anonymous_block(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self, PyObject *__pyx_v_tag) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ unsigned int __pyx_t_4;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("scan_anonymous_block", 1);
+
+ /* "fontTools/feaLib/lexer.py":280
+ *
+ * def scan_anonymous_block(self, tag):
+ * return self.lexers_[-1].scan_anonymous_block(tag) # <<<<<<<<<<<<<<
+ *
+ *
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 280, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_GetItemInt(__pyx_t_2, -1L, long, 1, __Pyx_PyInt_From_long, 0, 1, 1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 280, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_scan_anonymous_block); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 280, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = NULL;
+ __pyx_t_4 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (likely(PyMethod_Check(__pyx_t_2))) {
+ __pyx_t_3 = PyMethod_GET_SELF(__pyx_t_2);
+ if (likely(__pyx_t_3)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_2);
+ __Pyx_INCREF(__pyx_t_3);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_2, function);
+ __pyx_t_4 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_3, __pyx_v_tag};
+ __pyx_t_1 = __Pyx_PyObject_FastCall(__pyx_t_2, __pyx_callargs+1-__pyx_t_4, 1+__pyx_t_4);
+ __Pyx_XDECREF(__pyx_t_3); __pyx_t_3 = 0;
+ if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 280, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ }
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":279
+ * return Lexer(data, filename)
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * return self.lexers_[-1].scan_anonymous_block(tag)
+ *
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.IncludingLexer.scan_anonymous_block", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+/* "fontTools/feaLib/lexer.py":286
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * return next(self.lexers_[0])
+ */
+
+/* Python wrapper */
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_17NonIncludingLexer_1__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+); /*proto*/
+PyDoc_STRVAR(__pyx_doc_9fontTools_6feaLib_5lexer_17NonIncludingLexer___next__, "NonIncludingLexer.__next__(self)");
+static PyMethodDef __pyx_mdef_9fontTools_6feaLib_5lexer_17NonIncludingLexer_1__next__ = {"__next__", (PyCFunction)(void*)(__Pyx_PyCFunction_FastCallWithKeywords)__pyx_pw_9fontTools_6feaLib_5lexer_17NonIncludingLexer_1__next__, __Pyx_METH_FASTCALL|METH_KEYWORDS, __pyx_doc_9fontTools_6feaLib_5lexer_17NonIncludingLexer___next__};
+static PyObject *__pyx_pw_9fontTools_6feaLib_5lexer_17NonIncludingLexer_1__next__(PyObject *__pyx_self,
+#if CYTHON_METH_FASTCALL
+PyObject *const *__pyx_args, Py_ssize_t __pyx_nargs, PyObject *__pyx_kwds
+#else
+PyObject *__pyx_args, PyObject *__pyx_kwds
+#endif
+) {
+ PyObject *__pyx_v_self = 0;
+ #if !CYTHON_METH_FASTCALL
+ CYTHON_UNUSED Py_ssize_t __pyx_nargs;
+ #endif
+ CYTHON_UNUSED PyObject *const *__pyx_kwvalues;
+ PyObject* values[1] = {0};
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ PyObject *__pyx_r = 0;
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__next__ (wrapper)", 0);
+ #if !CYTHON_METH_FASTCALL
+ #if CYTHON_ASSUME_SAFE_MACROS
+ __pyx_nargs = PyTuple_GET_SIZE(__pyx_args);
+ #else
+ __pyx_nargs = PyTuple_Size(__pyx_args); if (unlikely(__pyx_nargs < 0)) return NULL;
+ #endif
+ #endif
+ __pyx_kwvalues = __Pyx_KwValues_FASTCALL(__pyx_args, __pyx_nargs);
+ {
+ PyObject **__pyx_pyargnames[] = {&__pyx_n_s_self,0};
+ if (__pyx_kwds) {
+ Py_ssize_t kw_args;
+ switch (__pyx_nargs) {
+ case 1: values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ CYTHON_FALLTHROUGH;
+ case 0: break;
+ default: goto __pyx_L5_argtuple_error;
+ }
+ kw_args = __Pyx_NumKwargs_FASTCALL(__pyx_kwds);
+ switch (__pyx_nargs) {
+ case 0:
+ if (likely((values[0] = __Pyx_GetKwValue_FASTCALL(__pyx_kwds, __pyx_kwvalues, __pyx_n_s_self)) != 0)) {
+ (void)__Pyx_Arg_NewRef_FASTCALL(values[0]);
+ kw_args--;
+ }
+ else if (unlikely(PyErr_Occurred())) __PYX_ERR(0, 286, __pyx_L3_error)
+ else goto __pyx_L5_argtuple_error;
+ }
+ if (unlikely(kw_args > 0)) {
+ const Py_ssize_t kwd_pos_args = __pyx_nargs;
+ if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_kwvalues, __pyx_pyargnames, 0, values + 0, kwd_pos_args, "__next__") < 0)) __PYX_ERR(0, 286, __pyx_L3_error)
+ }
+ } else if (unlikely(__pyx_nargs != 1)) {
+ goto __pyx_L5_argtuple_error;
+ } else {
+ values[0] = __Pyx_Arg_FASTCALL(__pyx_args, 0);
+ }
+ __pyx_v_self = values[0];
+ }
+ goto __pyx_L6_skip;
+ __pyx_L5_argtuple_error:;
+ __Pyx_RaiseArgtupleInvalid("__next__", 1, 1, 1, __pyx_nargs); __PYX_ERR(0, 286, __pyx_L3_error)
+ __pyx_L6_skip:;
+ goto __pyx_L4_argument_unpacking_done;
+ __pyx_L3_error:;
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.NonIncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __Pyx_RefNannyFinishContext();
+ return NULL;
+ __pyx_L4_argument_unpacking_done:;
+ __pyx_r = __pyx_pf_9fontTools_6feaLib_5lexer_17NonIncludingLexer___next__(__pyx_self, __pyx_v_self);
+
+ /* function exit code */
+ {
+ Py_ssize_t __pyx_temp;
+ for (__pyx_temp=0; __pyx_temp < (Py_ssize_t)(sizeof(values)/sizeof(values[0])); ++__pyx_temp) {
+ __Pyx_Arg_XDECREF_FASTCALL(values[__pyx_temp]);
+ }
+ }
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyObject *__pyx_pf_9fontTools_6feaLib_5lexer_17NonIncludingLexer___next__(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_self) {
+ PyObject *__pyx_r = NULL;
+ __Pyx_RefNannyDeclarations
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannySetupContext("__next__", 1);
+
+ /* "fontTools/feaLib/lexer.py":287
+ *
+ * def __next__(self): # Python 3
+ * return next(self.lexers_[0]) # <<<<<<<<<<<<<<
+ */
+ __Pyx_XDECREF(__pyx_r);
+ __pyx_t_1 = __Pyx_PyObject_GetAttrStr(__pyx_v_self, __pyx_n_s_lexers); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 287, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __pyx_t_2 = __Pyx_GetItemInt(__pyx_t_1, 0, long, 1, __Pyx_PyInt_From_long, 0, 0, 1); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 287, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
+ __pyx_t_1 = __Pyx_PyIter_Next(__pyx_t_2); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 287, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_1);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_r = __pyx_t_1;
+ __pyx_t_1 = 0;
+ goto __pyx_L0;
+
+ /* "fontTools/feaLib/lexer.py":286
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * return next(self.lexers_[0])
+ */
+
+ /* function exit code */
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_1);
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_AddTraceback("fontTools.feaLib.lexer.NonIncludingLexer.__next__", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ __pyx_r = NULL;
+ __pyx_L0:;
+ __Pyx_XGIVEREF(__pyx_r);
+ __Pyx_RefNannyFinishContext();
+ return __pyx_r;
+}
+
+static PyMethodDef __pyx_methods[] = {
+ {0, 0, 0, 0}
+};
+#ifndef CYTHON_SMALL_CODE
+#if defined(__clang__)
+ #define CYTHON_SMALL_CODE
+#elif defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
+ #define CYTHON_SMALL_CODE __attribute__((cold))
+#else
+ #define CYTHON_SMALL_CODE
+#endif
+#endif
+/* #### Code section: pystring_table ### */
+
+static int __Pyx_CreateStringTabAndInitStrings(void) {
+ __Pyx_StringTabEntry __pyx_string_tab[] = {
+ {&__pyx_kp_u_, __pyx_k_, sizeof(__pyx_k_), 0, 1, 0, 0},
+ {&__pyx_kp_u_0, __pyx_k_0, sizeof(__pyx_k_0), 0, 1, 0, 0},
+ {&__pyx_kp_u_0123456789, __pyx_k_0123456789, sizeof(__pyx_k_0123456789), 0, 1, 0, 0},
+ {&__pyx_kp_u_0123456789ABCDEFabcdef, __pyx_k_0123456789ABCDEFabcdef, sizeof(__pyx_k_0123456789ABCDEFabcdef), 0, 1, 0, 0},
+ {&__pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef, __pyx_k_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef, sizeof(__pyx_k_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef), 0, 1, 0, 1},
+ {&__pyx_n_s_ANONYMOUS_BLOCK, __pyx_k_ANONYMOUS_BLOCK, sizeof(__pyx_k_ANONYMOUS_BLOCK), 0, 0, 1, 1},
+ {&__pyx_n_u_ANONYMOUS_BLOCK, __pyx_k_ANONYMOUS_BLOCK, sizeof(__pyx_k_ANONYMOUS_BLOCK), 0, 1, 0, 1},
+ {&__pyx_kp_s_A_Lexer_that_follows_include_sta, __pyx_k_A_Lexer_that_follows_include_sta, sizeof(__pyx_k_A_Lexer_that_follows_include_sta), 0, 0, 1, 0},
+ {&__pyx_kp_u_A_Za_z_0_9, __pyx_k_A_Za_z_0_9, sizeof(__pyx_k_A_Za_z_0_9), 0, 1, 0, 0},
+ {&__pyx_n_s_CHAR_DIGIT, __pyx_k_CHAR_DIGIT, sizeof(__pyx_k_CHAR_DIGIT), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_HEXDIGIT, __pyx_k_CHAR_HEXDIGIT, sizeof(__pyx_k_CHAR_HEXDIGIT), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_LETTER, __pyx_k_CHAR_LETTER, sizeof(__pyx_k_CHAR_LETTER), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_NAME_CONTINUATION, __pyx_k_CHAR_NAME_CONTINUATION, sizeof(__pyx_k_CHAR_NAME_CONTINUATION), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_NAME_START, __pyx_k_CHAR_NAME_START, sizeof(__pyx_k_CHAR_NAME_START), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_NEWLINE, __pyx_k_CHAR_NEWLINE, sizeof(__pyx_k_CHAR_NEWLINE), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_SYMBOL, __pyx_k_CHAR_SYMBOL, sizeof(__pyx_k_CHAR_SYMBOL), 0, 0, 1, 1},
+ {&__pyx_n_s_CHAR_WHITESPACE, __pyx_k_CHAR_WHITESPACE, sizeof(__pyx_k_CHAR_WHITESPACE), 0, 0, 1, 1},
+ {&__pyx_n_s_CID, __pyx_k_CID, sizeof(__pyx_k_CID), 0, 0, 1, 1},
+ {&__pyx_n_u_CID, __pyx_k_CID, sizeof(__pyx_k_CID), 0, 1, 0, 1},
+ {&__pyx_n_s_COMMENT, __pyx_k_COMMENT, sizeof(__pyx_k_COMMENT), 0, 0, 1, 1},
+ {&__pyx_n_u_COMMENT, __pyx_k_COMMENT, sizeof(__pyx_k_COMMENT), 0, 1, 0, 1},
+ {&__pyx_kp_u_Expected_after_file_name, __pyx_k_Expected_after_file_name, sizeof(__pyx_k_Expected_after_file_name), 0, 1, 0, 0},
+ {&__pyx_kp_u_Expected_before_file_name, __pyx_k_Expected_before_file_name, sizeof(__pyx_k_Expected_before_file_name), 0, 1, 0, 0},
+ {&__pyx_kp_u_Expected_file_name, __pyx_k_Expected_file_name, sizeof(__pyx_k_Expected_file_name), 0, 1, 0, 0},
+ {&__pyx_kp_u_Expected_glyph_class_name, __pyx_k_Expected_glyph_class_name, sizeof(__pyx_k_Expected_glyph_class_name), 0, 1, 0, 0},
+ {&__pyx_kp_u_Expected_s_to_terminate_anonymou, __pyx_k_Expected_s_to_terminate_anonymou, sizeof(__pyx_k_Expected_s_to_terminate_anonymou), 0, 1, 0, 0},
+ {&__pyx_kp_u_Expected_to_terminate_string, __pyx_k_Expected_to_terminate_string, sizeof(__pyx_k_Expected_to_terminate_string), 0, 1, 0, 0},
+ {&__pyx_n_s_FILENAME, __pyx_k_FILENAME, sizeof(__pyx_k_FILENAME), 0, 0, 1, 1},
+ {&__pyx_n_u_FILENAME, __pyx_k_FILENAME, sizeof(__pyx_k_FILENAME), 0, 1, 0, 1},
+ {&__pyx_n_s_FLOAT, __pyx_k_FLOAT, sizeof(__pyx_k_FLOAT), 0, 0, 1, 1},
+ {&__pyx_n_u_FLOAT, __pyx_k_FLOAT, sizeof(__pyx_k_FLOAT), 0, 1, 0, 1},
+ {&__pyx_n_s_FeatureLibError, __pyx_k_FeatureLibError, sizeof(__pyx_k_FeatureLibError), 0, 0, 1, 1},
+ {&__pyx_n_s_FeatureLibLocation, __pyx_k_FeatureLibLocation, sizeof(__pyx_k_FeatureLibLocation), 0, 0, 1, 1},
+ {&__pyx_n_s_FileNotFoundError, __pyx_k_FileNotFoundError, sizeof(__pyx_k_FileNotFoundError), 0, 0, 1, 1},
+ {&__pyx_n_s_GLYPHCLASS, __pyx_k_GLYPHCLASS, sizeof(__pyx_k_GLYPHCLASS), 0, 0, 1, 1},
+ {&__pyx_n_u_GLYPHCLASS, __pyx_k_GLYPHCLASS, sizeof(__pyx_k_GLYPHCLASS), 0, 1, 0, 1},
+ {&__pyx_kp_u_Glyph_class_names_must_consist_o, __pyx_k_Glyph_class_names_must_consist_o, sizeof(__pyx_k_Glyph_class_names_must_consist_o), 0, 1, 0, 0},
+ {&__pyx_n_s_HEXADECIMAL, __pyx_k_HEXADECIMAL, sizeof(__pyx_k_HEXADECIMAL), 0, 0, 1, 1},
+ {&__pyx_n_u_HEXADECIMAL, __pyx_k_HEXADECIMAL, sizeof(__pyx_k_HEXADECIMAL), 0, 1, 0, 1},
+ {&__pyx_n_s_ImportError, __pyx_k_ImportError, sizeof(__pyx_k_ImportError), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludedFeaNotFound, __pyx_k_IncludedFeaNotFound, sizeof(__pyx_k_IncludedFeaNotFound), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer, __pyx_k_IncludingLexer, sizeof(__pyx_k_IncludingLexer), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer___init, __pyx_k_IncludingLexer___init, sizeof(__pyx_k_IncludingLexer___init), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer___iter, __pyx_k_IncludingLexer___iter, sizeof(__pyx_k_IncludingLexer___iter), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer___next, __pyx_k_IncludingLexer___next, sizeof(__pyx_k_IncludingLexer___next), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer_make_lexer, __pyx_k_IncludingLexer_make_lexer, sizeof(__pyx_k_IncludingLexer_make_lexer), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer_next, __pyx_k_IncludingLexer_next, sizeof(__pyx_k_IncludingLexer_next), 0, 0, 1, 1},
+ {&__pyx_n_s_IncludingLexer_scan_anonymous_bl, __pyx_k_IncludingLexer_scan_anonymous_bl, sizeof(__pyx_k_IncludingLexer_scan_anonymous_bl), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer, __pyx_k_Lexer, sizeof(__pyx_k_Lexer), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer___init, __pyx_k_Lexer___init, sizeof(__pyx_k_Lexer___init), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer___iter, __pyx_k_Lexer___iter, sizeof(__pyx_k_Lexer___iter), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer___next, __pyx_k_Lexer___next, sizeof(__pyx_k_Lexer___next), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_location, __pyx_k_Lexer_location, sizeof(__pyx_k_Lexer_location), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_next, __pyx_k_Lexer_next, sizeof(__pyx_k_Lexer_next), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_next_2, __pyx_k_Lexer_next_2, sizeof(__pyx_k_Lexer_next_2), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_scan_anonymous_block, __pyx_k_Lexer_scan_anonymous_block, sizeof(__pyx_k_Lexer_scan_anonymous_block), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_scan_over, __pyx_k_Lexer_scan_over, sizeof(__pyx_k_Lexer_scan_over), 0, 0, 1, 1},
+ {&__pyx_n_s_Lexer_scan_until, __pyx_k_Lexer_scan_until, sizeof(__pyx_k_Lexer_scan_until), 0, 0, 1, 1},
+ {&__pyx_kp_s_Lexer_that_does_not_follow_inclu, __pyx_k_Lexer_that_does_not_follow_inclu, sizeof(__pyx_k_Lexer_that_does_not_follow_inclu), 0, 0, 1, 0},
+ {&__pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_k_Lib_fontTools_feaLib_lexer_py, sizeof(__pyx_k_Lib_fontTools_feaLib_lexer_py), 0, 0, 1, 0},
+ {&__pyx_n_s_MODE_FILENAME, __pyx_k_MODE_FILENAME, sizeof(__pyx_k_MODE_FILENAME), 0, 0, 1, 1},
+ {&__pyx_n_s_MODE_NORMAL, __pyx_k_MODE_NORMAL, sizeof(__pyx_k_MODE_NORMAL), 0, 0, 1, 1},
+ {&__pyx_n_s_NAME, __pyx_k_NAME, sizeof(__pyx_k_NAME), 0, 0, 1, 1},
+ {&__pyx_n_u_NAME, __pyx_k_NAME, sizeof(__pyx_k_NAME), 0, 1, 0, 1},
+ {&__pyx_n_s_NEWLINE, __pyx_k_NEWLINE, sizeof(__pyx_k_NEWLINE), 0, 0, 1, 1},
+ {&__pyx_n_u_NEWLINE, __pyx_k_NEWLINE, sizeof(__pyx_k_NEWLINE), 0, 1, 0, 1},
+ {&__pyx_n_u_NORMAL, __pyx_k_NORMAL, sizeof(__pyx_k_NORMAL), 0, 1, 0, 1},
+ {&__pyx_n_s_NUMBER, __pyx_k_NUMBER, sizeof(__pyx_k_NUMBER), 0, 0, 1, 1},
+ {&__pyx_n_u_NUMBER, __pyx_k_NUMBER, sizeof(__pyx_k_NUMBER), 0, 1, 0, 1},
+ {&__pyx_n_s_NUMBERS, __pyx_k_NUMBERS, sizeof(__pyx_k_NUMBERS), 0, 0, 1, 1},
+ {&__pyx_n_s_NonIncludingLexer, __pyx_k_NonIncludingLexer, sizeof(__pyx_k_NonIncludingLexer), 0, 0, 1, 1},
+ {&__pyx_n_s_NonIncludingLexer___next, __pyx_k_NonIncludingLexer___next, sizeof(__pyx_k_NonIncludingLexer___next), 0, 0, 1, 1},
+ {&__pyx_n_s_OCTAL, __pyx_k_OCTAL, sizeof(__pyx_k_OCTAL), 0, 0, 1, 1},
+ {&__pyx_n_u_OCTAL, __pyx_k_OCTAL, sizeof(__pyx_k_OCTAL), 0, 1, 0, 1},
+ {&__pyx_n_s_RE_GLYPHCLASS, __pyx_k_RE_GLYPHCLASS, sizeof(__pyx_k_RE_GLYPHCLASS), 0, 0, 1, 1},
+ {&__pyx_n_s_STRING, __pyx_k_STRING, sizeof(__pyx_k_STRING), 0, 0, 1, 1},
+ {&__pyx_n_u_STRING, __pyx_k_STRING, sizeof(__pyx_k_STRING), 0, 1, 0, 1},
+ {&__pyx_n_s_SYMBOL, __pyx_k_SYMBOL, sizeof(__pyx_k_SYMBOL), 0, 0, 1, 1},
+ {&__pyx_n_u_SYMBOL, __pyx_k_SYMBOL, sizeof(__pyx_k_SYMBOL), 0, 1, 0, 1},
+ {&__pyx_n_s_StopIteration, __pyx_k_StopIteration, sizeof(__pyx_k_StopIteration), 0, 0, 1, 1},
+ {&__pyx_kp_u_Too_many_recursive_includes, __pyx_k_Too_many_recursive_includes, sizeof(__pyx_k_Too_many_recursive_includes), 0, 1, 0, 0},
+ {&__pyx_kp_u_Unexpected_character_r, __pyx_k_Unexpected_character_r, sizeof(__pyx_k_Unexpected_character_r), 0, 1, 0, 0},
+ {&__pyx_kp_u__10, __pyx_k__10, sizeof(__pyx_k__10), 0, 1, 0, 0},
+ {&__pyx_kp_u__11, __pyx_k__11, sizeof(__pyx_k__11), 0, 1, 0, 0},
+ {&__pyx_kp_u__12, __pyx_k__12, sizeof(__pyx_k__12), 0, 1, 0, 0},
+ {&__pyx_n_s__13, __pyx_k__13, sizeof(__pyx_k__13), 0, 0, 1, 1},
+ {&__pyx_kp_u__16, __pyx_k__16, sizeof(__pyx_k__16), 0, 1, 0, 0},
+ {&__pyx_kp_u__17, __pyx_k__17, sizeof(__pyx_k__17), 0, 1, 0, 0},
+ {&__pyx_kp_u__18, __pyx_k__18, sizeof(__pyx_k__18), 0, 1, 0, 0},
+ {&__pyx_kp_u__19, __pyx_k__19, sizeof(__pyx_k__19), 0, 1, 0, 0},
+ {&__pyx_kp_u__2, __pyx_k__2, sizeof(__pyx_k__2), 0, 1, 0, 0},
+ {&__pyx_kp_u__20, __pyx_k__20, sizeof(__pyx_k__20), 0, 1, 0, 0},
+ {&__pyx_kp_u__3, __pyx_k__3, sizeof(__pyx_k__3), 0, 1, 0, 0},
+ {&__pyx_kp_u__4, __pyx_k__4, sizeof(__pyx_k__4), 0, 1, 0, 0},
+ {&__pyx_kp_u__5, __pyx_k__5, sizeof(__pyx_k__5), 0, 1, 0, 0},
+ {&__pyx_n_s__51, __pyx_k__51, sizeof(__pyx_k__51), 0, 0, 1, 1},
+ {&__pyx_kp_u__6, __pyx_k__6, sizeof(__pyx_k__6), 0, 1, 0, 0},
+ {&__pyx_kp_u__7, __pyx_k__7, sizeof(__pyx_k__7), 0, 1, 0, 0},
+ {&__pyx_kp_u__8, __pyx_k__8, sizeof(__pyx_k__8), 0, 1, 0, 0},
+ {&__pyx_kp_u__9, __pyx_k__9, sizeof(__pyx_k__9), 0, 1, 0, 0},
+ {&__pyx_n_s_append, __pyx_k_append, sizeof(__pyx_k_append), 0, 0, 1, 1},
+ {&__pyx_n_s_asyncio_coroutines, __pyx_k_asyncio_coroutines, sizeof(__pyx_k_asyncio_coroutines), 0, 0, 1, 1},
+ {&__pyx_n_s_class_getitem, __pyx_k_class_getitem, sizeof(__pyx_k_class_getitem), 0, 0, 1, 1},
+ {&__pyx_n_s_cline_in_traceback, __pyx_k_cline_in_traceback, sizeof(__pyx_k_cline_in_traceback), 0, 0, 1, 1},
+ {&__pyx_n_s_close, __pyx_k_close, sizeof(__pyx_k_close), 0, 0, 1, 1},
+ {&__pyx_n_s_closing, __pyx_k_closing, sizeof(__pyx_k_closing), 0, 0, 1, 1},
+ {&__pyx_n_s_column, __pyx_k_column, sizeof(__pyx_k_column), 0, 0, 1, 1},
+ {&__pyx_n_s_compile, __pyx_k_compile, sizeof(__pyx_k_compile), 0, 0, 1, 1},
+ {&__pyx_n_s_cur_char, __pyx_k_cur_char, sizeof(__pyx_k_cur_char), 0, 0, 1, 1},
+ {&__pyx_n_s_curpath, __pyx_k_curpath, sizeof(__pyx_k_curpath), 0, 0, 1, 1},
+ {&__pyx_n_s_data, __pyx_k_data, sizeof(__pyx_k_data), 0, 0, 1, 1},
+ {&__pyx_n_s_dict, __pyx_k_dict, sizeof(__pyx_k_dict), 0, 0, 1, 1},
+ {&__pyx_n_s_dirname, __pyx_k_dirname, sizeof(__pyx_k_dirname), 0, 0, 1, 1},
+ {&__pyx_n_s_doc, __pyx_k_doc, sizeof(__pyx_k_doc), 0, 0, 1, 1},
+ {&__pyx_n_s_encoding, __pyx_k_encoding, sizeof(__pyx_k_encoding), 0, 0, 1, 1},
+ {&__pyx_n_s_err, __pyx_k_err, sizeof(__pyx_k_err), 0, 0, 1, 1},
+ {&__pyx_n_s_featurefile, __pyx_k_featurefile, sizeof(__pyx_k_featurefile), 0, 0, 1, 1},
+ {&__pyx_n_s_featurefilepath, __pyx_k_featurefilepath, sizeof(__pyx_k_featurefilepath), 0, 0, 1, 1},
+ {&__pyx_kp_u_features, __pyx_k_features, sizeof(__pyx_k_features), 0, 1, 0, 0},
+ {&__pyx_n_s_file_or_path, __pyx_k_file_or_path, sizeof(__pyx_k_file_or_path), 0, 0, 1, 1},
+ {&__pyx_n_s_filename, __pyx_k_filename, sizeof(__pyx_k_filename), 0, 0, 1, 1},
+ {&__pyx_n_s_filename_2, __pyx_k_filename_2, sizeof(__pyx_k_filename_2), 0, 0, 1, 1},
+ {&__pyx_n_s_fileobj, __pyx_k_fileobj, sizeof(__pyx_k_fileobj), 0, 0, 1, 1},
+ {&__pyx_n_s_fname_location, __pyx_k_fname_location, sizeof(__pyx_k_fname_location), 0, 0, 1, 1},
+ {&__pyx_n_s_fname_token, __pyx_k_fname_token, sizeof(__pyx_k_fname_token), 0, 0, 1, 1},
+ {&__pyx_n_s_fname_type, __pyx_k_fname_type, sizeof(__pyx_k_fname_type), 0, 0, 1, 1},
+ {&__pyx_n_s_fontTools_feaLib_error, __pyx_k_fontTools_feaLib_error, sizeof(__pyx_k_fontTools_feaLib_error), 0, 0, 1, 1},
+ {&__pyx_n_s_fontTools_feaLib_lexer, __pyx_k_fontTools_feaLib_lexer, sizeof(__pyx_k_fontTools_feaLib_lexer), 0, 0, 1, 1},
+ {&__pyx_n_s_fontTools_feaLib_location, __pyx_k_fontTools_feaLib_location, sizeof(__pyx_k_fontTools_feaLib_location), 0, 0, 1, 1},
+ {&__pyx_n_s_getcwd, __pyx_k_getcwd, sizeof(__pyx_k_getcwd), 0, 0, 1, 1},
+ {&__pyx_n_s_glyphclass, __pyx_k_glyphclass, sizeof(__pyx_k_glyphclass), 0, 0, 1, 1},
+ {&__pyx_n_s_import, __pyx_k_import, sizeof(__pyx_k_import), 0, 0, 1, 1},
+ {&__pyx_n_u_include, __pyx_k_include, sizeof(__pyx_k_include), 0, 1, 0, 1},
+ {&__pyx_n_s_includeDir, __pyx_k_includeDir, sizeof(__pyx_k_includeDir), 0, 0, 1, 1},
+ {&__pyx_n_s_init, __pyx_k_init, sizeof(__pyx_k_init), 0, 0, 1, 1},
+ {&__pyx_n_s_init_subclass, __pyx_k_init_subclass, sizeof(__pyx_k_init_subclass), 0, 0, 1, 1},
+ {&__pyx_n_s_initializing, __pyx_k_initializing, sizeof(__pyx_k_initializing), 0, 0, 1, 1},
+ {&__pyx_n_s_is_coroutine, __pyx_k_is_coroutine, sizeof(__pyx_k_is_coroutine), 0, 0, 1, 1},
+ {&__pyx_n_s_isabs, __pyx_k_isabs, sizeof(__pyx_k_isabs), 0, 0, 1, 1},
+ {&__pyx_n_s_iter, __pyx_k_iter, sizeof(__pyx_k_iter), 0, 0, 1, 1},
+ {&__pyx_n_s_join, __pyx_k_join, sizeof(__pyx_k_join), 0, 0, 1, 1},
+ {&__pyx_n_s_lexer, __pyx_k_lexer, sizeof(__pyx_k_lexer), 0, 0, 1, 1},
+ {&__pyx_n_s_lexers, __pyx_k_lexers, sizeof(__pyx_k_lexers), 0, 0, 1, 1},
+ {&__pyx_n_s_limit, __pyx_k_limit, sizeof(__pyx_k_limit), 0, 0, 1, 1},
+ {&__pyx_n_s_line, __pyx_k_line, sizeof(__pyx_k_line), 0, 0, 1, 1},
+ {&__pyx_n_s_line_start, __pyx_k_line_start, sizeof(__pyx_k_line_start), 0, 0, 1, 1},
+ {&__pyx_n_s_location, __pyx_k_location, sizeof(__pyx_k_location), 0, 0, 1, 1},
+ {&__pyx_n_s_location_2, __pyx_k_location_2, sizeof(__pyx_k_location_2), 0, 0, 1, 1},
+ {&__pyx_n_s_main, __pyx_k_main, sizeof(__pyx_k_main), 0, 0, 1, 1},
+ {&__pyx_n_s_make_lexer, __pyx_k_make_lexer, sizeof(__pyx_k_make_lexer), 0, 0, 1, 1},
+ {&__pyx_n_s_match, __pyx_k_match, sizeof(__pyx_k_match), 0, 0, 1, 1},
+ {&__pyx_n_s_maxsplit, __pyx_k_maxsplit, sizeof(__pyx_k_maxsplit), 0, 0, 1, 1},
+ {&__pyx_n_s_metaclass, __pyx_k_metaclass, sizeof(__pyx_k_metaclass), 0, 0, 1, 1},
+ {&__pyx_n_s_mode, __pyx_k_mode, sizeof(__pyx_k_mode), 0, 0, 1, 1},
+ {&__pyx_n_s_module, __pyx_k_module, sizeof(__pyx_k_module), 0, 0, 1, 1},
+ {&__pyx_n_s_mro_entries, __pyx_k_mro_entries, sizeof(__pyx_k_mro_entries), 0, 0, 1, 1},
+ {&__pyx_n_u_name, __pyx_k_name, sizeof(__pyx_k_name), 0, 1, 0, 1},
+ {&__pyx_n_s_name_2, __pyx_k_name_2, sizeof(__pyx_k_name_2), 0, 0, 1, 1},
+ {&__pyx_n_s_next, __pyx_k_next, sizeof(__pyx_k_next), 0, 0, 1, 1},
+ {&__pyx_n_s_next_2, __pyx_k_next_2, sizeof(__pyx_k_next_2), 0, 0, 1, 1},
+ {&__pyx_n_s_next_3, __pyx_k_next_3, sizeof(__pyx_k_next_3), 0, 0, 1, 1},
+ {&__pyx_n_s_next_char, __pyx_k_next_char, sizeof(__pyx_k_next_char), 0, 0, 1, 1},
+ {&__pyx_n_s_object, __pyx_k_object, sizeof(__pyx_k_object), 0, 0, 1, 1},
+ {&__pyx_n_s_open, __pyx_k_open, sizeof(__pyx_k_open), 0, 0, 1, 1},
+ {&__pyx_n_s_os, __pyx_k_os, sizeof(__pyx_k_os), 0, 0, 1, 1},
+ {&__pyx_n_s_p, __pyx_k_p, sizeof(__pyx_k_p), 0, 0, 1, 1},
+ {&__pyx_n_s_path, __pyx_k_path, sizeof(__pyx_k_path), 0, 0, 1, 1},
+ {&__pyx_n_s_pop, __pyx_k_pop, sizeof(__pyx_k_pop), 0, 0, 1, 1},
+ {&__pyx_n_s_pos, __pyx_k_pos, sizeof(__pyx_k_pos), 0, 0, 1, 1},
+ {&__pyx_n_s_prepare, __pyx_k_prepare, sizeof(__pyx_k_prepare), 0, 0, 1, 1},
+ {&__pyx_n_s_qualname, __pyx_k_qualname, sizeof(__pyx_k_qualname), 0, 0, 1, 1},
+ {&__pyx_n_u_r, __pyx_k_r, sizeof(__pyx_k_r), 0, 1, 0, 1},
+ {&__pyx_n_s_re, __pyx_k_re, sizeof(__pyx_k_re), 0, 0, 1, 1},
+ {&__pyx_n_s_read, __pyx_k_read, sizeof(__pyx_k_read), 0, 0, 1, 1},
+ {&__pyx_n_u_read, __pyx_k_read, sizeof(__pyx_k_read), 0, 1, 0, 1},
+ {&__pyx_n_s_regexp, __pyx_k_regexp, sizeof(__pyx_k_regexp), 0, 0, 1, 1},
+ {&__pyx_kp_u_s, __pyx_k_s, sizeof(__pyx_k_s), 0, 1, 0, 0},
+ {&__pyx_kp_u_s_2, __pyx_k_s_2, sizeof(__pyx_k_s_2), 0, 1, 0, 0},
+ {&__pyx_n_s_scan_anonymous_block, __pyx_k_scan_anonymous_block, sizeof(__pyx_k_scan_anonymous_block), 0, 0, 1, 1},
+ {&__pyx_n_s_scan_over, __pyx_k_scan_over, sizeof(__pyx_k_scan_over), 0, 0, 1, 1},
+ {&__pyx_n_s_scan_until, __pyx_k_scan_until, sizeof(__pyx_k_scan_until), 0, 0, 1, 1},
+ {&__pyx_n_s_self, __pyx_k_self, sizeof(__pyx_k_self), 0, 0, 1, 1},
+ {&__pyx_n_s_set_name, __pyx_k_set_name, sizeof(__pyx_k_set_name), 0, 0, 1, 1},
+ {&__pyx_n_s_spec, __pyx_k_spec, sizeof(__pyx_k_spec), 0, 0, 1, 1},
+ {&__pyx_n_s_split, __pyx_k_split, sizeof(__pyx_k_split), 0, 0, 1, 1},
+ {&__pyx_n_s_start, __pyx_k_start, sizeof(__pyx_k_start), 0, 0, 1, 1},
+ {&__pyx_n_s_staticmethod, __pyx_k_staticmethod, sizeof(__pyx_k_staticmethod), 0, 0, 1, 1},
+ {&__pyx_n_s_stop_at, __pyx_k_stop_at, sizeof(__pyx_k_stop_at), 0, 0, 1, 1},
+ {&__pyx_n_s_string, __pyx_k_string, sizeof(__pyx_k_string), 0, 0, 1, 1},
+ {&__pyx_n_s_strip, __pyx_k_strip, sizeof(__pyx_k_strip), 0, 0, 1, 1},
+ {&__pyx_n_s_sub, __pyx_k_sub, sizeof(__pyx_k_sub), 0, 0, 1, 1},
+ {&__pyx_n_s_super, __pyx_k_super, sizeof(__pyx_k_super), 0, 0, 1, 1},
+ {&__pyx_n_s_tag, __pyx_k_tag, sizeof(__pyx_k_tag), 0, 0, 1, 1},
+ {&__pyx_n_s_test, __pyx_k_test, sizeof(__pyx_k_test), 0, 0, 1, 1},
+ {&__pyx_n_s_text, __pyx_k_text, sizeof(__pyx_k_text), 0, 0, 1, 1},
+ {&__pyx_n_s_text_2, __pyx_k_text_2, sizeof(__pyx_k_text_2), 0, 0, 1, 1},
+ {&__pyx_n_s_text_length, __pyx_k_text_length, sizeof(__pyx_k_text_length), 0, 0, 1, 1},
+ {&__pyx_n_s_token, __pyx_k_token, sizeof(__pyx_k_token), 0, 0, 1, 1},
+ {&__pyx_n_s_token_type, __pyx_k_token_type, sizeof(__pyx_k_token_type), 0, 0, 1, 1},
+ {&__pyx_kp_u_utf_8_sig, __pyx_k_utf_8_sig, sizeof(__pyx_k_utf_8_sig), 0, 1, 0, 0},
+ {&__pyx_n_s_valid, __pyx_k_valid, sizeof(__pyx_k_valid), 0, 0, 1, 1},
+ {&__pyx_n_u_xX, __pyx_k_xX, sizeof(__pyx_k_xX), 0, 1, 0, 1},
+ {0, 0, 0, 0, 0, 0, 0}
+ };
+ return __Pyx_InitStrings(__pyx_string_tab);
+}
+/* #### Code section: cached_builtins ### */
+static CYTHON_SMALL_CODE int __Pyx_InitCachedBuiltins(void) {
+ __pyx_builtin_ImportError = __Pyx_GetBuiltinName(__pyx_n_s_ImportError); if (!__pyx_builtin_ImportError) __PYX_ERR(0, 8, __pyx_L1_error)
+ __pyx_builtin_object = __Pyx_GetBuiltinName(__pyx_n_s_object); if (!__pyx_builtin_object) __PYX_ERR(0, 13, __pyx_L1_error)
+ __pyx_builtin_staticmethod = __Pyx_GetBuiltinName(__pyx_n_s_staticmethod); if (!__pyx_builtin_staticmethod) __PYX_ERR(0, 266, __pyx_L1_error)
+ __pyx_builtin_StopIteration = __Pyx_GetBuiltinName(__pyx_n_s_StopIteration); if (!__pyx_builtin_StopIteration) __PYX_ERR(0, 75, __pyx_L1_error)
+ __pyx_builtin_open = __Pyx_GetBuiltinName(__pyx_n_s_open); if (!__pyx_builtin_open) __PYX_ERR(0, 272, __pyx_L1_error)
+ return 0;
+ __pyx_L1_error:;
+ return -1;
+}
+/* #### Code section: cached_constants ### */
+
+static CYTHON_SMALL_CODE int __Pyx_InitCachedConstants(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0);
+
+ /* "fontTools/feaLib/lexer.py":13
+ *
+ *
+ * class Lexer(object): # <<<<<<<<<<<<<<
+ * NUMBER = "NUMBER"
+ * HEXADECIMAL = "HEXADECIMAL"
+ */
+ __pyx_tuple__14 = PyTuple_Pack(1, __pyx_builtin_object); if (unlikely(!__pyx_tuple__14)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__14);
+ __Pyx_GIVEREF(__pyx_tuple__14);
+ __pyx_tuple__15 = PyTuple_Pack(1, __pyx_builtin_object); if (unlikely(!__pyx_tuple__15)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__15);
+ __Pyx_GIVEREF(__pyx_tuple__15);
+
+ /* "fontTools/feaLib/lexer.py":43
+ * MODE_FILENAME_ = "FILENAME"
+ *
+ * def __init__(self, text, filename): # <<<<<<<<<<<<<<
+ * self.filename_ = filename
+ * self.line_ = 1
+ */
+ __pyx_tuple__21 = PyTuple_Pack(3, __pyx_n_s_self, __pyx_n_s_text, __pyx_n_s_filename); if (unlikely(!__pyx_tuple__21)) __PYX_ERR(0, 43, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__21);
+ __Pyx_GIVEREF(__pyx_tuple__21);
+ __pyx_codeobj__22 = (PyObject*)__Pyx_PyCode_New(3, 0, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__21, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_init, 43, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__22)) __PYX_ERR(0, 43, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":52
+ * self.mode_ = Lexer.MODE_NORMAL_
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+ __pyx_tuple__23 = PyTuple_Pack(1, __pyx_n_s_self); if (unlikely(!__pyx_tuple__23)) __PYX_ERR(0, 52, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__23);
+ __Pyx_GIVEREF(__pyx_tuple__23);
+ __pyx_codeobj__24 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__23, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_iter, 52, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__24)) __PYX_ERR(0, 52, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":55
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+ __pyx_codeobj__25 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__23, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next_3, 55, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__25)) __PYX_ERR(0, 55, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":58
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while True:
+ * token_type, token, location = self.next_()
+ */
+ __pyx_tuple__26 = PyTuple_Pack(4, __pyx_n_s_self, __pyx_n_s_token_type, __pyx_n_s_token, __pyx_n_s_location_2); if (unlikely(!__pyx_tuple__26)) __PYX_ERR(0, 58, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__26);
+ __Pyx_GIVEREF(__pyx_tuple__26);
+ __pyx_codeobj__27 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 4, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__26, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next, 58, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__27)) __PYX_ERR(0, 58, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":64
+ * return (token_type, token, location)
+ *
+ * def location_(self): # <<<<<<<<<<<<<<
+ * column = self.pos_ - self.line_start_ + 1
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ */
+ __pyx_tuple__28 = PyTuple_Pack(2, __pyx_n_s_self, __pyx_n_s_column); if (unlikely(!__pyx_tuple__28)) __PYX_ERR(0, 64, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__28);
+ __Pyx_GIVEREF(__pyx_tuple__28);
+ __pyx_codeobj__29 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__28, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_location, 64, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__29)) __PYX_ERR(0, 64, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":68
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ *
+ * def next_(self): # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_()
+ */
+ __pyx_tuple__30 = PyTuple_Pack(10, __pyx_n_s_self, __pyx_n_s_location_2, __pyx_n_s_start, __pyx_n_s_text, __pyx_n_s_limit, __pyx_n_s_cur_char, __pyx_n_s_next_char, __pyx_n_s_glyphclass, __pyx_n_s_token, __pyx_n_s_string); if (unlikely(!__pyx_tuple__30)) __PYX_ERR(0, 68, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__30);
+ __Pyx_GIVEREF(__pyx_tuple__30);
+ __pyx_codeobj__31 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 10, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__30, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next_2, 68, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__31)) __PYX_ERR(0, 68, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":165
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+ *
+ * def scan_over_(self, valid): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid:
+ */
+ __pyx_tuple__32 = PyTuple_Pack(3, __pyx_n_s_self, __pyx_n_s_valid, __pyx_n_s_p); if (unlikely(!__pyx_tuple__32)) __PYX_ERR(0, 165, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__32);
+ __Pyx_GIVEREF(__pyx_tuple__32);
+ __pyx_codeobj__33 = (PyObject*)__Pyx_PyCode_New(2, 0, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__32, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_scan_over, 165, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__33)) __PYX_ERR(0, 165, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":171
+ * self.pos_ = p
+ *
+ * def scan_until_(self, stop_at): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ */
+ __pyx_tuple__34 = PyTuple_Pack(3, __pyx_n_s_self, __pyx_n_s_stop_at, __pyx_n_s_p); if (unlikely(!__pyx_tuple__34)) __PYX_ERR(0, 171, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__34);
+ __Pyx_GIVEREF(__pyx_tuple__34);
+ __pyx_codeobj__35 = (PyObject*)__Pyx_PyCode_New(2, 0, 0, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__34, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_scan_until, 171, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__35)) __PYX_ERR(0, 171, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":177
+ * self.pos_ = p
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * location = self.location_()
+ * tag = tag.strip()
+ */
+ __pyx_tuple__36 = PyTuple_Pack(5, __pyx_n_s_self, __pyx_n_s_tag, __pyx_n_s_location_2, __pyx_n_s_regexp, __pyx_n_s_split); if (unlikely(!__pyx_tuple__36)) __PYX_ERR(0, 177, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__36);
+ __Pyx_GIVEREF(__pyx_tuple__36);
+ __pyx_codeobj__37 = (PyObject*)__Pyx_PyCode_New(2, 0, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__36, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_scan_anonymous_block, 177, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__37)) __PYX_ERR(0, 177, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":192
+ *
+ *
+ * class IncludingLexer(object): # <<<<<<<<<<<<<<
+ * """A Lexer that follows include statements.
