diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..1905f9a47070070020aecac07b637784e791f969 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/__init__.py @@ -0,0 +1,23 @@ +# Copyright 2019 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""oauthlib integration for Google Auth + +This library provides `oauthlib `__ +integration with `google-auth `__. +""" + +from .interactive import get_user_credentials + +__all__ = ["get_user_credentials"] diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/flow.py b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/flow.py new file mode 100644 index 0000000000000000000000000000000000000000..e564ca4302645209e49089923e494c1afd718fb3 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/flow.py @@ -0,0 +1,507 @@ +# Copyright 2016 Google Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""OAuth 2.0 Authorization Flow + +This module provides integration with `requests-oauthlib`_ for running the +`OAuth 2.0 Authorization Flow`_ and acquiring user credentials. See +`Using OAuth 2.0 to Access Google APIs`_ for an overview of OAuth 2.0 +authorization scenarios Google APIs support. + +Here's an example of using :class:`InstalledAppFlow`:: + + from google_auth_oauthlib.flow import InstalledAppFlow + + # Create the flow using the client secrets file from the Google API + # Console. + flow = InstalledAppFlow.from_client_secrets_file( + 'client_secrets.json', + scopes=['profile', 'email']) + + flow.run_local_server() + + # You can use flow.credentials, or you can just get a requests session + # using flow.authorized_session. + session = flow.authorized_session() + + profile_info = session.get( + 'https://www.googleapis.com/userinfo/v2/me').json() + + print(profile_info) + # {'name': '...', 'email': '...', ...} + +.. _requests-oauthlib: http://requests-oauthlib.readthedocs.io/en/latest/ +.. _OAuth 2.0 Authorization Flow: + https://tools.ietf.org/html/rfc6749#section-1.2 +.. _Using OAuth 2.0 to Access Google APIs: + https://developers.google.com/identity/protocols/oauth2 + +""" +from base64 import urlsafe_b64encode +import hashlib +import json +import logging + +try: + from secrets import SystemRandom +except ImportError: # pragma: NO COVER + from random import SystemRandom +from string import ascii_letters, digits +import webbrowser +import wsgiref.simple_server +import wsgiref.util + +import google.auth.transport.requests +import google.oauth2.credentials + +import google_auth_oauthlib.helpers + + +_LOGGER = logging.getLogger(__name__) + + +class Flow(object): + """OAuth 2.0 Authorization Flow + + This class uses a :class:`requests_oauthlib.OAuth2Session` instance at + :attr:`oauth2session` to perform all of the OAuth 2.0 logic. This class + just provides convenience methods and sane defaults for doing Google's + particular flavors of OAuth 2.0. + + Typically you'll construct an instance of this flow using + :meth:`from_client_secrets_file` and a `client secrets file`_ obtained + from the `Google API Console`_. + + .. _client secrets file: + https://developers.google.com/identity/protocols/oauth2/web-server + #creatingcred + .. _Google API Console: + https://console.developers.google.com/apis/credentials + """ + + def __init__( + self, + oauth2session, + client_type, + client_config, + redirect_uri=None, + code_verifier=None, + autogenerate_code_verifier=True, + ): + """ + Args: + oauth2session (requests_oauthlib.OAuth2Session): + The OAuth 2.0 session from ``requests-oauthlib``. + client_type (str): The client type, either ``web`` or + ``installed``. + client_config (Mapping[str, Any]): The client + configuration in the Google `client secrets`_ format. + redirect_uri (str): The OAuth 2.0 redirect URI if known at flow + creation time. Otherwise, it will need to be set using + :attr:`redirect_uri`. + code_verifier (str): random string of 43-128 chars used to verify + the key exchange.using PKCE. + autogenerate_code_verifier (bool): If true, auto-generate a + code_verifier. + .. _client secrets: + https://github.com/googleapis/google-api-python-client/blob + /main/docs/client-secrets.md + """ + self.client_type = client_type + """str: The client type, either ``'web'`` or ``'installed'``""" + self.client_config = client_config[client_type] + """Mapping[str, Any]: The OAuth 