+ *
+ */
+ __pyx_tuple__38 = PyTuple_Pack(1, __pyx_builtin_object); if (unlikely(!__pyx_tuple__38)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__38);
+ __Pyx_GIVEREF(__pyx_tuple__38);
+ __pyx_tuple__39 = PyTuple_Pack(1, __pyx_builtin_object); if (unlikely(!__pyx_tuple__39)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__39);
+ __Pyx_GIVEREF(__pyx_tuple__39);
+
+ /* "fontTools/feaLib/lexer.py":207
+ * """
+ *
+ * def __init__(self, featurefile, *, includeDir=None): # <<<<<<<<<<<<<<
+ * """Initializes an IncludingLexer.
+ *
+ */
+ __pyx_tuple__40 = PyTuple_Pack(3, __pyx_n_s_self, __pyx_n_s_featurefile, __pyx_n_s_includeDir); if (unlikely(!__pyx_tuple__40)) __PYX_ERR(0, 207, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__40);
+ __Pyx_GIVEREF(__pyx_tuple__40);
+ __pyx_codeobj__41 = (PyObject*)__Pyx_PyCode_New(2, 0, 1, 3, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__40, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_init, 207, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__41)) __PYX_ERR(0, 207, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":221
+ * self.includeDir = includeDir
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+ __pyx_codeobj__42 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__23, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_iter, 221, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__42)) __PYX_ERR(0, 221, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":224
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+ __pyx_codeobj__43 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__23, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next_3, 224, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__43)) __PYX_ERR(0, 224, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":227
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ */
+ __pyx_tuple__44 = PyTuple_Pack(11, __pyx_n_s_self, __pyx_n_s_lexer, __pyx_n_s_token_type, __pyx_n_s_token, __pyx_n_s_location_2, __pyx_n_s_fname_type, __pyx_n_s_fname_token, __pyx_n_s_fname_location, __pyx_n_s_path, __pyx_n_s_curpath, __pyx_n_s_err); if (unlikely(!__pyx_tuple__44)) __PYX_ERR(0, 227, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__44);
+ __Pyx_GIVEREF(__pyx_tuple__44);
+ __pyx_codeobj__45 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 11, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__44, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next, 227, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__45)) __PYX_ERR(0, 227, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":266
+ * raise StopIteration()
+ *
+ * @staticmethod # <<<<<<<<<<<<<<
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"):
+ */
+ __pyx_tuple__46 = PyTuple_Pack(5, __pyx_n_s_file_or_path, __pyx_n_s_fileobj, __pyx_n_s_closing, __pyx_n_s_filename, __pyx_n_s_data); if (unlikely(!__pyx_tuple__46)) __PYX_ERR(0, 266, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__46);
+ __Pyx_GIVEREF(__pyx_tuple__46);
+ __pyx_codeobj__47 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 5, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__46, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_make_lexer, 266, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__47)) __PYX_ERR(0, 266, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":279
+ * return Lexer(data, filename)
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * return self.lexers_[-1].scan_anonymous_block(tag)
+ *
+ */
+ __pyx_tuple__48 = PyTuple_Pack(2, __pyx_n_s_self, __pyx_n_s_tag); if (unlikely(!__pyx_tuple__48)) __PYX_ERR(0, 279, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_tuple__48);
+ __Pyx_GIVEREF(__pyx_tuple__48);
+ __pyx_codeobj__49 = (PyObject*)__Pyx_PyCode_New(2, 0, 0, 2, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__48, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_scan_anonymous_block, 279, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__49)) __PYX_ERR(0, 279, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":286
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * return next(self.lexers_[0])
+ */
+ __pyx_codeobj__50 = (PyObject*)__Pyx_PyCode_New(1, 0, 0, 1, 0, CO_OPTIMIZED|CO_NEWLOCALS, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__23, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_Lib_fontTools_feaLib_lexer_py, __pyx_n_s_next, 286, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__50)) __PYX_ERR(0, 286, __pyx_L1_error)
+ __Pyx_RefNannyFinishContext();
+ return 0;
+ __pyx_L1_error:;
+ __Pyx_RefNannyFinishContext();
+ return -1;
+}
+/* #### Code section: init_constants ### */
+
+static CYTHON_SMALL_CODE int __Pyx_InitConstants(void) {
+ __pyx_umethod_PyList_Type_pop.type = (PyObject*)&PyList_Type;
+ __pyx_umethod_PyList_Type_pop.method_name = &__pyx_n_s_pop;
+ if (__Pyx_CreateStringTabAndInitStrings() < 0) __PYX_ERR(0, 1, __pyx_L1_error);
+ __pyx_int_0 = PyInt_FromLong(0); if (unlikely(!__pyx_int_0)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_int_1 = PyInt_FromLong(1); if (unlikely(!__pyx_int_1)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_int_2 = PyInt_FromLong(2); if (unlikely(!__pyx_int_2)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_int_8 = PyInt_FromLong(8); if (unlikely(!__pyx_int_8)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_int_10 = PyInt_FromLong(10); if (unlikely(!__pyx_int_10)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_int_16 = PyInt_FromLong(16); if (unlikely(!__pyx_int_16)) __PYX_ERR(0, 1, __pyx_L1_error)
+ return 0;
+ __pyx_L1_error:;
+ return -1;
+}
+/* #### Code section: init_globals ### */
+
+static CYTHON_SMALL_CODE int __Pyx_InitGlobals(void) {
+ return 0;
+}
+/* #### Code section: init_module ### */
+
+static CYTHON_SMALL_CODE int __Pyx_modinit_global_init_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_variable_export_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_function_export_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_type_init_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_type_import_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_variable_import_code(void); /*proto*/
+static CYTHON_SMALL_CODE int __Pyx_modinit_function_import_code(void); /*proto*/
+
+static int __Pyx_modinit_global_init_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_global_init_code", 0);
+ /*--- Global init code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_variable_export_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_variable_export_code", 0);
+ /*--- Variable export code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_function_export_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_function_export_code", 0);
+ /*--- Function export code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_type_init_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_type_init_code", 0);
+ /*--- Type init code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_type_import_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_type_import_code", 0);
+ /*--- Type import code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_variable_import_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_variable_import_code", 0);
+ /*--- Variable import code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+static int __Pyx_modinit_function_import_code(void) {
+ __Pyx_RefNannyDeclarations
+ __Pyx_RefNannySetupContext("__Pyx_modinit_function_import_code", 0);
+ /*--- Function import code ---*/
+ __Pyx_RefNannyFinishContext();
+ return 0;
+}
+
+
+#if PY_MAJOR_VERSION >= 3
+#if CYTHON_PEP489_MULTI_PHASE_INIT
+static PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def); /*proto*/
+static int __pyx_pymod_exec_lexer(PyObject* module); /*proto*/
+static PyModuleDef_Slot __pyx_moduledef_slots[] = {
+ {Py_mod_create, (void*)__pyx_pymod_create},
+ {Py_mod_exec, (void*)__pyx_pymod_exec_lexer},
+ {0, NULL}
+};
+#endif
+
+#ifdef __cplusplus
+namespace {
+ struct PyModuleDef __pyx_moduledef =
+ #else
+ static struct PyModuleDef __pyx_moduledef =
+ #endif
+ {
+ PyModuleDef_HEAD_INIT,
+ "lexer",
+ 0, /* m_doc */
+ #if CYTHON_PEP489_MULTI_PHASE_INIT
+ 0, /* m_size */
+ #elif CYTHON_USE_MODULE_STATE
+ sizeof(__pyx_mstate), /* m_size */
+ #else
+ -1, /* m_size */
+ #endif
+ __pyx_methods /* m_methods */,
+ #if CYTHON_PEP489_MULTI_PHASE_INIT
+ __pyx_moduledef_slots, /* m_slots */
+ #else
+ NULL, /* m_reload */
+ #endif
+ #if CYTHON_USE_MODULE_STATE
+ __pyx_m_traverse, /* m_traverse */
+ __pyx_m_clear, /* m_clear */
+ NULL /* m_free */
+ #else
+ NULL, /* m_traverse */
+ NULL, /* m_clear */
+ NULL /* m_free */
+ #endif
+ };
+ #ifdef __cplusplus
+} /* anonymous namespace */
+#endif
+#endif
+
+#ifndef CYTHON_NO_PYINIT_EXPORT
+#define __Pyx_PyMODINIT_FUNC PyMODINIT_FUNC
+#elif PY_MAJOR_VERSION < 3
+#ifdef __cplusplus
+#define __Pyx_PyMODINIT_FUNC extern "C" void
+#else
+#define __Pyx_PyMODINIT_FUNC void
+#endif
+#else
+#ifdef __cplusplus
+#define __Pyx_PyMODINIT_FUNC extern "C" PyObject *
+#else
+#define __Pyx_PyMODINIT_FUNC PyObject *
+#endif
+#endif
+
+
+#if PY_MAJOR_VERSION < 3
+__Pyx_PyMODINIT_FUNC initlexer(void) CYTHON_SMALL_CODE; /*proto*/
+__Pyx_PyMODINIT_FUNC initlexer(void)
+#else
+__Pyx_PyMODINIT_FUNC PyInit_lexer(void) CYTHON_SMALL_CODE; /*proto*/
+__Pyx_PyMODINIT_FUNC PyInit_lexer(void)
+#if CYTHON_PEP489_MULTI_PHASE_INIT
+{
+ return PyModuleDef_Init(&__pyx_moduledef);
+}
+static CYTHON_SMALL_CODE int __Pyx_check_single_interpreter(void) {
+ #if PY_VERSION_HEX >= 0x030700A1
+ static PY_INT64_T main_interpreter_id = -1;
+ PY_INT64_T current_id = PyInterpreterState_GetID(PyThreadState_Get()->interp);
+ if (main_interpreter_id == -1) {
+ main_interpreter_id = current_id;
+ return (unlikely(current_id == -1)) ? -1 : 0;
+ } else if (unlikely(main_interpreter_id != current_id))
+ #else
+ static PyInterpreterState *main_interpreter = NULL;
+ PyInterpreterState *current_interpreter = PyThreadState_Get()->interp;
+ if (!main_interpreter) {
+ main_interpreter = current_interpreter;
+ } else if (unlikely(main_interpreter != current_interpreter))
+ #endif
+ {
+ PyErr_SetString(
+ PyExc_ImportError,
+ "Interpreter change detected - this module can only be loaded into one interpreter per process.");
+ return -1;
+ }
+ return 0;
+}
+#if CYTHON_COMPILING_IN_LIMITED_API
+static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *module, const char* from_name, const char* to_name, int allow_none)
+#else
+static CYTHON_SMALL_CODE int __Pyx_copy_spec_to_module(PyObject *spec, PyObject *moddict, const char* from_name, const char* to_name, int allow_none)
+#endif
+{
+ PyObject *value = PyObject_GetAttrString(spec, from_name);
+ int result = 0;
+ if (likely(value)) {
+ if (allow_none || value != Py_None) {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ result = PyModule_AddObject(module, to_name, value);
+#else
+ result = PyDict_SetItemString(moddict, to_name, value);
+#endif
+ }
+ Py_DECREF(value);
+ } else if (PyErr_ExceptionMatches(PyExc_AttributeError)) {
+ PyErr_Clear();
+ } else {
+ result = -1;
+ }
+ return result;
+}
+static CYTHON_SMALL_CODE PyObject* __pyx_pymod_create(PyObject *spec, PyModuleDef *def) {
+ PyObject *module = NULL, *moddict, *modname;
+ CYTHON_UNUSED_VAR(def);
+ if (__Pyx_check_single_interpreter())
+ return NULL;
+ if (__pyx_m)
+ return __Pyx_NewRef(__pyx_m);
+ modname = PyObject_GetAttrString(spec, "name");
+ if (unlikely(!modname)) goto bad;
+ module = PyModule_NewObject(modname);
+ Py_DECREF(modname);
+ if (unlikely(!module)) goto bad;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ moddict = module;
+#else
+ moddict = PyModule_GetDict(module);
+ if (unlikely(!moddict)) goto bad;
+#endif
+ if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "loader", "__loader__", 1) < 0)) goto bad;
+ if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "origin", "__file__", 1) < 0)) goto bad;
+ if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "parent", "__package__", 1) < 0)) goto bad;
+ if (unlikely(__Pyx_copy_spec_to_module(spec, moddict, "submodule_search_locations", "__path__", 0) < 0)) goto bad;
+ return module;
+bad:
+ Py_XDECREF(module);
+ return NULL;
+}
+
+
+static CYTHON_SMALL_CODE int __pyx_pymod_exec_lexer(PyObject *__pyx_pyinit_module)
+#endif
+#endif
+{
+ int stringtab_initialized = 0;
+ #if CYTHON_USE_MODULE_STATE
+ int pystate_addmodule_run = 0;
+ #endif
+ PyObject *__pyx_t_1 = NULL;
+ PyObject *__pyx_t_2 = NULL;
+ PyObject *__pyx_t_3 = NULL;
+ PyObject *__pyx_t_4 = NULL;
+ PyObject *__pyx_t_5 = NULL;
+ PyObject *__pyx_t_6 = NULL;
+ PyObject *__pyx_t_7 = NULL;
+ PyObject *__pyx_t_8 = NULL;
+ PyObject *__pyx_t_9 = NULL;
+ PyObject *__pyx_t_10 = NULL;
+ unsigned int __pyx_t_11;
+ int __pyx_lineno = 0;
+ const char *__pyx_filename = NULL;
+ int __pyx_clineno = 0;
+ __Pyx_RefNannyDeclarations
+ #if CYTHON_PEP489_MULTI_PHASE_INIT
+ if (__pyx_m) {
+ if (__pyx_m == __pyx_pyinit_module) return 0;
+ PyErr_SetString(PyExc_RuntimeError, "Module 'lexer' has already been imported. Re-initialisation is not supported.");
+ return -1;
+ }
+ #elif PY_MAJOR_VERSION >= 3
+ if (__pyx_m) return __Pyx_NewRef(__pyx_m);
+ #endif
+ /*--- Module creation code ---*/
+ #if CYTHON_PEP489_MULTI_PHASE_INIT
+ __pyx_m = __pyx_pyinit_module;
+ Py_INCREF(__pyx_m);
+ #else
+ #if PY_MAJOR_VERSION < 3
+ __pyx_m = Py_InitModule4("lexer", __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m);
+ if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error)
+ #elif CYTHON_USE_MODULE_STATE
+ __pyx_t_1 = PyModule_Create(&__pyx_moduledef); if (unlikely(!__pyx_t_1)) __PYX_ERR(0, 1, __pyx_L1_error)
+ {
+ int add_module_result = PyState_AddModule(__pyx_t_1, &__pyx_moduledef);
+ __pyx_t_1 = 0; /* transfer ownership from __pyx_t_1 to "lexer" pseudovariable */
+ if (unlikely((add_module_result < 0))) __PYX_ERR(0, 1, __pyx_L1_error)
+ pystate_addmodule_run = 1;
+ }
+ #else
+ __pyx_m = PyModule_Create(&__pyx_moduledef);
+ if (unlikely(!__pyx_m)) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #endif
+ CYTHON_UNUSED_VAR(__pyx_t_1);
+ __pyx_d = PyModule_GetDict(__pyx_m); if (unlikely(!__pyx_d)) __PYX_ERR(0, 1, __pyx_L1_error)
+ Py_INCREF(__pyx_d);
+ __pyx_b = __Pyx_PyImport_AddModuleRef(__Pyx_BUILTIN_MODULE_NAME); if (unlikely(!__pyx_b)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_cython_runtime = __Pyx_PyImport_AddModuleRef((const char *) "cython_runtime"); if (unlikely(!__pyx_cython_runtime)) __PYX_ERR(0, 1, __pyx_L1_error)
+ if (PyObject_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #if CYTHON_REFNANNY
+__Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny");
+if (!__Pyx_RefNanny) {
+ PyErr_Clear();
+ __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny");
+ if (!__Pyx_RefNanny)
+ Py_FatalError("failed to import 'refnanny' module");
+}
+#endif
+ __Pyx_RefNannySetupContext("__Pyx_PyMODINIT_FUNC PyInit_lexer(void)", 0);
+ if (__Pyx_check_binary_version(__PYX_LIMITED_VERSION_HEX, __Pyx_get_runtime_version(), CYTHON_COMPILING_IN_LIMITED_API) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #ifdef __Pxy_PyFrame_Initialize_Offsets
+ __Pxy_PyFrame_Initialize_Offsets();
+ #endif
+ __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __pyx_empty_unicode = PyUnicode_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_unicode)) __PYX_ERR(0, 1, __pyx_L1_error)
+ #ifdef __Pyx_CyFunction_USED
+ if (__pyx_CyFunction_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #ifdef __Pyx_FusedFunction_USED
+ if (__pyx_FusedFunction_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #ifdef __Pyx_Coroutine_USED
+ if (__pyx_Coroutine_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #ifdef __Pyx_Generator_USED
+ if (__pyx_Generator_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #ifdef __Pyx_AsyncGen_USED
+ if (__pyx_AsyncGen_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ #ifdef __Pyx_StopAsyncIteration_USED
+ if (__pyx_StopAsyncIteration_init(__pyx_m) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ /*--- Library function declarations ---*/
+ /*--- Threads initialization code ---*/
+ #if defined(WITH_THREAD) && PY_VERSION_HEX < 0x030700F0 && defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS
+ PyEval_InitThreads();
+ #endif
+ /*--- Initialize various global constants etc. ---*/
+ if (__Pyx_InitConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ stringtab_initialized = 1;
+ if (__Pyx_InitGlobals() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #if PY_MAJOR_VERSION < 3 && (__PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT)
+ if (__Pyx_init_sys_getdefaultencoding_params() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+ if (__pyx_module_is_main_fontTools__feaLib__lexer) {
+ if (PyObject_SetAttr(__pyx_m, __pyx_n_s_name_2, __pyx_n_s_main) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ }
+ #if PY_MAJOR_VERSION >= 3
+ {
+ PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) __PYX_ERR(0, 1, __pyx_L1_error)
+ if (!PyDict_GetItemString(modules, "fontTools.feaLib.lexer")) {
+ if (unlikely((PyDict_SetItemString(modules, "fontTools.feaLib.lexer", __pyx_m) < 0))) __PYX_ERR(0, 1, __pyx_L1_error)
+ }
+ }
+ #endif
+ /*--- Builtin init code ---*/
+ if (__Pyx_InitCachedBuiltins() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ /*--- Constants init code ---*/
+ if (__Pyx_InitCachedConstants() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ /*--- Global type/function init code ---*/
+ (void)__Pyx_modinit_global_init_code();
+ (void)__Pyx_modinit_variable_export_code();
+ (void)__Pyx_modinit_function_export_code();
+ (void)__Pyx_modinit_type_init_code();
+ (void)__Pyx_modinit_type_import_code();
+ (void)__Pyx_modinit_variable_import_code();
+ (void)__Pyx_modinit_function_import_code();
+ /*--- Execution code ---*/
+ #if defined(__Pyx_Generator_USED) || defined(__Pyx_Coroutine_USED)
+ if (__Pyx_patch_abc() < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ #endif
+
+ /* "fontTools/feaLib/lexer.py":1
+ * from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound # <<<<<<<<<<<<<<
+ * from fontTools.feaLib.location import FeatureLibLocation
+ * import re
+ */
+ __pyx_t_2 = PyList_New(2); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_INCREF(__pyx_n_s_FeatureLibError);
+ __Pyx_GIVEREF(__pyx_n_s_FeatureLibError);
+ if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 0, __pyx_n_s_FeatureLibError)) __PYX_ERR(0, 1, __pyx_L1_error);
+ __Pyx_INCREF(__pyx_n_s_IncludedFeaNotFound);
+ __Pyx_GIVEREF(__pyx_n_s_IncludedFeaNotFound);
+ if (__Pyx_PyList_SET_ITEM(__pyx_t_2, 1, __pyx_n_s_IncludedFeaNotFound)) __PYX_ERR(0, 1, __pyx_L1_error);
+ __pyx_t_3 = __Pyx_Import(__pyx_n_s_fontTools_feaLib_error, __pyx_t_2, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_3, __pyx_n_s_FeatureLibError); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_FeatureLibError, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_ImportFrom(__pyx_t_3, __pyx_n_s_IncludedFeaNotFound); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_IncludedFeaNotFound, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":2
+ * from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound
+ * from fontTools.feaLib.location import FeatureLibLocation # <<<<<<<<<<<<<<
+ * import re
+ * import os
+ */
+ __pyx_t_3 = PyList_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 2, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_INCREF(__pyx_n_s_FeatureLibLocation);
+ __Pyx_GIVEREF(__pyx_n_s_FeatureLibLocation);
+ if (__Pyx_PyList_SET_ITEM(__pyx_t_3, 0, __pyx_n_s_FeatureLibLocation)) __PYX_ERR(0, 2, __pyx_L1_error);
+ __pyx_t_2 = __Pyx_Import(__pyx_n_s_fontTools_feaLib_location, __pyx_t_3, 0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 2, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __pyx_t_3 = __Pyx_ImportFrom(__pyx_t_2, __pyx_n_s_FeatureLibLocation); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 2, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_FeatureLibLocation, __pyx_t_3) < 0) __PYX_ERR(0, 2, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":3
+ * from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound
+ * from fontTools.feaLib.location import FeatureLibLocation
+ * import re # <<<<<<<<<<<<<<
+ * import os
+ *
+ */
+ __pyx_t_2 = __Pyx_ImportDottedModule(__pyx_n_s_re, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 3, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_re, __pyx_t_2) < 0) __PYX_ERR(0, 3, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":4
+ * from fontTools.feaLib.location import FeatureLibLocation
+ * import re
+ * import os # <<<<<<<<<<<<<<
+ *
+ * try:
+ */
+ __pyx_t_2 = __Pyx_ImportDottedModule(__pyx_n_s_os, NULL); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 4, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_os, __pyx_t_2) < 0) __PYX_ERR(0, 4, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":6
+ * import os
+ *
+ * try: # <<<<<<<<<<<<<<
+ * import cython
+ * except ImportError:
+ */
+ {
+ (void)__pyx_t_1; (void)__pyx_t_4; (void)__pyx_t_5; /* mark used */
+ /*try:*/ {
+
+ /* "fontTools/feaLib/lexer.py":7
+ *
+ * try:
+ * import cython # <<<<<<<<<<<<<<
+ * except ImportError:
+ * # if cython not installed, use mock module with no-op decorators and types
+ */
+ }
+ }
+
+ /* "fontTools/feaLib/lexer.py":13
+ *
+ *
+ * class Lexer(object): # <<<<<<<<<<<<<<
+ * NUMBER = "NUMBER"
+ * HEXADECIMAL = "HEXADECIMAL"
+ */
+ __pyx_t_2 = __Pyx_PEP560_update_bases(__pyx_tuple__15); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_CalculateMetaclass(NULL, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_6 = __Pyx_Py3MetaclassPrepare(__pyx_t_3, __pyx_t_2, __pyx_n_s_Lexer, __pyx_n_s_Lexer, (PyObject *) NULL, __pyx_n_s_fontTools_feaLib_lexer, (PyObject *) NULL); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_6);
+ if (__pyx_t_2 != __pyx_tuple__15) {
+ if (unlikely((PyDict_SetItemString(__pyx_t_6, "__orig_bases__", __pyx_tuple__15) < 0))) __PYX_ERR(0, 13, __pyx_L1_error)
+ }
+
+ /* "fontTools/feaLib/lexer.py":14
+ *
+ * class Lexer(object):
+ * NUMBER = "NUMBER" # <<<<<<<<<<<<<<
+ * HEXADECIMAL = "HEXADECIMAL"
+ * OCTAL = "OCTAL"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_NUMBER, __pyx_n_u_NUMBER) < 0) __PYX_ERR(0, 14, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":15
+ * class Lexer(object):
+ * NUMBER = "NUMBER"
+ * HEXADECIMAL = "HEXADECIMAL" # <<<<<<<<<<<<<<
+ * OCTAL = "OCTAL"
+ * NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_HEXADECIMAL, __pyx_n_u_HEXADECIMAL) < 0) __PYX_ERR(0, 15, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":16
+ * NUMBER = "NUMBER"
+ * HEXADECIMAL = "HEXADECIMAL"
+ * OCTAL = "OCTAL" # <<<<<<<<<<<<<<
+ * NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
+ * FLOAT = "FLOAT"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_OCTAL, __pyx_n_u_OCTAL) < 0) __PYX_ERR(0, 16, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":17
+ * HEXADECIMAL = "HEXADECIMAL"
+ * OCTAL = "OCTAL"
+ * NUMBERS = (NUMBER, HEXADECIMAL, OCTAL) # <<<<<<<<<<<<<<
+ * FLOAT = "FLOAT"
+ * STRING = "STRING"
+ */
+ __pyx_t_7 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_NUMBER);
+ if (unlikely(!__pyx_t_7)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_7, __pyx_n_s_NUMBER);
+ }
+ if (unlikely(!__pyx_t_7)) __PYX_ERR(0, 17, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_7);
+ __pyx_t_8 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_HEXADECIMAL);
+ if (unlikely(!__pyx_t_8)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_HEXADECIMAL);
+ }
+ if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 17, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_9 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_OCTAL);
+ if (unlikely(!__pyx_t_9)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_OCTAL);
+ }
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 17, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_10 = PyTuple_New(3); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 17, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __Pyx_GIVEREF(__pyx_t_7);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_10, 0, __pyx_t_7)) __PYX_ERR(0, 17, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_8);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_10, 1, __pyx_t_8)) __PYX_ERR(0, 17, __pyx_L1_error);
+ __Pyx_GIVEREF(__pyx_t_9);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_10, 2, __pyx_t_9)) __PYX_ERR(0, 17, __pyx_L1_error);
+ __pyx_t_7 = 0;
+ __pyx_t_8 = 0;
+ __pyx_t_9 = 0;
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_NUMBERS, __pyx_t_10) < 0) __PYX_ERR(0, 17, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":18
+ * OCTAL = "OCTAL"
+ * NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
+ * FLOAT = "FLOAT" # <<<<<<<<<<<<<<
+ * STRING = "STRING"
+ * NAME = "NAME"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_FLOAT, __pyx_n_u_FLOAT) < 0) __PYX_ERR(0, 18, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":19
+ * NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
+ * FLOAT = "FLOAT"
+ * STRING = "STRING" # <<<<<<<<<<<<<<
+ * NAME = "NAME"
+ * FILENAME = "FILENAME"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_STRING, __pyx_n_u_STRING) < 0) __PYX_ERR(0, 19, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":20
+ * FLOAT = "FLOAT"
+ * STRING = "STRING"
+ * NAME = "NAME" # <<<<<<<<<<<<<<
+ * FILENAME = "FILENAME"
+ * GLYPHCLASS = "GLYPHCLASS"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_NAME, __pyx_n_u_NAME) < 0) __PYX_ERR(0, 20, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":21
+ * STRING = "STRING"
+ * NAME = "NAME"
+ * FILENAME = "FILENAME" # <<<<<<<<<<<<<<
+ * GLYPHCLASS = "GLYPHCLASS"
+ * CID = "CID"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_FILENAME, __pyx_n_u_FILENAME) < 0) __PYX_ERR(0, 21, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":22
+ * NAME = "NAME"
+ * FILENAME = "FILENAME"
+ * GLYPHCLASS = "GLYPHCLASS" # <<<<<<<<<<<<<<
+ * CID = "CID"
+ * SYMBOL = "SYMBOL"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_GLYPHCLASS, __pyx_n_u_GLYPHCLASS) < 0) __PYX_ERR(0, 22, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":23
+ * FILENAME = "FILENAME"
+ * GLYPHCLASS = "GLYPHCLASS"
+ * CID = "CID" # <<<<<<<<<<<<<<
+ * SYMBOL = "SYMBOL"
+ * COMMENT = "COMMENT"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CID, __pyx_n_u_CID) < 0) __PYX_ERR(0, 23, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":24
+ * GLYPHCLASS = "GLYPHCLASS"
+ * CID = "CID"
+ * SYMBOL = "SYMBOL" # <<<<<<<<<<<<<<
+ * COMMENT = "COMMENT"
+ * NEWLINE = "NEWLINE"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_SYMBOL, __pyx_n_u_SYMBOL) < 0) __PYX_ERR(0, 24, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":25
+ * CID = "CID"
+ * SYMBOL = "SYMBOL"
+ * COMMENT = "COMMENT" # <<<<<<<<<<<<<<
+ * NEWLINE = "NEWLINE"
+ * ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_COMMENT, __pyx_n_u_COMMENT) < 0) __PYX_ERR(0, 25, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":26
+ * SYMBOL = "SYMBOL"
+ * COMMENT = "COMMENT"
+ * NEWLINE = "NEWLINE" # <<<<<<<<<<<<<<
+ * ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK"
+ *
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_NEWLINE, __pyx_n_u_NEWLINE) < 0) __PYX_ERR(0, 26, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":27
+ * COMMENT = "COMMENT"
+ * NEWLINE = "NEWLINE"
+ * ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK" # <<<<<<<<<<<<<<
+ *
+ * CHAR_WHITESPACE_ = " \t"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_ANONYMOUS_BLOCK, __pyx_n_u_ANONYMOUS_BLOCK) < 0) __PYX_ERR(0, 27, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":29
+ * ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK"
+ *
+ * CHAR_WHITESPACE_ = " \t" # <<<<<<<<<<<<<<
+ * CHAR_NEWLINE_ = "\r\n"
+ * CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_WHITESPACE, __pyx_kp_u__16) < 0) __PYX_ERR(0, 29, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":30
+ *
+ * CHAR_WHITESPACE_ = " \t"
+ * CHAR_NEWLINE_ = "\r\n" # <<<<<<<<<<<<<<
+ * CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
+ * CHAR_DIGIT_ = "0123456789"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_NEWLINE, __pyx_kp_u__17) < 0) __PYX_ERR(0, 30, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":31
+ * CHAR_WHITESPACE_ = " \t"
+ * CHAR_NEWLINE_ = "\r\n"
+ * CHAR_SYMBOL_ = ",;:-+'{}[]<>()=" # <<<<<<<<<<<<<<
+ * CHAR_DIGIT_ = "0123456789"
+ * CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_SYMBOL, __pyx_kp_u__18) < 0) __PYX_ERR(0, 31, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":32
+ * CHAR_NEWLINE_ = "\r\n"
+ * CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
+ * CHAR_DIGIT_ = "0123456789" # <<<<<<<<<<<<<<
+ * CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
+ * CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_DIGIT, __pyx_kp_u_0123456789) < 0) __PYX_ERR(0, 32, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":33
+ * CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
+ * CHAR_DIGIT_ = "0123456789"
+ * CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef" # <<<<<<<<<<<<<<
+ * CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ * CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_HEXDIGIT, __pyx_kp_u_0123456789ABCDEFabcdef) < 0) __PYX_ERR(0, 33, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":34
+ * CHAR_DIGIT_ = "0123456789"
+ * CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
+ * CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" # <<<<<<<<<<<<<<
+ * CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\"
+ * CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-"
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_LETTER, __pyx_n_u_ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef) < 0) __PYX_ERR(0, 34, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":35
+ * CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
+ * CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ * CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\" # <<<<<<<<<<<<<<
+ * CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-"
+ *
+ */
+ __pyx_t_10 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_CHAR_LETTER);
+ if (unlikely(!__pyx_t_10)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_10, __pyx_n_s_CHAR_LETTER);
+ }
+ if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 35, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __pyx_t_9 = PyNumber_Add(__pyx_t_10, __pyx_kp_u__19); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 35, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_NAME_START, __pyx_t_9) < 0) __PYX_ERR(0, 35, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":36
+ * CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ * CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\"
+ * CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-" # <<<<<<<<<<<<<<
+ *
+ * RE_GLYPHCLASS = re.compile(r"^[A-Za-z_0-9.\-]+$")
+ */
+ __pyx_t_9 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_CHAR_LETTER);
+ if (unlikely(!__pyx_t_9)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_9, __pyx_n_s_CHAR_LETTER);
+ }
+ if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 36, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_10 = PyObject_GetItem(__pyx_t_6, __pyx_n_s_CHAR_DIGIT);
+ if (unlikely(!__pyx_t_10)) {
+ PyErr_Clear();
+ __Pyx_GetModuleGlobalName(__pyx_t_10, __pyx_n_s_CHAR_DIGIT);
+ }
+ if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 36, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __pyx_t_8 = PyNumber_Add(__pyx_t_9, __pyx_t_10); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 36, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ __pyx_t_10 = PyNumber_Add(__pyx_t_8, __pyx_kp_u__20); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 36, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_CHAR_NAME_CONTINUATION, __pyx_t_10) < 0) __PYX_ERR(0, 36, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":38
+ * CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-"
+ *
+ * RE_GLYPHCLASS = re.compile(r"^[A-Za-z_0-9.\-]+$") # <<<<<<<<<<<<<<
+ *
+ * MODE_NORMAL_ = "NORMAL"
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_8, __pyx_n_s_re); if (unlikely(!__pyx_t_8)) __PYX_ERR(0, 38, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_8);
+ __pyx_t_9 = __Pyx_PyObject_GetAttrStr(__pyx_t_8, __pyx_n_s_compile); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 38, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
+ __pyx_t_8 = NULL;
+ __pyx_t_11 = 0;
+ #if CYTHON_UNPACK_METHODS
+ if (unlikely(PyMethod_Check(__pyx_t_9))) {
+ __pyx_t_8 = PyMethod_GET_SELF(__pyx_t_9);
+ if (likely(__pyx_t_8)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_9);
+ __Pyx_INCREF(__pyx_t_8);
+ __Pyx_INCREF(function);
+ __Pyx_DECREF_SET(__pyx_t_9, function);
+ __pyx_t_11 = 1;
+ }
+ }
+ #endif
+ {
+ PyObject *__pyx_callargs[2] = {__pyx_t_8, __pyx_kp_u_A_Za_z_0_9};
+ __pyx_t_10 = __Pyx_PyObject_FastCall(__pyx_t_9, __pyx_callargs+1-__pyx_t_11, 1+__pyx_t_11);
+ __Pyx_XDECREF(__pyx_t_8); __pyx_t_8 = 0;
+ if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 38, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ }
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_RE_GLYPHCLASS, __pyx_t_10) < 0) __PYX_ERR(0, 38, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":40
+ * RE_GLYPHCLASS = re.compile(r"^[A-Za-z_0-9.\-]+$")
+ *
+ * MODE_NORMAL_ = "NORMAL" # <<<<<<<<<<<<<<
+ * MODE_FILENAME_ = "FILENAME"
+ *
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_MODE_NORMAL, __pyx_n_u_NORMAL) < 0) __PYX_ERR(0, 40, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":41
+ *
+ * MODE_NORMAL_ = "NORMAL"
+ * MODE_FILENAME_ = "FILENAME" # <<<<<<<<<<<<<<
+ *
+ * def __init__(self, text, filename):
+ */
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_MODE_FILENAME, __pyx_n_u_FILENAME) < 0) __PYX_ERR(0, 41, __pyx_L1_error)
+
+ /* "fontTools/feaLib/lexer.py":43
+ * MODE_FILENAME_ = "FILENAME"
+ *
+ * def __init__(self, text, filename): # <<<<<<<<<<<<<<
+ * self.filename_ = filename
+ * self.line_ = 1
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_1__init__, 0, __pyx_n_s_Lexer___init, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__22)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 43, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_init, __pyx_t_10) < 0) __PYX_ERR(0, 43, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":52
+ * self.mode_ = Lexer.MODE_NORMAL_
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_3__iter__, 0, __pyx_n_s_Lexer___iter, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__24)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 52, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_iter, __pyx_t_10) < 0) __PYX_ERR(0, 52, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":55
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_5next, 0, __pyx_n_s_Lexer_next, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__25)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 55, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_next_3, __pyx_t_10) < 0) __PYX_ERR(0, 55, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":58
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while True:
+ * token_type, token, location = self.next_()
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_7__next__, 0, __pyx_n_s_Lexer___next, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__27)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 58, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_next, __pyx_t_10) < 0) __PYX_ERR(0, 58, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":64
+ * return (token_type, token, location)
+ *
+ * def location_(self): # <<<<<<<<<<<<<<
+ * column = self.pos_ - self.line_start_ + 1
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_9location_, 0, __pyx_n_s_Lexer_location, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__29)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 64, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_location, __pyx_t_10) < 0) __PYX_ERR(0, 64, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":68
+ * return FeatureLibLocation(self.filename_ or "", self.line_, column)
+ *
+ * def next_(self): # <<<<<<<<<<<<<<
+ * self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ * location = self.location_()
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_11next_, 0, __pyx_n_s_Lexer_next_2, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__31)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 68, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_next_2, __pyx_t_10) < 0) __PYX_ERR(0, 68, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":165
+ * raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+ *
+ * def scan_over_(self, valid): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] in valid:
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_13scan_over_, 0, __pyx_n_s_Lexer_scan_over, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__33)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 165, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_scan_over, __pyx_t_10) < 0) __PYX_ERR(0, 165, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":171
+ * self.pos_ = p
+ *
+ * def scan_until_(self, stop_at): # <<<<<<<<<<<<<<
+ * p = self.pos_
+ * while p < self.text_length_ and self.text_[p] not in stop_at:
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_15scan_until_, 0, __pyx_n_s_Lexer_scan_until, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__35)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 171, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_scan_until, __pyx_t_10) < 0) __PYX_ERR(0, 171, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":177
+ * self.pos_ = p
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * location = self.location_()
+ * tag = tag.strip()
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_5Lexer_17scan_anonymous_block, 0, __pyx_n_s_Lexer_scan_anonymous_block, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__37)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 177, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_scan_anonymous_block, __pyx_t_10) < 0) __PYX_ERR(0, 177, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":13
+ *
+ *
+ * class Lexer(object): # <<<<<<<<<<<<<<
+ * NUMBER = "NUMBER"
+ * HEXADECIMAL = "HEXADECIMAL"
+ */
+ __pyx_t_10 = __Pyx_Py3ClassCreate(__pyx_t_3, __pyx_n_s_Lexer, __pyx_t_2, __pyx_t_6, NULL, 0, 0); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_Lexer, __pyx_t_10) < 0) __PYX_ERR(0, 13, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":192
+ *
+ *
+ * class IncludingLexer(object): # <<<<<<<<<<<<<<
+ * """A Lexer that follows include statements.
+ *
+ */
+ __pyx_t_2 = __Pyx_PEP560_update_bases(__pyx_tuple__39); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = __Pyx_CalculateMetaclass(NULL, __pyx_t_2); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __pyx_t_6 = __Pyx_Py3MetaclassPrepare(__pyx_t_3, __pyx_t_2, __pyx_n_s_IncludingLexer, __pyx_n_s_IncludingLexer, (PyObject *) NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_kp_s_A_Lexer_that_follows_include_sta); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_6);
+ if (__pyx_t_2 != __pyx_tuple__39) {
+ if (unlikely((PyDict_SetItemString(__pyx_t_6, "__orig_bases__", __pyx_tuple__39) < 0))) __PYX_ERR(0, 192, __pyx_L1_error)
+ }
+
+ /* "fontTools/feaLib/lexer.py":207
+ * """
+ *
+ * def __init__(self, featurefile, *, includeDir=None): # <<<<<<<<<<<<<<
+ * """Initializes an IncludingLexer.
+ *
+ */
+ __pyx_t_10 = __Pyx_PyDict_NewPresized(1); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 207, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (PyDict_SetItem(__pyx_t_10, __pyx_n_s_includeDir, Py_None) < 0) __PYX_ERR(0, 207, __pyx_L1_error)
+ __pyx_t_9 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_1__init__, 0, __pyx_n_s_IncludingLexer___init, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__41)); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 207, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __Pyx_CyFunction_SetDefaultsKwDict(__pyx_t_9, __pyx_t_10);
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_init, __pyx_t_9) < 0) __PYX_ERR(0, 207, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":221
+ * self.includeDir = includeDir
+ *
+ * def __iter__(self): # <<<<<<<<<<<<<<
+ * return self
+ *
+ */
+ __pyx_t_9 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_3__iter__, 0, __pyx_n_s_IncludingLexer___iter, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__42)); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 221, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_iter, __pyx_t_9) < 0) __PYX_ERR(0, 221, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":224
+ * return self
+ *
+ * def next(self): # Python 2 # <<<<<<<<<<<<<<
+ * return self.__next__()
+ *
+ */
+ __pyx_t_9 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_5next, 0, __pyx_n_s_IncludingLexer_next, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__43)); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 224, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_next_3, __pyx_t_9) < 0) __PYX_ERR(0, 224, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":227
+ * return self.__next__()
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * while self.lexers_:
+ * lexer = self.lexers_[-1]
+ */
+ __pyx_t_9 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_7__next__, 0, __pyx_n_s_IncludingLexer___next, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__45)); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 227, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_next, __pyx_t_9) < 0) __PYX_ERR(0, 227, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+
+ /* "fontTools/feaLib/lexer.py":266
+ * raise StopIteration()
+ *
+ * @staticmethod # <<<<<<<<<<<<<<
+ * def make_lexer_(file_or_path):
+ * if hasattr(file_or_path, "read"):
+ */
+ __pyx_t_9 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_9make_lexer_, __Pyx_CYFUNCTION_STATICMETHOD, __pyx_n_s_IncludingLexer_make_lexer, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__47)); if (unlikely(!__pyx_t_9)) __PYX_ERR(0, 266, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_9);
+ __pyx_t_10 = __Pyx_PyObject_CallOneArg(__pyx_builtin_staticmethod, __pyx_t_9); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 266, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ __Pyx_DECREF(__pyx_t_9); __pyx_t_9 = 0;
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_make_lexer, __pyx_t_10) < 0) __PYX_ERR(0, 266, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":279
+ * return Lexer(data, filename)
+ *
+ * def scan_anonymous_block(self, tag): # <<<<<<<<<<<<<<
+ * return self.lexers_[-1].scan_anonymous_block(tag)
+ *
+ */
+ __pyx_t_10 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_14IncludingLexer_11scan_anonymous_block, 0, __pyx_n_s_IncludingLexer_scan_anonymous_bl, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__49)); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 279, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__Pyx_SetNameInClass(__pyx_t_6, __pyx_n_s_scan_anonymous_block, __pyx_t_10) < 0) __PYX_ERR(0, 279, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+
+ /* "fontTools/feaLib/lexer.py":192
+ *
+ *
+ * class IncludingLexer(object): # <<<<<<<<<<<<<<
+ * """A Lexer that follows include statements.
+ *
+ */
+ __pyx_t_10 = __Pyx_Py3ClassCreate(__pyx_t_3, __pyx_n_s_IncludingLexer, __pyx_t_2, __pyx_t_6, NULL, 0, 0); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_IncludingLexer, __pyx_t_10) < 0) __PYX_ERR(0, 192, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":283
+ *
+ *
+ * class NonIncludingLexer(IncludingLexer): # <<<<<<<<<<<<<<
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ */
+ __Pyx_GetModuleGlobalName(__pyx_t_2, __pyx_n_s_IncludingLexer); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ __Pyx_GIVEREF(__pyx_t_2);
+ if (__Pyx_PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2)) __PYX_ERR(0, 283, __pyx_L1_error);
+ __pyx_t_2 = 0;
+ __pyx_t_2 = __Pyx_PEP560_update_bases(__pyx_t_3); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ __pyx_t_6 = __Pyx_CalculateMetaclass(NULL, __pyx_t_2); if (unlikely(!__pyx_t_6)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_6);
+ __pyx_t_10 = __Pyx_Py3MetaclassPrepare(__pyx_t_6, __pyx_t_2, __pyx_n_s_NonIncludingLexer, __pyx_n_s_NonIncludingLexer, (PyObject *) NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_kp_s_Lexer_that_does_not_follow_inclu); if (unlikely(!__pyx_t_10)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_10);
+ if (__pyx_t_2 != __pyx_t_3) {
+ if (unlikely((PyDict_SetItemString(__pyx_t_10, "__orig_bases__", __pyx_t_3) < 0))) __PYX_ERR(0, 283, __pyx_L1_error)
+ }
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":286
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ * def __next__(self): # Python 3 # <<<<<<<<<<<<<<
+ * return next(self.lexers_[0])
+ */
+ __pyx_t_3 = __Pyx_CyFunction_New(&__pyx_mdef_9fontTools_6feaLib_5lexer_17NonIncludingLexer_1__next__, 0, __pyx_n_s_NonIncludingLexer___next, NULL, __pyx_n_s_fontTools_feaLib_lexer, __pyx_d, ((PyObject *)__pyx_codeobj__50)); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 286, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ if (__Pyx_SetNameInClass(__pyx_t_10, __pyx_n_s_next, __pyx_t_3) < 0) __PYX_ERR(0, 286, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "fontTools/feaLib/lexer.py":283
+ *
+ *
+ * class NonIncludingLexer(IncludingLexer): # <<<<<<<<<<<<<<
+ * """Lexer that does not follow `include` statements, emits them as-is."""
+ *
+ */
+ __pyx_t_3 = __Pyx_Py3ClassCreate(__pyx_t_6, __pyx_n_s_NonIncludingLexer, __pyx_t_2, __pyx_t_10, NULL, 0, 0); if (unlikely(!__pyx_t_3)) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_3);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_NonIncludingLexer, __pyx_t_3) < 0) __PYX_ERR(0, 283, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+ __Pyx_DECREF(__pyx_t_10); __pyx_t_10 = 0;
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /* "fontTools/feaLib/lexer.py":1
+ * from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound # <<<<<<<<<<<<<<
+ * from fontTools.feaLib.location import FeatureLibLocation
+ * import re
+ */
+ __pyx_t_2 = __Pyx_PyDict_NewPresized(0); if (unlikely(!__pyx_t_2)) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_GOTREF(__pyx_t_2);
+ if (PyDict_SetItem(__pyx_d, __pyx_n_s_test, __pyx_t_2) < 0) __PYX_ERR(0, 1, __pyx_L1_error)
+ __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
+
+ /*--- Wrapped vars code ---*/
+
+ goto __pyx_L0;
+ __pyx_L1_error:;
+ __Pyx_XDECREF(__pyx_t_2);
+ __Pyx_XDECREF(__pyx_t_3);
+ __Pyx_XDECREF(__pyx_t_6);
+ __Pyx_XDECREF(__pyx_t_7);
+ __Pyx_XDECREF(__pyx_t_8);
+ __Pyx_XDECREF(__pyx_t_9);
+ __Pyx_XDECREF(__pyx_t_10);
+ if (__pyx_m) {
+ if (__pyx_d && stringtab_initialized) {
+ __Pyx_AddTraceback("init fontTools.feaLib.lexer", __pyx_clineno, __pyx_lineno, __pyx_filename);
+ }
+ #if !CYTHON_USE_MODULE_STATE
+ Py_CLEAR(__pyx_m);
+ #else
+ Py_DECREF(__pyx_m);
+ if (pystate_addmodule_run) {
+ PyObject *tp, *value, *tb;
+ PyErr_Fetch(&tp, &value, &tb);
+ PyState_RemoveModule(&__pyx_moduledef);
+ PyErr_Restore(tp, value, tb);
+ }
+ #endif
+ } else if (!PyErr_Occurred()) {
+ PyErr_SetString(PyExc_ImportError, "init fontTools.feaLib.lexer");
+ }
+ __pyx_L0:;
+ __Pyx_RefNannyFinishContext();
+ #if CYTHON_PEP489_MULTI_PHASE_INIT
+ return (__pyx_m != NULL) ? 0 : -1;
+ #elif PY_MAJOR_VERSION >= 3
+ return __pyx_m;
+ #else
+ return;
+ #endif
+}
+/* #### Code section: cleanup_globals ### */
+/* #### Code section: cleanup_module ### */
+/* #### Code section: main_method ### */
+/* #### Code section: utility_code_pragmas ### */
+#ifdef _MSC_VER
+#pragma warning( push )
+/* Warning 4127: conditional expression is constant
+ * Cython uses constant conditional expressions to allow in inline functions to be optimized at
+ * compile-time, so this warning is not useful
+ */
+#pragma warning( disable : 4127 )
+#endif
+
+
+
+/* #### Code section: utility_code_def ### */
+
+/* --- Runtime support code --- */
+/* Refnanny */
+#if CYTHON_REFNANNY
+static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) {
+ PyObject *m = NULL, *p = NULL;
+ void *r = NULL;
+ m = PyImport_ImportModule(modname);
+ if (!m) goto end;
+ p = PyObject_GetAttrString(m, "RefNannyAPI");
+ if (!p) goto end;
+ r = PyLong_AsVoidPtr(p);
+end:
+ Py_XDECREF(p);
+ Py_XDECREF(m);
+ return (__Pyx_RefNannyAPIStruct *)r;
+}
+#endif
+
+/* PyErrExceptionMatches */
+#if CYTHON_FAST_THREAD_STATE
+static int __Pyx_PyErr_ExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) {
+ Py_ssize_t i, n;
+ n = PyTuple_GET_SIZE(tuple);
+#if PY_MAJOR_VERSION >= 3
+ for (i=0; i= 0x030C00A6
+ PyObject *current_exception = tstate->current_exception;
+ if (unlikely(!current_exception)) return 0;
+ exc_type = (PyObject*) Py_TYPE(current_exception);
+ if (exc_type == err) return 1;
+#else
+ exc_type = tstate->curexc_type;
+ if (exc_type == err) return 1;
+ if (unlikely(!exc_type)) return 0;
+#endif
+ #if CYTHON_AVOID_BORROWED_REFS
+ Py_INCREF(exc_type);
+ #endif
+ if (unlikely(PyTuple_Check(err))) {
+ result = __Pyx_PyErr_ExceptionMatchesTuple(exc_type, err);
+ } else {
+ result = __Pyx_PyErr_GivenExceptionMatches(exc_type, err);
+ }
+ #if CYTHON_AVOID_BORROWED_REFS
+ Py_DECREF(exc_type);
+ #endif
+ return result;
+}
+#endif
+
+/* PyErrFetchRestore */
+#if CYTHON_FAST_THREAD_STATE
+static CYTHON_INLINE void __Pyx_ErrRestoreInState(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) {
+#if PY_VERSION_HEX >= 0x030C00A6
+ PyObject *tmp_value;
+ assert(type == NULL || (value != NULL && type == (PyObject*) Py_TYPE(value)));
+ if (value) {
+ #if CYTHON_COMPILING_IN_CPYTHON
+ if (unlikely(((PyBaseExceptionObject*) value)->traceback != tb))
+ #endif
+ PyException_SetTraceback(value, tb);
+ }
+ tmp_value = tstate->current_exception;
+ tstate->current_exception = value;
+ Py_XDECREF(tmp_value);
+ Py_XDECREF(type);
+ Py_XDECREF(tb);
+#else
+ PyObject *tmp_type, *tmp_value, *tmp_tb;
+ tmp_type = tstate->curexc_type;
+ tmp_value = tstate->curexc_value;
+ tmp_tb = tstate->curexc_traceback;
+ tstate->curexc_type = type;
+ tstate->curexc_value = value;
+ tstate->curexc_traceback = tb;
+ Py_XDECREF(tmp_type);
+ Py_XDECREF(tmp_value);
+ Py_XDECREF(tmp_tb);
+#endif
+}
+static CYTHON_INLINE void __Pyx_ErrFetchInState(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) {
+#if PY_VERSION_HEX >= 0x030C00A6
+ PyObject* exc_value;
+ exc_value = tstate->current_exception;
+ tstate->current_exception = 0;
+ *value = exc_value;
+ *type = NULL;
+ *tb = NULL;
+ if (exc_value) {
+ *type = (PyObject*) Py_TYPE(exc_value);
+ Py_INCREF(*type);
+ #if CYTHON_COMPILING_IN_CPYTHON
+ *tb = ((PyBaseExceptionObject*) exc_value)->traceback;
+ Py_XINCREF(*tb);
+ #else
+ *tb = PyException_GetTraceback(exc_value);
+ #endif
+ }
+#else
+ *type = tstate->curexc_type;
+ *value = tstate->curexc_value;
+ *tb = tstate->curexc_traceback;
+ tstate->curexc_type = 0;
+ tstate->curexc_value = 0;
+ tstate->curexc_traceback = 0;
+#endif
+}
+#endif
+
+/* PyObjectGetAttrStr */
+#if CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStr(PyObject* obj, PyObject* attr_name) {
+ PyTypeObject* tp = Py_TYPE(obj);
+ if (likely(tp->tp_getattro))
+ return tp->tp_getattro(obj, attr_name);
+#if PY_MAJOR_VERSION < 3
+ if (likely(tp->tp_getattr))
+ return tp->tp_getattr(obj, PyString_AS_STRING(attr_name));
+#endif
+ return PyObject_GetAttr(obj, attr_name);
+}
+#endif
+
+/* PyObjectGetAttrStrNoError */
+#if __PYX_LIMITED_VERSION_HEX < 0x030d00A1
+static void __Pyx_PyObject_GetAttrStr_ClearAttributeError(void) {
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ if (likely(__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError)))
+ __Pyx_PyErr_Clear();
+}
+#endif
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetAttrStrNoError(PyObject* obj, PyObject* attr_name) {
+ PyObject *result;
+#if __PYX_LIMITED_VERSION_HEX >= 0x030d00A1
+ (void) PyObject_GetOptionalAttr(obj, attr_name, &result);
+ return result;
+#else
+#if CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_TYPE_SLOTS && PY_VERSION_HEX >= 0x030700B1
+ PyTypeObject* tp = Py_TYPE(obj);
+ if (likely(tp->tp_getattro == PyObject_GenericGetAttr)) {
+ return _PyObject_GenericGetAttrWithDict(obj, attr_name, NULL, 1);
+ }
+#endif
+ result = __Pyx_PyObject_GetAttrStr(obj, attr_name);
+ if (unlikely(!result)) {
+ __Pyx_PyObject_GetAttrStr_ClearAttributeError();
+ }
+ return result;
+#endif
+}
+
+/* GetBuiltinName */
+static PyObject *__Pyx_GetBuiltinName(PyObject *name) {
+ PyObject* result = __Pyx_PyObject_GetAttrStrNoError(__pyx_b, name);
+ if (unlikely(!result) && !PyErr_Occurred()) {
+ PyErr_Format(PyExc_NameError,
+#if PY_MAJOR_VERSION >= 3
+ "name '%U' is not defined", name);
+#else
+ "name '%.200s' is not defined", PyString_AS_STRING(name));
+#endif
+ }
+ return result;
+}
+
+/* TupleAndListFromArray */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE void __Pyx_copy_object_array(PyObject *const *CYTHON_RESTRICT src, PyObject** CYTHON_RESTRICT dest, Py_ssize_t length) {
+ PyObject *v;
+ Py_ssize_t i;
+ for (i = 0; i < length; i++) {
+ v = dest[i] = src[i];
+ Py_INCREF(v);
+ }
+}
+static CYTHON_INLINE PyObject *
+__Pyx_PyTuple_FromArray(PyObject *const *src, Py_ssize_t n)
+{
+ PyObject *res;
+ if (n <= 0) {
+ Py_INCREF(__pyx_empty_tuple);
+ return __pyx_empty_tuple;
+ }
+ res = PyTuple_New(n);
+ if (unlikely(res == NULL)) return NULL;
+ __Pyx_copy_object_array(src, ((PyTupleObject*)res)->ob_item, n);
+ return res;
+}
+static CYTHON_INLINE PyObject *
+__Pyx_PyList_FromArray(PyObject *const *src, Py_ssize_t n)
+{
+ PyObject *res;
+ if (n <= 0) {
+ return PyList_New(0);
+ }
+ res = PyList_New(n);
+ if (unlikely(res == NULL)) return NULL;
+ __Pyx_copy_object_array(src, ((PyListObject*)res)->ob_item, n);
+ return res;
+}
+#endif
+
+/* BytesEquals */
+static CYTHON_INLINE int __Pyx_PyBytes_Equals(PyObject* s1, PyObject* s2, int equals) {
+#if CYTHON_COMPILING_IN_PYPY || CYTHON_COMPILING_IN_LIMITED_API
+ return PyObject_RichCompareBool(s1, s2, equals);
+#else
+ if (s1 == s2) {
+ return (equals == Py_EQ);
+ } else if (PyBytes_CheckExact(s1) & PyBytes_CheckExact(s2)) {
+ const char *ps1, *ps2;
+ Py_ssize_t length = PyBytes_GET_SIZE(s1);
+ if (length != PyBytes_GET_SIZE(s2))
+ return (equals == Py_NE);
+ ps1 = PyBytes_AS_STRING(s1);
+ ps2 = PyBytes_AS_STRING(s2);
+ if (ps1[0] != ps2[0]) {
+ return (equals == Py_NE);
+ } else if (length == 1) {
+ return (equals == Py_EQ);
+ } else {
+ int result;
+#if CYTHON_USE_UNICODE_INTERNALS && (PY_VERSION_HEX < 0x030B0000)
+ Py_hash_t hash1, hash2;
+ hash1 = ((PyBytesObject*)s1)->ob_shash;
+ hash2 = ((PyBytesObject*)s2)->ob_shash;
+ if (hash1 != hash2 && hash1 != -1 && hash2 != -1) {
+ return (equals == Py_NE);
+ }
+#endif
+ result = memcmp(ps1, ps2, (size_t)length);
+ return (equals == Py_EQ) ? (result == 0) : (result != 0);
+ }
+ } else if ((s1 == Py_None) & PyBytes_CheckExact(s2)) {
+ return (equals == Py_NE);
+ } else if ((s2 == Py_None) & PyBytes_CheckExact(s1)) {
+ return (equals == Py_NE);
+ } else {
+ int result;
+ PyObject* py_result = PyObject_RichCompare(s1, s2, equals);
+ if (!py_result)
+ return -1;
+ result = __Pyx_PyObject_IsTrue(py_result);
+ Py_DECREF(py_result);
+ return result;
+ }
+#endif
+}
+
+/* UnicodeEquals */
+static CYTHON_INLINE int __Pyx_PyUnicode_Equals(PyObject* s1, PyObject* s2, int equals) {
+#if CYTHON_COMPILING_IN_PYPY || CYTHON_COMPILING_IN_LIMITED_API
+ return PyObject_RichCompareBool(s1, s2, equals);
+#else
+#if PY_MAJOR_VERSION < 3
+ PyObject* owned_ref = NULL;
+#endif
+ int s1_is_unicode, s2_is_unicode;
+ if (s1 == s2) {
+ goto return_eq;
+ }
+ s1_is_unicode = PyUnicode_CheckExact(s1);
+ s2_is_unicode = PyUnicode_CheckExact(s2);
+#if PY_MAJOR_VERSION < 3
+ if ((s1_is_unicode & (!s2_is_unicode)) && PyString_CheckExact(s2)) {
+ owned_ref = PyUnicode_FromObject(s2);
+ if (unlikely(!owned_ref))
+ return -1;
+ s2 = owned_ref;
+ s2_is_unicode = 1;
+ } else if ((s2_is_unicode & (!s1_is_unicode)) && PyString_CheckExact(s1)) {
+ owned_ref = PyUnicode_FromObject(s1);
+ if (unlikely(!owned_ref))
+ return -1;
+ s1 = owned_ref;
+ s1_is_unicode = 1;
+ } else if (((!s2_is_unicode) & (!s1_is_unicode))) {
+ return __Pyx_PyBytes_Equals(s1, s2, equals);
+ }
+#endif
+ if (s1_is_unicode & s2_is_unicode) {
+ Py_ssize_t length;
+ int kind;
+ void *data1, *data2;
+ if (unlikely(__Pyx_PyUnicode_READY(s1) < 0) || unlikely(__Pyx_PyUnicode_READY(s2) < 0))
+ return -1;
+ length = __Pyx_PyUnicode_GET_LENGTH(s1);
+ if (length != __Pyx_PyUnicode_GET_LENGTH(s2)) {
+ goto return_ne;
+ }
+#if CYTHON_USE_UNICODE_INTERNALS
+ {
+ Py_hash_t hash1, hash2;
+ #if CYTHON_PEP393_ENABLED
+ hash1 = ((PyASCIIObject*)s1)->hash;
+ hash2 = ((PyASCIIObject*)s2)->hash;
+ #else
+ hash1 = ((PyUnicodeObject*)s1)->hash;
+ hash2 = ((PyUnicodeObject*)s2)->hash;
+ #endif
+ if (hash1 != hash2 && hash1 != -1 && hash2 != -1) {
+ goto return_ne;
+ }
+ }
+#endif
+ kind = __Pyx_PyUnicode_KIND(s1);
+ if (kind != __Pyx_PyUnicode_KIND(s2)) {
+ goto return_ne;
+ }
+ data1 = __Pyx_PyUnicode_DATA(s1);
+ data2 = __Pyx_PyUnicode_DATA(s2);
+ if (__Pyx_PyUnicode_READ(kind, data1, 0) != __Pyx_PyUnicode_READ(kind, data2, 0)) {
+ goto return_ne;
+ } else if (length == 1) {
+ goto return_eq;
+ } else {
+ int result = memcmp(data1, data2, (size_t)(length * kind));
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(owned_ref);
+ #endif
+ return (equals == Py_EQ) ? (result == 0) : (result != 0);
+ }
+ } else if ((s1 == Py_None) & s2_is_unicode) {
+ goto return_ne;
+ } else if ((s2 == Py_None) & s1_is_unicode) {
+ goto return_ne;
+ } else {
+ int result;
+ PyObject* py_result = PyObject_RichCompare(s1, s2, equals);
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(owned_ref);
+ #endif
+ if (!py_result)
+ return -1;
+ result = __Pyx_PyObject_IsTrue(py_result);
+ Py_DECREF(py_result);
+ return result;
+ }
+return_eq:
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(owned_ref);
+ #endif
+ return (equals == Py_EQ);
+return_ne:
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(owned_ref);
+ #endif
+ return (equals == Py_NE);
+#endif
+}
+
+/* fastcall */
+#if CYTHON_METH_FASTCALL
+static CYTHON_INLINE PyObject * __Pyx_GetKwValue_FASTCALL(PyObject *kwnames, PyObject *const *kwvalues, PyObject *s)
+{
+ Py_ssize_t i, n = PyTuple_GET_SIZE(kwnames);
+ for (i = 0; i < n; i++)
+ {
+ if (s == PyTuple_GET_ITEM(kwnames, i)) return kwvalues[i];
+ }
+ for (i = 0; i < n; i++)
+ {
+ int eq = __Pyx_PyUnicode_Equals(s, PyTuple_GET_ITEM(kwnames, i), Py_EQ);
+ if (unlikely(eq != 0)) {
+ if (unlikely(eq < 0)) return NULL;
+ return kwvalues[i];
+ }
+ }
+ return NULL;
+}
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030d0000
+CYTHON_UNUSED static PyObject *__Pyx_KwargsAsDict_FASTCALL(PyObject *kwnames, PyObject *const *kwvalues) {
+ Py_ssize_t i, nkwargs = PyTuple_GET_SIZE(kwnames);
+ PyObject *dict;
+ dict = PyDict_New();
+ if (unlikely(!dict))
+ return NULL;
+ for (i=0; i= 3
+ "%s() got multiple values for keyword argument '%U'", func_name, kw_name);
+ #else
+ "%s() got multiple values for keyword argument '%s'", func_name,
+ PyString_AsString(kw_name));
+ #endif
+}
+
+/* ParseKeywords */
+static int __Pyx_ParseOptionalKeywords(
+ PyObject *kwds,
+ PyObject *const *kwvalues,
+ PyObject **argnames[],
+ PyObject *kwds2,
+ PyObject *values[],
+ Py_ssize_t num_pos_args,
+ const char* function_name)
+{
+ PyObject *key = 0, *value = 0;
+ Py_ssize_t pos = 0;
+ PyObject*** name;
+ PyObject*** first_kw_arg = argnames + num_pos_args;
+ int kwds_is_tuple = CYTHON_METH_FASTCALL && likely(PyTuple_Check(kwds));
+ while (1) {
+ Py_XDECREF(key); key = NULL;
+ Py_XDECREF(value); value = NULL;
+ if (kwds_is_tuple) {
+ Py_ssize_t size;
+#if CYTHON_ASSUME_SAFE_MACROS
+ size = PyTuple_GET_SIZE(kwds);
+#else
+ size = PyTuple_Size(kwds);
+ if (size < 0) goto bad;
+#endif
+ if (pos >= size) break;
+#if CYTHON_AVOID_BORROWED_REFS
+ key = __Pyx_PySequence_ITEM(kwds, pos);
+ if (!key) goto bad;
+#elif CYTHON_ASSUME_SAFE_MACROS
+ key = PyTuple_GET_ITEM(kwds, pos);
+#else
+ key = PyTuple_GetItem(kwds, pos);
+ if (!key) goto bad;
+#endif
+ value = kwvalues[pos];
+ pos++;
+ }
+ else
+ {
+ if (!PyDict_Next(kwds, &pos, &key, &value)) break;
+#if CYTHON_AVOID_BORROWED_REFS
+ Py_INCREF(key);
+#endif
+ }
+ name = first_kw_arg;
+ while (*name && (**name != key)) name++;
+ if (*name) {
+ values[name-argnames] = value;
+#if CYTHON_AVOID_BORROWED_REFS
+ Py_INCREF(value);
+ Py_DECREF(key);
+#endif
+ key = NULL;
+ value = NULL;
+ continue;
+ }
+#if !CYTHON_AVOID_BORROWED_REFS
+ Py_INCREF(key);
+#endif
+ Py_INCREF(value);
+ name = first_kw_arg;
+ #if PY_MAJOR_VERSION < 3
+ if (likely(PyString_Check(key))) {
+ while (*name) {
+ if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key))
+ && _PyString_Eq(**name, key)) {
+ values[name-argnames] = value;
+#if CYTHON_AVOID_BORROWED_REFS
+ value = NULL;
+#endif
+ break;
+ }
+ name++;
+ }
+ if (*name) continue;
+ else {
+ PyObject*** argname = argnames;
+ while (argname != first_kw_arg) {
+ if ((**argname == key) || (
+ (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key))
+ && _PyString_Eq(**argname, key))) {
+ goto arg_passed_twice;
+ }
+ argname++;
+ }
+ }
+ } else
+ #endif
+ if (likely(PyUnicode_Check(key))) {
+ while (*name) {
+ int cmp = (
+ #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3
+ (__Pyx_PyUnicode_GET_LENGTH(**name) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 :
+ #endif
+ PyUnicode_Compare(**name, key)
+ );
+ if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad;
+ if (cmp == 0) {
+ values[name-argnames] = value;
+#if CYTHON_AVOID_BORROWED_REFS
+ value = NULL;
+#endif
+ break;
+ }
+ name++;
+ }
+ if (*name) continue;
+ else {
+ PyObject*** argname = argnames;
+ while (argname != first_kw_arg) {
+ int cmp = (**argname == key) ? 0 :
+ #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3
+ (__Pyx_PyUnicode_GET_LENGTH(**argname) != __Pyx_PyUnicode_GET_LENGTH(key)) ? 1 :
+ #endif
+ PyUnicode_Compare(**argname, key);
+ if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad;
+ if (cmp == 0) goto arg_passed_twice;
+ argname++;
+ }
+ }
+ } else
+ goto invalid_keyword_type;
+ if (kwds2) {
+ if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad;
+ } else {
+ goto invalid_keyword;
+ }
+ }
+ Py_XDECREF(key);
+ Py_XDECREF(value);
+ return 0;
+arg_passed_twice:
+ __Pyx_RaiseDoubleKeywordsError(function_name, key);
+ goto bad;
+invalid_keyword_type:
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() keywords must be strings", function_name);
+ goto bad;
+invalid_keyword:
+ #if PY_MAJOR_VERSION < 3
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() got an unexpected keyword argument '%.200s'",
+ function_name, PyString_AsString(key));
+ #else
+ PyErr_Format(PyExc_TypeError,
+ "%s() got an unexpected keyword argument '%U'",
+ function_name, key);
+ #endif
+bad:
+ Py_XDECREF(key);
+ Py_XDECREF(value);
+ return -1;
+}
+
+/* PyObjectSetAttrStr */
+#if CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE int __Pyx_PyObject_SetAttrStr(PyObject* obj, PyObject* attr_name, PyObject* value) {
+ PyTypeObject* tp = Py_TYPE(obj);
+ if (likely(tp->tp_setattro))
+ return tp->tp_setattro(obj, attr_name, value);
+#if PY_MAJOR_VERSION < 3
+ if (likely(tp->tp_setattr))
+ return tp->tp_setattr(obj, PyString_AS_STRING(attr_name), value);
+#endif
+ return PyObject_SetAttr(obj, attr_name, value);
+}
+#endif
+
+/* PyDictVersioning */
+#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE PY_UINT64_T __Pyx_get_tp_dict_version(PyObject *obj) {
+ PyObject *dict = Py_TYPE(obj)->tp_dict;
+ return likely(dict) ? __PYX_GET_DICT_VERSION(dict) : 0;
+}
+static CYTHON_INLINE PY_UINT64_T __Pyx_get_object_dict_version(PyObject *obj) {
+ PyObject **dictptr = NULL;
+ Py_ssize_t offset = Py_TYPE(obj)->tp_dictoffset;
+ if (offset) {
+#if CYTHON_COMPILING_IN_CPYTHON
+ dictptr = (likely(offset > 0)) ? (PyObject **) ((char *)obj + offset) : _PyObject_GetDictPtr(obj);
+#else
+ dictptr = _PyObject_GetDictPtr(obj);
+#endif
+ }
+ return (dictptr && *dictptr) ? __PYX_GET_DICT_VERSION(*dictptr) : 0;
+}
+static CYTHON_INLINE int __Pyx_object_dict_version_matches(PyObject* obj, PY_UINT64_T tp_dict_version, PY_UINT64_T obj_dict_version) {
+ PyObject *dict = Py_TYPE(obj)->tp_dict;
+ if (unlikely(!dict) || unlikely(tp_dict_version != __PYX_GET_DICT_VERSION(dict)))
+ return 0;
+ return obj_dict_version == __Pyx_get_object_dict_version(obj);
+}
+#endif
+
+/* GetModuleGlobalName */
+#if CYTHON_USE_DICT_VERSIONS
+static PyObject *__Pyx__GetModuleGlobalName(PyObject *name, PY_UINT64_T *dict_version, PyObject **dict_cached_value)
+#else
+static CYTHON_INLINE PyObject *__Pyx__GetModuleGlobalName(PyObject *name)
+#endif
+{
+ PyObject *result;
+#if !CYTHON_AVOID_BORROWED_REFS
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030500A1 && PY_VERSION_HEX < 0x030d0000
+ result = _PyDict_GetItem_KnownHash(__pyx_d, name, ((PyASCIIObject *) name)->hash);
+ __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version)
+ if (likely(result)) {
+ return __Pyx_NewRef(result);
+ } else if (unlikely(PyErr_Occurred())) {
+ return NULL;
+ }
+#elif CYTHON_COMPILING_IN_LIMITED_API
+ if (unlikely(!__pyx_m)) {
+ return NULL;
+ }
+ result = PyObject_GetAttr(__pyx_m, name);
+ if (likely(result)) {
+ return result;
+ }
+#else
+ result = PyDict_GetItem(__pyx_d, name);
+ __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version)
+ if (likely(result)) {
+ return __Pyx_NewRef(result);
+ }
+#endif
+#else
+ result = PyObject_GetItem(__pyx_d, name);
+ __PYX_UPDATE_DICT_CACHE(__pyx_d, result, *dict_cached_value, *dict_version)
+ if (likely(result)) {
+ return __Pyx_NewRef(result);
+ }
+ PyErr_Clear();
+#endif
+ return __Pyx_GetBuiltinName(name);
+}
+
+/* PyFunctionFastCall */
+#if CYTHON_FAST_PYCALL && !CYTHON_VECTORCALL
+static PyObject* __Pyx_PyFunction_FastCallNoKw(PyCodeObject *co, PyObject **args, Py_ssize_t na,
+ PyObject *globals) {
+ PyFrameObject *f;
+ PyThreadState *tstate = __Pyx_PyThreadState_Current;
+ PyObject **fastlocals;
+ Py_ssize_t i;
+ PyObject *result;
+ assert(globals != NULL);
+ /* XXX Perhaps we should create a specialized
+ PyFrame_New() that doesn't take locals, but does
+ take builtins without sanity checking them.
+ */
+ assert(tstate != NULL);
+ f = PyFrame_New(tstate, co, globals, NULL);
+ if (f == NULL) {
+ return NULL;
+ }
+ fastlocals = __Pyx_PyFrame_GetLocalsplus(f);
+ for (i = 0; i < na; i++) {
+ Py_INCREF(*args);
+ fastlocals[i] = *args++;
+ }
+ result = PyEval_EvalFrameEx(f,0);
+ ++tstate->recursion_depth;
+ Py_DECREF(f);
+ --tstate->recursion_depth;
+ return result;
+}
+static PyObject *__Pyx_PyFunction_FastCallDict(PyObject *func, PyObject **args, Py_ssize_t nargs, PyObject *kwargs) {
+ PyCodeObject *co = (PyCodeObject *)PyFunction_GET_CODE(func);
+ PyObject *globals = PyFunction_GET_GLOBALS(func);
+ PyObject *argdefs = PyFunction_GET_DEFAULTS(func);
+ PyObject *closure;
+#if PY_MAJOR_VERSION >= 3
+ PyObject *kwdefs;
+#endif
+ PyObject *kwtuple, **k;
+ PyObject **d;
+ Py_ssize_t nd;
+ Py_ssize_t nk;
+ PyObject *result;
+ assert(kwargs == NULL || PyDict_Check(kwargs));
+ nk = kwargs ? PyDict_Size(kwargs) : 0;
+ #if PY_MAJOR_VERSION < 3
+ if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object"))) {
+ return NULL;
+ }
+ #else
+ if (unlikely(Py_EnterRecursiveCall(" while calling a Python object"))) {
+ return NULL;
+ }
+ #endif
+ if (
+#if PY_MAJOR_VERSION >= 3
+ co->co_kwonlyargcount == 0 &&
+#endif
+ likely(kwargs == NULL || nk == 0) &&
+ co->co_flags == (CO_OPTIMIZED | CO_NEWLOCALS | CO_NOFREE)) {
+ if (argdefs == NULL && co->co_argcount == nargs) {
+ result = __Pyx_PyFunction_FastCallNoKw(co, args, nargs, globals);
+ goto done;
+ }
+ else if (nargs == 0 && argdefs != NULL
+ && co->co_argcount == Py_SIZE(argdefs)) {
+ /* function called with no arguments, but all parameters have
+ a default value: use default values as arguments .*/
+ args = &PyTuple_GET_ITEM(argdefs, 0);
+ result =__Pyx_PyFunction_FastCallNoKw(co, args, Py_SIZE(argdefs), globals);
+ goto done;
+ }
+ }
+ if (kwargs != NULL) {
+ Py_ssize_t pos, i;
+ kwtuple = PyTuple_New(2 * nk);
+ if (kwtuple == NULL) {
+ result = NULL;
+ goto done;
+ }
+ k = &PyTuple_GET_ITEM(kwtuple, 0);
+ pos = i = 0;
+ while (PyDict_Next(kwargs, &pos, &k[i], &k[i+1])) {
+ Py_INCREF(k[i]);
+ Py_INCREF(k[i+1]);
+ i += 2;
+ }
+ nk = i / 2;
+ }
+ else {
+ kwtuple = NULL;
+ k = NULL;
+ }
+ closure = PyFunction_GET_CLOSURE(func);
+#if PY_MAJOR_VERSION >= 3
+ kwdefs = PyFunction_GET_KW_DEFAULTS(func);
+#endif
+ if (argdefs != NULL) {
+ d = &PyTuple_GET_ITEM(argdefs, 0);
+ nd = Py_SIZE(argdefs);
+ }
+ else {
+ d = NULL;
+ nd = 0;
+ }
+#if PY_MAJOR_VERSION >= 3
+ result = PyEval_EvalCodeEx((PyObject*)co, globals, (PyObject *)NULL,
+ args, (int)nargs,
+ k, (int)nk,
+ d, (int)nd, kwdefs, closure);
+#else
+ result = PyEval_EvalCodeEx(co, globals, (PyObject *)NULL,
+ args, (int)nargs,
+ k, (int)nk,
+ d, (int)nd, closure);
+#endif
+ Py_XDECREF(kwtuple);
+done:
+ Py_LeaveRecursiveCall();
+ return result;
+}
+#endif
+
+/* PyObjectCall */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_Call(PyObject *func, PyObject *arg, PyObject *kw) {
+ PyObject *result;
+ ternaryfunc call = Py_TYPE(func)->tp_call;
+ if (unlikely(!call))
+ return PyObject_Call(func, arg, kw);
+ #if PY_MAJOR_VERSION < 3
+ if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object")))
+ return NULL;
+ #else
+ if (unlikely(Py_EnterRecursiveCall(" while calling a Python object")))
+ return NULL;
+ #endif
+ result = (*call)(func, arg, kw);
+ Py_LeaveRecursiveCall();
+ if (unlikely(!result) && unlikely(!PyErr_Occurred())) {
+ PyErr_SetString(
+ PyExc_SystemError,
+ "NULL result without error in PyObject_Call");
+ }
+ return result;
+}
+#endif
+
+/* PyObjectCallMethO */
+#if CYTHON_COMPILING_IN_CPYTHON
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallMethO(PyObject *func, PyObject *arg) {
+ PyObject *self, *result;
+ PyCFunction cfunc;
+ cfunc = __Pyx_CyOrPyCFunction_GET_FUNCTION(func);
+ self = __Pyx_CyOrPyCFunction_GET_SELF(func);
+ #if PY_MAJOR_VERSION < 3
+ if (unlikely(Py_EnterRecursiveCall((char*)" while calling a Python object")))
+ return NULL;
+ #else
+ if (unlikely(Py_EnterRecursiveCall(" while calling a Python object")))
+ return NULL;
+ #endif
+ result = cfunc(self, arg);
+ Py_LeaveRecursiveCall();
+ if (unlikely(!result) && unlikely(!PyErr_Occurred())) {
+ PyErr_SetString(
+ PyExc_SystemError,
+ "NULL result without error in PyObject_Call");
+ }
+ return result;
+}
+#endif
+
+/* PyObjectFastCall */
+#if PY_VERSION_HEX < 0x03090000 || CYTHON_COMPILING_IN_LIMITED_API
+static PyObject* __Pyx_PyObject_FastCall_fallback(PyObject *func, PyObject **args, size_t nargs, PyObject *kwargs) {
+ PyObject *argstuple;
+ PyObject *result = 0;
+ size_t i;
+ argstuple = PyTuple_New((Py_ssize_t)nargs);
+ if (unlikely(!argstuple)) return NULL;
+ for (i = 0; i < nargs; i++) {
+ Py_INCREF(args[i]);
+ if (__Pyx_PyTuple_SET_ITEM(argstuple, (Py_ssize_t)i, args[i]) < 0) goto bad;
+ }
+ result = __Pyx_PyObject_Call(func, argstuple, kwargs);
+ bad:
+ Py_DECREF(argstuple);
+ return result;
+}
+#endif
+static CYTHON_INLINE PyObject* __Pyx_PyObject_FastCallDict(PyObject *func, PyObject **args, size_t _nargs, PyObject *kwargs) {
+ Py_ssize_t nargs = __Pyx_PyVectorcall_NARGS(_nargs);
+#if CYTHON_COMPILING_IN_CPYTHON
+ if (nargs == 0 && kwargs == NULL) {
+ if (__Pyx_CyOrPyCFunction_Check(func) && likely( __Pyx_CyOrPyCFunction_GET_FLAGS(func) & METH_NOARGS))
+ return __Pyx_PyObject_CallMethO(func, NULL);
+ }
+ else if (nargs == 1 && kwargs == NULL) {
+ if (__Pyx_CyOrPyCFunction_Check(func) && likely( __Pyx_CyOrPyCFunction_GET_FLAGS(func) & METH_O))
+ return __Pyx_PyObject_CallMethO(func, args[0]);
+ }
+#endif
+ #if PY_VERSION_HEX < 0x030800B1
+ #if CYTHON_FAST_PYCCALL
+ if (PyCFunction_Check(func)) {
+ if (kwargs) {
+ return _PyCFunction_FastCallDict(func, args, nargs, kwargs);
+ } else {
+ return _PyCFunction_FastCallKeywords(func, args, nargs, NULL);
+ }
+ }
+ #if PY_VERSION_HEX >= 0x030700A1
+ if (!kwargs && __Pyx_IS_TYPE(func, &PyMethodDescr_Type)) {
+ return _PyMethodDescr_FastCallKeywords(func, args, nargs, NULL);
+ }
+ #endif
+ #endif
+ #if CYTHON_FAST_PYCALL
+ if (PyFunction_Check(func)) {
+ return __Pyx_PyFunction_FastCallDict(func, args, nargs, kwargs);
+ }
+ #endif
+ #endif
+ if (kwargs == NULL) {
+ #if CYTHON_VECTORCALL
+ #if PY_VERSION_HEX < 0x03090000
+ vectorcallfunc f = _PyVectorcall_Function(func);
+ #else
+ vectorcallfunc f = PyVectorcall_Function(func);
+ #endif
+ if (f) {
+ return f(func, args, (size_t)nargs, NULL);
+ }
+ #elif defined(__Pyx_CyFunction_USED) && CYTHON_BACKPORT_VECTORCALL
+ if (__Pyx_CyFunction_CheckExact(func)) {
+ __pyx_vectorcallfunc f = __Pyx_CyFunction_func_vectorcall(func);
+ if (f) return f(func, args, (size_t)nargs, NULL);
+ }
+ #endif
+ }
+ if (nargs == 0) {
+ return __Pyx_PyObject_Call(func, __pyx_empty_tuple, kwargs);
+ }
+ #if PY_VERSION_HEX >= 0x03090000 && !CYTHON_COMPILING_IN_LIMITED_API
+ return PyObject_VectorcallDict(func, args, (size_t)nargs, kwargs);
+ #else
+ return __Pyx_PyObject_FastCall_fallback(func, args, (size_t)nargs, kwargs);
+ #endif
+}
+
+/* RaiseTooManyValuesToUnpack */
+static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) {
+ PyErr_Format(PyExc_ValueError,
+ "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected);
+}
+
+/* RaiseNeedMoreValuesToUnpack */
+static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) {
+ PyErr_Format(PyExc_ValueError,
+ "need more than %" CYTHON_FORMAT_SSIZE_T "d value%.1s to unpack",
+ index, (index == 1) ? "" : "s");
+}
+
+/* IterFinish */
+static CYTHON_INLINE int __Pyx_IterFinish(void) {
+ PyObject* exc_type;
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ exc_type = __Pyx_PyErr_CurrentExceptionType();
+ if (unlikely(exc_type)) {
+ if (unlikely(!__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration)))
+ return -1;
+ __Pyx_PyErr_Clear();
+ return 0;
+ }
+ return 0;
+}
+
+/* UnpackItemEndCheck */
+static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) {
+ if (unlikely(retval)) {
+ Py_DECREF(retval);
+ __Pyx_RaiseTooManyValuesError(expected);
+ return -1;
+ }
+ return __Pyx_IterFinish();
+}
+
+/* PyIntBinop */
+#if !CYTHON_COMPILING_IN_PYPY
+static PyObject* __Pyx_PyInt_AddObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check) {
+ CYTHON_MAYBE_UNUSED_VAR(intval);
+ CYTHON_MAYBE_UNUSED_VAR(inplace);
+ CYTHON_UNUSED_VAR(zerodivision_check);
+ #if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_CheckExact(op1))) {
+ const long b = intval;
+ long x;
+ long a = PyInt_AS_LONG(op1);
+
+ x = (long)((unsigned long)a + (unsigned long)b);
+ if (likely((x^a) >= 0 || (x^b) >= 0))
+ return PyInt_FromLong(x);
+ return PyLong_Type.tp_as_number->nb_add(op1, op2);
+ }
+ #endif
+ #if CYTHON_USE_PYLONG_INTERNALS
+ if (likely(PyLong_CheckExact(op1))) {
+ const long b = intval;
+ long a, x;
+#ifdef HAVE_LONG_LONG
+ const PY_LONG_LONG llb = intval;
+ PY_LONG_LONG lla, llx;
+#endif
+ if (unlikely(__Pyx_PyLong_IsZero(op1))) {
+ return __Pyx_NewRef(op2);
+ }
+ if (likely(__Pyx_PyLong_IsCompact(op1))) {
+ a = __Pyx_PyLong_CompactValue(op1);
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(op1);
+ const Py_ssize_t size = __Pyx_PyLong_SignedDigitCount(op1);
+ switch (size) {
+ case -2:
+ if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) {
+ a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 2:
+ if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) {
+ a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case -3:
+ if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) {
+ a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 3:
+ if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) {
+ a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case -4:
+ if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) {
+ a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 4:
+ if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) {
+ a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ default: return PyLong_Type.tp_as_number->nb_add(op1, op2);
+ }
+ }
+ x = a + b;
+ return PyLong_FromLong(x);
+#ifdef HAVE_LONG_LONG
+ long_long:
+ llx = lla + llb;
+ return PyLong_FromLongLong(llx);
+#endif
+
+
+ }
+ #endif
+ if (PyFloat_CheckExact(op1)) {
+ const long b = intval;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ double a = __pyx_PyFloat_AsDouble(op1);
+#else
+ double a = PyFloat_AS_DOUBLE(op1);
+#endif
+ double result;
+
+ PyFPE_START_PROTECT("add", return NULL)
+ result = ((double)a) + (double)b;
+ PyFPE_END_PROTECT(result)
+ return PyFloat_FromDouble(result);
+ }
+ return (inplace ? PyNumber_InPlaceAdd : PyNumber_Add)(op1, op2);
+}
+#endif
+
+/* PyObjectCallNoArg */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallNoArg(PyObject *func) {
+ PyObject *arg[2] = {NULL, NULL};
+ return __Pyx_PyObject_FastCall(func, arg + 1, 0 | __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET);
+}
+
+/* RaiseException */
+#if PY_MAJOR_VERSION < 3
+static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) {
+ __Pyx_PyThreadState_declare
+ CYTHON_UNUSED_VAR(cause);
+ Py_XINCREF(type);
+ if (!value || value == Py_None)
+ value = NULL;
+ else
+ Py_INCREF(value);
+ if (!tb || tb == Py_None)
+ tb = NULL;
+ else {
+ Py_INCREF(tb);
+ if (!PyTraceBack_Check(tb)) {
+ PyErr_SetString(PyExc_TypeError,
+ "raise: arg 3 must be a traceback or None");
+ goto raise_error;
+ }
+ }
+ if (PyType_Check(type)) {
+#if CYTHON_COMPILING_IN_PYPY
+ if (!value) {
+ Py_INCREF(Py_None);
+ value = Py_None;
+ }
+#endif
+ PyErr_NormalizeException(&type, &value, &tb);
+ } else {
+ if (value) {
+ PyErr_SetString(PyExc_TypeError,
+ "instance exception may not have a separate value");
+ goto raise_error;
+ }
+ value = type;
+ type = (PyObject*) Py_TYPE(type);
+ Py_INCREF(type);
+ if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) {
+ PyErr_SetString(PyExc_TypeError,
+ "raise: exception class must be a subclass of BaseException");
+ goto raise_error;
+ }
+ }
+ __Pyx_PyThreadState_assign
+ __Pyx_ErrRestore(type, value, tb);
+ return;
+raise_error:
+ Py_XDECREF(value);
+ Py_XDECREF(type);
+ Py_XDECREF(tb);
+ return;
+}
+#else
+static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) {
+ PyObject* owned_instance = NULL;
+ if (tb == Py_None) {
+ tb = 0;
+ } else if (tb && !PyTraceBack_Check(tb)) {
+ PyErr_SetString(PyExc_TypeError,
+ "raise: arg 3 must be a traceback or None");
+ goto bad;
+ }
+ if (value == Py_None)
+ value = 0;
+ if (PyExceptionInstance_Check(type)) {
+ if (value) {
+ PyErr_SetString(PyExc_TypeError,
+ "instance exception may not have a separate value");
+ goto bad;
+ }
+ value = type;
+ type = (PyObject*) Py_TYPE(value);
+ } else if (PyExceptionClass_Check(type)) {
+ PyObject *instance_class = NULL;
+ if (value && PyExceptionInstance_Check(value)) {
+ instance_class = (PyObject*) Py_TYPE(value);
+ if (instance_class != type) {
+ int is_subclass = PyObject_IsSubclass(instance_class, type);
+ if (!is_subclass) {
+ instance_class = NULL;
+ } else if (unlikely(is_subclass == -1)) {
+ goto bad;
+ } else {
+ type = instance_class;
+ }
+ }
+ }
+ if (!instance_class) {
+ PyObject *args;
+ if (!value)
+ args = PyTuple_New(0);
+ else if (PyTuple_Check(value)) {
+ Py_INCREF(value);
+ args = value;
+ } else
+ args = PyTuple_Pack(1, value);
+ if (!args)
+ goto bad;
+ owned_instance = PyObject_Call(type, args, NULL);
+ Py_DECREF(args);
+ if (!owned_instance)
+ goto bad;
+ value = owned_instance;
+ if (!PyExceptionInstance_Check(value)) {
+ PyErr_Format(PyExc_TypeError,
+ "calling %R should have returned an instance of "
+ "BaseException, not %R",
+ type, Py_TYPE(value));
+ goto bad;
+ }
+ }
+ } else {
+ PyErr_SetString(PyExc_TypeError,
+ "raise: exception class must be a subclass of BaseException");
+ goto bad;
+ }
+ if (cause) {
+ PyObject *fixed_cause;
+ if (cause == Py_None) {
+ fixed_cause = NULL;
+ } else if (PyExceptionClass_Check(cause)) {
+ fixed_cause = PyObject_CallObject(cause, NULL);
+ if (fixed_cause == NULL)
+ goto bad;
+ } else if (PyExceptionInstance_Check(cause)) {
+ fixed_cause = cause;
+ Py_INCREF(fixed_cause);
+ } else {
+ PyErr_SetString(PyExc_TypeError,
+ "exception causes must derive from "
+ "BaseException");
+ goto bad;
+ }
+ PyException_SetCause(value, fixed_cause);
+ }
+ PyErr_SetObject(type, value);
+ if (tb) {
+ #if PY_VERSION_HEX >= 0x030C00A6
+ PyException_SetTraceback(value, tb);
+ #elif CYTHON_FAST_THREAD_STATE
+ PyThreadState *tstate = __Pyx_PyThreadState_Current;
+ PyObject* tmp_tb = tstate->curexc_traceback;
+ if (tb != tmp_tb) {
+ Py_INCREF(tb);
+ tstate->curexc_traceback = tb;
+ Py_XDECREF(tmp_tb);
+ }
+#else
+ PyObject *tmp_type, *tmp_value, *tmp_tb;
+ PyErr_Fetch(&tmp_type, &tmp_value, &tmp_tb);
+ Py_INCREF(tb);
+ PyErr_Restore(tmp_type, tmp_value, tb);
+ Py_XDECREF(tmp_tb);
+#endif
+ }
+bad:
+ Py_XDECREF(owned_instance);
+ return;
+}
+#endif
+
+/* GetItemInt */
+static PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) {
+ PyObject *r;
+ if (unlikely(!j)) return NULL;
+ r = PyObject_GetItem(o, j);
+ Py_DECREF(j);
+ return r;
+}
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i,
+ CYTHON_NCP_UNUSED int wraparound,
+ CYTHON_NCP_UNUSED int boundscheck) {
+#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ Py_ssize_t wrapped_i = i;
+ if (wraparound & unlikely(i < 0)) {
+ wrapped_i += PyList_GET_SIZE(o);
+ }
+ if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyList_GET_SIZE(o)))) {
+ PyObject *r = PyList_GET_ITEM(o, wrapped_i);
+ Py_INCREF(r);
+ return r;
+ }
+ return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
+#else
+ return PySequence_GetItem(o, i);
+#endif
+}
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i,
+ CYTHON_NCP_UNUSED int wraparound,
+ CYTHON_NCP_UNUSED int boundscheck) {
+#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ Py_ssize_t wrapped_i = i;
+ if (wraparound & unlikely(i < 0)) {
+ wrapped_i += PyTuple_GET_SIZE(o);
+ }
+ if ((!boundscheck) || likely(__Pyx_is_valid_index(wrapped_i, PyTuple_GET_SIZE(o)))) {
+ PyObject *r = PyTuple_GET_ITEM(o, wrapped_i);
+ Py_INCREF(r);
+ return r;
+ }
+ return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
+#else
+ return PySequence_GetItem(o, i);
+#endif
+}
+static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i, int is_list,
+ CYTHON_NCP_UNUSED int wraparound,
+ CYTHON_NCP_UNUSED int boundscheck) {
+#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS && CYTHON_USE_TYPE_SLOTS
+ if (is_list || PyList_CheckExact(o)) {
+ Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyList_GET_SIZE(o);
+ if ((!boundscheck) || (likely(__Pyx_is_valid_index(n, PyList_GET_SIZE(o))))) {
+ PyObject *r = PyList_GET_ITEM(o, n);
+ Py_INCREF(r);
+ return r;
+ }
+ }
+ else if (PyTuple_CheckExact(o)) {
+ Py_ssize_t n = ((!wraparound) | likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o);
+ if ((!boundscheck) || likely(__Pyx_is_valid_index(n, PyTuple_GET_SIZE(o)))) {
+ PyObject *r = PyTuple_GET_ITEM(o, n);
+ Py_INCREF(r);
+ return r;
+ }
+ } else {
+ PyMappingMethods *mm = Py_TYPE(o)->tp_as_mapping;
+ PySequenceMethods *sm = Py_TYPE(o)->tp_as_sequence;
+ if (mm && mm->mp_subscript) {
+ PyObject *r, *key = PyInt_FromSsize_t(i);
+ if (unlikely(!key)) return NULL;
+ r = mm->mp_subscript(o, key);
+ Py_DECREF(key);
+ return r;
+ }
+ if (likely(sm && sm->sq_item)) {
+ if (wraparound && unlikely(i < 0) && likely(sm->sq_length)) {
+ Py_ssize_t l = sm->sq_length(o);
+ if (likely(l >= 0)) {
+ i += l;
+ } else {
+ if (!PyErr_ExceptionMatches(PyExc_OverflowError))
+ return NULL;
+ PyErr_Clear();
+ }
+ }
+ return sm->sq_item(o, i);
+ }
+ }
+#else
+ if (is_list || !PyMapping_Check(o)) {
+ return PySequence_GetItem(o, i);
+ }
+#endif
+ return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
+}
+
+/* PyObjectCallOneArg */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_CallOneArg(PyObject *func, PyObject *arg) {
+ PyObject *args[2] = {NULL, arg};
+ return __Pyx_PyObject_FastCall(func, args+1, 1 | __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET);
+}
+
+/* ObjectGetItem */
+#if CYTHON_USE_TYPE_SLOTS
+static PyObject *__Pyx_PyObject_GetIndex(PyObject *obj, PyObject *index) {
+ PyObject *runerr = NULL;
+ Py_ssize_t key_value;
+ key_value = __Pyx_PyIndex_AsSsize_t(index);
+ if (likely(key_value != -1 || !(runerr = PyErr_Occurred()))) {
+ return __Pyx_GetItemInt_Fast(obj, key_value, 0, 1, 1);
+ }
+ if (PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) {
+ __Pyx_TypeName index_type_name = __Pyx_PyType_GetName(Py_TYPE(index));
+ PyErr_Clear();
+ PyErr_Format(PyExc_IndexError,
+ "cannot fit '" __Pyx_FMT_TYPENAME "' into an index-sized integer", index_type_name);
+ __Pyx_DECREF_TypeName(index_type_name);
+ }
+ return NULL;
+}
+static PyObject *__Pyx_PyObject_GetItem_Slow(PyObject *obj, PyObject *key) {
+ __Pyx_TypeName obj_type_name;
+ if (likely(PyType_Check(obj))) {
+ PyObject *meth = __Pyx_PyObject_GetAttrStrNoError(obj, __pyx_n_s_class_getitem);
+ if (!meth) {
+ PyErr_Clear();
+ } else {
+ PyObject *result = __Pyx_PyObject_CallOneArg(meth, key);
+ Py_DECREF(meth);
+ return result;
+ }
+ }
+ obj_type_name = __Pyx_PyType_GetName(Py_TYPE(obj));
+ PyErr_Format(PyExc_TypeError,
+ "'" __Pyx_FMT_TYPENAME "' object is not subscriptable", obj_type_name);
+ __Pyx_DECREF_TypeName(obj_type_name);
+ return NULL;
+}
+static PyObject *__Pyx_PyObject_GetItem(PyObject *obj, PyObject *key) {
+ PyTypeObject *tp = Py_TYPE(obj);
+ PyMappingMethods *mm = tp->tp_as_mapping;
+ PySequenceMethods *sm = tp->tp_as_sequence;
+ if (likely(mm && mm->mp_subscript)) {
+ return mm->mp_subscript(obj, key);
+ }
+ if (likely(sm && sm->sq_item)) {
+ return __Pyx_PyObject_GetIndex(obj, key);
+ }
+ return __Pyx_PyObject_GetItem_Slow(obj, key);
+}
+#endif
+
+/* SliceObject */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_GetSlice(PyObject* obj,
+ Py_ssize_t cstart, Py_ssize_t cstop,
+ PyObject** _py_start, PyObject** _py_stop, PyObject** _py_slice,
+ int has_cstart, int has_cstop, int wraparound) {
+ __Pyx_TypeName obj_type_name;
+#if CYTHON_USE_TYPE_SLOTS
+ PyMappingMethods* mp;
+#if PY_MAJOR_VERSION < 3
+ PySequenceMethods* ms = Py_TYPE(obj)->tp_as_sequence;
+ if (likely(ms && ms->sq_slice)) {
+ if (!has_cstart) {
+ if (_py_start && (*_py_start != Py_None)) {
+ cstart = __Pyx_PyIndex_AsSsize_t(*_py_start);
+ if ((cstart == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad;
+ } else
+ cstart = 0;
+ }
+ if (!has_cstop) {
+ if (_py_stop && (*_py_stop != Py_None)) {
+ cstop = __Pyx_PyIndex_AsSsize_t(*_py_stop);
+ if ((cstop == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad;
+ } else
+ cstop = PY_SSIZE_T_MAX;
+ }
+ if (wraparound && unlikely((cstart < 0) | (cstop < 0)) && likely(ms->sq_length)) {
+ Py_ssize_t l = ms->sq_length(obj);
+ if (likely(l >= 0)) {
+ if (cstop < 0) {
+ cstop += l;
+ if (cstop < 0) cstop = 0;
+ }
+ if (cstart < 0) {
+ cstart += l;
+ if (cstart < 0) cstart = 0;
+ }
+ } else {
+ if (!PyErr_ExceptionMatches(PyExc_OverflowError))
+ goto bad;
+ PyErr_Clear();
+ }
+ }
+ return ms->sq_slice(obj, cstart, cstop);
+ }
+#else
+ CYTHON_UNUSED_VAR(wraparound);
+#endif
+ mp = Py_TYPE(obj)->tp_as_mapping;
+ if (likely(mp && mp->mp_subscript))
+#else
+ CYTHON_UNUSED_VAR(wraparound);
+#endif
+ {
+ PyObject* result;
+ PyObject *py_slice, *py_start, *py_stop;
+ if (_py_slice) {
+ py_slice = *_py_slice;
+ } else {
+ PyObject* owned_start = NULL;
+ PyObject* owned_stop = NULL;
+ if (_py_start) {
+ py_start = *_py_start;
+ } else {
+ if (has_cstart) {
+ owned_start = py_start = PyInt_FromSsize_t(cstart);
+ if (unlikely(!py_start)) goto bad;
+ } else
+ py_start = Py_None;
+ }
+ if (_py_stop) {
+ py_stop = *_py_stop;
+ } else {
+ if (has_cstop) {
+ owned_stop = py_stop = PyInt_FromSsize_t(cstop);
+ if (unlikely(!py_stop)) {
+ Py_XDECREF(owned_start);
+ goto bad;
+ }
+ } else
+ py_stop = Py_None;
+ }
+ py_slice = PySlice_New(py_start, py_stop, Py_None);
+ Py_XDECREF(owned_start);
+ Py_XDECREF(owned_stop);
+ if (unlikely(!py_slice)) goto bad;
+ }
+#if CYTHON_USE_TYPE_SLOTS
+ result = mp->mp_subscript(obj, py_slice);
+#else
+ result = PyObject_GetItem(obj, py_slice);
+#endif
+ if (!_py_slice) {
+ Py_DECREF(py_slice);
+ }
+ return result;
+ }
+ obj_type_name = __Pyx_PyType_GetName(Py_TYPE(obj));
+ PyErr_Format(PyExc_TypeError,
+ "'" __Pyx_FMT_TYPENAME "' object is unsliceable", obj_type_name);
+ __Pyx_DECREF_TypeName(obj_type_name);
+bad:
+ return NULL;
+}
+
+/* PyIntBinop */
+#if !CYTHON_COMPILING_IN_PYPY
+static PyObject* __Pyx_PyInt_SubtractObjC(PyObject *op1, PyObject *op2, long intval, int inplace, int zerodivision_check) {
+ CYTHON_MAYBE_UNUSED_VAR(intval);
+ CYTHON_MAYBE_UNUSED_VAR(inplace);
+ CYTHON_UNUSED_VAR(zerodivision_check);
+ #if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_CheckExact(op1))) {
+ const long b = intval;
+ long x;
+ long a = PyInt_AS_LONG(op1);
+
+ x = (long)((unsigned long)a - (unsigned long)b);
+ if (likely((x^a) >= 0 || (x^~b) >= 0))
+ return PyInt_FromLong(x);
+ return PyLong_Type.tp_as_number->nb_subtract(op1, op2);
+ }
+ #endif
+ #if CYTHON_USE_PYLONG_INTERNALS
+ if (likely(PyLong_CheckExact(op1))) {
+ const long b = intval;
+ long a, x;
+#ifdef HAVE_LONG_LONG
+ const PY_LONG_LONG llb = intval;
+ PY_LONG_LONG lla, llx;
+#endif
+ if (unlikely(__Pyx_PyLong_IsZero(op1))) {
+ return PyLong_FromLong(-intval);
+ }
+ if (likely(__Pyx_PyLong_IsCompact(op1))) {
+ a = __Pyx_PyLong_CompactValue(op1);
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(op1);
+ const Py_ssize_t size = __Pyx_PyLong_SignedDigitCount(op1);
+ switch (size) {
+ case -2:
+ if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) {
+ a = -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 2:
+ if (8 * sizeof(long) - 1 > 2 * PyLong_SHIFT) {
+ a = (long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 2 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case -3:
+ if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) {
+ a = -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 3:
+ if (8 * sizeof(long) - 1 > 3 * PyLong_SHIFT) {
+ a = (long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 3 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((((unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case -4:
+ if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) {
+ a = -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) {
+ lla = -(PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ case 4:
+ if (8 * sizeof(long) - 1 > 4 * PyLong_SHIFT) {
+ a = (long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0]));
+ break;
+ #ifdef HAVE_LONG_LONG
+ } else if (8 * sizeof(PY_LONG_LONG) - 1 > 4 * PyLong_SHIFT) {
+ lla = (PY_LONG_LONG) (((((((((unsigned PY_LONG_LONG)digits[3]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[2]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[1]) << PyLong_SHIFT) | (unsigned PY_LONG_LONG)digits[0]));
+ goto long_long;
+ #endif
+ }
+ CYTHON_FALLTHROUGH;
+ default: return PyLong_Type.tp_as_number->nb_subtract(op1, op2);
+ }
+ }
+ x = a - b;
+ return PyLong_FromLong(x);
+#ifdef HAVE_LONG_LONG
+ long_long:
+ llx = lla - llb;
+ return PyLong_FromLongLong(llx);
+#endif
+
+
+ }
+ #endif
+ if (PyFloat_CheckExact(op1)) {
+ const long b = intval;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ double a = __pyx_PyFloat_AsDouble(op1);
+#else
+ double a = PyFloat_AS_DOUBLE(op1);
+#endif
+ double result;
+
+ PyFPE_START_PROTECT("subtract", return NULL)
+ result = ((double)a) - (double)b;
+ PyFPE_END_PROTECT(result)
+ return PyFloat_FromDouble(result);
+ }
+ return (inplace ? PyNumber_InPlaceSubtract : PyNumber_Subtract)(op1, op2);
+}
+#endif
+
+/* pybytes_as_double */
+static double __Pyx_SlowPyString_AsDouble(PyObject *obj) {
+ PyObject *float_value;
+#if PY_MAJOR_VERSION >= 3
+ float_value = PyFloat_FromString(obj);
+#else
+ float_value = PyFloat_FromString(obj, 0);
+#endif
+ if (likely(float_value)) {
+#if CYTHON_ASSUME_SAFE_MACROS
+ double value = PyFloat_AS_DOUBLE(float_value);
+#else
+ double value = PyFloat_AsDouble(float_value);
+#endif
+ Py_DECREF(float_value);
+ return value;
+ }
+ return (double)-1;
+}
+static const char* __Pyx__PyBytes_AsDouble_Copy(const char* start, char* buffer, Py_ssize_t length) {
+ int last_was_punctuation = 1;
+ Py_ssize_t i;
+ for (i=0; i < length; i++) {
+ char chr = start[i];
+ int is_punctuation = (chr == '_') | (chr == '.') | (chr == 'e') | (chr == 'E');
+ *buffer = chr;
+ buffer += (chr != '_');
+ if (unlikely(last_was_punctuation & is_punctuation)) goto parse_failure;
+ last_was_punctuation = is_punctuation;
+ }
+ if (unlikely(last_was_punctuation)) goto parse_failure;
+ *buffer = '\0';
+ return buffer;
+parse_failure:
+ return NULL;
+}
+static double __Pyx__PyBytes_AsDouble_inf_nan(const char* start, Py_ssize_t length) {
+ int matches = 1;
+ char sign = start[0];
+ int is_signed = (sign == '+') | (sign == '-');
+ start += is_signed;
+ length -= is_signed;
+ switch (start[0]) {
+ #ifdef Py_NAN
+ case 'n':
+ case 'N':
+ if (unlikely(length != 3)) goto parse_failure;
+ matches &= (start[1] == 'a' || start[1] == 'A');
+ matches &= (start[2] == 'n' || start[2] == 'N');
+ if (unlikely(!matches)) goto parse_failure;
+ return (sign == '-') ? -Py_NAN : Py_NAN;
+ #endif
+ case 'i':
+ case 'I':
+ if (unlikely(length < 3)) goto parse_failure;
+ matches &= (start[1] == 'n' || start[1] == 'N');
+ matches &= (start[2] == 'f' || start[2] == 'F');
+ if (likely(length == 3 && matches))
+ return (sign == '-') ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ if (unlikely(length != 8)) goto parse_failure;
+ matches &= (start[3] == 'i' || start[3] == 'I');
+ matches &= (start[4] == 'n' || start[4] == 'N');
+ matches &= (start[5] == 'i' || start[5] == 'I');
+ matches &= (start[6] == 't' || start[6] == 'T');
+ matches &= (start[7] == 'y' || start[7] == 'Y');
+ if (unlikely(!matches)) goto parse_failure;
+ return (sign == '-') ? -Py_HUGE_VAL : Py_HUGE_VAL;
+ case '.': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9':
+ break;
+ default:
+ goto parse_failure;
+ }
+ return 0.0;
+parse_failure:
+ return -1.0;
+}
+static CYTHON_INLINE int __Pyx__PyBytes_AsDouble_IsSpace(char ch) {
+ return (ch == 0x20) | !((ch < 0x9) | (ch > 0xd));
+}
+CYTHON_UNUSED static double __Pyx__PyBytes_AsDouble(PyObject *obj, const char* start, Py_ssize_t length) {
+ double value;
+ Py_ssize_t i, digits;
+ const char *last = start + length;
+ char *end;
+ while (__Pyx__PyBytes_AsDouble_IsSpace(*start))
+ start++;
+ while (start < last - 1 && __Pyx__PyBytes_AsDouble_IsSpace(last[-1]))
+ last--;
+ length = last - start;
+ if (unlikely(length <= 0)) goto fallback;
+ value = __Pyx__PyBytes_AsDouble_inf_nan(start, length);
+ if (unlikely(value == -1.0)) goto fallback;
+ if (value != 0.0) return value;
+ digits = 0;
+ for (i=0; i < length; digits += start[i++] != '_');
+ if (likely(digits == length)) {
+ value = PyOS_string_to_double(start, &end, NULL);
+ } else if (digits < 40) {
+ char number[40];
+ last = __Pyx__PyBytes_AsDouble_Copy(start, number, length);
+ if (unlikely(!last)) goto fallback;
+ value = PyOS_string_to_double(number, &end, NULL);
+ } else {
+ char *number = (char*) PyMem_Malloc((digits + 1) * sizeof(char));
+ if (unlikely(!number)) goto fallback;
+ last = __Pyx__PyBytes_AsDouble_Copy(start, number, length);
+ if (unlikely(!last)) {
+ PyMem_Free(number);
+ goto fallback;
+ }
+ value = PyOS_string_to_double(number, &end, NULL);
+ PyMem_Free(number);
+ }
+ if (likely(end == last) || (value == (double)-1 && PyErr_Occurred())) {
+ return value;
+ }
+fallback:
+ return __Pyx_SlowPyString_AsDouble(obj);
+}
+
+/* pynumber_float */
+static CYTHON_INLINE PyObject* __Pyx__PyNumber_Float(PyObject* obj) {
+ double val;
+ if (PyLong_CheckExact(obj)) {
+#if CYTHON_USE_PYLONG_INTERNALS
+ if (likely(__Pyx_PyLong_IsCompact(obj))) {
+ val = (double) __Pyx_PyLong_CompactValue(obj);
+ goto no_error;
+ }
+#endif
+ val = PyLong_AsDouble(obj);
+ } else if (PyUnicode_CheckExact(obj)) {
+ val = __Pyx_PyUnicode_AsDouble(obj);
+ } else if (PyBytes_CheckExact(obj)) {
+ val = __Pyx_PyBytes_AsDouble(obj);
+ } else if (PyByteArray_CheckExact(obj)) {
+ val = __Pyx_PyByteArray_AsDouble(obj);
+ } else {
+ return PyNumber_Float(obj);
+ }
+ if (unlikely(val == -1 && PyErr_Occurred())) {
+ return NULL;
+ }
+#if CYTHON_USE_PYLONG_INTERNALS
+no_error:
+#endif
+ return PyFloat_FromDouble(val);
+}
+
+/* IterNext */
+static PyObject *__Pyx_PyIter_Next2Default(PyObject* defval) {
+ PyObject* exc_type;
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ exc_type = __Pyx_PyErr_CurrentExceptionType();
+ if (unlikely(exc_type)) {
+ if (!defval || unlikely(!__Pyx_PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration)))
+ return NULL;
+ __Pyx_PyErr_Clear();
+ Py_INCREF(defval);
+ return defval;
+ }
+ if (defval) {
+ Py_INCREF(defval);
+ return defval;
+ }
+ __Pyx_PyErr_SetNone(PyExc_StopIteration);
+ return NULL;
+}
+static void __Pyx_PyIter_Next_ErrorNoIterator(PyObject *iterator) {
+ __Pyx_TypeName iterator_type_name = __Pyx_PyType_GetName(Py_TYPE(iterator));
+ PyErr_Format(PyExc_TypeError,
+ __Pyx_FMT_TYPENAME " object is not an iterator", iterator_type_name);
+ __Pyx_DECREF_TypeName(iterator_type_name);
+}
+static CYTHON_INLINE PyObject *__Pyx_PyIter_Next2(PyObject* iterator, PyObject* defval) {
+ PyObject* next;
+ iternextfunc iternext = Py_TYPE(iterator)->tp_iternext;
+ if (likely(iternext)) {
+#if CYTHON_USE_TYPE_SLOTS || CYTHON_COMPILING_IN_PYPY
+ next = iternext(iterator);
+ if (likely(next))
+ return next;
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030d0000
+ if (unlikely(iternext == &_PyObject_NextNotImplemented))
+ return NULL;
+#endif
+#else
+ next = PyIter_Next(iterator);
+ if (likely(next))
+ return next;
+#endif
+ } else if (CYTHON_USE_TYPE_SLOTS || unlikely(!PyIter_Check(iterator))) {
+ __Pyx_PyIter_Next_ErrorNoIterator(iterator);
+ return NULL;
+ }
+#if !CYTHON_USE_TYPE_SLOTS
+ else {
+ next = PyIter_Next(iterator);
+ if (likely(next))
+ return next;
+ }
+#endif
+ return __Pyx_PyIter_Next2Default(defval);
+}
+
+/* GetTopmostException */
+#if CYTHON_USE_EXC_INFO_STACK && CYTHON_FAST_THREAD_STATE
+static _PyErr_StackItem *
+__Pyx_PyErr_GetTopmostException(PyThreadState *tstate)
+{
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ while ((exc_info->exc_value == NULL || exc_info->exc_value == Py_None) &&
+ exc_info->previous_item != NULL)
+ {
+ exc_info = exc_info->previous_item;
+ }
+ return exc_info;
+}
+#endif
+
+/* SaveResetException */
+#if CYTHON_FAST_THREAD_STATE
+static CYTHON_INLINE void __Pyx__ExceptionSave(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb) {
+ #if CYTHON_USE_EXC_INFO_STACK && PY_VERSION_HEX >= 0x030B00a4
+ _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate);
+ PyObject *exc_value = exc_info->exc_value;
+ if (exc_value == NULL || exc_value == Py_None) {
+ *value = NULL;
+ *type = NULL;
+ *tb = NULL;
+ } else {
+ *value = exc_value;
+ Py_INCREF(*value);
+ *type = (PyObject*) Py_TYPE(exc_value);
+ Py_INCREF(*type);
+ *tb = PyException_GetTraceback(exc_value);
+ }
+ #elif CYTHON_USE_EXC_INFO_STACK
+ _PyErr_StackItem *exc_info = __Pyx_PyErr_GetTopmostException(tstate);
+ *type = exc_info->exc_type;
+ *value = exc_info->exc_value;
+ *tb = exc_info->exc_traceback;
+ Py_XINCREF(*type);
+ Py_XINCREF(*value);
+ Py_XINCREF(*tb);
+ #else
+ *type = tstate->exc_type;
+ *value = tstate->exc_value;
+ *tb = tstate->exc_traceback;
+ Py_XINCREF(*type);
+ Py_XINCREF(*value);
+ Py_XINCREF(*tb);
+ #endif
+}
+static CYTHON_INLINE void __Pyx__ExceptionReset(PyThreadState *tstate, PyObject *type, PyObject *value, PyObject *tb) {
+ #if CYTHON_USE_EXC_INFO_STACK && PY_VERSION_HEX >= 0x030B00a4
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ PyObject *tmp_value = exc_info->exc_value;
+ exc_info->exc_value = value;
+ Py_XDECREF(tmp_value);
+ Py_XDECREF(type);
+ Py_XDECREF(tb);
+ #else
+ PyObject *tmp_type, *tmp_value, *tmp_tb;
+ #if CYTHON_USE_EXC_INFO_STACK
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ tmp_type = exc_info->exc_type;
+ tmp_value = exc_info->exc_value;
+ tmp_tb = exc_info->exc_traceback;
+ exc_info->exc_type = type;
+ exc_info->exc_value = value;
+ exc_info->exc_traceback = tb;
+ #else
+ tmp_type = tstate->exc_type;
+ tmp_value = tstate->exc_value;
+ tmp_tb = tstate->exc_traceback;
+ tstate->exc_type = type;
+ tstate->exc_value = value;
+ tstate->exc_traceback = tb;
+ #endif
+ Py_XDECREF(tmp_type);
+ Py_XDECREF(tmp_value);
+ Py_XDECREF(tmp_tb);
+ #endif
+}
+#endif
+
+/* GetException */
+#if CYTHON_FAST_THREAD_STATE
+static int __Pyx__GetException(PyThreadState *tstate, PyObject **type, PyObject **value, PyObject **tb)
+#else
+static int __Pyx_GetException(PyObject **type, PyObject **value, PyObject **tb)
+#endif
+{
+ PyObject *local_type = NULL, *local_value, *local_tb = NULL;
+#if CYTHON_FAST_THREAD_STATE
+ PyObject *tmp_type, *tmp_value, *tmp_tb;
+ #if PY_VERSION_HEX >= 0x030C00A6
+ local_value = tstate->current_exception;
+ tstate->current_exception = 0;
+ if (likely(local_value)) {
+ local_type = (PyObject*) Py_TYPE(local_value);
+ Py_INCREF(local_type);
+ local_tb = PyException_GetTraceback(local_value);
+ }
+ #else
+ local_type = tstate->curexc_type;
+ local_value = tstate->curexc_value;
+ local_tb = tstate->curexc_traceback;
+ tstate->curexc_type = 0;
+ tstate->curexc_value = 0;
+ tstate->curexc_traceback = 0;
+ #endif
+#else
+ PyErr_Fetch(&local_type, &local_value, &local_tb);
+#endif
+ PyErr_NormalizeException(&local_type, &local_value, &local_tb);
+#if CYTHON_FAST_THREAD_STATE && PY_VERSION_HEX >= 0x030C00A6
+ if (unlikely(tstate->current_exception))
+#elif CYTHON_FAST_THREAD_STATE
+ if (unlikely(tstate->curexc_type))
+#else
+ if (unlikely(PyErr_Occurred()))
+#endif
+ goto bad;
+ #if PY_MAJOR_VERSION >= 3
+ if (local_tb) {
+ if (unlikely(PyException_SetTraceback(local_value, local_tb) < 0))
+ goto bad;
+ }
+ #endif
+ Py_XINCREF(local_tb);
+ Py_XINCREF(local_type);
+ Py_XINCREF(local_value);
+ *type = local_type;
+ *value = local_value;
+ *tb = local_tb;
+#if CYTHON_FAST_THREAD_STATE
+ #if CYTHON_USE_EXC_INFO_STACK
+ {
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ #if PY_VERSION_HEX >= 0x030B00a4
+ tmp_value = exc_info->exc_value;
+ exc_info->exc_value = local_value;
+ tmp_type = NULL;
+ tmp_tb = NULL;
+ Py_XDECREF(local_type);
+ Py_XDECREF(local_tb);
+ #else
+ tmp_type = exc_info->exc_type;
+ tmp_value = exc_info->exc_value;
+ tmp_tb = exc_info->exc_traceback;
+ exc_info->exc_type = local_type;
+ exc_info->exc_value = local_value;
+ exc_info->exc_traceback = local_tb;
+ #endif
+ }
+ #else
+ tmp_type = tstate->exc_type;
+ tmp_value = tstate->exc_value;
+ tmp_tb = tstate->exc_traceback;
+ tstate->exc_type = local_type;
+ tstate->exc_value = local_value;
+ tstate->exc_traceback = local_tb;
+ #endif
+ Py_XDECREF(tmp_type);
+ Py_XDECREF(tmp_value);
+ Py_XDECREF(tmp_tb);
+#else
+ PyErr_SetExcInfo(local_type, local_value, local_tb);
+#endif
+ return 0;
+bad:
+ *type = 0;
+ *value = 0;
+ *tb = 0;
+ Py_XDECREF(local_type);
+ Py_XDECREF(local_value);
+ Py_XDECREF(local_tb);
+ return -1;
+}
+
+/* PyObjectGetMethod */
+static int __Pyx_PyObject_GetMethod(PyObject *obj, PyObject *name, PyObject **method) {
+ PyObject *attr;
+#if CYTHON_UNPACK_METHODS && CYTHON_COMPILING_IN_CPYTHON && CYTHON_USE_PYTYPE_LOOKUP
+ __Pyx_TypeName type_name;
+ PyTypeObject *tp = Py_TYPE(obj);
+ PyObject *descr;
+ descrgetfunc f = NULL;
+ PyObject **dictptr, *dict;
+ int meth_found = 0;
+ assert (*method == NULL);
+ if (unlikely(tp->tp_getattro != PyObject_GenericGetAttr)) {
+ attr = __Pyx_PyObject_GetAttrStr(obj, name);
+ goto try_unpack;
+ }
+ if (unlikely(tp->tp_dict == NULL) && unlikely(PyType_Ready(tp) < 0)) {
+ return 0;
+ }
+ descr = _PyType_Lookup(tp, name);
+ if (likely(descr != NULL)) {
+ Py_INCREF(descr);
+#if defined(Py_TPFLAGS_METHOD_DESCRIPTOR) && Py_TPFLAGS_METHOD_DESCRIPTOR
+ if (__Pyx_PyType_HasFeature(Py_TYPE(descr), Py_TPFLAGS_METHOD_DESCRIPTOR))
+#elif PY_MAJOR_VERSION >= 3
+ #ifdef __Pyx_CyFunction_USED
+ if (likely(PyFunction_Check(descr) || __Pyx_IS_TYPE(descr, &PyMethodDescr_Type) || __Pyx_CyFunction_Check(descr)))
+ #else
+ if (likely(PyFunction_Check(descr) || __Pyx_IS_TYPE(descr, &PyMethodDescr_Type)))
+ #endif
+#else
+ #ifdef __Pyx_CyFunction_USED
+ if (likely(PyFunction_Check(descr) || __Pyx_CyFunction_Check(descr)))
+ #else
+ if (likely(PyFunction_Check(descr)))
+ #endif
+#endif
+ {
+ meth_found = 1;
+ } else {
+ f = Py_TYPE(descr)->tp_descr_get;
+ if (f != NULL && PyDescr_IsData(descr)) {
+ attr = f(descr, obj, (PyObject *)Py_TYPE(obj));
+ Py_DECREF(descr);
+ goto try_unpack;
+ }
+ }
+ }
+ dictptr = _PyObject_GetDictPtr(obj);
+ if (dictptr != NULL && (dict = *dictptr) != NULL) {
+ Py_INCREF(dict);
+ attr = __Pyx_PyDict_GetItemStr(dict, name);
+ if (attr != NULL) {
+ Py_INCREF(attr);
+ Py_DECREF(dict);
+ Py_XDECREF(descr);
+ goto try_unpack;
+ }
+ Py_DECREF(dict);
+ }
+ if (meth_found) {
+ *method = descr;
+ return 1;
+ }
+ if (f != NULL) {
+ attr = f(descr, obj, (PyObject *)Py_TYPE(obj));
+ Py_DECREF(descr);
+ goto try_unpack;
+ }
+ if (likely(descr != NULL)) {
+ *method = descr;
+ return 0;
+ }
+ type_name = __Pyx_PyType_GetName(tp);
+ PyErr_Format(PyExc_AttributeError,
+#if PY_MAJOR_VERSION >= 3
+ "'" __Pyx_FMT_TYPENAME "' object has no attribute '%U'",
+ type_name, name);
+#else
+ "'" __Pyx_FMT_TYPENAME "' object has no attribute '%.400s'",
+ type_name, PyString_AS_STRING(name));
+#endif
+ __Pyx_DECREF_TypeName(type_name);
+ return 0;
+#else
+ attr = __Pyx_PyObject_GetAttrStr(obj, name);
+ goto try_unpack;
+#endif
+try_unpack:
+#if CYTHON_UNPACK_METHODS
+ if (likely(attr) && PyMethod_Check(attr) && likely(PyMethod_GET_SELF(attr) == obj)) {
+ PyObject *function = PyMethod_GET_FUNCTION(attr);
+ Py_INCREF(function);
+ Py_DECREF(attr);
+ *method = function;
+ return 1;
+ }
+#endif
+ *method = attr;
+ return 0;
+}
+
+/* PyObjectCallMethod0 */
+static PyObject* __Pyx_PyObject_CallMethod0(PyObject* obj, PyObject* method_name) {
+ PyObject *method = NULL, *result = NULL;
+ int is_method = __Pyx_PyObject_GetMethod(obj, method_name, &method);
+ if (likely(is_method)) {
+ result = __Pyx_PyObject_CallOneArg(method, obj);
+ Py_DECREF(method);
+ return result;
+ }
+ if (unlikely(!method)) goto bad;
+ result = __Pyx_PyObject_CallNoArg(method);
+ Py_DECREF(method);
+bad:
+ return result;
+}
+
+/* UnpackUnboundCMethod */
+static PyObject *__Pyx_SelflessCall(PyObject *method, PyObject *args, PyObject *kwargs) {
+ PyObject *result;
+ PyObject *selfless_args = PyTuple_GetSlice(args, 1, PyTuple_Size(args));
+ if (unlikely(!selfless_args)) return NULL;
+ result = PyObject_Call(method, selfless_args, kwargs);
+ Py_DECREF(selfless_args);
+ return result;
+}
+static PyMethodDef __Pyx_UnboundCMethod_Def = {
+ "CythonUnboundCMethod",
+ __PYX_REINTERPRET_FUNCION(PyCFunction, __Pyx_SelflessCall),
+ METH_VARARGS | METH_KEYWORDS,
+ NULL
+};
+static int __Pyx_TryUnpackUnboundCMethod(__Pyx_CachedCFunction* target) {
+ PyObject *method;
+ method = __Pyx_PyObject_GetAttrStr(target->type, *target->method_name);
+ if (unlikely(!method))
+ return -1;
+ target->method = method;
+#if CYTHON_COMPILING_IN_CPYTHON
+ #if PY_MAJOR_VERSION >= 3
+ if (likely(__Pyx_TypeCheck(method, &PyMethodDescr_Type)))
+ #else
+ if (likely(!__Pyx_CyOrPyCFunction_Check(method)))
+ #endif
+ {
+ PyMethodDescrObject *descr = (PyMethodDescrObject*) method;
+ target->func = descr->d_method->ml_meth;
+ target->flag = descr->d_method->ml_flags & ~(METH_CLASS | METH_STATIC | METH_COEXIST | METH_STACKLESS);
+ } else
+#endif
+#if CYTHON_COMPILING_IN_PYPY
+#else
+ if (PyCFunction_Check(method))
+#endif
+ {
+ PyObject *self;
+ int self_found;
+#if CYTHON_COMPILING_IN_LIMITED_API || CYTHON_COMPILING_IN_PYPY
+ self = PyObject_GetAttrString(method, "__self__");
+ if (!self) {
+ PyErr_Clear();
+ }
+#else
+ self = PyCFunction_GET_SELF(method);
+#endif
+ self_found = (self && self != Py_None);
+#if CYTHON_COMPILING_IN_LIMITED_API || CYTHON_COMPILING_IN_PYPY
+ Py_XDECREF(self);
+#endif
+ if (self_found) {
+ PyObject *unbound_method = PyCFunction_New(&__Pyx_UnboundCMethod_Def, method);
+ if (unlikely(!unbound_method)) return -1;
+ Py_DECREF(method);
+ target->method = unbound_method;
+ }
+ }
+ return 0;
+}
+
+/* CallUnboundCMethod0 */
+static PyObject* __Pyx__CallUnboundCMethod0(__Pyx_CachedCFunction* cfunc, PyObject* self) {
+ PyObject *args, *result = NULL;
+ if (unlikely(!cfunc->method) && unlikely(__Pyx_TryUnpackUnboundCMethod(cfunc) < 0)) return NULL;
+#if CYTHON_ASSUME_SAFE_MACROS
+ args = PyTuple_New(1);
+ if (unlikely(!args)) goto bad;
+ Py_INCREF(self);
+ PyTuple_SET_ITEM(args, 0, self);
+#else
+ args = PyTuple_Pack(1, self);
+ if (unlikely(!args)) goto bad;
+#endif
+ result = __Pyx_PyObject_Call(cfunc->method, args, NULL);
+ Py_DECREF(args);
+bad:
+ return result;
+}
+
+/* pop */
+static CYTHON_INLINE PyObject* __Pyx__PyObject_Pop(PyObject* L) {
+ if (__Pyx_IS_TYPE(L, &PySet_Type)) {
+ return PySet_Pop(L);
+ }
+ return __Pyx_PyObject_CallMethod0(L, __pyx_n_s_pop);
+}
+#if CYTHON_USE_PYLIST_INTERNALS && CYTHON_ASSUME_SAFE_MACROS
+static CYTHON_INLINE PyObject* __Pyx_PyList_Pop(PyObject* L) {
+ if (likely(PyList_GET_SIZE(L) > (((PyListObject*)L)->allocated >> 1))) {
+ __Pyx_SET_SIZE(L, Py_SIZE(L) - 1);
+ return PyList_GET_ITEM(L, PyList_GET_SIZE(L));
+ }
+ return __Pyx_CallUnboundCMethod0(&__pyx_umethod_PyList_Type_pop, L);
+}
+#endif
+
+/* PyObjectCall2Args */
+static CYTHON_INLINE PyObject* __Pyx_PyObject_Call2Args(PyObject* function, PyObject* arg1, PyObject* arg2) {
+ PyObject *args[3] = {NULL, arg1, arg2};
+ return __Pyx_PyObject_FastCall(function, args+1, 2 | __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET);
+}
+
+/* PyObjectCallMethod1 */
+#if !(CYTHON_VECTORCALL && __PYX_LIMITED_VERSION_HEX >= 0x030C00A2)
+static PyObject* __Pyx__PyObject_CallMethod1(PyObject* method, PyObject* arg) {
+ PyObject *result = __Pyx_PyObject_CallOneArg(method, arg);
+ Py_DECREF(method);
+ return result;
+}
+#endif
+static PyObject* __Pyx_PyObject_CallMethod1(PyObject* obj, PyObject* method_name, PyObject* arg) {
+#if CYTHON_VECTORCALL && __PYX_LIMITED_VERSION_HEX >= 0x030C00A2
+ PyObject *args[2] = {obj, arg};
+ (void) __Pyx_PyObject_GetMethod;
+ (void) __Pyx_PyObject_CallOneArg;
+ (void) __Pyx_PyObject_Call2Args;
+ return PyObject_VectorcallMethod(method_name, args, 2 | PY_VECTORCALL_ARGUMENTS_OFFSET, NULL);
+#else
+ PyObject *method = NULL, *result;
+ int is_method = __Pyx_PyObject_GetMethod(obj, method_name, &method);
+ if (likely(is_method)) {
+ result = __Pyx_PyObject_Call2Args(method, obj, arg);
+ Py_DECREF(method);
+ return result;
+ }
+ if (unlikely(!method)) return NULL;
+ return __Pyx__PyObject_CallMethod1(method, arg);
+#endif
+}
+
+/* append */
+static CYTHON_INLINE int __Pyx_PyObject_Append(PyObject* L, PyObject* x) {
+ if (likely(PyList_CheckExact(L))) {
+ if (unlikely(__Pyx_PyList_Append(L, x) < 0)) return -1;
+ } else {
+ PyObject* retval = __Pyx_PyObject_CallMethod1(L, __pyx_n_s_append, x);
+ if (unlikely(!retval))
+ return -1;
+ Py_DECREF(retval);
+ }
+ return 0;
+}
+
+/* FastTypeChecks */
+#if CYTHON_COMPILING_IN_CPYTHON
+static int __Pyx_InBases(PyTypeObject *a, PyTypeObject *b) {
+ while (a) {
+ a = __Pyx_PyType_GetSlot(a, tp_base, PyTypeObject*);
+ if (a == b)
+ return 1;
+ }
+ return b == &PyBaseObject_Type;
+}
+static CYTHON_INLINE int __Pyx_IsSubtype(PyTypeObject *a, PyTypeObject *b) {
+ PyObject *mro;
+ if (a == b) return 1;
+ mro = a->tp_mro;
+ if (likely(mro)) {
+ Py_ssize_t i, n;
+ n = PyTuple_GET_SIZE(mro);
+ for (i = 0; i < n; i++) {
+ if (PyTuple_GET_ITEM(mro, i) == (PyObject *)b)
+ return 1;
+ }
+ return 0;
+ }
+ return __Pyx_InBases(a, b);
+}
+static CYTHON_INLINE int __Pyx_IsAnySubtype2(PyTypeObject *cls, PyTypeObject *a, PyTypeObject *b) {
+ PyObject *mro;
+ if (cls == a || cls == b) return 1;
+ mro = cls->tp_mro;
+ if (likely(mro)) {
+ Py_ssize_t i, n;
+ n = PyTuple_GET_SIZE(mro);
+ for (i = 0; i < n; i++) {
+ PyObject *base = PyTuple_GET_ITEM(mro, i);
+ if (base == (PyObject *)a || base == (PyObject *)b)
+ return 1;
+ }
+ return 0;
+ }
+ return __Pyx_InBases(cls, a) || __Pyx_InBases(cls, b);
+}
+#if PY_MAJOR_VERSION == 2
+static int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject* exc_type2) {
+ PyObject *exception, *value, *tb;
+ int res;
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ __Pyx_ErrFetch(&exception, &value, &tb);
+ res = exc_type1 ? PyObject_IsSubclass(err, exc_type1) : 0;
+ if (unlikely(res == -1)) {
+ PyErr_WriteUnraisable(err);
+ res = 0;
+ }
+ if (!res) {
+ res = PyObject_IsSubclass(err, exc_type2);
+ if (unlikely(res == -1)) {
+ PyErr_WriteUnraisable(err);
+ res = 0;
+ }
+ }
+ __Pyx_ErrRestore(exception, value, tb);
+ return res;
+}
+#else
+static CYTHON_INLINE int __Pyx_inner_PyErr_GivenExceptionMatches2(PyObject *err, PyObject* exc_type1, PyObject *exc_type2) {
+ if (exc_type1) {
+ return __Pyx_IsAnySubtype2((PyTypeObject*)err, (PyTypeObject*)exc_type1, (PyTypeObject*)exc_type2);
+ } else {
+ return __Pyx_IsSubtype((PyTypeObject*)err, (PyTypeObject*)exc_type2);
+ }
+}
+#endif
+static int __Pyx_PyErr_GivenExceptionMatchesTuple(PyObject *exc_type, PyObject *tuple) {
+ Py_ssize_t i, n;
+ assert(PyExceptionClass_Check(exc_type));
+ n = PyTuple_GET_SIZE(tuple);
+#if PY_MAJOR_VERSION >= 3
+ for (i=0; i= 0x030B00a4
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ tmp_value = exc_info->exc_value;
+ exc_info->exc_value = *value;
+ if (tmp_value == NULL || tmp_value == Py_None) {
+ Py_XDECREF(tmp_value);
+ tmp_value = NULL;
+ tmp_type = NULL;
+ tmp_tb = NULL;
+ } else {
+ tmp_type = (PyObject*) Py_TYPE(tmp_value);
+ Py_INCREF(tmp_type);
+ #if CYTHON_COMPILING_IN_CPYTHON
+ tmp_tb = ((PyBaseExceptionObject*) tmp_value)->traceback;
+ Py_XINCREF(tmp_tb);
+ #else
+ tmp_tb = PyException_GetTraceback(tmp_value);
+ #endif
+ }
+ #elif CYTHON_USE_EXC_INFO_STACK
+ _PyErr_StackItem *exc_info = tstate->exc_info;
+ tmp_type = exc_info->exc_type;
+ tmp_value = exc_info->exc_value;
+ tmp_tb = exc_info->exc_traceback;
+ exc_info->exc_type = *type;
+ exc_info->exc_value = *value;
+ exc_info->exc_traceback = *tb;
+ #else
+ tmp_type = tstate->exc_type;
+ tmp_value = tstate->exc_value;
+ tmp_tb = tstate->exc_traceback;
+ tstate->exc_type = *type;
+ tstate->exc_value = *value;
+ tstate->exc_traceback = *tb;
+ #endif
+ *type = tmp_type;
+ *value = tmp_value;
+ *tb = tmp_tb;
+}
+#else
+static CYTHON_INLINE void __Pyx_ExceptionSwap(PyObject **type, PyObject **value, PyObject **tb) {
+ PyObject *tmp_type, *tmp_value, *tmp_tb;
+ PyErr_GetExcInfo(&tmp_type, &tmp_value, &tmp_tb);
+ PyErr_SetExcInfo(*type, *value, *tb);
+ *type = tmp_type;
+ *value = tmp_value;
+ *tb = tmp_tb;
+}
+#endif
+
+/* GetAttr */
+static CYTHON_INLINE PyObject *__Pyx_GetAttr(PyObject *o, PyObject *n) {
+#if CYTHON_USE_TYPE_SLOTS
+#if PY_MAJOR_VERSION >= 3
+ if (likely(PyUnicode_Check(n)))
+#else
+ if (likely(PyString_Check(n)))
+#endif
+ return __Pyx_PyObject_GetAttrStr(o, n);
+#endif
+ return PyObject_GetAttr(o, n);
+}
+
+/* HasAttr */
+static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) {
+ PyObject *r;
+ if (unlikely(!__Pyx_PyBaseString_Check(n))) {
+ PyErr_SetString(PyExc_TypeError,
+ "hasattr(): attribute name must be string");
+ return -1;
+ }
+ r = __Pyx_GetAttr(o, n);
+ if (!r) {
+ PyErr_Clear();
+ return 0;
+ } else {
+ Py_DECREF(r);
+ return 1;
+ }
+}
+
+/* GetAttr3 */
+#if __PYX_LIMITED_VERSION_HEX < 0x030d00A1
+static PyObject *__Pyx_GetAttr3Default(PyObject *d) {
+ __Pyx_PyThreadState_declare
+ __Pyx_PyThreadState_assign
+ if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError)))
+ return NULL;
+ __Pyx_PyErr_Clear();
+ Py_INCREF(d);
+ return d;
+}
+#endif
+static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) {
+ PyObject *r;
+#if __PYX_LIMITED_VERSION_HEX >= 0x030d00A1
+ int res = PyObject_GetOptionalAttr(o, n, &r);
+ return (res != 0) ? r : __Pyx_NewRef(d);
+#else
+ #if CYTHON_USE_TYPE_SLOTS
+ if (likely(PyString_Check(n))) {
+ r = __Pyx_PyObject_GetAttrStrNoError(o, n);
+ if (unlikely(!r) && likely(!PyErr_Occurred())) {
+ r = __Pyx_NewRef(d);
+ }
+ return r;
+ }
+ #endif
+ r = PyObject_GetAttr(o, n);
+ return (likely(r)) ? r : __Pyx_GetAttr3Default(d);
+#endif
+}
+
+/* Import */
+static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, int level) {
+ PyObject *module = 0;
+ PyObject *empty_dict = 0;
+ PyObject *empty_list = 0;
+ #if PY_MAJOR_VERSION < 3
+ PyObject *py_import;
+ py_import = __Pyx_PyObject_GetAttrStr(__pyx_b, __pyx_n_s_import);
+ if (unlikely(!py_import))
+ goto bad;
+ if (!from_list) {
+ empty_list = PyList_New(0);
+ if (unlikely(!empty_list))
+ goto bad;
+ from_list = empty_list;
+ }
+ #endif
+ empty_dict = PyDict_New();
+ if (unlikely(!empty_dict))
+ goto bad;
+ {
+ #if PY_MAJOR_VERSION >= 3
+ if (level == -1) {
+ if (strchr(__Pyx_MODULE_NAME, '.') != NULL) {
+ module = PyImport_ImportModuleLevelObject(
+ name, __pyx_d, empty_dict, from_list, 1);
+ if (unlikely(!module)) {
+ if (unlikely(!PyErr_ExceptionMatches(PyExc_ImportError)))
+ goto bad;
+ PyErr_Clear();
+ }
+ }
+ level = 0;
+ }
+ #endif
+ if (!module) {
+ #if PY_MAJOR_VERSION < 3
+ PyObject *py_level = PyInt_FromLong(level);
+ if (unlikely(!py_level))
+ goto bad;
+ module = PyObject_CallFunctionObjArgs(py_import,
+ name, __pyx_d, empty_dict, from_list, py_level, (PyObject *)NULL);
+ Py_DECREF(py_level);
+ #else
+ module = PyImport_ImportModuleLevelObject(
+ name, __pyx_d, empty_dict, from_list, level);
+ #endif
+ }
+ }
+bad:
+ Py_XDECREF(empty_dict);
+ Py_XDECREF(empty_list);
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(py_import);
+ #endif
+ return module;
+}
+
+/* ImportFrom */
+static PyObject* __Pyx_ImportFrom(PyObject* module, PyObject* name) {
+ PyObject* value = __Pyx_PyObject_GetAttrStr(module, name);
+ if (unlikely(!value) && PyErr_ExceptionMatches(PyExc_AttributeError)) {
+ const char* module_name_str = 0;
+ PyObject* module_name = 0;
+ PyObject* module_dot = 0;
+ PyObject* full_name = 0;
+ PyErr_Clear();
+ module_name_str = PyModule_GetName(module);
+ if (unlikely(!module_name_str)) { goto modbad; }
+ module_name = PyUnicode_FromString(module_name_str);
+ if (unlikely(!module_name)) { goto modbad; }
+ module_dot = PyUnicode_Concat(module_name, __pyx_kp_u__8);
+ if (unlikely(!module_dot)) { goto modbad; }
+ full_name = PyUnicode_Concat(module_dot, name);
+ if (unlikely(!full_name)) { goto modbad; }
+ #if PY_VERSION_HEX < 0x030700A1 || (CYTHON_COMPILING_IN_PYPY && PYPY_VERSION_NUM < 0x07030400)
+ {
+ PyObject *modules = PyImport_GetModuleDict();
+ if (unlikely(!modules))
+ goto modbad;
+ value = PyObject_GetItem(modules, full_name);
+ }
+ #else
+ value = PyImport_GetModule(full_name);
+ #endif
+ modbad:
+ Py_XDECREF(full_name);
+ Py_XDECREF(module_dot);
+ Py_XDECREF(module_name);
+ }
+ if (unlikely(!value)) {
+ PyErr_Format(PyExc_ImportError,
+ #if PY_MAJOR_VERSION < 3
+ "cannot import name %.230s", PyString_AS_STRING(name));
+ #else
+ "cannot import name %S", name);
+ #endif
+ }
+ return value;
+}
+
+/* ImportDottedModule */
+#if PY_MAJOR_VERSION >= 3
+static PyObject *__Pyx__ImportDottedModule_Error(PyObject *name, PyObject *parts_tuple, Py_ssize_t count) {
+ PyObject *partial_name = NULL, *slice = NULL, *sep = NULL;
+ if (unlikely(PyErr_Occurred())) {
+ PyErr_Clear();
+ }
+ if (likely(PyTuple_GET_SIZE(parts_tuple) == count)) {
+ partial_name = name;
+ } else {
+ slice = PySequence_GetSlice(parts_tuple, 0, count);
+ if (unlikely(!slice))
+ goto bad;
+ sep = PyUnicode_FromStringAndSize(".", 1);
+ if (unlikely(!sep))
+ goto bad;
+ partial_name = PyUnicode_Join(sep, slice);
+ }
+ PyErr_Format(
+#if PY_MAJOR_VERSION < 3
+ PyExc_ImportError,
+ "No module named '%s'", PyString_AS_STRING(partial_name));
+#else
+#if PY_VERSION_HEX >= 0x030600B1
+ PyExc_ModuleNotFoundError,
+#else
+ PyExc_ImportError,
+#endif
+ "No module named '%U'", partial_name);
+#endif
+bad:
+ Py_XDECREF(sep);
+ Py_XDECREF(slice);
+ Py_XDECREF(partial_name);
+ return NULL;
+}
+#endif
+#if PY_MAJOR_VERSION >= 3
+static PyObject *__Pyx__ImportDottedModule_Lookup(PyObject *name) {
+ PyObject *imported_module;
+#if PY_VERSION_HEX < 0x030700A1 || (CYTHON_COMPILING_IN_PYPY && PYPY_VERSION_NUM < 0x07030400)
+ PyObject *modules = PyImport_GetModuleDict();
+ if (unlikely(!modules))
+ return NULL;
+ imported_module = __Pyx_PyDict_GetItemStr(modules, name);
+ Py_XINCREF(imported_module);
+#else
+ imported_module = PyImport_GetModule(name);
+#endif
+ return imported_module;
+}
+#endif
+#if PY_MAJOR_VERSION >= 3
+static PyObject *__Pyx_ImportDottedModule_WalkParts(PyObject *module, PyObject *name, PyObject *parts_tuple) {
+ Py_ssize_t i, nparts;
+ nparts = PyTuple_GET_SIZE(parts_tuple);
+ for (i=1; i < nparts && module; i++) {
+ PyObject *part, *submodule;
+#if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ part = PyTuple_GET_ITEM(parts_tuple, i);
+#else
+ part = PySequence_ITEM(parts_tuple, i);
+#endif
+ submodule = __Pyx_PyObject_GetAttrStrNoError(module, part);
+#if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS)
+ Py_DECREF(part);
+#endif
+ Py_DECREF(module);
+ module = submodule;
+ }
+ if (unlikely(!module)) {
+ return __Pyx__ImportDottedModule_Error(name, parts_tuple, i);
+ }
+ return module;
+}
+#endif
+static PyObject *__Pyx__ImportDottedModule(PyObject *name, PyObject *parts_tuple) {
+#if PY_MAJOR_VERSION < 3
+ PyObject *module, *from_list, *star = __pyx_n_s__13;
+ CYTHON_UNUSED_VAR(parts_tuple);
+ from_list = PyList_New(1);
+ if (unlikely(!from_list))
+ return NULL;
+ Py_INCREF(star);
+ PyList_SET_ITEM(from_list, 0, star);
+ module = __Pyx_Import(name, from_list, 0);
+ Py_DECREF(from_list);
+ return module;
+#else
+ PyObject *imported_module;
+ PyObject *module = __Pyx_Import(name, NULL, 0);
+ if (!parts_tuple || unlikely(!module))
+ return module;
+ imported_module = __Pyx__ImportDottedModule_Lookup(name);
+ if (likely(imported_module)) {
+ Py_DECREF(module);
+ return imported_module;
+ }
+ PyErr_Clear();
+ return __Pyx_ImportDottedModule_WalkParts(module, name, parts_tuple);
+#endif
+}
+static PyObject *__Pyx_ImportDottedModule(PyObject *name, PyObject *parts_tuple) {
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX >= 0x030400B1
+ PyObject *module = __Pyx__ImportDottedModule_Lookup(name);
+ if (likely(module)) {
+ PyObject *spec = __Pyx_PyObject_GetAttrStrNoError(module, __pyx_n_s_spec);
+ if (likely(spec)) {
+ PyObject *unsafe = __Pyx_PyObject_GetAttrStrNoError(spec, __pyx_n_s_initializing);
+ if (likely(!unsafe || !__Pyx_PyObject_IsTrue(unsafe))) {
+ Py_DECREF(spec);
+ spec = NULL;
+ }
+ Py_XDECREF(unsafe);
+ }
+ if (likely(!spec)) {
+ PyErr_Clear();
+ return module;
+ }
+ Py_DECREF(spec);
+ Py_DECREF(module);
+ } else if (PyErr_Occurred()) {
+ PyErr_Clear();
+ }
+#endif
+ return __Pyx__ImportDottedModule(name, parts_tuple);
+}
+
+/* Py3UpdateBases */
+static PyObject*
+__Pyx_PEP560_update_bases(PyObject *bases)
+{
+ Py_ssize_t i, j, size_bases;
+ PyObject *base, *meth, *new_base, *result, *new_bases = NULL;
+ size_bases = PyTuple_GET_SIZE(bases);
+ for (i = 0; i < size_bases; i++) {
+ base = PyTuple_GET_ITEM(bases, i);
+ if (PyType_Check(base)) {
+ if (new_bases) {
+ if (PyList_Append(new_bases, base) < 0) {
+ goto error;
+ }
+ }
+ continue;
+ }
+ meth = __Pyx_PyObject_GetAttrStrNoError(base, __pyx_n_s_mro_entries);
+ if (!meth && PyErr_Occurred()) {
+ goto error;
+ }
+ if (!meth) {
+ if (new_bases) {
+ if (PyList_Append(new_bases, base) < 0) {
+ goto error;
+ }
+ }
+ continue;
+ }
+ new_base = __Pyx_PyObject_CallOneArg(meth, bases);
+ Py_DECREF(meth);
+ if (!new_base) {
+ goto error;
+ }
+ if (!PyTuple_Check(new_base)) {
+ PyErr_SetString(PyExc_TypeError,
+ "__mro_entries__ must return a tuple");
+ Py_DECREF(new_base);
+ goto error;
+ }
+ if (!new_bases) {
+ if (!(new_bases = PyList_New(i))) {
+ goto error;
+ }
+ for (j = 0; j < i; j++) {
+ base = PyTuple_GET_ITEM(bases, j);
+ PyList_SET_ITEM(new_bases, j, base);
+ Py_INCREF(base);
+ }
+ }
+ j = PyList_GET_SIZE(new_bases);
+ if (PyList_SetSlice(new_bases, j, j, new_base) < 0) {
+ goto error;
+ }
+ Py_DECREF(new_base);
+ }
+ if (!new_bases) {
+ Py_INCREF(bases);
+ return bases;
+ }
+ result = PyList_AsTuple(new_bases);
+ Py_DECREF(new_bases);
+ return result;
+error:
+ Py_XDECREF(new_bases);
+ return NULL;
+}
+
+/* CalculateMetaclass */
+static PyObject *__Pyx_CalculateMetaclass(PyTypeObject *metaclass, PyObject *bases) {
+ Py_ssize_t i, nbases;
+#if CYTHON_ASSUME_SAFE_MACROS
+ nbases = PyTuple_GET_SIZE(bases);
+#else
+ nbases = PyTuple_Size(bases);
+ if (nbases < 0) return NULL;
+#endif
+ for (i=0; i < nbases; i++) {
+ PyTypeObject *tmptype;
+#if CYTHON_ASSUME_SAFE_MACROS
+ PyObject *tmp = PyTuple_GET_ITEM(bases, i);
+#else
+ PyObject *tmp = PyTuple_GetItem(bases, i);
+ if (!tmp) return NULL;
+#endif
+ tmptype = Py_TYPE(tmp);
+#if PY_MAJOR_VERSION < 3
+ if (tmptype == &PyClass_Type)
+ continue;
+#endif
+ if (!metaclass) {
+ metaclass = tmptype;
+ continue;
+ }
+ if (PyType_IsSubtype(metaclass, tmptype))
+ continue;
+ if (PyType_IsSubtype(tmptype, metaclass)) {
+ metaclass = tmptype;
+ continue;
+ }
+ PyErr_SetString(PyExc_TypeError,
+ "metaclass conflict: "
+ "the metaclass of a derived class "
+ "must be a (non-strict) subclass "
+ "of the metaclasses of all its bases");
+ return NULL;
+ }
+ if (!metaclass) {
+#if PY_MAJOR_VERSION < 3
+ metaclass = &PyClass_Type;
+#else
+ metaclass = &PyType_Type;
+#endif
+ }
+ Py_INCREF((PyObject*) metaclass);
+ return (PyObject*) metaclass;
+}
+
+/* FixUpExtensionType */
+#if CYTHON_USE_TYPE_SPECS
+static int __Pyx_fix_up_extension_type_from_spec(PyType_Spec *spec, PyTypeObject *type) {
+#if PY_VERSION_HEX > 0x030900B1 || CYTHON_COMPILING_IN_LIMITED_API
+ CYTHON_UNUSED_VAR(spec);
+ CYTHON_UNUSED_VAR(type);
+#else
+ const PyType_Slot *slot = spec->slots;
+ while (slot && slot->slot && slot->slot != Py_tp_members)
+ slot++;
+ if (slot && slot->slot == Py_tp_members) {
+ int changed = 0;
+#if !(PY_VERSION_HEX <= 0x030900b1 && CYTHON_COMPILING_IN_CPYTHON)
+ const
+#endif
+ PyMemberDef *memb = (PyMemberDef*) slot->pfunc;
+ while (memb && memb->name) {
+ if (memb->name[0] == '_' && memb->name[1] == '_') {
+#if PY_VERSION_HEX < 0x030900b1
+ if (strcmp(memb->name, "__weaklistoffset__") == 0) {
+ assert(memb->type == T_PYSSIZET);
+ assert(memb->flags == READONLY);
+ type->tp_weaklistoffset = memb->offset;
+ changed = 1;
+ }
+ else if (strcmp(memb->name, "__dictoffset__") == 0) {
+ assert(memb->type == T_PYSSIZET);
+ assert(memb->flags == READONLY);
+ type->tp_dictoffset = memb->offset;
+ changed = 1;
+ }
+#if CYTHON_METH_FASTCALL
+ else if (strcmp(memb->name, "__vectorcalloffset__") == 0) {
+ assert(memb->type == T_PYSSIZET);
+ assert(memb->flags == READONLY);
+#if PY_VERSION_HEX >= 0x030800b4
+ type->tp_vectorcall_offset = memb->offset;
+#else
+ type->tp_print = (printfunc) memb->offset;
+#endif
+ changed = 1;
+ }
+#endif
+#else
+ if ((0));
+#endif
+#if PY_VERSION_HEX <= 0x030900b1 && CYTHON_COMPILING_IN_CPYTHON
+ else if (strcmp(memb->name, "__module__") == 0) {
+ PyObject *descr;
+ assert(memb->type == T_OBJECT);
+ assert(memb->flags == 0 || memb->flags == READONLY);
+ descr = PyDescr_NewMember(type, memb);
+ if (unlikely(!descr))
+ return -1;
+ if (unlikely(PyDict_SetItem(type->tp_dict, PyDescr_NAME(descr), descr) < 0)) {
+ Py_DECREF(descr);
+ return -1;
+ }
+ Py_DECREF(descr);
+ changed = 1;
+ }
+#endif
+ }
+ memb++;
+ }
+ if (changed)
+ PyType_Modified(type);
+ }
+#endif
+ return 0;
+}
+#endif
+
+/* FetchSharedCythonModule */
+static PyObject *__Pyx_FetchSharedCythonABIModule(void) {
+ return __Pyx_PyImport_AddModuleRef((char*) __PYX_ABI_MODULE_NAME);
+}
+
+/* FetchCommonType */
+static int __Pyx_VerifyCachedType(PyObject *cached_type,
+ const char *name,
+ Py_ssize_t basicsize,
+ Py_ssize_t expected_basicsize) {
+ if (!PyType_Check(cached_type)) {
+ PyErr_Format(PyExc_TypeError,
+ "Shared Cython type %.200s is not a type object", name);
+ return -1;
+ }
+ if (basicsize != expected_basicsize) {
+ PyErr_Format(PyExc_TypeError,
+ "Shared Cython type %.200s has the wrong size, try recompiling",
+ name);
+ return -1;
+ }
+ return 0;
+}
+#if !CYTHON_USE_TYPE_SPECS
+static PyTypeObject* __Pyx_FetchCommonType(PyTypeObject* type) {
+ PyObject* abi_module;
+ const char* object_name;
+ PyTypeObject *cached_type = NULL;
+ abi_module = __Pyx_FetchSharedCythonABIModule();
+ if (!abi_module) return NULL;
+ object_name = strrchr(type->tp_name, '.');
+ object_name = object_name ? object_name+1 : type->tp_name;
+ cached_type = (PyTypeObject*) PyObject_GetAttrString(abi_module, object_name);
+ if (cached_type) {
+ if (__Pyx_VerifyCachedType(
+ (PyObject *)cached_type,
+ object_name,
+ cached_type->tp_basicsize,
+ type->tp_basicsize) < 0) {
+ goto bad;
+ }
+ goto done;
+ }
+ if (!PyErr_ExceptionMatches(PyExc_AttributeError)) goto bad;
+ PyErr_Clear();
+ if (PyType_Ready(type) < 0) goto bad;
+ if (PyObject_SetAttrString(abi_module, object_name, (PyObject *)type) < 0)
+ goto bad;
+ Py_INCREF(type);
+ cached_type = type;
+done:
+ Py_DECREF(abi_module);
+ return cached_type;
+bad:
+ Py_XDECREF(cached_type);
+ cached_type = NULL;
+ goto done;
+}
+#else
+static PyTypeObject *__Pyx_FetchCommonTypeFromSpec(PyObject *module, PyType_Spec *spec, PyObject *bases) {
+ PyObject *abi_module, *cached_type = NULL;
+ const char* object_name = strrchr(spec->name, '.');
+ object_name = object_name ? object_name+1 : spec->name;
+ abi_module = __Pyx_FetchSharedCythonABIModule();
+ if (!abi_module) return NULL;
+ cached_type = PyObject_GetAttrString(abi_module, object_name);
+ if (cached_type) {
+ Py_ssize_t basicsize;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ PyObject *py_basicsize;
+ py_basicsize = PyObject_GetAttrString(cached_type, "__basicsize__");
+ if (unlikely(!py_basicsize)) goto bad;
+ basicsize = PyLong_AsSsize_t(py_basicsize);
+ Py_DECREF(py_basicsize);
+ py_basicsize = 0;
+ if (unlikely(basicsize == (Py_ssize_t)-1) && PyErr_Occurred()) goto bad;
+#else
+ basicsize = likely(PyType_Check(cached_type)) ? ((PyTypeObject*) cached_type)->tp_basicsize : -1;
+#endif
+ if (__Pyx_VerifyCachedType(
+ cached_type,
+ object_name,
+ basicsize,
+ spec->basicsize) < 0) {
+ goto bad;
+ }
+ goto done;
+ }
+ if (!PyErr_ExceptionMatches(PyExc_AttributeError)) goto bad;
+ PyErr_Clear();
+ CYTHON_UNUSED_VAR(module);
+ cached_type = __Pyx_PyType_FromModuleAndSpec(abi_module, spec, bases);
+ if (unlikely(!cached_type)) goto bad;
+ if (unlikely(__Pyx_fix_up_extension_type_from_spec(spec, (PyTypeObject *) cached_type) < 0)) goto bad;
+ if (PyObject_SetAttrString(abi_module, object_name, cached_type) < 0) goto bad;
+done:
+ Py_DECREF(abi_module);
+ assert(cached_type == NULL || PyType_Check(cached_type));
+ return (PyTypeObject *) cached_type;
+bad:
+ Py_XDECREF(cached_type);
+ cached_type = NULL;
+ goto done;
+}
+#endif
+
+/* PyVectorcallFastCallDict */
+#if CYTHON_METH_FASTCALL
+static PyObject *__Pyx_PyVectorcall_FastCallDict_kw(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw)
+{
+ PyObject *res = NULL;
+ PyObject *kwnames;
+ PyObject **newargs;
+ PyObject **kwvalues;
+ Py_ssize_t i, pos;
+ size_t j;
+ PyObject *key, *value;
+ unsigned long keys_are_strings;
+ Py_ssize_t nkw = PyDict_GET_SIZE(kw);
+ newargs = (PyObject **)PyMem_Malloc((nargs + (size_t)nkw) * sizeof(args[0]));
+ if (unlikely(newargs == NULL)) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+ for (j = 0; j < nargs; j++) newargs[j] = args[j];
+ kwnames = PyTuple_New(nkw);
+ if (unlikely(kwnames == NULL)) {
+ PyMem_Free(newargs);
+ return NULL;
+ }
+ kwvalues = newargs + nargs;
+ pos = i = 0;
+ keys_are_strings = Py_TPFLAGS_UNICODE_SUBCLASS;
+ while (PyDict_Next(kw, &pos, &key, &value)) {
+ keys_are_strings &= Py_TYPE(key)->tp_flags;
+ Py_INCREF(key);
+ Py_INCREF(value);
+ PyTuple_SET_ITEM(kwnames, i, key);
+ kwvalues[i] = value;
+ i++;
+ }
+ if (unlikely(!keys_are_strings)) {
+ PyErr_SetString(PyExc_TypeError, "keywords must be strings");
+ goto cleanup;
+ }
+ res = vc(func, newargs, nargs, kwnames);
+cleanup:
+ Py_DECREF(kwnames);
+ for (i = 0; i < nkw; i++)
+ Py_DECREF(kwvalues[i]);
+ PyMem_Free(newargs);
+ return res;
+}
+static CYTHON_INLINE PyObject *__Pyx_PyVectorcall_FastCallDict(PyObject *func, __pyx_vectorcallfunc vc, PyObject *const *args, size_t nargs, PyObject *kw)
+{
+ if (likely(kw == NULL) || PyDict_GET_SIZE(kw) == 0) {
+ return vc(func, args, nargs, NULL);
+ }
+ return __Pyx_PyVectorcall_FastCallDict_kw(func, vc, args, nargs, kw);
+}
+#endif
+
+/* CythonFunctionShared */
+#if CYTHON_COMPILING_IN_LIMITED_API
+static CYTHON_INLINE int __Pyx__IsSameCyOrCFunction(PyObject *func, void *cfunc) {
+ if (__Pyx_CyFunction_Check(func)) {
+ return PyCFunction_GetFunction(((__pyx_CyFunctionObject*)func)->func) == (PyCFunction) cfunc;
+ } else if (PyCFunction_Check(func)) {
+ return PyCFunction_GetFunction(func) == (PyCFunction) cfunc;
+ }
+ return 0;
+}
+#else
+static CYTHON_INLINE int __Pyx__IsSameCyOrCFunction(PyObject *func, void *cfunc) {
+ return __Pyx_CyOrPyCFunction_Check(func) && __Pyx_CyOrPyCFunction_GET_FUNCTION(func) == (PyCFunction) cfunc;
+}
+#endif
+static CYTHON_INLINE void __Pyx__CyFunction_SetClassObj(__pyx_CyFunctionObject* f, PyObject* classobj) {
+#if PY_VERSION_HEX < 0x030900B1 || CYTHON_COMPILING_IN_LIMITED_API
+ __Pyx_Py_XDECREF_SET(
+ __Pyx_CyFunction_GetClassObj(f),
+ ((classobj) ? __Pyx_NewRef(classobj) : NULL));
+#else
+ __Pyx_Py_XDECREF_SET(
+ ((PyCMethodObject *) (f))->mm_class,
+ (PyTypeObject*)((classobj) ? __Pyx_NewRef(classobj) : NULL));
+#endif
+}
+static PyObject *
+__Pyx_CyFunction_get_doc(__pyx_CyFunctionObject *op, void *closure)
+{
+ CYTHON_UNUSED_VAR(closure);
+ if (unlikely(op->func_doc == NULL)) {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ op->func_doc = PyObject_GetAttrString(op->func, "__doc__");
+ if (unlikely(!op->func_doc)) return NULL;
+#else
+ if (((PyCFunctionObject*)op)->m_ml->ml_doc) {
+#if PY_MAJOR_VERSION >= 3
+ op->func_doc = PyUnicode_FromString(((PyCFunctionObject*)op)->m_ml->ml_doc);
+#else
+ op->func_doc = PyString_FromString(((PyCFunctionObject*)op)->m_ml->ml_doc);
+#endif
+ if (unlikely(op->func_doc == NULL))
+ return NULL;
+ } else {
+ Py_INCREF(Py_None);
+ return Py_None;
+ }
+#endif
+ }
+ Py_INCREF(op->func_doc);
+ return op->func_doc;
+}
+static int
+__Pyx_CyFunction_set_doc(__pyx_CyFunctionObject *op, PyObject *value, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ if (value == NULL) {
+ value = Py_None;
+ }
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->func_doc, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_name(__pyx_CyFunctionObject *op, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(op->func_name == NULL)) {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ op->func_name = PyObject_GetAttrString(op->func, "__name__");
+#elif PY_MAJOR_VERSION >= 3
+ op->func_name = PyUnicode_InternFromString(((PyCFunctionObject*)op)->m_ml->ml_name);
+#else
+ op->func_name = PyString_InternFromString(((PyCFunctionObject*)op)->m_ml->ml_name);
+#endif
+ if (unlikely(op->func_name == NULL))
+ return NULL;
+ }
+ Py_INCREF(op->func_name);
+ return op->func_name;
+}
+static int
+__Pyx_CyFunction_set_name(__pyx_CyFunctionObject *op, PyObject *value, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+#if PY_MAJOR_VERSION >= 3
+ if (unlikely(value == NULL || !PyUnicode_Check(value)))
+#else
+ if (unlikely(value == NULL || !PyString_Check(value)))
+#endif
+ {
+ PyErr_SetString(PyExc_TypeError,
+ "__name__ must be set to a string object");
+ return -1;
+ }
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->func_name, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_qualname(__pyx_CyFunctionObject *op, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ Py_INCREF(op->func_qualname);
+ return op->func_qualname;
+}
+static int
+__Pyx_CyFunction_set_qualname(__pyx_CyFunctionObject *op, PyObject *value, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+#if PY_MAJOR_VERSION >= 3
+ if (unlikely(value == NULL || !PyUnicode_Check(value)))
+#else
+ if (unlikely(value == NULL || !PyString_Check(value)))
+#endif
+ {
+ PyErr_SetString(PyExc_TypeError,
+ "__qualname__ must be set to a string object");
+ return -1;
+ }
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->func_qualname, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_dict(__pyx_CyFunctionObject *op, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(op->func_dict == NULL)) {
+ op->func_dict = PyDict_New();
+ if (unlikely(op->func_dict == NULL))
+ return NULL;
+ }
+ Py_INCREF(op->func_dict);
+ return op->func_dict;
+}
+static int
+__Pyx_CyFunction_set_dict(__pyx_CyFunctionObject *op, PyObject *value, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(value == NULL)) {
+ PyErr_SetString(PyExc_TypeError,
+ "function's dictionary may not be deleted");
+ return -1;
+ }
+ if (unlikely(!PyDict_Check(value))) {
+ PyErr_SetString(PyExc_TypeError,
+ "setting function's dictionary to a non-dict");
+ return -1;
+ }
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->func_dict, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_globals(__pyx_CyFunctionObject *op, void *context)
+{
+ CYTHON_UNUSED_VAR(context);
+ Py_INCREF(op->func_globals);
+ return op->func_globals;
+}
+static PyObject *
+__Pyx_CyFunction_get_closure(__pyx_CyFunctionObject *op, void *context)
+{
+ CYTHON_UNUSED_VAR(op);
+ CYTHON_UNUSED_VAR(context);
+ Py_INCREF(Py_None);
+ return Py_None;
+}
+static PyObject *
+__Pyx_CyFunction_get_code(__pyx_CyFunctionObject *op, void *context)
+{
+ PyObject* result = (op->func_code) ? op->func_code : Py_None;
+ CYTHON_UNUSED_VAR(context);
+ Py_INCREF(result);
+ return result;
+}
+static int
+__Pyx_CyFunction_init_defaults(__pyx_CyFunctionObject *op) {
+ int result = 0;
+ PyObject *res = op->defaults_getter((PyObject *) op);
+ if (unlikely(!res))
+ return -1;
+ #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ op->defaults_tuple = PyTuple_GET_ITEM(res, 0);
+ Py_INCREF(op->defaults_tuple);
+ op->defaults_kwdict = PyTuple_GET_ITEM(res, 1);
+ Py_INCREF(op->defaults_kwdict);
+ #else
+ op->defaults_tuple = __Pyx_PySequence_ITEM(res, 0);
+ if (unlikely(!op->defaults_tuple)) result = -1;
+ else {
+ op->defaults_kwdict = __Pyx_PySequence_ITEM(res, 1);
+ if (unlikely(!op->defaults_kwdict)) result = -1;
+ }
+ #endif
+ Py_DECREF(res);
+ return result;
+}
+static int
+__Pyx_CyFunction_set_defaults(__pyx_CyFunctionObject *op, PyObject* value, void *context) {
+ CYTHON_UNUSED_VAR(context);
+ if (!value) {
+ value = Py_None;
+ } else if (unlikely(value != Py_None && !PyTuple_Check(value))) {
+ PyErr_SetString(PyExc_TypeError,
+ "__defaults__ must be set to a tuple object");
+ return -1;
+ }
+ PyErr_WarnEx(PyExc_RuntimeWarning, "changes to cyfunction.__defaults__ will not "
+ "currently affect the values used in function calls", 1);
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->defaults_tuple, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_defaults(__pyx_CyFunctionObject *op, void *context) {
+ PyObject* result = op->defaults_tuple;
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(!result)) {
+ if (op->defaults_getter) {
+ if (unlikely(__Pyx_CyFunction_init_defaults(op) < 0)) return NULL;
+ result = op->defaults_tuple;
+ } else {
+ result = Py_None;
+ }
+ }
+ Py_INCREF(result);
+ return result;
+}
+static int
+__Pyx_CyFunction_set_kwdefaults(__pyx_CyFunctionObject *op, PyObject* value, void *context) {
+ CYTHON_UNUSED_VAR(context);
+ if (!value) {
+ value = Py_None;
+ } else if (unlikely(value != Py_None && !PyDict_Check(value))) {
+ PyErr_SetString(PyExc_TypeError,
+ "__kwdefaults__ must be set to a dict object");
+ return -1;
+ }
+ PyErr_WarnEx(PyExc_RuntimeWarning, "changes to cyfunction.__kwdefaults__ will not "
+ "currently affect the values used in function calls", 1);
+ Py_INCREF(value);
+ __Pyx_Py_XDECREF_SET(op->defaults_kwdict, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_kwdefaults(__pyx_CyFunctionObject *op, void *context) {
+ PyObject* result = op->defaults_kwdict;
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(!result)) {
+ if (op->defaults_getter) {
+ if (unlikely(__Pyx_CyFunction_init_defaults(op) < 0)) return NULL;
+ result = op->defaults_kwdict;
+ } else {
+ result = Py_None;
+ }
+ }
+ Py_INCREF(result);
+ return result;
+}
+static int
+__Pyx_CyFunction_set_annotations(__pyx_CyFunctionObject *op, PyObject* value, void *context) {
+ CYTHON_UNUSED_VAR(context);
+ if (!value || value == Py_None) {
+ value = NULL;
+ } else if (unlikely(!PyDict_Check(value))) {
+ PyErr_SetString(PyExc_TypeError,
+ "__annotations__ must be set to a dict object");
+ return -1;
+ }
+ Py_XINCREF(value);
+ __Pyx_Py_XDECREF_SET(op->func_annotations, value);
+ return 0;
+}
+static PyObject *
+__Pyx_CyFunction_get_annotations(__pyx_CyFunctionObject *op, void *context) {
+ PyObject* result = op->func_annotations;
+ CYTHON_UNUSED_VAR(context);
+ if (unlikely(!result)) {
+ result = PyDict_New();
+ if (unlikely(!result)) return NULL;
+ op->func_annotations = result;
+ }
+ Py_INCREF(result);
+ return result;
+}
+static PyObject *
+__Pyx_CyFunction_get_is_coroutine(__pyx_CyFunctionObject *op, void *context) {
+ int is_coroutine;
+ CYTHON_UNUSED_VAR(context);
+ if (op->func_is_coroutine) {
+ return __Pyx_NewRef(op->func_is_coroutine);
+ }
+ is_coroutine = op->flags & __Pyx_CYFUNCTION_COROUTINE;
+#if PY_VERSION_HEX >= 0x03050000
+ if (is_coroutine) {
+ PyObject *module, *fromlist, *marker = __pyx_n_s_is_coroutine;
+ fromlist = PyList_New(1);
+ if (unlikely(!fromlist)) return NULL;
+ Py_INCREF(marker);
+#if CYTHON_ASSUME_SAFE_MACROS
+ PyList_SET_ITEM(fromlist, 0, marker);
+#else
+ if (unlikely(PyList_SetItem(fromlist, 0, marker) < 0)) {
+ Py_DECREF(marker);
+ Py_DECREF(fromlist);
+ return NULL;
+ }
+#endif
+ module = PyImport_ImportModuleLevelObject(__pyx_n_s_asyncio_coroutines, NULL, NULL, fromlist, 0);
+ Py_DECREF(fromlist);
+ if (unlikely(!module)) goto ignore;
+ op->func_is_coroutine = __Pyx_PyObject_GetAttrStr(module, marker);
+ Py_DECREF(module);
+ if (likely(op->func_is_coroutine)) {
+ return __Pyx_NewRef(op->func_is_coroutine);
+ }
+ignore:
+ PyErr_Clear();
+ }
+#endif
+ op->func_is_coroutine = __Pyx_PyBool_FromLong(is_coroutine);
+ return __Pyx_NewRef(op->func_is_coroutine);
+}
+#if CYTHON_COMPILING_IN_LIMITED_API
+static PyObject *
+__Pyx_CyFunction_get_module(__pyx_CyFunctionObject *op, void *context) {
+ CYTHON_UNUSED_VAR(context);
+ return PyObject_GetAttrString(op->func, "__module__");
+}
+static int
+__Pyx_CyFunction_set_module(__pyx_CyFunctionObject *op, PyObject* value, void *context) {
+ CYTHON_UNUSED_VAR(context);
+ return PyObject_SetAttrString(op->func, "__module__", value);
+}
+#endif
+static PyGetSetDef __pyx_CyFunction_getsets[] = {
+ {(char *) "func_doc", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0},
+ {(char *) "__doc__", (getter)__Pyx_CyFunction_get_doc, (setter)__Pyx_CyFunction_set_doc, 0, 0},
+ {(char *) "func_name", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0},
+ {(char *) "__name__", (getter)__Pyx_CyFunction_get_name, (setter)__Pyx_CyFunction_set_name, 0, 0},
+ {(char *) "__qualname__", (getter)__Pyx_CyFunction_get_qualname, (setter)__Pyx_CyFunction_set_qualname, 0, 0},
+ {(char *) "func_dict", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0},
+ {(char *) "__dict__", (getter)__Pyx_CyFunction_get_dict, (setter)__Pyx_CyFunction_set_dict, 0, 0},
+ {(char *) "func_globals", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0},
+ {(char *) "__globals__", (getter)__Pyx_CyFunction_get_globals, 0, 0, 0},
+ {(char *) "func_closure", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0},
+ {(char *) "__closure__", (getter)__Pyx_CyFunction_get_closure, 0, 0, 0},
+ {(char *) "func_code", (getter)__Pyx_CyFunction_get_code, 0, 0, 0},
+ {(char *) "__code__", (getter)__Pyx_CyFunction_get_code, 0, 0, 0},
+ {(char *) "func_defaults", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0},
+ {(char *) "__defaults__", (getter)__Pyx_CyFunction_get_defaults, (setter)__Pyx_CyFunction_set_defaults, 0, 0},
+ {(char *) "__kwdefaults__", (getter)__Pyx_CyFunction_get_kwdefaults, (setter)__Pyx_CyFunction_set_kwdefaults, 0, 0},
+ {(char *) "__annotations__", (getter)__Pyx_CyFunction_get_annotations, (setter)__Pyx_CyFunction_set_annotations, 0, 0},
+ {(char *) "_is_coroutine", (getter)__Pyx_CyFunction_get_is_coroutine, 0, 0, 0},
+#if CYTHON_COMPILING_IN_LIMITED_API
+ {"__module__", (getter)__Pyx_CyFunction_get_module, (setter)__Pyx_CyFunction_set_module, 0, 0},
+#endif
+ {0, 0, 0, 0, 0}
+};
+static PyMemberDef __pyx_CyFunction_members[] = {
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ {(char *) "__module__", T_OBJECT, offsetof(PyCFunctionObject, m_module), 0, 0},
+#endif
+#if CYTHON_USE_TYPE_SPECS
+ {(char *) "__dictoffset__", T_PYSSIZET, offsetof(__pyx_CyFunctionObject, func_dict), READONLY, 0},
+#if CYTHON_METH_FASTCALL
+#if CYTHON_BACKPORT_VECTORCALL
+ {(char *) "__vectorcalloffset__", T_PYSSIZET, offsetof(__pyx_CyFunctionObject, func_vectorcall), READONLY, 0},
+#else
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ {(char *) "__vectorcalloffset__", T_PYSSIZET, offsetof(PyCFunctionObject, vectorcall), READONLY, 0},
+#endif
+#endif
+#endif
+#if PY_VERSION_HEX < 0x030500A0 || CYTHON_COMPILING_IN_LIMITED_API
+ {(char *) "__weaklistoffset__", T_PYSSIZET, offsetof(__pyx_CyFunctionObject, func_weakreflist), READONLY, 0},
+#else
+ {(char *) "__weaklistoffset__", T_PYSSIZET, offsetof(PyCFunctionObject, m_weakreflist), READONLY, 0},
+#endif
+#endif
+ {0, 0, 0, 0, 0}
+};
+static PyObject *
+__Pyx_CyFunction_reduce(__pyx_CyFunctionObject *m, PyObject *args)
+{
+ CYTHON_UNUSED_VAR(args);
+#if PY_MAJOR_VERSION >= 3
+ Py_INCREF(m->func_qualname);
+ return m->func_qualname;
+#else
+ return PyString_FromString(((PyCFunctionObject*)m)->m_ml->ml_name);
+#endif
+}
+static PyMethodDef __pyx_CyFunction_methods[] = {
+ {"__reduce__", (PyCFunction)__Pyx_CyFunction_reduce, METH_VARARGS, 0},
+ {0, 0, 0, 0}
+};
+#if PY_VERSION_HEX < 0x030500A0 || CYTHON_COMPILING_IN_LIMITED_API
+#define __Pyx_CyFunction_weakreflist(cyfunc) ((cyfunc)->func_weakreflist)
+#else
+#define __Pyx_CyFunction_weakreflist(cyfunc) (((PyCFunctionObject*)cyfunc)->m_weakreflist)
+#endif
+static PyObject *__Pyx_CyFunction_Init(__pyx_CyFunctionObject *op, PyMethodDef *ml, int flags, PyObject* qualname,
+ PyObject *closure, PyObject *module, PyObject* globals, PyObject* code) {
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ PyCFunctionObject *cf = (PyCFunctionObject*) op;
+#endif
+ if (unlikely(op == NULL))
+ return NULL;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ op->func = PyCFunction_NewEx(ml, (PyObject*)op, module);
+ if (unlikely(!op->func)) return NULL;
+#endif
+ op->flags = flags;
+ __Pyx_CyFunction_weakreflist(op) = NULL;
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ cf->m_ml = ml;
+ cf->m_self = (PyObject *) op;
+#endif
+ Py_XINCREF(closure);
+ op->func_closure = closure;
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ Py_XINCREF(module);
+ cf->m_module = module;
+#endif
+ op->func_dict = NULL;
+ op->func_name = NULL;
+ Py_INCREF(qualname);
+ op->func_qualname = qualname;
+ op->func_doc = NULL;
+#if PY_VERSION_HEX < 0x030900B1 || CYTHON_COMPILING_IN_LIMITED_API
+ op->func_classobj = NULL;
+#else
+ ((PyCMethodObject*)op)->mm_class = NULL;
+#endif
+ op->func_globals = globals;
+ Py_INCREF(op->func_globals);
+ Py_XINCREF(code);
+ op->func_code = code;
+ op->defaults_pyobjects = 0;
+ op->defaults_size = 0;
+ op->defaults = NULL;
+ op->defaults_tuple = NULL;
+ op->defaults_kwdict = NULL;
+ op->defaults_getter = NULL;
+ op->func_annotations = NULL;
+ op->func_is_coroutine = NULL;
+#if CYTHON_METH_FASTCALL
+ switch (ml->ml_flags & (METH_VARARGS | METH_FASTCALL | METH_NOARGS | METH_O | METH_KEYWORDS | METH_METHOD)) {
+ case METH_NOARGS:
+ __Pyx_CyFunction_func_vectorcall(op) = __Pyx_CyFunction_Vectorcall_NOARGS;
+ break;
+ case METH_O:
+ __Pyx_CyFunction_func_vectorcall(op) = __Pyx_CyFunction_Vectorcall_O;
+ break;
+ case METH_METHOD | METH_FASTCALL | METH_KEYWORDS:
+ __Pyx_CyFunction_func_vectorcall(op) = __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD;
+ break;
+ case METH_FASTCALL | METH_KEYWORDS:
+ __Pyx_CyFunction_func_vectorcall(op) = __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS;
+ break;
+ case METH_VARARGS | METH_KEYWORDS:
+ __Pyx_CyFunction_func_vectorcall(op) = NULL;
+ break;
+ default:
+ PyErr_SetString(PyExc_SystemError, "Bad call flags for CyFunction");
+ Py_DECREF(op);
+ return NULL;
+ }
+#endif
+ return (PyObject *) op;
+}
+static int
+__Pyx_CyFunction_clear(__pyx_CyFunctionObject *m)
+{
+ Py_CLEAR(m->func_closure);
+#if CYTHON_COMPILING_IN_LIMITED_API
+ Py_CLEAR(m->func);
+#else
+ Py_CLEAR(((PyCFunctionObject*)m)->m_module);
+#endif
+ Py_CLEAR(m->func_dict);
+ Py_CLEAR(m->func_name);
+ Py_CLEAR(m->func_qualname);
+ Py_CLEAR(m->func_doc);
+ Py_CLEAR(m->func_globals);
+ Py_CLEAR(m->func_code);
+#if !CYTHON_COMPILING_IN_LIMITED_API
+#if PY_VERSION_HEX < 0x030900B1
+ Py_CLEAR(__Pyx_CyFunction_GetClassObj(m));
+#else
+ {
+ PyObject *cls = (PyObject*) ((PyCMethodObject *) (m))->mm_class;
+ ((PyCMethodObject *) (m))->mm_class = NULL;
+ Py_XDECREF(cls);
+ }
+#endif
+#endif
+ Py_CLEAR(m->defaults_tuple);
+ Py_CLEAR(m->defaults_kwdict);
+ Py_CLEAR(m->func_annotations);
+ Py_CLEAR(m->func_is_coroutine);
+ if (m->defaults) {
+ PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m);
+ int i;
+ for (i = 0; i < m->defaults_pyobjects; i++)
+ Py_XDECREF(pydefaults[i]);
+ PyObject_Free(m->defaults);
+ m->defaults = NULL;
+ }
+ return 0;
+}
+static void __Pyx__CyFunction_dealloc(__pyx_CyFunctionObject *m)
+{
+ if (__Pyx_CyFunction_weakreflist(m) != NULL)
+ PyObject_ClearWeakRefs((PyObject *) m);
+ __Pyx_CyFunction_clear(m);
+ __Pyx_PyHeapTypeObject_GC_Del(m);
+}
+static void __Pyx_CyFunction_dealloc(__pyx_CyFunctionObject *m)
+{
+ PyObject_GC_UnTrack(m);
+ __Pyx__CyFunction_dealloc(m);
+}
+static int __Pyx_CyFunction_traverse(__pyx_CyFunctionObject *m, visitproc visit, void *arg)
+{
+ Py_VISIT(m->func_closure);
+#if CYTHON_COMPILING_IN_LIMITED_API
+ Py_VISIT(m->func);
+#else
+ Py_VISIT(((PyCFunctionObject*)m)->m_module);
+#endif
+ Py_VISIT(m->func_dict);
+ Py_VISIT(m->func_name);
+ Py_VISIT(m->func_qualname);
+ Py_VISIT(m->func_doc);
+ Py_VISIT(m->func_globals);
+ Py_VISIT(m->func_code);
+#if !CYTHON_COMPILING_IN_LIMITED_API
+ Py_VISIT(__Pyx_CyFunction_GetClassObj(m));
+#endif
+ Py_VISIT(m->defaults_tuple);
+ Py_VISIT(m->defaults_kwdict);
+ Py_VISIT(m->func_is_coroutine);
+ if (m->defaults) {
+ PyObject **pydefaults = __Pyx_CyFunction_Defaults(PyObject *, m);
+ int i;
+ for (i = 0; i < m->defaults_pyobjects; i++)
+ Py_VISIT(pydefaults[i]);
+ }
+ return 0;
+}
+static PyObject*
+__Pyx_CyFunction_repr(__pyx_CyFunctionObject *op)
+{
+#if PY_MAJOR_VERSION >= 3
+ return PyUnicode_FromFormat("",
+ op->func_qualname, (void *)op);
+#else
+ return PyString_FromFormat("",
+ PyString_AsString(op->func_qualname), (void *)op);
+#endif
+}
+static PyObject * __Pyx_CyFunction_CallMethod(PyObject *func, PyObject *self, PyObject *arg, PyObject *kw) {
+#if CYTHON_COMPILING_IN_LIMITED_API
+ PyObject *f = ((__pyx_CyFunctionObject*)func)->func;
+ PyObject *py_name = NULL;
+ PyCFunction meth;
+ int flags;
+ meth = PyCFunction_GetFunction(f);
+ if (unlikely(!meth)) return NULL;
+ flags = PyCFunction_GetFlags(f);
+ if (unlikely(flags < 0)) return NULL;
+#else
+ PyCFunctionObject* f = (PyCFunctionObject*)func;
+ PyCFunction meth = f->m_ml->ml_meth;
+ int flags = f->m_ml->ml_flags;
+#endif
+ Py_ssize_t size;
+ switch (flags & (METH_VARARGS | METH_KEYWORDS | METH_NOARGS | METH_O)) {
+ case METH_VARARGS:
+ if (likely(kw == NULL || PyDict_Size(kw) == 0))
+ return (*meth)(self, arg);
+ break;
+ case METH_VARARGS | METH_KEYWORDS:
+ return (*(PyCFunctionWithKeywords)(void*)meth)(self, arg, kw);
+ case METH_NOARGS:
+ if (likely(kw == NULL || PyDict_Size(kw) == 0)) {
+#if CYTHON_ASSUME_SAFE_MACROS
+ size = PyTuple_GET_SIZE(arg);
+#else
+ size = PyTuple_Size(arg);
+ if (unlikely(size < 0)) return NULL;
+#endif
+ if (likely(size == 0))
+ return (*meth)(self, NULL);
+#if CYTHON_COMPILING_IN_LIMITED_API
+ py_name = __Pyx_CyFunction_get_name((__pyx_CyFunctionObject*)func, NULL);
+ if (!py_name) return NULL;
+ PyErr_Format(PyExc_TypeError,
+ "%.200S() takes no arguments (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ py_name, size);
+ Py_DECREF(py_name);
+#else
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() takes no arguments (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ f->m_ml->ml_name, size);
+#endif
+ return NULL;
+ }
+ break;
+ case METH_O:
+ if (likely(kw == NULL || PyDict_Size(kw) == 0)) {
+#if CYTHON_ASSUME_SAFE_MACROS
+ size = PyTuple_GET_SIZE(arg);
+#else
+ size = PyTuple_Size(arg);
+ if (unlikely(size < 0)) return NULL;
+#endif
+ if (likely(size == 1)) {
+ PyObject *result, *arg0;
+ #if CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ arg0 = PyTuple_GET_ITEM(arg, 0);
+ #else
+ arg0 = __Pyx_PySequence_ITEM(arg, 0); if (unlikely(!arg0)) return NULL;
+ #endif
+ result = (*meth)(self, arg0);
+ #if !(CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS)
+ Py_DECREF(arg0);
+ #endif
+ return result;
+ }
+#if CYTHON_COMPILING_IN_LIMITED_API
+ py_name = __Pyx_CyFunction_get_name((__pyx_CyFunctionObject*)func, NULL);
+ if (!py_name) return NULL;
+ PyErr_Format(PyExc_TypeError,
+ "%.200S() takes exactly one argument (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ py_name, size);
+ Py_DECREF(py_name);
+#else
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() takes exactly one argument (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ f->m_ml->ml_name, size);
+#endif
+ return NULL;
+ }
+ break;
+ default:
+ PyErr_SetString(PyExc_SystemError, "Bad call flags for CyFunction");
+ return NULL;
+ }
+#if CYTHON_COMPILING_IN_LIMITED_API
+ py_name = __Pyx_CyFunction_get_name((__pyx_CyFunctionObject*)func, NULL);
+ if (!py_name) return NULL;
+ PyErr_Format(PyExc_TypeError, "%.200S() takes no keyword arguments",
+ py_name);
+ Py_DECREF(py_name);
+#else
+ PyErr_Format(PyExc_TypeError, "%.200s() takes no keyword arguments",
+ f->m_ml->ml_name);
+#endif
+ return NULL;
+}
+static CYTHON_INLINE PyObject *__Pyx_CyFunction_Call(PyObject *func, PyObject *arg, PyObject *kw) {
+ PyObject *self, *result;
+#if CYTHON_COMPILING_IN_LIMITED_API
+ self = PyCFunction_GetSelf(((__pyx_CyFunctionObject*)func)->func);
+ if (unlikely(!self) && PyErr_Occurred()) return NULL;
+#else
+ self = ((PyCFunctionObject*)func)->m_self;
+#endif
+ result = __Pyx_CyFunction_CallMethod(func, self, arg, kw);
+ return result;
+}
+static PyObject *__Pyx_CyFunction_CallAsMethod(PyObject *func, PyObject *args, PyObject *kw) {
+ PyObject *result;
+ __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *) func;
+#if CYTHON_METH_FASTCALL
+ __pyx_vectorcallfunc vc = __Pyx_CyFunction_func_vectorcall(cyfunc);
+ if (vc) {
+#if CYTHON_ASSUME_SAFE_MACROS
+ return __Pyx_PyVectorcall_FastCallDict(func, vc, &PyTuple_GET_ITEM(args, 0), (size_t)PyTuple_GET_SIZE(args), kw);
+#else
+ (void) &__Pyx_PyVectorcall_FastCallDict;
+ return PyVectorcall_Call(func, args, kw);
+#endif
+ }
+#endif
+ if ((cyfunc->flags & __Pyx_CYFUNCTION_CCLASS) && !(cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD)) {
+ Py_ssize_t argc;
+ PyObject *new_args;
+ PyObject *self;
+#if CYTHON_ASSUME_SAFE_MACROS
+ argc = PyTuple_GET_SIZE(args);
+#else
+ argc = PyTuple_Size(args);
+ if (unlikely(!argc) < 0) return NULL;
+#endif
+ new_args = PyTuple_GetSlice(args, 1, argc);
+ if (unlikely(!new_args))
+ return NULL;
+ self = PyTuple_GetItem(args, 0);
+ if (unlikely(!self)) {
+ Py_DECREF(new_args);
+#if PY_MAJOR_VERSION > 2
+ PyErr_Format(PyExc_TypeError,
+ "unbound method %.200S() needs an argument",
+ cyfunc->func_qualname);
+#else
+ PyErr_SetString(PyExc_TypeError,
+ "unbound method needs an argument");
+#endif
+ return NULL;
+ }
+ result = __Pyx_CyFunction_CallMethod(func, self, new_args, kw);
+ Py_DECREF(new_args);
+ } else {
+ result = __Pyx_CyFunction_Call(func, args, kw);
+ }
+ return result;
+}
+#if CYTHON_METH_FASTCALL
+static CYTHON_INLINE int __Pyx_CyFunction_Vectorcall_CheckArgs(__pyx_CyFunctionObject *cyfunc, Py_ssize_t nargs, PyObject *kwnames)
+{
+ int ret = 0;
+ if ((cyfunc->flags & __Pyx_CYFUNCTION_CCLASS) && !(cyfunc->flags & __Pyx_CYFUNCTION_STATICMETHOD)) {
+ if (unlikely(nargs < 1)) {
+ PyErr_Format(PyExc_TypeError, "%.200s() needs an argument",
+ ((PyCFunctionObject*)cyfunc)->m_ml->ml_name);
+ return -1;
+ }
+ ret = 1;
+ }
+ if (unlikely(kwnames) && unlikely(PyTuple_GET_SIZE(kwnames))) {
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() takes no keyword arguments", ((PyCFunctionObject*)cyfunc)->m_ml->ml_name);
+ return -1;
+ }
+ return ret;
+}
+static PyObject * __Pyx_CyFunction_Vectorcall_NOARGS(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames)
+{
+ __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *)func;
+ PyMethodDef* def = ((PyCFunctionObject*)cyfunc)->m_ml;
+#if CYTHON_BACKPORT_VECTORCALL
+ Py_ssize_t nargs = (Py_ssize_t)nargsf;
+#else
+ Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
+#endif
+ PyObject *self;
+ switch (__Pyx_CyFunction_Vectorcall_CheckArgs(cyfunc, nargs, kwnames)) {
+ case 1:
+ self = args[0];
+ args += 1;
+ nargs -= 1;
+ break;
+ case 0:
+ self = ((PyCFunctionObject*)cyfunc)->m_self;
+ break;
+ default:
+ return NULL;
+ }
+ if (unlikely(nargs != 0)) {
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() takes no arguments (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ def->ml_name, nargs);
+ return NULL;
+ }
+ return def->ml_meth(self, NULL);
+}
+static PyObject * __Pyx_CyFunction_Vectorcall_O(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames)
+{
+ __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *)func;
+ PyMethodDef* def = ((PyCFunctionObject*)cyfunc)->m_ml;
+#if CYTHON_BACKPORT_VECTORCALL
+ Py_ssize_t nargs = (Py_ssize_t)nargsf;
+#else
+ Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
+#endif
+ PyObject *self;
+ switch (__Pyx_CyFunction_Vectorcall_CheckArgs(cyfunc, nargs, kwnames)) {
+ case 1:
+ self = args[0];
+ args += 1;
+ nargs -= 1;
+ break;
+ case 0:
+ self = ((PyCFunctionObject*)cyfunc)->m_self;
+ break;
+ default:
+ return NULL;
+ }
+ if (unlikely(nargs != 1)) {
+ PyErr_Format(PyExc_TypeError,
+ "%.200s() takes exactly one argument (%" CYTHON_FORMAT_SSIZE_T "d given)",
+ def->ml_name, nargs);
+ return NULL;
+ }
+ return def->ml_meth(self, args[0]);
+}
+static PyObject * __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames)
+{
+ __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *)func;
+ PyMethodDef* def = ((PyCFunctionObject*)cyfunc)->m_ml;
+#if CYTHON_BACKPORT_VECTORCALL
+ Py_ssize_t nargs = (Py_ssize_t)nargsf;
+#else
+ Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
+#endif
+ PyObject *self;
+ switch (__Pyx_CyFunction_Vectorcall_CheckArgs(cyfunc, nargs, NULL)) {
+ case 1:
+ self = args[0];
+ args += 1;
+ nargs -= 1;
+ break;
+ case 0:
+ self = ((PyCFunctionObject*)cyfunc)->m_self;
+ break;
+ default:
+ return NULL;
+ }
+ return ((__Pyx_PyCFunctionFastWithKeywords)(void(*)(void))def->ml_meth)(self, args, nargs, kwnames);
+}
+static PyObject * __Pyx_CyFunction_Vectorcall_FASTCALL_KEYWORDS_METHOD(PyObject *func, PyObject *const *args, size_t nargsf, PyObject *kwnames)
+{
+ __pyx_CyFunctionObject *cyfunc = (__pyx_CyFunctionObject *)func;
+ PyMethodDef* def = ((PyCFunctionObject*)cyfunc)->m_ml;
+ PyTypeObject *cls = (PyTypeObject *) __Pyx_CyFunction_GetClassObj(cyfunc);
+#if CYTHON_BACKPORT_VECTORCALL
+ Py_ssize_t nargs = (Py_ssize_t)nargsf;
+#else
+ Py_ssize_t nargs = PyVectorcall_NARGS(nargsf);
+#endif
+ PyObject *self;
+ switch (__Pyx_CyFunction_Vectorcall_CheckArgs(cyfunc, nargs, NULL)) {
+ case 1:
+ self = args[0];
+ args += 1;
+ nargs -= 1;
+ break;
+ case 0:
+ self = ((PyCFunctionObject*)cyfunc)->m_self;
+ break;
+ default:
+ return NULL;
+ }
+ return ((__Pyx_PyCMethod)(void(*)(void))def->ml_meth)(self, cls, args, (size_t)nargs, kwnames);
+}
+#endif
+#if CYTHON_USE_TYPE_SPECS
+static PyType_Slot __pyx_CyFunctionType_slots[] = {
+ {Py_tp_dealloc, (void *)__Pyx_CyFunction_dealloc},
+ {Py_tp_repr, (void *)__Pyx_CyFunction_repr},
+ {Py_tp_call, (void *)__Pyx_CyFunction_CallAsMethod},
+ {Py_tp_traverse, (void *)__Pyx_CyFunction_traverse},
+ {Py_tp_clear, (void *)__Pyx_CyFunction_clear},
+ {Py_tp_methods, (void *)__pyx_CyFunction_methods},
+ {Py_tp_members, (void *)__pyx_CyFunction_members},
+ {Py_tp_getset, (void *)__pyx_CyFunction_getsets},
+ {Py_tp_descr_get, (void *)__Pyx_PyMethod_New},
+ {0, 0},
+};
+static PyType_Spec __pyx_CyFunctionType_spec = {
+ __PYX_TYPE_MODULE_PREFIX "cython_function_or_method",
+ sizeof(__pyx_CyFunctionObject),
+ 0,
+#ifdef Py_TPFLAGS_METHOD_DESCRIPTOR
+ Py_TPFLAGS_METHOD_DESCRIPTOR |
+#endif
+#if (defined(_Py_TPFLAGS_HAVE_VECTORCALL) && CYTHON_METH_FASTCALL)
+ _Py_TPFLAGS_HAVE_VECTORCALL |
+#endif
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE,
+ __pyx_CyFunctionType_slots
+};
+#else
+static PyTypeObject __pyx_CyFunctionType_type = {
+ PyVarObject_HEAD_INIT(0, 0)
+ __PYX_TYPE_MODULE_PREFIX "cython_function_or_method",
+ sizeof(__pyx_CyFunctionObject),
+ 0,
+ (destructor) __Pyx_CyFunction_dealloc,
+#if !CYTHON_METH_FASTCALL
+ 0,
+#elif CYTHON_BACKPORT_VECTORCALL
+ (printfunc)offsetof(__pyx_CyFunctionObject, func_vectorcall),
+#else
+ offsetof(PyCFunctionObject, vectorcall),
+#endif
+ 0,
+ 0,
+#if PY_MAJOR_VERSION < 3
+ 0,
+#else
+ 0,
+#endif
+ (reprfunc) __Pyx_CyFunction_repr,
+ 0,
+ 0,
+ 0,
+ 0,
+ __Pyx_CyFunction_CallAsMethod,
+ 0,
+ 0,
+ 0,
+ 0,
+#ifdef Py_TPFLAGS_METHOD_DESCRIPTOR
+ Py_TPFLAGS_METHOD_DESCRIPTOR |
+#endif
+#if defined(_Py_TPFLAGS_HAVE_VECTORCALL) && CYTHON_METH_FASTCALL
+ _Py_TPFLAGS_HAVE_VECTORCALL |
+#endif
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_BASETYPE,
+ 0,
+ (traverseproc) __Pyx_CyFunction_traverse,
+ (inquiry) __Pyx_CyFunction_clear,
+ 0,
+#if PY_VERSION_HEX < 0x030500A0
+ offsetof(__pyx_CyFunctionObject, func_weakreflist),
+#else
+ offsetof(PyCFunctionObject, m_weakreflist),
+#endif
+ 0,
+ 0,
+ __pyx_CyFunction_methods,
+ __pyx_CyFunction_members,
+ __pyx_CyFunction_getsets,
+ 0,
+ 0,
+ __Pyx_PyMethod_New,
+ 0,
+ offsetof(__pyx_CyFunctionObject, func_dict),
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+#if PY_VERSION_HEX >= 0x030400a1
+ 0,
+#endif
+#if PY_VERSION_HEX >= 0x030800b1 && (!CYTHON_COMPILING_IN_PYPY || PYPY_VERSION_NUM >= 0x07030800)
+ 0,
+#endif
+#if __PYX_NEED_TP_PRINT_SLOT
+ 0,
+#endif
+#if PY_VERSION_HEX >= 0x030C0000
+ 0,
+#endif
+#if PY_VERSION_HEX >= 0x030d00A4
+ 0,
+#endif
+#if CYTHON_COMPILING_IN_PYPY && PY_VERSION_HEX >= 0x03090000 && PY_VERSION_HEX < 0x030a0000
+ 0,
+#endif
+};
+#endif
+static int __pyx_CyFunction_init(PyObject *module) {
+#if CYTHON_USE_TYPE_SPECS
+ __pyx_CyFunctionType = __Pyx_FetchCommonTypeFromSpec(module, &__pyx_CyFunctionType_spec, NULL);
+#else
+ CYTHON_UNUSED_VAR(module);
+ __pyx_CyFunctionType = __Pyx_FetchCommonType(&__pyx_CyFunctionType_type);
+#endif
+ if (unlikely(__pyx_CyFunctionType == NULL)) {
+ return -1;
+ }
+ return 0;
+}
+static CYTHON_INLINE void *__Pyx_CyFunction_InitDefaults(PyObject *func, size_t size, int pyobjects) {
+ __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func;
+ m->defaults = PyObject_Malloc(size);
+ if (unlikely(!m->defaults))
+ return PyErr_NoMemory();
+ memset(m->defaults, 0, size);
+ m->defaults_pyobjects = pyobjects;
+ m->defaults_size = size;
+ return m->defaults;
+}
+static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsTuple(PyObject *func, PyObject *tuple) {
+ __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func;
+ m->defaults_tuple = tuple;
+ Py_INCREF(tuple);
+}
+static CYTHON_INLINE void __Pyx_CyFunction_SetDefaultsKwDict(PyObject *func, PyObject *dict) {
+ __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func;
+ m->defaults_kwdict = dict;
+ Py_INCREF(dict);
+}
+static CYTHON_INLINE void __Pyx_CyFunction_SetAnnotationsDict(PyObject *func, PyObject *dict) {
+ __pyx_CyFunctionObject *m = (__pyx_CyFunctionObject *) func;
+ m->func_annotations = dict;
+ Py_INCREF(dict);
+}
+
+/* CythonFunction */
+static PyObject *__Pyx_CyFunction_New(PyMethodDef *ml, int flags, PyObject* qualname,
+ PyObject *closure, PyObject *module, PyObject* globals, PyObject* code) {
+ PyObject *op = __Pyx_CyFunction_Init(
+ PyObject_GC_New(__pyx_CyFunctionObject, __pyx_CyFunctionType),
+ ml, flags, qualname, closure, module, globals, code
+ );
+ if (likely(op)) {
+ PyObject_GC_Track(op);
+ }
+ return op;
+}
+
+/* PyObjectLookupSpecial */
+#if CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS
+static CYTHON_INLINE PyObject* __Pyx__PyObject_LookupSpecial(PyObject* obj, PyObject* attr_name, int with_error) {
+ PyObject *res;
+ PyTypeObject *tp = Py_TYPE(obj);
+#if PY_MAJOR_VERSION < 3
+ if (unlikely(PyInstance_Check(obj)))
+ return with_error ? __Pyx_PyObject_GetAttrStr(obj, attr_name) : __Pyx_PyObject_GetAttrStrNoError(obj, attr_name);
+#endif
+ res = _PyType_Lookup(tp, attr_name);
+ if (likely(res)) {
+ descrgetfunc f = Py_TYPE(res)->tp_descr_get;
+ if (!f) {
+ Py_INCREF(res);
+ } else {
+ res = f(res, obj, (PyObject *)tp);
+ }
+ } else if (with_error) {
+ PyErr_SetObject(PyExc_AttributeError, attr_name);
+ }
+ return res;
+}
+#endif
+
+/* Py3ClassCreate */
+static PyObject *__Pyx_Py3MetaclassPrepare(PyObject *metaclass, PyObject *bases, PyObject *name,
+ PyObject *qualname, PyObject *mkw, PyObject *modname, PyObject *doc) {
+ PyObject *ns;
+ if (metaclass) {
+ PyObject *prep = __Pyx_PyObject_GetAttrStrNoError(metaclass, __pyx_n_s_prepare);
+ if (prep) {
+ PyObject *pargs[3] = {NULL, name, bases};
+ ns = __Pyx_PyObject_FastCallDict(prep, pargs+1, 2 | __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET, mkw);
+ Py_DECREF(prep);
+ } else {
+ if (unlikely(PyErr_Occurred()))
+ return NULL;
+ ns = PyDict_New();
+ }
+ } else {
+ ns = PyDict_New();
+ }
+ if (unlikely(!ns))
+ return NULL;
+ if (unlikely(PyObject_SetItem(ns, __pyx_n_s_module, modname) < 0)) goto bad;
+#if PY_VERSION_HEX >= 0x03030000
+ if (unlikely(PyObject_SetItem(ns, __pyx_n_s_qualname, qualname) < 0)) goto bad;
+#else
+ CYTHON_MAYBE_UNUSED_VAR(qualname);
+#endif
+ if (unlikely(doc && PyObject_SetItem(ns, __pyx_n_s_doc, doc) < 0)) goto bad;
+ return ns;
+bad:
+ Py_DECREF(ns);
+ return NULL;
+}
+#if PY_VERSION_HEX < 0x030600A4 && CYTHON_PEP487_INIT_SUBCLASS
+static int __Pyx_SetNamesPEP487(PyObject *type_obj) {
+ PyTypeObject *type = (PyTypeObject*) type_obj;
+ PyObject *names_to_set, *key, *value, *set_name, *tmp;
+ Py_ssize_t i = 0;
+#if CYTHON_USE_TYPE_SLOTS
+ names_to_set = PyDict_Copy(type->tp_dict);
+#else
+ {
+ PyObject *d = PyObject_GetAttr(type_obj, __pyx_n_s_dict);
+ names_to_set = NULL;
+ if (likely(d)) {
+ PyObject *names_to_set = PyDict_New();
+ int ret = likely(names_to_set) ? PyDict_Update(names_to_set, d) : -1;
+ Py_DECREF(d);
+ if (unlikely(ret < 0))
+ Py_CLEAR(names_to_set);
+ }
+ }
+#endif
+ if (unlikely(names_to_set == NULL))
+ goto bad;
+ while (PyDict_Next(names_to_set, &i, &key, &value)) {
+ set_name = __Pyx_PyObject_LookupSpecialNoError(value, __pyx_n_s_set_name);
+ if (unlikely(set_name != NULL)) {
+ tmp = __Pyx_PyObject_Call2Args(set_name, type_obj, key);
+ Py_DECREF(set_name);
+ if (unlikely(tmp == NULL)) {
+ __Pyx_TypeName value_type_name =
+ __Pyx_PyType_GetName(Py_TYPE(value));
+ __Pyx_TypeName type_name = __Pyx_PyType_GetName(type);
+ PyErr_Format(PyExc_RuntimeError,
+#if PY_MAJOR_VERSION >= 3
+ "Error calling __set_name__ on '" __Pyx_FMT_TYPENAME "' instance %R " "in '" __Pyx_FMT_TYPENAME "'",
+ value_type_name, key, type_name);
+#else
+ "Error calling __set_name__ on '" __Pyx_FMT_TYPENAME "' instance %.100s in '" __Pyx_FMT_TYPENAME "'",
+ value_type_name,
+ PyString_Check(key) ? PyString_AS_STRING(key) : "?",
+ type_name);
+#endif
+ goto bad;
+ } else {
+ Py_DECREF(tmp);
+ }
+ }
+ else if (unlikely(PyErr_Occurred())) {
+ goto bad;
+ }
+ }
+ Py_DECREF(names_to_set);
+ return 0;
+bad:
+ Py_XDECREF(names_to_set);
+ return -1;
+}
+static PyObject *__Pyx_InitSubclassPEP487(PyObject *type_obj, PyObject *mkw) {
+#if CYTHON_USE_TYPE_SLOTS && CYTHON_ASSUME_SAFE_MACROS && !CYTHON_AVOID_BORROWED_REFS
+ PyTypeObject *type = (PyTypeObject*) type_obj;
+ PyObject *mro = type->tp_mro;
+ Py_ssize_t i, nbases;
+ if (unlikely(!mro)) goto done;
+ (void) &__Pyx_GetBuiltinName;
+ Py_INCREF(mro);
+ nbases = PyTuple_GET_SIZE(mro);
+ assert(PyTuple_GET_ITEM(mro, 0) == type_obj);
+ for (i = 1; i < nbases-1; i++) {
+ PyObject *base, *dict, *meth;
+ base = PyTuple_GET_ITEM(mro, i);
+ dict = ((PyTypeObject *)base)->tp_dict;
+ meth = __Pyx_PyDict_GetItemStrWithError(dict, __pyx_n_s_init_subclass);
+ if (unlikely(meth)) {
+ descrgetfunc f = Py_TYPE(meth)->tp_descr_get;
+ PyObject *res;
+ Py_INCREF(meth);
+ if (likely(f)) {
+ res = f(meth, NULL, type_obj);
+ Py_DECREF(meth);
+ if (unlikely(!res)) goto bad;
+ meth = res;
+ }
+ res = __Pyx_PyObject_FastCallDict(meth, NULL, 0, mkw);
+ Py_DECREF(meth);
+ if (unlikely(!res)) goto bad;
+ Py_DECREF(res);
+ goto done;
+ } else if (unlikely(PyErr_Occurred())) {
+ goto bad;
+ }
+ }
+done:
+ Py_XDECREF(mro);
+ return type_obj;
+bad:
+ Py_XDECREF(mro);
+ Py_DECREF(type_obj);
+ return NULL;
+#else
+ PyObject *super_type, *super, *func, *res;
+#if CYTHON_COMPILING_IN_PYPY && !defined(PySuper_Type)
+ super_type = __Pyx_GetBuiltinName(__pyx_n_s_super);
+#else
+ super_type = (PyObject*) &PySuper_Type;
+ (void) &__Pyx_GetBuiltinName;
+#endif
+ super = likely(super_type) ? __Pyx_PyObject_Call2Args(super_type, type_obj, type_obj) : NULL;
+#if CYTHON_COMPILING_IN_PYPY && !defined(PySuper_Type)
+ Py_XDECREF(super_type);
+#endif
+ if (unlikely(!super)) {
+ Py_CLEAR(type_obj);
+ goto done;
+ }
+ func = __Pyx_PyObject_GetAttrStrNoError(super, __pyx_n_s_init_subclass);
+ Py_DECREF(super);
+ if (likely(!func)) {
+ if (unlikely(PyErr_Occurred()))
+ Py_CLEAR(type_obj);
+ goto done;
+ }
+ res = __Pyx_PyObject_FastCallDict(func, NULL, 0, mkw);
+ Py_DECREF(func);
+ if (unlikely(!res))
+ Py_CLEAR(type_obj);
+ Py_XDECREF(res);
+done:
+ return type_obj;
+#endif
+}
+#endif
+static PyObject *__Pyx_Py3ClassCreate(PyObject *metaclass, PyObject *name, PyObject *bases,
+ PyObject *dict, PyObject *mkw,
+ int calculate_metaclass, int allow_py2_metaclass) {
+ PyObject *result;
+ PyObject *owned_metaclass = NULL;
+ PyObject *margs[4] = {NULL, name, bases, dict};
+ if (allow_py2_metaclass) {
+ owned_metaclass = PyObject_GetItem(dict, __pyx_n_s_metaclass);
+ if (owned_metaclass) {
+ metaclass = owned_metaclass;
+ } else if (likely(PyErr_ExceptionMatches(PyExc_KeyError))) {
+ PyErr_Clear();
+ } else {
+ return NULL;
+ }
+ }
+ if (calculate_metaclass && (!metaclass || PyType_Check(metaclass))) {
+ metaclass = __Pyx_CalculateMetaclass((PyTypeObject*) metaclass, bases);
+ Py_XDECREF(owned_metaclass);
+ if (unlikely(!metaclass))
+ return NULL;
+ owned_metaclass = metaclass;
+ }
+ result = __Pyx_PyObject_FastCallDict(metaclass, margs+1, 3 | __Pyx_PY_VECTORCALL_ARGUMENTS_OFFSET,
+#if PY_VERSION_HEX < 0x030600A4
+ (metaclass == (PyObject*)&PyType_Type) ? NULL : mkw
+#else
+ mkw
+#endif
+ );
+ Py_XDECREF(owned_metaclass);
+#if PY_VERSION_HEX < 0x030600A4 && CYTHON_PEP487_INIT_SUBCLASS
+ if (likely(result) && likely(PyType_Check(result))) {
+ if (unlikely(__Pyx_SetNamesPEP487(result) < 0)) {
+ Py_CLEAR(result);
+ } else {
+ result = __Pyx_InitSubclassPEP487(result, mkw);
+ }
+ }
+#else
+ (void) &__Pyx_GetBuiltinName;
+#endif
+ return result;
+}
+
+/* CLineInTraceback */
+#ifndef CYTHON_CLINE_IN_TRACEBACK
+static int __Pyx_CLineForTraceback(PyThreadState *tstate, int c_line) {
+ PyObject *use_cline;
+ PyObject *ptype, *pvalue, *ptraceback;
+#if CYTHON_COMPILING_IN_CPYTHON
+ PyObject **cython_runtime_dict;
+#endif
+ CYTHON_MAYBE_UNUSED_VAR(tstate);
+ if (unlikely(!__pyx_cython_runtime)) {
+ return c_line;
+ }
+ __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback);
+#if CYTHON_COMPILING_IN_CPYTHON
+ cython_runtime_dict = _PyObject_GetDictPtr(__pyx_cython_runtime);
+ if (likely(cython_runtime_dict)) {
+ __PYX_PY_DICT_LOOKUP_IF_MODIFIED(
+ use_cline, *cython_runtime_dict,
+ __Pyx_PyDict_GetItemStr(*cython_runtime_dict, __pyx_n_s_cline_in_traceback))
+ } else
+#endif
+ {
+ PyObject *use_cline_obj = __Pyx_PyObject_GetAttrStrNoError(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback);
+ if (use_cline_obj) {
+ use_cline = PyObject_Not(use_cline_obj) ? Py_False : Py_True;
+ Py_DECREF(use_cline_obj);
+ } else {
+ PyErr_Clear();
+ use_cline = NULL;
+ }
+ }
+ if (!use_cline) {
+ c_line = 0;
+ (void) PyObject_SetAttr(__pyx_cython_runtime, __pyx_n_s_cline_in_traceback, Py_False);
+ }
+ else if (use_cline == Py_False || (use_cline != Py_True && PyObject_Not(use_cline) != 0)) {
+ c_line = 0;
+ }
+ __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback);
+ return c_line;
+}
+#endif
+
+/* CodeObjectCache */
+#if !CYTHON_COMPILING_IN_LIMITED_API
+static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) {
+ int start = 0, mid = 0, end = count - 1;
+ if (end >= 0 && code_line > entries[end].code_line) {
+ return count;
+ }
+ while (start < end) {
+ mid = start + (end - start) / 2;
+ if (code_line < entries[mid].code_line) {
+ end = mid;
+ } else if (code_line > entries[mid].code_line) {
+ start = mid + 1;
+ } else {
+ return mid;
+ }
+ }
+ if (code_line <= entries[mid].code_line) {
+ return mid;
+ } else {
+ return mid + 1;
+ }
+}
+static PyCodeObject *__pyx_find_code_object(int code_line) {
+ PyCodeObject* code_object;
+ int pos;
+ if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) {
+ return NULL;
+ }
+ pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line);
+ if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) {
+ return NULL;
+ }
+ code_object = __pyx_code_cache.entries[pos].code_object;
+ Py_INCREF(code_object);
+ return code_object;
+}
+static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) {
+ int pos, i;
+ __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries;
+ if (unlikely(!code_line)) {
+ return;
+ }
+ if (unlikely(!entries)) {
+ entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry));
+ if (likely(entries)) {
+ __pyx_code_cache.entries = entries;
+ __pyx_code_cache.max_count = 64;
+ __pyx_code_cache.count = 1;
+ entries[0].code_line = code_line;
+ entries[0].code_object = code_object;
+ Py_INCREF(code_object);
+ }
+ return;
+ }
+ pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line);
+ if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) {
+ PyCodeObject* tmp = entries[pos].code_object;
+ entries[pos].code_object = code_object;
+ Py_DECREF(tmp);
+ return;
+ }
+ if (__pyx_code_cache.count == __pyx_code_cache.max_count) {
+ int new_max = __pyx_code_cache.max_count + 64;
+ entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc(
+ __pyx_code_cache.entries, ((size_t)new_max) * sizeof(__Pyx_CodeObjectCacheEntry));
+ if (unlikely(!entries)) {
+ return;
+ }
+ __pyx_code_cache.entries = entries;
+ __pyx_code_cache.max_count = new_max;
+ }
+ for (i=__pyx_code_cache.count; i>pos; i--) {
+ entries[i] = entries[i-1];
+ }
+ entries[pos].code_line = code_line;
+ entries[pos].code_object = code_object;
+ __pyx_code_cache.count++;
+ Py_INCREF(code_object);
+}
+#endif
+
+/* AddTraceback */
+#include "compile.h"
+#include "frameobject.h"
+#include "traceback.h"
+#if PY_VERSION_HEX >= 0x030b00a6 && !CYTHON_COMPILING_IN_LIMITED_API
+ #ifndef Py_BUILD_CORE
+ #define Py_BUILD_CORE 1
+ #endif
+ #include "internal/pycore_frame.h"
+#endif
+#if CYTHON_COMPILING_IN_LIMITED_API
+static PyObject *__Pyx_PyCode_Replace_For_AddTraceback(PyObject *code, PyObject *scratch_dict,
+ PyObject *firstlineno, PyObject *name) {
+ PyObject *replace = NULL;
+ if (unlikely(PyDict_SetItemString(scratch_dict, "co_firstlineno", firstlineno))) return NULL;
+ if (unlikely(PyDict_SetItemString(scratch_dict, "co_name", name))) return NULL;
+ replace = PyObject_GetAttrString(code, "replace");
+ if (likely(replace)) {
+ PyObject *result;
+ result = PyObject_Call(replace, __pyx_empty_tuple, scratch_dict);
+ Py_DECREF(replace);
+ return result;
+ }
+ PyErr_Clear();
+ #if __PYX_LIMITED_VERSION_HEX < 0x030780000
+ {
+ PyObject *compiled = NULL, *result = NULL;
+ if (unlikely(PyDict_SetItemString(scratch_dict, "code", code))) return NULL;
+ if (unlikely(PyDict_SetItemString(scratch_dict, "type", (PyObject*)(&PyType_Type)))) return NULL;
+ compiled = Py_CompileString(
+ "out = type(code)(\n"
+ " code.co_argcount, code.co_kwonlyargcount, code.co_nlocals, code.co_stacksize,\n"
+ " code.co_flags, code.co_code, code.co_consts, code.co_names,\n"
+ " code.co_varnames, code.co_filename, co_name, co_firstlineno,\n"
+ " code.co_lnotab)\n", "", Py_file_input);
+ if (!compiled) return NULL;
+ result = PyEval_EvalCode(compiled, scratch_dict, scratch_dict);
+ Py_DECREF(compiled);
+ if (!result) PyErr_Print();
+ Py_DECREF(result);
+ result = PyDict_GetItemString(scratch_dict, "out");
+ if (result) Py_INCREF(result);
+ return result;
+ }
+ #else
+ return NULL;
+ #endif
+}
+static void __Pyx_AddTraceback(const char *funcname, int c_line,
+ int py_line, const char *filename) {
+ PyObject *code_object = NULL, *py_py_line = NULL, *py_funcname = NULL, *dict = NULL;
+ PyObject *replace = NULL, *getframe = NULL, *frame = NULL;
+ PyObject *exc_type, *exc_value, *exc_traceback;
+ int success = 0;
+ if (c_line) {
+ (void) __pyx_cfilenm;
+ (void) __Pyx_CLineForTraceback(__Pyx_PyThreadState_Current, c_line);
+ }
+ PyErr_Fetch(&exc_type, &exc_value, &exc_traceback);
+ code_object = Py_CompileString("_getframe()", filename, Py_eval_input);
+ if (unlikely(!code_object)) goto bad;
+ py_py_line = PyLong_FromLong(py_line);
+ if (unlikely(!py_py_line)) goto bad;
+ py_funcname = PyUnicode_FromString(funcname);
+ if (unlikely(!py_funcname)) goto bad;
+ dict = PyDict_New();
+ if (unlikely(!dict)) goto bad;
+ {
+ PyObject *old_code_object = code_object;
+ code_object = __Pyx_PyCode_Replace_For_AddTraceback(code_object, dict, py_py_line, py_funcname);
+ Py_DECREF(old_code_object);
+ }
+ if (unlikely(!code_object)) goto bad;
+ getframe = PySys_GetObject("_getframe");
+ if (unlikely(!getframe)) goto bad;
+ if (unlikely(PyDict_SetItemString(dict, "_getframe", getframe))) goto bad;
+ frame = PyEval_EvalCode(code_object, dict, dict);
+ if (unlikely(!frame) || frame == Py_None) goto bad;
+ success = 1;
+ bad:
+ PyErr_Restore(exc_type, exc_value, exc_traceback);
+ Py_XDECREF(code_object);
+ Py_XDECREF(py_py_line);
+ Py_XDECREF(py_funcname);
+ Py_XDECREF(dict);
+ Py_XDECREF(replace);
+ if (success) {
+ PyTraceBack_Here(
+ (struct _frame*)frame);
+ }
+ Py_XDECREF(frame);
+}
+#else
+static PyCodeObject* __Pyx_CreateCodeObjectForTraceback(
+ const char *funcname, int c_line,
+ int py_line, const char *filename) {
+ PyCodeObject *py_code = NULL;
+ PyObject *py_funcname = NULL;
+ #if PY_MAJOR_VERSION < 3
+ PyObject *py_srcfile = NULL;
+ py_srcfile = PyString_FromString(filename);
+ if (!py_srcfile) goto bad;
+ #endif
+ if (c_line) {
+ #if PY_MAJOR_VERSION < 3
+ py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line);
+ if (!py_funcname) goto bad;
+ #else
+ py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line);
+ if (!py_funcname) goto bad;
+ funcname = PyUnicode_AsUTF8(py_funcname);
+ if (!funcname) goto bad;
+ #endif
+ }
+ else {
+ #if PY_MAJOR_VERSION < 3
+ py_funcname = PyString_FromString(funcname);
+ if (!py_funcname) goto bad;
+ #endif
+ }
+ #if PY_MAJOR_VERSION < 3
+ py_code = __Pyx_PyCode_New(
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ 0,
+ __pyx_empty_bytes, /*PyObject *code,*/
+ __pyx_empty_tuple, /*PyObject *consts,*/
+ __pyx_empty_tuple, /*PyObject *names,*/
+ __pyx_empty_tuple, /*PyObject *varnames,*/
+ __pyx_empty_tuple, /*PyObject *freevars,*/
+ __pyx_empty_tuple, /*PyObject *cellvars,*/
+ py_srcfile, /*PyObject *filename,*/
+ py_funcname, /*PyObject *name,*/
+ py_line,
+ __pyx_empty_bytes /*PyObject *lnotab*/
+ );
+ Py_DECREF(py_srcfile);
+ #else
+ py_code = PyCode_NewEmpty(filename, funcname, py_line);
+ #endif
+ Py_XDECREF(py_funcname);
+ return py_code;
+bad:
+ Py_XDECREF(py_funcname);
+ #if PY_MAJOR_VERSION < 3
+ Py_XDECREF(py_srcfile);
+ #endif
+ return NULL;
+}
+static void __Pyx_AddTraceback(const char *funcname, int c_line,
+ int py_line, const char *filename) {
+ PyCodeObject *py_code = 0;
+ PyFrameObject *py_frame = 0;
+ PyThreadState *tstate = __Pyx_PyThreadState_Current;
+ PyObject *ptype, *pvalue, *ptraceback;
+ if (c_line) {
+ c_line = __Pyx_CLineForTraceback(tstate, c_line);
+ }
+ py_code = __pyx_find_code_object(c_line ? -c_line : py_line);
+ if (!py_code) {
+ __Pyx_ErrFetchInState(tstate, &ptype, &pvalue, &ptraceback);
+ py_code = __Pyx_CreateCodeObjectForTraceback(
+ funcname, c_line, py_line, filename);
+ if (!py_code) {
+ /* If the code object creation fails, then we should clear the
+ fetched exception references and propagate the new exception */
+ Py_XDECREF(ptype);
+ Py_XDECREF(pvalue);
+ Py_XDECREF(ptraceback);
+ goto bad;
+ }
+ __Pyx_ErrRestoreInState(tstate, ptype, pvalue, ptraceback);
+ __pyx_insert_code_object(c_line ? -c_line : py_line, py_code);
+ }
+ py_frame = PyFrame_New(
+ tstate, /*PyThreadState *tstate,*/
+ py_code, /*PyCodeObject *code,*/
+ __pyx_d, /*PyObject *globals,*/
+ 0 /*PyObject *locals*/
+ );
+ if (!py_frame) goto bad;
+ __Pyx_PyFrame_SetLineNumber(py_frame, py_line);
+ PyTraceBack_Here(py_frame);
+bad:
+ Py_XDECREF(py_code);
+ Py_XDECREF(py_frame);
+}
+#endif
+
+/* CIntToPy */
+static CYTHON_INLINE PyObject* __Pyx_PyInt_From_long(long value) {
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wconversion"
+#endif
+ const long neg_one = (long) -1, const_zero = (long) 0;
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic pop
+#endif
+ const int is_unsigned = neg_one > const_zero;
+ if (is_unsigned) {
+ if (sizeof(long) < sizeof(long)) {
+ return PyInt_FromLong((long) value);
+ } else if (sizeof(long) <= sizeof(unsigned long)) {
+ return PyLong_FromUnsignedLong((unsigned long) value);
+#ifdef HAVE_LONG_LONG
+ } else if (sizeof(long) <= sizeof(unsigned PY_LONG_LONG)) {
+ return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG) value);
+#endif
+ }
+ } else {
+ if (sizeof(long) <= sizeof(long)) {
+ return PyInt_FromLong((long) value);
+#ifdef HAVE_LONG_LONG
+ } else if (sizeof(long) <= sizeof(PY_LONG_LONG)) {
+ return PyLong_FromLongLong((PY_LONG_LONG) value);
+#endif
+ }
+ }
+ {
+ unsigned char *bytes = (unsigned char *)&value;
+#if !CYTHON_COMPILING_IN_LIMITED_API && PY_VERSION_HEX >= 0x030d00A4
+ if (is_unsigned) {
+ return PyLong_FromUnsignedNativeBytes(bytes, sizeof(value), -1);
+ } else {
+ return PyLong_FromNativeBytes(bytes, sizeof(value), -1);
+ }
+#elif !CYTHON_COMPILING_IN_LIMITED_API && PY_VERSION_HEX < 0x030d0000
+ int one = 1; int little = (int)*(unsigned char *)&one;
+ return _PyLong_FromByteArray(bytes, sizeof(long),
+ little, !is_unsigned);
+#else
+ int one = 1; int little = (int)*(unsigned char *)&one;
+ PyObject *from_bytes, *result = NULL;
+ PyObject *py_bytes = NULL, *arg_tuple = NULL, *kwds = NULL, *order_str = NULL;
+ from_bytes = PyObject_GetAttrString((PyObject*)&PyLong_Type, "from_bytes");
+ if (!from_bytes) return NULL;
+ py_bytes = PyBytes_FromStringAndSize((char*)bytes, sizeof(long));
+ if (!py_bytes) goto limited_bad;
+ order_str = PyUnicode_FromString(little ? "little" : "big");
+ if (!order_str) goto limited_bad;
+ arg_tuple = PyTuple_Pack(2, py_bytes, order_str);
+ if (!arg_tuple) goto limited_bad;
+ if (!is_unsigned) {
+ kwds = PyDict_New();
+ if (!kwds) goto limited_bad;
+ if (PyDict_SetItemString(kwds, "signed", __Pyx_NewRef(Py_True))) goto limited_bad;
+ }
+ result = PyObject_Call(from_bytes, arg_tuple, kwds);
+ limited_bad:
+ Py_XDECREF(kwds);
+ Py_XDECREF(arg_tuple);
+ Py_XDECREF(order_str);
+ Py_XDECREF(py_bytes);
+ Py_XDECREF(from_bytes);
+ return result;
+#endif
+ }
+}
+
+/* FormatTypeName */
+#if CYTHON_COMPILING_IN_LIMITED_API
+static __Pyx_TypeName
+__Pyx_PyType_GetName(PyTypeObject* tp)
+{
+ PyObject *name = __Pyx_PyObject_GetAttrStr((PyObject *)tp,
+ __pyx_n_s_name_2);
+ if (unlikely(name == NULL) || unlikely(!PyUnicode_Check(name))) {
+ PyErr_Clear();
+ Py_XDECREF(name);
+ name = __Pyx_NewRef(__pyx_n_s__51);
+ }
+ return name;
+}
+#endif
+
+/* CIntFromPyVerify */
+#define __PYX_VERIFY_RETURN_INT(target_type, func_type, func_value)\
+ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 0)
+#define __PYX_VERIFY_RETURN_INT_EXC(target_type, func_type, func_value)\
+ __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, 1)
+#define __PYX__VERIFY_RETURN_INT(target_type, func_type, func_value, exc)\
+ {\
+ func_type value = func_value;\
+ if (sizeof(target_type) < sizeof(func_type)) {\
+ if (unlikely(value != (func_type) (target_type) value)) {\
+ func_type zero = 0;\
+ if (exc && unlikely(value == (func_type)-1 && PyErr_Occurred()))\
+ return (target_type) -1;\
+ if (is_unsigned && unlikely(value < zero))\
+ goto raise_neg_overflow;\
+ else\
+ goto raise_overflow;\
+ }\
+ }\
+ return (target_type) value;\
+ }
+
+/* CIntFromPy */
+static CYTHON_INLINE long __Pyx_PyInt_As_long(PyObject *x) {
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wconversion"
+#endif
+ const long neg_one = (long) -1, const_zero = (long) 0;
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic pop
+#endif
+ const int is_unsigned = neg_one > const_zero;
+#if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_Check(x))) {
+ if ((sizeof(long) < sizeof(long))) {
+ __PYX_VERIFY_RETURN_INT(long, long, PyInt_AS_LONG(x))
+ } else {
+ long val = PyInt_AS_LONG(x);
+ if (is_unsigned && unlikely(val < 0)) {
+ goto raise_neg_overflow;
+ }
+ return (long) val;
+ }
+ }
+#endif
+ if (unlikely(!PyLong_Check(x))) {
+ long val;
+ PyObject *tmp = __Pyx_PyNumber_IntOrLong(x);
+ if (!tmp) return (long) -1;
+ val = __Pyx_PyInt_As_long(tmp);
+ Py_DECREF(tmp);
+ return val;
+ }
+ if (is_unsigned) {
+#if CYTHON_USE_PYLONG_INTERNALS
+ if (unlikely(__Pyx_PyLong_IsNeg(x))) {
+ goto raise_neg_overflow;
+ } else if (__Pyx_PyLong_IsCompact(x)) {
+ __PYX_VERIFY_RETURN_INT(long, __Pyx_compact_upylong, __Pyx_PyLong_CompactValueUnsigned(x))
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(x);
+ assert(__Pyx_PyLong_DigitCount(x) > 1);
+ switch (__Pyx_PyLong_DigitCount(x)) {
+ case 2:
+ if ((8 * sizeof(long) > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) >= 2 * PyLong_SHIFT)) {
+ return (long) (((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0]));
+ }
+ }
+ break;
+ case 3:
+ if ((8 * sizeof(long) > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) >= 3 * PyLong_SHIFT)) {
+ return (long) (((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]));
+ }
+ }
+ break;
+ case 4:
+ if ((8 * sizeof(long) > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) >= 4 * PyLong_SHIFT)) {
+ return (long) (((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0]));
+ }
+ }
+ break;
+ }
+ }
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030C00A7
+ if (unlikely(Py_SIZE(x) < 0)) {
+ goto raise_neg_overflow;
+ }
+#else
+ {
+ int result = PyObject_RichCompareBool(x, Py_False, Py_LT);
+ if (unlikely(result < 0))
+ return (long) -1;
+ if (unlikely(result == 1))
+ goto raise_neg_overflow;
+ }
+#endif
+ if ((sizeof(long) <= sizeof(unsigned long))) {
+ __PYX_VERIFY_RETURN_INT_EXC(long, unsigned long, PyLong_AsUnsignedLong(x))
+#ifdef HAVE_LONG_LONG
+ } else if ((sizeof(long) <= sizeof(unsigned PY_LONG_LONG))) {
+ __PYX_VERIFY_RETURN_INT_EXC(long, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x))
+#endif
+ }
+ } else {
+#if CYTHON_USE_PYLONG_INTERNALS
+ if (__Pyx_PyLong_IsCompact(x)) {
+ __PYX_VERIFY_RETURN_INT(long, __Pyx_compact_pylong, __Pyx_PyLong_CompactValue(x))
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(x);
+ assert(__Pyx_PyLong_DigitCount(x) > 1);
+ switch (__Pyx_PyLong_SignedDigitCount(x)) {
+ case -2:
+ if ((8 * sizeof(long) - 1 > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 2 * PyLong_SHIFT)) {
+ return (long) (((long)-1)*(((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ case 2:
+ if ((8 * sizeof(long) > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 2 * PyLong_SHIFT)) {
+ return (long) ((((((long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ case -3:
+ if ((8 * sizeof(long) - 1 > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 3 * PyLong_SHIFT)) {
+ return (long) (((long)-1)*(((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ case 3:
+ if ((8 * sizeof(long) > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 3 * PyLong_SHIFT)) {
+ return (long) ((((((((long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ case -4:
+ if ((8 * sizeof(long) - 1 > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 4 * PyLong_SHIFT)) {
+ return (long) (((long)-1)*(((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ case 4:
+ if ((8 * sizeof(long) > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(long, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(long) - 1 > 4 * PyLong_SHIFT)) {
+ return (long) ((((((((((long)digits[3]) << PyLong_SHIFT) | (long)digits[2]) << PyLong_SHIFT) | (long)digits[1]) << PyLong_SHIFT) | (long)digits[0])));
+ }
+ }
+ break;
+ }
+ }
+#endif
+ if ((sizeof(long) <= sizeof(long))) {
+ __PYX_VERIFY_RETURN_INT_EXC(long, long, PyLong_AsLong(x))
+#ifdef HAVE_LONG_LONG
+ } else if ((sizeof(long) <= sizeof(PY_LONG_LONG))) {
+ __PYX_VERIFY_RETURN_INT_EXC(long, PY_LONG_LONG, PyLong_AsLongLong(x))
+#endif
+ }
+ }
+ {
+ long val;
+ int ret = -1;
+#if PY_VERSION_HEX >= 0x030d00A6 && !CYTHON_COMPILING_IN_LIMITED_API
+ Py_ssize_t bytes_copied = PyLong_AsNativeBytes(
+ x, &val, sizeof(val), Py_ASNATIVEBYTES_NATIVE_ENDIAN | (is_unsigned ? Py_ASNATIVEBYTES_UNSIGNED_BUFFER | Py_ASNATIVEBYTES_REJECT_NEGATIVE : 0));
+ if (unlikely(bytes_copied == -1)) {
+ } else if (unlikely(bytes_copied > (Py_ssize_t) sizeof(val))) {
+ goto raise_overflow;
+ } else {
+ ret = 0;
+ }
+#elif PY_VERSION_HEX < 0x030d0000 && !(CYTHON_COMPILING_IN_PYPY || CYTHON_COMPILING_IN_LIMITED_API) || defined(_PyLong_AsByteArray)
+ int one = 1; int is_little = (int)*(unsigned char *)&one;
+ unsigned char *bytes = (unsigned char *)&val;
+ ret = _PyLong_AsByteArray((PyLongObject *)x,
+ bytes, sizeof(val),
+ is_little, !is_unsigned);
+#else
+ PyObject *v;
+ PyObject *stepval = NULL, *mask = NULL, *shift = NULL;
+ int bits, remaining_bits, is_negative = 0;
+ int chunk_size = (sizeof(long) < 8) ? 30 : 62;
+ if (likely(PyLong_CheckExact(x))) {
+ v = __Pyx_NewRef(x);
+ } else {
+ v = PyNumber_Long(x);
+ if (unlikely(!v)) return (long) -1;
+ assert(PyLong_CheckExact(v));
+ }
+ {
+ int result = PyObject_RichCompareBool(v, Py_False, Py_LT);
+ if (unlikely(result < 0)) {
+ Py_DECREF(v);
+ return (long) -1;
+ }
+ is_negative = result == 1;
+ }
+ if (is_unsigned && unlikely(is_negative)) {
+ Py_DECREF(v);
+ goto raise_neg_overflow;
+ } else if (is_negative) {
+ stepval = PyNumber_Invert(v);
+ Py_DECREF(v);
+ if (unlikely(!stepval))
+ return (long) -1;
+ } else {
+ stepval = v;
+ }
+ v = NULL;
+ val = (long) 0;
+ mask = PyLong_FromLong((1L << chunk_size) - 1); if (unlikely(!mask)) goto done;
+ shift = PyLong_FromLong(chunk_size); if (unlikely(!shift)) goto done;
+ for (bits = 0; bits < (int) sizeof(long) * 8 - chunk_size; bits += chunk_size) {
+ PyObject *tmp, *digit;
+ long idigit;
+ digit = PyNumber_And(stepval, mask);
+ if (unlikely(!digit)) goto done;
+ idigit = PyLong_AsLong(digit);
+ Py_DECREF(digit);
+ if (unlikely(idigit < 0)) goto done;
+ val |= ((long) idigit) << bits;
+ tmp = PyNumber_Rshift(stepval, shift);
+ if (unlikely(!tmp)) goto done;
+ Py_DECREF(stepval); stepval = tmp;
+ }
+ Py_DECREF(shift); shift = NULL;
+ Py_DECREF(mask); mask = NULL;
+ {
+ long idigit = PyLong_AsLong(stepval);
+ if (unlikely(idigit < 0)) goto done;
+ remaining_bits = ((int) sizeof(long) * 8) - bits - (is_unsigned ? 0 : 1);
+ if (unlikely(idigit >= (1L << remaining_bits)))
+ goto raise_overflow;
+ val |= ((long) idigit) << bits;
+ }
+ if (!is_unsigned) {
+ if (unlikely(val & (((long) 1) << (sizeof(long) * 8 - 1))))
+ goto raise_overflow;
+ if (is_negative)
+ val = ~val;
+ }
+ ret = 0;
+ done:
+ Py_XDECREF(shift);
+ Py_XDECREF(mask);
+ Py_XDECREF(stepval);
+#endif
+ if (unlikely(ret))
+ return (long) -1;
+ return val;
+ }
+raise_overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "value too large to convert to long");
+ return (long) -1;
+raise_neg_overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value to long");
+ return (long) -1;
+}
+
+/* CIntFromPy */
+static CYTHON_INLINE int __Pyx_PyInt_As_int(PyObject *x) {
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wconversion"
+#endif
+ const int neg_one = (int) -1, const_zero = (int) 0;
+#ifdef __Pyx_HAS_GCC_DIAGNOSTIC
+#pragma GCC diagnostic pop
+#endif
+ const int is_unsigned = neg_one > const_zero;
+#if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_Check(x))) {
+ if ((sizeof(int) < sizeof(long))) {
+ __PYX_VERIFY_RETURN_INT(int, long, PyInt_AS_LONG(x))
+ } else {
+ long val = PyInt_AS_LONG(x);
+ if (is_unsigned && unlikely(val < 0)) {
+ goto raise_neg_overflow;
+ }
+ return (int) val;
+ }
+ }
+#endif
+ if (unlikely(!PyLong_Check(x))) {
+ int val;
+ PyObject *tmp = __Pyx_PyNumber_IntOrLong(x);
+ if (!tmp) return (int) -1;
+ val = __Pyx_PyInt_As_int(tmp);
+ Py_DECREF(tmp);
+ return val;
+ }
+ if (is_unsigned) {
+#if CYTHON_USE_PYLONG_INTERNALS
+ if (unlikely(__Pyx_PyLong_IsNeg(x))) {
+ goto raise_neg_overflow;
+ } else if (__Pyx_PyLong_IsCompact(x)) {
+ __PYX_VERIFY_RETURN_INT(int, __Pyx_compact_upylong, __Pyx_PyLong_CompactValueUnsigned(x))
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(x);
+ assert(__Pyx_PyLong_DigitCount(x) > 1);
+ switch (__Pyx_PyLong_DigitCount(x)) {
+ case 2:
+ if ((8 * sizeof(int) > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) >= 2 * PyLong_SHIFT)) {
+ return (int) (((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0]));
+ }
+ }
+ break;
+ case 3:
+ if ((8 * sizeof(int) > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) >= 3 * PyLong_SHIFT)) {
+ return (int) (((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]));
+ }
+ }
+ break;
+ case 4:
+ if ((8 * sizeof(int) > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) >= 4 * PyLong_SHIFT)) {
+ return (int) (((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0]));
+ }
+ }
+ break;
+ }
+ }
+#endif
+#if CYTHON_COMPILING_IN_CPYTHON && PY_VERSION_HEX < 0x030C00A7
+ if (unlikely(Py_SIZE(x) < 0)) {
+ goto raise_neg_overflow;
+ }
+#else
+ {
+ int result = PyObject_RichCompareBool(x, Py_False, Py_LT);
+ if (unlikely(result < 0))
+ return (int) -1;
+ if (unlikely(result == 1))
+ goto raise_neg_overflow;
+ }
+#endif
+ if ((sizeof(int) <= sizeof(unsigned long))) {
+ __PYX_VERIFY_RETURN_INT_EXC(int, unsigned long, PyLong_AsUnsignedLong(x))
+#ifdef HAVE_LONG_LONG
+ } else if ((sizeof(int) <= sizeof(unsigned PY_LONG_LONG))) {
+ __PYX_VERIFY_RETURN_INT_EXC(int, unsigned PY_LONG_LONG, PyLong_AsUnsignedLongLong(x))
+#endif
+ }
+ } else {
+#if CYTHON_USE_PYLONG_INTERNALS
+ if (__Pyx_PyLong_IsCompact(x)) {
+ __PYX_VERIFY_RETURN_INT(int, __Pyx_compact_pylong, __Pyx_PyLong_CompactValue(x))
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(x);
+ assert(__Pyx_PyLong_DigitCount(x) > 1);
+ switch (__Pyx_PyLong_SignedDigitCount(x)) {
+ case -2:
+ if ((8 * sizeof(int) - 1 > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 2 * PyLong_SHIFT)) {
+ return (int) (((int)-1)*(((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ case 2:
+ if ((8 * sizeof(int) > 1 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 2 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 2 * PyLong_SHIFT)) {
+ return (int) ((((((int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ case -3:
+ if ((8 * sizeof(int) - 1 > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 3 * PyLong_SHIFT)) {
+ return (int) (((int)-1)*(((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ case 3:
+ if ((8 * sizeof(int) > 2 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 3 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 3 * PyLong_SHIFT)) {
+ return (int) ((((((((int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ case -4:
+ if ((8 * sizeof(int) - 1 > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, long, -(long) (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 4 * PyLong_SHIFT)) {
+ return (int) (((int)-1)*(((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ case 4:
+ if ((8 * sizeof(int) > 3 * PyLong_SHIFT)) {
+ if ((8 * sizeof(unsigned long) > 4 * PyLong_SHIFT)) {
+ __PYX_VERIFY_RETURN_INT(int, unsigned long, (((((((((unsigned long)digits[3]) << PyLong_SHIFT) | (unsigned long)digits[2]) << PyLong_SHIFT) | (unsigned long)digits[1]) << PyLong_SHIFT) | (unsigned long)digits[0])))
+ } else if ((8 * sizeof(int) - 1 > 4 * PyLong_SHIFT)) {
+ return (int) ((((((((((int)digits[3]) << PyLong_SHIFT) | (int)digits[2]) << PyLong_SHIFT) | (int)digits[1]) << PyLong_SHIFT) | (int)digits[0])));
+ }
+ }
+ break;
+ }
+ }
+#endif
+ if ((sizeof(int) <= sizeof(long))) {
+ __PYX_VERIFY_RETURN_INT_EXC(int, long, PyLong_AsLong(x))
+#ifdef HAVE_LONG_LONG
+ } else if ((sizeof(int) <= sizeof(PY_LONG_LONG))) {
+ __PYX_VERIFY_RETURN_INT_EXC(int, PY_LONG_LONG, PyLong_AsLongLong(x))
+#endif
+ }
+ }
+ {
+ int val;
+ int ret = -1;
+#if PY_VERSION_HEX >= 0x030d00A6 && !CYTHON_COMPILING_IN_LIMITED_API
+ Py_ssize_t bytes_copied = PyLong_AsNativeBytes(
+ x, &val, sizeof(val), Py_ASNATIVEBYTES_NATIVE_ENDIAN | (is_unsigned ? Py_ASNATIVEBYTES_UNSIGNED_BUFFER | Py_ASNATIVEBYTES_REJECT_NEGATIVE : 0));
+ if (unlikely(bytes_copied == -1)) {
+ } else if (unlikely(bytes_copied > (Py_ssize_t) sizeof(val))) {
+ goto raise_overflow;
+ } else {
+ ret = 0;
+ }
+#elif PY_VERSION_HEX < 0x030d0000 && !(CYTHON_COMPILING_IN_PYPY || CYTHON_COMPILING_IN_LIMITED_API) || defined(_PyLong_AsByteArray)
+ int one = 1; int is_little = (int)*(unsigned char *)&one;
+ unsigned char *bytes = (unsigned char *)&val;
+ ret = _PyLong_AsByteArray((PyLongObject *)x,
+ bytes, sizeof(val),
+ is_little, !is_unsigned);
+#else
+ PyObject *v;
+ PyObject *stepval = NULL, *mask = NULL, *shift = NULL;
+ int bits, remaining_bits, is_negative = 0;
+ int chunk_size = (sizeof(long) < 8) ? 30 : 62;
+ if (likely(PyLong_CheckExact(x))) {
+ v = __Pyx_NewRef(x);
+ } else {
+ v = PyNumber_Long(x);
+ if (unlikely(!v)) return (int) -1;
+ assert(PyLong_CheckExact(v));
+ }
+ {
+ int result = PyObject_RichCompareBool(v, Py_False, Py_LT);
+ if (unlikely(result < 0)) {
+ Py_DECREF(v);
+ return (int) -1;
+ }
+ is_negative = result == 1;
+ }
+ if (is_unsigned && unlikely(is_negative)) {
+ Py_DECREF(v);
+ goto raise_neg_overflow;
+ } else if (is_negative) {
+ stepval = PyNumber_Invert(v);
+ Py_DECREF(v);
+ if (unlikely(!stepval))
+ return (int) -1;
+ } else {
+ stepval = v;
+ }
+ v = NULL;
+ val = (int) 0;
+ mask = PyLong_FromLong((1L << chunk_size) - 1); if (unlikely(!mask)) goto done;
+ shift = PyLong_FromLong(chunk_size); if (unlikely(!shift)) goto done;
+ for (bits = 0; bits < (int) sizeof(int) * 8 - chunk_size; bits += chunk_size) {
+ PyObject *tmp, *digit;
+ long idigit;
+ digit = PyNumber_And(stepval, mask);
+ if (unlikely(!digit)) goto done;
+ idigit = PyLong_AsLong(digit);
+ Py_DECREF(digit);
+ if (unlikely(idigit < 0)) goto done;
+ val |= ((int) idigit) << bits;
+ tmp = PyNumber_Rshift(stepval, shift);
+ if (unlikely(!tmp)) goto done;
+ Py_DECREF(stepval); stepval = tmp;
+ }
+ Py_DECREF(shift); shift = NULL;
+ Py_DECREF(mask); mask = NULL;
+ {
+ long idigit = PyLong_AsLong(stepval);
+ if (unlikely(idigit < 0)) goto done;
+ remaining_bits = ((int) sizeof(int) * 8) - bits - (is_unsigned ? 0 : 1);
+ if (unlikely(idigit >= (1L << remaining_bits)))
+ goto raise_overflow;
+ val |= ((int) idigit) << bits;
+ }
+ if (!is_unsigned) {
+ if (unlikely(val & (((int) 1) << (sizeof(int) * 8 - 1))))
+ goto raise_overflow;
+ if (is_negative)
+ val = ~val;
+ }
+ ret = 0;
+ done:
+ Py_XDECREF(shift);
+ Py_XDECREF(mask);
+ Py_XDECREF(stepval);
+#endif
+ if (unlikely(ret))
+ return (int) -1;
+ return val;
+ }
+raise_overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "value too large to convert to int");
+ return (int) -1;
+raise_neg_overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "can't convert negative value to int");
+ return (int) -1;
+}
+
+/* CheckBinaryVersion */
+static unsigned long __Pyx_get_runtime_version(void) {
+#if __PYX_LIMITED_VERSION_HEX >= 0x030B00A4
+ return Py_Version & ~0xFFUL;
+#else
+ const char* rt_version = Py_GetVersion();
+ unsigned long version = 0;
+ unsigned long factor = 0x01000000UL;
+ unsigned int digit = 0;
+ int i = 0;
+ while (factor) {
+ while ('0' <= rt_version[i] && rt_version[i] <= '9') {
+ digit = digit * 10 + (unsigned int) (rt_version[i] - '0');
+ ++i;
+ }
+ version += factor * digit;
+ if (rt_version[i] != '.')
+ break;
+ digit = 0;
+ factor >>= 8;
+ ++i;
+ }
+ return version;
+#endif
+}
+static int __Pyx_check_binary_version(unsigned long ct_version, unsigned long rt_version, int allow_newer) {
+ const unsigned long MAJOR_MINOR = 0xFFFF0000UL;
+ if ((rt_version & MAJOR_MINOR) == (ct_version & MAJOR_MINOR))
+ return 0;
+ if (likely(allow_newer && (rt_version & MAJOR_MINOR) > (ct_version & MAJOR_MINOR)))
+ return 1;
+ {
+ char message[200];
+ PyOS_snprintf(message, sizeof(message),
+ "compile time Python version %d.%d "
+ "of module '%.100s' "
+ "%s "
+ "runtime version %d.%d",
+ (int) (ct_version >> 24), (int) ((ct_version >> 16) & 0xFF),
+ __Pyx_MODULE_NAME,
+ (allow_newer) ? "was newer than" : "does not match",
+ (int) (rt_version >> 24), (int) ((rt_version >> 16) & 0xFF)
+ );
+ return PyErr_WarnEx(NULL, message, 1);
+ }
+}
+
+/* InitStrings */
+#if PY_MAJOR_VERSION >= 3
+static int __Pyx_InitString(__Pyx_StringTabEntry t, PyObject **str) {
+ if (t.is_unicode | t.is_str) {
+ if (t.intern) {
+ *str = PyUnicode_InternFromString(t.s);
+ } else if (t.encoding) {
+ *str = PyUnicode_Decode(t.s, t.n - 1, t.encoding, NULL);
+ } else {
+ *str = PyUnicode_FromStringAndSize(t.s, t.n - 1);
+ }
+ } else {
+ *str = PyBytes_FromStringAndSize(t.s, t.n - 1);
+ }
+ if (!*str)
+ return -1;
+ if (PyObject_Hash(*str) == -1)
+ return -1;
+ return 0;
+}
+#endif
+static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) {
+ while (t->p) {
+ #if PY_MAJOR_VERSION >= 3
+ __Pyx_InitString(*t, t->p);
+ #else
+ if (t->is_unicode) {
+ *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL);
+ } else if (t->intern) {
+ *t->p = PyString_InternFromString(t->s);
+ } else {
+ *t->p = PyString_FromStringAndSize(t->s, t->n - 1);
+ }
+ if (!*t->p)
+ return -1;
+ if (PyObject_Hash(*t->p) == -1)
+ return -1;
+ #endif
+ ++t;
+ }
+ return 0;
+}
+
+#include
+static CYTHON_INLINE Py_ssize_t __Pyx_ssize_strlen(const char *s) {
+ size_t len = strlen(s);
+ if (unlikely(len > (size_t) PY_SSIZE_T_MAX)) {
+ PyErr_SetString(PyExc_OverflowError, "byte string is too long");
+ return -1;
+ }
+ return (Py_ssize_t) len;
+}
+static CYTHON_INLINE PyObject* __Pyx_PyUnicode_FromString(const char* c_str) {
+ Py_ssize_t len = __Pyx_ssize_strlen(c_str);
+ if (unlikely(len < 0)) return NULL;
+ return __Pyx_PyUnicode_FromStringAndSize(c_str, len);
+}
+static CYTHON_INLINE PyObject* __Pyx_PyByteArray_FromString(const char* c_str) {
+ Py_ssize_t len = __Pyx_ssize_strlen(c_str);
+ if (unlikely(len < 0)) return NULL;
+ return PyByteArray_FromStringAndSize(c_str, len);
+}
+static CYTHON_INLINE const char* __Pyx_PyObject_AsString(PyObject* o) {
+ Py_ssize_t ignore;
+ return __Pyx_PyObject_AsStringAndSize(o, &ignore);
+}
+#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT
+#if !CYTHON_PEP393_ENABLED
+static const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) {
+ char* defenc_c;
+ PyObject* defenc = _PyUnicode_AsDefaultEncodedString(o, NULL);
+ if (!defenc) return NULL;
+ defenc_c = PyBytes_AS_STRING(defenc);
+#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII
+ {
+ char* end = defenc_c + PyBytes_GET_SIZE(defenc);
+ char* c;
+ for (c = defenc_c; c < end; c++) {
+ if ((unsigned char) (*c) >= 128) {
+ PyUnicode_AsASCIIString(o);
+ return NULL;
+ }
+ }
+ }
+#endif
+ *length = PyBytes_GET_SIZE(defenc);
+ return defenc_c;
+}
+#else
+static CYTHON_INLINE const char* __Pyx_PyUnicode_AsStringAndSize(PyObject* o, Py_ssize_t *length) {
+ if (unlikely(__Pyx_PyUnicode_READY(o) == -1)) return NULL;
+#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII
+ if (likely(PyUnicode_IS_ASCII(o))) {
+ *length = PyUnicode_GET_LENGTH(o);
+ return PyUnicode_AsUTF8(o);
+ } else {
+ PyUnicode_AsASCIIString(o);
+ return NULL;
+ }
+#else
+ return PyUnicode_AsUTF8AndSize(o, length);
+#endif
+}
+#endif
+#endif
+static CYTHON_INLINE const char* __Pyx_PyObject_AsStringAndSize(PyObject* o, Py_ssize_t *length) {
+#if __PYX_DEFAULT_STRING_ENCODING_IS_ASCII || __PYX_DEFAULT_STRING_ENCODING_IS_DEFAULT
+ if (
+#if PY_MAJOR_VERSION < 3 && __PYX_DEFAULT_STRING_ENCODING_IS_ASCII
+ __Pyx_sys_getdefaultencoding_not_ascii &&
+#endif
+ PyUnicode_Check(o)) {
+ return __Pyx_PyUnicode_AsStringAndSize(o, length);
+ } else
+#endif
+#if (!CYTHON_COMPILING_IN_PYPY && !CYTHON_COMPILING_IN_LIMITED_API) || (defined(PyByteArray_AS_STRING) && defined(PyByteArray_GET_SIZE))
+ if (PyByteArray_Check(o)) {
+ *length = PyByteArray_GET_SIZE(o);
+ return PyByteArray_AS_STRING(o);
+ } else
+#endif
+ {
+ char* result;
+ int r = PyBytes_AsStringAndSize(o, &result, length);
+ if (unlikely(r < 0)) {
+ return NULL;
+ } else {
+ return result;
+ }
+ }
+}
+static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) {
+ int is_true = x == Py_True;
+ if (is_true | (x == Py_False) | (x == Py_None)) return is_true;
+ else return PyObject_IsTrue(x);
+}
+static CYTHON_INLINE int __Pyx_PyObject_IsTrueAndDecref(PyObject* x) {
+ int retval;
+ if (unlikely(!x)) return -1;
+ retval = __Pyx_PyObject_IsTrue(x);
+ Py_DECREF(x);
+ return retval;
+}
+static PyObject* __Pyx_PyNumber_IntOrLongWrongResultType(PyObject* result, const char* type_name) {
+ __Pyx_TypeName result_type_name = __Pyx_PyType_GetName(Py_TYPE(result));
+#if PY_MAJOR_VERSION >= 3
+ if (PyLong_Check(result)) {
+ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
+ "__int__ returned non-int (type " __Pyx_FMT_TYPENAME "). "
+ "The ability to return an instance of a strict subclass of int is deprecated, "
+ "and may be removed in a future version of Python.",
+ result_type_name)) {
+ __Pyx_DECREF_TypeName(result_type_name);
+ Py_DECREF(result);
+ return NULL;
+ }
+ __Pyx_DECREF_TypeName(result_type_name);
+ return result;
+ }
+#endif
+ PyErr_Format(PyExc_TypeError,
+ "__%.4s__ returned non-%.4s (type " __Pyx_FMT_TYPENAME ")",
+ type_name, type_name, result_type_name);
+ __Pyx_DECREF_TypeName(result_type_name);
+ Py_DECREF(result);
+ return NULL;
+}
+static CYTHON_INLINE PyObject* __Pyx_PyNumber_IntOrLong(PyObject* x) {
+#if CYTHON_USE_TYPE_SLOTS
+ PyNumberMethods *m;
+#endif
+ const char *name = NULL;
+ PyObject *res = NULL;
+#if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_Check(x) || PyLong_Check(x)))
+#else
+ if (likely(PyLong_Check(x)))
+#endif
+ return __Pyx_NewRef(x);
+#if CYTHON_USE_TYPE_SLOTS
+ m = Py_TYPE(x)->tp_as_number;
+ #if PY_MAJOR_VERSION < 3
+ if (m && m->nb_int) {
+ name = "int";
+ res = m->nb_int(x);
+ }
+ else if (m && m->nb_long) {
+ name = "long";
+ res = m->nb_long(x);
+ }
+ #else
+ if (likely(m && m->nb_int)) {
+ name = "int";
+ res = m->nb_int(x);
+ }
+ #endif
+#else
+ if (!PyBytes_CheckExact(x) && !PyUnicode_CheckExact(x)) {
+ res = PyNumber_Int(x);
+ }
+#endif
+ if (likely(res)) {
+#if PY_MAJOR_VERSION < 3
+ if (unlikely(!PyInt_Check(res) && !PyLong_Check(res))) {
+#else
+ if (unlikely(!PyLong_CheckExact(res))) {
+#endif
+ return __Pyx_PyNumber_IntOrLongWrongResultType(res, name);
+ }
+ }
+ else if (!PyErr_Occurred()) {
+ PyErr_SetString(PyExc_TypeError,
+ "an integer is required");
+ }
+ return res;
+}
+static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) {
+ Py_ssize_t ival;
+ PyObject *x;
+#if PY_MAJOR_VERSION < 3
+ if (likely(PyInt_CheckExact(b))) {
+ if (sizeof(Py_ssize_t) >= sizeof(long))
+ return PyInt_AS_LONG(b);
+ else
+ return PyInt_AsSsize_t(b);
+ }
+#endif
+ if (likely(PyLong_CheckExact(b))) {
+ #if CYTHON_USE_PYLONG_INTERNALS
+ if (likely(__Pyx_PyLong_IsCompact(b))) {
+ return __Pyx_PyLong_CompactValue(b);
+ } else {
+ const digit* digits = __Pyx_PyLong_Digits(b);
+ const Py_ssize_t size = __Pyx_PyLong_SignedDigitCount(b);
+ switch (size) {
+ case 2:
+ if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) {
+ return (Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ case -2:
+ if (8 * sizeof(Py_ssize_t) > 2 * PyLong_SHIFT) {
+ return -(Py_ssize_t) (((((size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ case 3:
+ if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) {
+ return (Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ case -3:
+ if (8 * sizeof(Py_ssize_t) > 3 * PyLong_SHIFT) {
+ return -(Py_ssize_t) (((((((size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ case 4:
+ if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) {
+ return (Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ case -4:
+ if (8 * sizeof(Py_ssize_t) > 4 * PyLong_SHIFT) {
+ return -(Py_ssize_t) (((((((((size_t)digits[3]) << PyLong_SHIFT) | (size_t)digits[2]) << PyLong_SHIFT) | (size_t)digits[1]) << PyLong_SHIFT) | (size_t)digits[0]));
+ }
+ break;
+ }
+ }
+ #endif
+ return PyLong_AsSsize_t(b);
+ }
+ x = PyNumber_Index(b);
+ if (!x) return -1;
+ ival = PyInt_AsSsize_t(x);
+ Py_DECREF(x);
+ return ival;
+}
+static CYTHON_INLINE Py_hash_t __Pyx_PyIndex_AsHash_t(PyObject* o) {
+ if (sizeof(Py_hash_t) == sizeof(Py_ssize_t)) {
+ return (Py_hash_t) __Pyx_PyIndex_AsSsize_t(o);
+#if PY_MAJOR_VERSION < 3
+ } else if (likely(PyInt_CheckExact(o))) {
+ return PyInt_AS_LONG(o);
+#endif
+ } else {
+ Py_ssize_t ival;
+ PyObject *x;
+ x = PyNumber_Index(o);
+ if (!x) return -1;
+ ival = PyInt_AsLong(x);
+ Py_DECREF(x);
+ return ival;
+ }
+}
+static CYTHON_INLINE PyObject * __Pyx_PyBool_FromLong(long b) {
+ return b ? __Pyx_NewRef(Py_True) : __Pyx_NewRef(Py_False);
+}
+static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) {
+ return PyInt_FromSize_t(ival);
+}
+
+
+/* #### Code section: utility_code_pragmas_end ### */
+#ifdef _MSC_VER
+#pragma warning( pop )
+#endif
+
+
+
+/* #### Code section: end ### */
+#endif /* Py_PYTHON_H */
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b6499d06f591efbdb5e603cbcd256840695f431
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/lexer.py
@@ -0,0 +1,287 @@
+from fontTools.feaLib.error import FeatureLibError, IncludedFeaNotFound
+from fontTools.feaLib.location import FeatureLibLocation
+import re
+import os
+
+try:
+ import cython
+except ImportError:
+ # if cython not installed, use mock module with no-op decorators and types
+ from fontTools.misc import cython
+
+
+class Lexer(object):
+ NUMBER = "NUMBER"
+ HEXADECIMAL = "HEXADECIMAL"
+ OCTAL = "OCTAL"
+ NUMBERS = (NUMBER, HEXADECIMAL, OCTAL)
+ FLOAT = "FLOAT"
+ STRING = "STRING"
+ NAME = "NAME"
+ FILENAME = "FILENAME"
+ GLYPHCLASS = "GLYPHCLASS"
+ CID = "CID"
+ SYMBOL = "SYMBOL"
+ COMMENT = "COMMENT"
+ NEWLINE = "NEWLINE"
+ ANONYMOUS_BLOCK = "ANONYMOUS_BLOCK"
+
+ CHAR_WHITESPACE_ = " \t"
+ CHAR_NEWLINE_ = "\r\n"
+ CHAR_SYMBOL_ = ",;:-+'{}[]<>()="
+ CHAR_DIGIT_ = "0123456789"
+ CHAR_HEXDIGIT_ = "0123456789ABCDEFabcdef"
+ CHAR_LETTER_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+ CHAR_NAME_START_ = CHAR_LETTER_ + "_+*:.^~!\\"
+ CHAR_NAME_CONTINUATION_ = CHAR_LETTER_ + CHAR_DIGIT_ + "_.+*:^~!/-"
+
+ RE_GLYPHCLASS = re.compile(r"^[A-Za-z_0-9.\-]+$")
+
+ MODE_NORMAL_ = "NORMAL"
+ MODE_FILENAME_ = "FILENAME"
+
+ def __init__(self, text, filename):
+ self.filename_ = filename
+ self.line_ = 1
+ self.pos_ = 0
+ self.line_start_ = 0
+ self.text_ = text
+ self.text_length_ = len(text)
+ self.mode_ = Lexer.MODE_NORMAL_
+
+ def __iter__(self):
+ return self
+
+ def next(self): # Python 2
+ return self.__next__()
+
+ def __next__(self): # Python 3
+ while True:
+ token_type, token, location = self.next_()
+ if token_type != Lexer.NEWLINE:
+ return (token_type, token, location)
+
+ def location_(self):
+ column = self.pos_ - self.line_start_ + 1
+ return FeatureLibLocation(self.filename_ or "", self.line_, column)
+
+ def next_(self):
+ self.scan_over_(Lexer.CHAR_WHITESPACE_)
+ location = self.location_()
+ start = self.pos_
+ text = self.text_
+ limit = len(text)
+ if start >= limit:
+ raise StopIteration()
+ cur_char = text[start]
+ next_char = text[start + 1] if start + 1 < limit else None
+
+ if cur_char == "\n":
+ self.pos_ += 1
+ self.line_ += 1
+ self.line_start_ = self.pos_
+ return (Lexer.NEWLINE, None, location)
+ if cur_char == "\r":
+ self.pos_ += 2 if next_char == "\n" else 1
+ self.line_ += 1
+ self.line_start_ = self.pos_
+ return (Lexer.NEWLINE, None, location)
+ if cur_char == "#":
+ self.scan_until_(Lexer.CHAR_NEWLINE_)
+ return (Lexer.COMMENT, text[start : self.pos_], location)
+
+ if self.mode_ is Lexer.MODE_FILENAME_:
+ if cur_char != "(":
+ raise FeatureLibError("Expected '(' before file name", location)
+ self.scan_until_(")")
+ cur_char = text[self.pos_] if self.pos_ < limit else None
+ if cur_char != ")":
+ raise FeatureLibError("Expected ')' after file name", location)
+ self.pos_ += 1
+ self.mode_ = Lexer.MODE_NORMAL_
+ return (Lexer.FILENAME, text[start + 1 : self.pos_ - 1], location)
+
+ if cur_char == "\\" and next_char in Lexer.CHAR_DIGIT_:
+ self.pos_ += 1
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ return (Lexer.CID, int(text[start + 1 : self.pos_], 10), location)
+ if cur_char == "@":
+ self.pos_ += 1
+ self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ glyphclass = text[start + 1 : self.pos_]
+ if len(glyphclass) < 1:
+ raise FeatureLibError("Expected glyph class name", location)
+ if not Lexer.RE_GLYPHCLASS.match(glyphclass):
+ raise FeatureLibError(
+ "Glyph class names must consist of letters, digits, "
+ "underscore, period or hyphen",
+ location,
+ )
+ return (Lexer.GLYPHCLASS, glyphclass, location)
+ if cur_char in Lexer.CHAR_NAME_START_:
+ self.pos_ += 1
+ self.scan_over_(Lexer.CHAR_NAME_CONTINUATION_)
+ token = text[start : self.pos_]
+ if token == "include":
+ self.mode_ = Lexer.MODE_FILENAME_
+ return (Lexer.NAME, token, location)
+ if cur_char == "0" and next_char in "xX":
+ self.pos_ += 2
+ self.scan_over_(Lexer.CHAR_HEXDIGIT_)
+ return (Lexer.HEXADECIMAL, int(text[start : self.pos_], 16), location)
+ if cur_char == "0" and next_char in Lexer.CHAR_DIGIT_:
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ return (Lexer.OCTAL, int(text[start : self.pos_], 8), location)
+ if cur_char in Lexer.CHAR_DIGIT_:
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ if self.pos_ >= limit or text[self.pos_] != ".":
+ return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ self.scan_over_(".")
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ if cur_char == "-" and next_char in Lexer.CHAR_DIGIT_:
+ self.pos_ += 1
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ if self.pos_ >= limit or text[self.pos_] != ".":
+ return (Lexer.NUMBER, int(text[start : self.pos_], 10), location)
+ self.scan_over_(".")
+ self.scan_over_(Lexer.CHAR_DIGIT_)
+ return (Lexer.FLOAT, float(text[start : self.pos_]), location)
+ if cur_char in Lexer.CHAR_SYMBOL_:
+ self.pos_ += 1
+ return (Lexer.SYMBOL, cur_char, location)
+ if cur_char == '"':
+ self.pos_ += 1
+ self.scan_until_('"')
+ if self.pos_ < self.text_length_ and self.text_[self.pos_] == '"':
+ self.pos_ += 1
+ # strip newlines embedded within a string
+ string = re.sub("[\r\n]", "", text[start + 1 : self.pos_ - 1])
+ return (Lexer.STRING, string, location)
+ else:
+ raise FeatureLibError("Expected '\"' to terminate string", location)
+ raise FeatureLibError("Unexpected character: %r" % cur_char, location)
+
+ def scan_over_(self, valid):
+ p = self.pos_
+ while p < self.text_length_ and self.text_[p] in valid:
+ p += 1
+ self.pos_ = p
+
+ def scan_until_(self, stop_at):
+ p = self.pos_
+ while p < self.text_length_ and self.text_[p] not in stop_at:
+ p += 1
+ self.pos_ = p
+
+ def scan_anonymous_block(self, tag):
+ location = self.location_()
+ tag = tag.strip()
+ self.scan_until_(Lexer.CHAR_NEWLINE_)
+ self.scan_over_(Lexer.CHAR_NEWLINE_)
+ regexp = r"}\s*" + tag + r"\s*;"
+ split = re.split(regexp, self.text_[self.pos_ :], maxsplit=1)
+ if len(split) != 2:
+ raise FeatureLibError(
+ "Expected '} %s;' to terminate anonymous block" % tag, location
+ )
+ self.pos_ += len(split[0])
+ return (Lexer.ANONYMOUS_BLOCK, split[0], location)
+
+
+class IncludingLexer(object):
+ """A Lexer that follows include statements.
+
+ The OpenType feature file specification states that due to
+ historical reasons, relative imports should be resolved in this
+ order:
+
+ 1. If the source font is UFO format, then relative to the UFO's
+ font directory
+ 2. relative to the top-level include file
+ 3. relative to the parent include file
+
+ We only support 1 (via includeDir) and 2.
+ """
+
+ def __init__(self, featurefile, *, includeDir=None):
+ """Initializes an IncludingLexer.
+
+ Behavior:
+ If includeDir is passed, it will be used to determine the top-level
+ include directory to use for all encountered include statements. If it is
+ not passed, ``os.path.dirname(featurefile)`` will be considered the
+ include directory.
+ """
+
+ self.lexers_ = [self.make_lexer_(featurefile)]
+ self.featurefilepath = self.lexers_[0].filename_
+ self.includeDir = includeDir
+
+ def __iter__(self):
+ return self
+
+ def next(self): # Python 2
+ return self.__next__()
+
+ def __next__(self): # Python 3
+ while self.lexers_:
+ lexer = self.lexers_[-1]
+ try:
+ token_type, token, location = next(lexer)
+ except StopIteration:
+ self.lexers_.pop()
+ continue
+ if token_type is Lexer.NAME and token == "include":
+ fname_type, fname_token, fname_location = lexer.next()
+ if fname_type is not Lexer.FILENAME:
+ raise FeatureLibError("Expected file name", fname_location)
+ # semi_type, semi_token, semi_location = lexer.next()
+ # if semi_type is not Lexer.SYMBOL or semi_token != ";":
+ # raise FeatureLibError("Expected ';'", semi_location)
+ if os.path.isabs(fname_token):
+ path = fname_token
+ else:
+ if self.includeDir is not None:
+ curpath = self.includeDir
+ elif self.featurefilepath is not None:
+ curpath = os.path.dirname(self.featurefilepath)
+ else:
+ # if the IncludingLexer was initialized from an in-memory
+ # file-like stream, it doesn't have a 'name' pointing to
+ # its filesystem path, therefore we fall back to using the
+ # current working directory to resolve relative includes
+ curpath = os.getcwd()
+ path = os.path.join(curpath, fname_token)
+ if len(self.lexers_) >= 5:
+ raise FeatureLibError("Too many recursive includes", fname_location)
+ try:
+ self.lexers_.append(self.make_lexer_(path))
+ except FileNotFoundError as err:
+ raise IncludedFeaNotFound(fname_token, fname_location) from err
+ else:
+ return (token_type, token, location)
+ raise StopIteration()
+
+ @staticmethod
+ def make_lexer_(file_or_path):
+ if hasattr(file_or_path, "read"):
+ fileobj, closing = file_or_path, False
+ else:
+ filename, closing = file_or_path, True
+ fileobj = open(filename, "r", encoding="utf-8-sig")
+ data = fileobj.read()
+ filename = getattr(fileobj, "name", None)
+ if closing:
+ fileobj.close()
+ return Lexer(data, filename)
+
+ def scan_anonymous_block(self, tag):
+ return self.lexers_[-1].scan_anonymous_block(tag)
+
+
+class NonIncludingLexer(IncludingLexer):
+ """Lexer that does not follow `include` statements, emits them as-is."""
+
+ def __next__(self): # Python 3
+ return next(self.lexers_[0])
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/location.py b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/location.py
new file mode 100644
index 0000000000000000000000000000000000000000..50f761d2d2a13bd101a7db9c259fedc98eed52cf
--- /dev/null
+++ b/infer_4_47_1/lib/python3.10/site-packages/fontTools/feaLib/location.py
@@ -0,0 +1,12 @@
+from typing import NamedTuple
+
+
+class FeatureLibLocation(NamedTuple):
+ """A location in a feature file"""
+
+ file: str
+ line: int
+ column: int
+
+ def __str__(self):
+ return f"{self.file}:{self.line}:{self.column}"
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/etree.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/etree.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..05ac26f9d3e37811e00eba8912c92ec81328a16c
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/etree.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/filenames.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/filenames.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..919ea4059e041ea50ea8e19adaea1c2b469063ac
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/filenames.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/kerning.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/kerning.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7524d048d1de9e252b57c56c6ccc45a60d16cf51
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/kerning.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/utils.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/utils.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..794291eb628d783e45f0e67f86102d7daf2e06b9
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/utils.cpython-310.pyc differ
diff --git a/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/validators.cpython-310.pyc b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/validators.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8afd30feb6473d752742492c754e655d3ca38f3a
Binary files /dev/null and b/infer_4_47_1/lib/python3.10/site-packages/fontTools/ufoLib/__pycache__/validators.cpython-310.pyc differ