2.0 client configuration.""" + self.oauth2session = oauth2session + """requests_oauthlib.OAuth2Session: The OAuth 2.0 session.""" + self.redirect_uri = redirect_uri + self.code_verifier = code_verifier + self.autogenerate_code_verifier = autogenerate_code_verifier + + @classmethod + def from_client_config(cls, client_config, scopes, **kwargs): + """Creates a :class:`requests_oauthlib.OAuth2Session` from client + configuration loaded from a Google-format client secrets file. + + Args: + client_config (Mapping[str, Any]): The client + configuration in the Google `client secrets`_ format. + scopes (Sequence[str]): The list of scopes to request during the + flow. + kwargs: Any additional parameters passed to + :class:`requests_oauthlib.OAuth2Session` + + Returns: + Flow: The constructed Flow instance. + + Raises: + ValueError: If the client configuration is not in the correct + format. + + .. _client secrets: + https://github.com/googleapis/google-api-python-client/blob/main/docs/client-secrets.md + """ + if "web" in client_config: + client_type = "web" + elif "installed" in client_config: + client_type = "installed" + else: + raise ValueError("Client secrets must be for a web or installed app.") + + # these args cannot be passed to requests_oauthlib.OAuth2Session + code_verifier = kwargs.pop("code_verifier", None) + autogenerate_code_verifier = kwargs.pop("autogenerate_code_verifier", None) + + ( + session, + client_config, + ) = google_auth_oauthlib.helpers.session_from_client_config( + client_config, scopes, **kwargs + ) + + redirect_uri = kwargs.get("redirect_uri", None) + + return cls( + session, + client_type, + client_config, + redirect_uri, + code_verifier, + autogenerate_code_verifier, + ) + + @classmethod + def from_client_secrets_file(cls, client_secrets_file, scopes, **kwargs): + """Creates a :class:`Flow` instance from a Google client secrets file. + + Args: + client_secrets_file (str): The path to the client secrets .json + file. + scopes (Sequence[str]): The list of scopes to request during the + flow. + kwargs: Any additional parameters passed to + :class:`requests_oauthlib.OAuth2Session` + + Returns: + Flow: The constructed Flow instance. + """ + with open(client_secrets_file, "r") as json_file: + client_config = json.load(json_file) + + return cls.from_client_config(client_config, scopes=scopes, **kwargs) + + @property + def redirect_uri(self): + """The OAuth 2.0 redirect URI. Pass-through to + ``self.oauth2session.redirect_uri``.""" + return self.oauth2session.redirect_uri + + @redirect_uri.setter + def redirect_uri(self, value): + """The OAuth 2.0 redirect URI. Pass-through to + ``self.oauth2session.redirect_uri``.""" + self.oauth2session.redirect_uri = value + + def authorization_url(self, **kwargs): + """Generates an authorization URL. + + This is the first step in the OAuth 2.0 Authorization Flow. The user's + browser should be redirected to the returned URL. + + This method calls + :meth:`requests_oauthlib.OAuth2Session.authorization_url` + and specifies the client configuration's authorization URI (usually + Google's authorization server) and specifies that "offline" access is + desired. This is required in order to obtain a refresh token. + + Args: + kwargs: Additional arguments passed through to + :meth:`requests_oauthlib.OAuth2Session.authorization_url` + + Returns: + Tuple[str, str]: The generated authorization URL and state. The + user must visit the URL to complete the flow. The state is used + when completing the flow to verify that the request originated + from your application. If your application is using a different + :class:`Flow` instance to obtain the token, you will need to + specify the ``state`` when constructing the :class:`Flow`. + """ + kwargs.setdefault("access_type", "offline") + if self.autogenerate_code_verifier: + chars = ascii_letters + digits + "-._~" + rnd = SystemRandom() + random_verifier = [rnd.choice(chars) for _ in range(0, 128)] + self.code_verifier = "".join(random_verifier) + + if self.code_verifier: + code_hash = hashlib.sha256() + code_hash.update(str.encode(self.code_verifier)) + unencoded_challenge = code_hash.digest() + b64_challenge = urlsafe_b64encode(unencoded_challenge) + code_challenge = b64_challenge.decode().split("=")[0] + kwargs.setdefault("code_challenge", code_challenge) + kwargs.setdefault("code_challenge_method", "S256") + url, state = self.oauth2session.authorization_url( + self.client_config["auth_uri"], **kwargs + ) + + return url, state + + def fetch_token(self, **kwargs): + """Completes the Authorization Flow and obtains an access token. + + This is the final step in the OAuth 2.0 Authorization Flow. This is + called after the user consents. + + This method calls + :meth:`requests_oauthlib.OAuth2Session.fetch_token` + and specifies the client configuration's token URI (usually Google's + token server). + + Args: + kwargs: Arguments passed through to + :meth:`requests_oauthlib.OAuth2Session.fetch_token`. At least + one of ``code`` or ``authorization_response`` must be + specified. + + Returns: + Mapping[str, str]: The obtained tokens. Typically, you will not use + return value of this function and instead use + :meth:`credentials` to obtain a + :class:`~google.auth.credentials.Credentials` instance. + """ + kwargs.setdefault("client_secret", self.client_config["client_secret"]) + kwargs.setdefault("code_verifier", self.code_verifier) + return self.oauth2session.fetch_token(self.client_config["token_uri"], **kwargs) + + @property + def credentials(self): + """Returns credentials from the OAuth 2.0 session. + + :meth:`fetch_token` must be called before accessing this. This method + constructs a :class:`google.oauth2.credentials.Credentials` class using + the session's token and the client config. + + Returns: + google.oauth2.credentials.Credentials: The constructed credentials. + + Raises: + ValueError: If there is no access token in the session. + """ + return google_auth_oauthlib.helpers.credentials_from_session( + self.oauth2session, self.client_config + ) + + def authorized_session(self): + """Returns a :class:`requests.Session` authorized with credentials. + + :meth:`fetch_token` must be called before this method. This method + constructs a :class:`google.auth.transport.requests.AuthorizedSession` + class using this flow's :attr:`credentials`. + + Returns: + google.auth.transport.requests.AuthorizedSession: The constructed + session. + """ + return google.auth.transport.requests.AuthorizedSession(self.credentials) + + +class InstalledAppFlow(Flow): + """Authorization flow helper for installed applications. + + This :class:`Flow` subclass makes it easier to perform the + `Installed Application Authorization Flow`_. This flow is useful for + local development or applications that are installed on a desktop operating + system. + + This flow uses a local server strategy provided by :meth:`run_local_server`. + + Example:: + + from google_auth_oauthlib.flow import InstalledAppFlow + + flow = InstalledAppFlow.from_client_secrets_file( + 'client_secrets.json', + scopes=['profile', 'email']) + + flow.run_local_server() + + session = flow.authorized_session() + + profile_info = session.get( + 'https://www.googleapis.com/userinfo/v2/me').json() + + print(profile_info) + # {'name': '...', 'email': '...', ...} + + + Note that this isn't the only way to accomplish the installed + application flow, just one of the most common. You can use the + :class:`Flow` class to perform the same flow with different methods of + presenting the authorization URL to the user or obtaining the authorization + response, such as using an embedded web view. + + .. _Installed Application Authorization Flow: + https://github.com/googleapis/google-api-python-client/blob/main/docs/oauth-installed.md + """ + + _DEFAULT_AUTH_PROMPT_MESSAGE = ( + "Please visit this URL to authorize this application: {url}" + ) + """str: The message to display when prompting the user for + authorization.""" + _DEFAULT_AUTH_CODE_MESSAGE = "Enter the authorization code: " + """str: The message to display when prompting the user for the + authorization code. Used only by the console strategy.""" + + _DEFAULT_WEB_SUCCESS_MESSAGE = ( + "The authentication flow has completed. You may close this window." + ) + + def run_local_server( + self, + host="localhost", + bind_addr=None, + port=8080, + authorization_prompt_message=_DEFAULT_AUTH_PROMPT_MESSAGE, + success_message=_DEFAULT_WEB_SUCCESS_MESSAGE, + open_browser=True, + redirect_uri_trailing_slash=True, + timeout_seconds=None, + token_audience=None, + browser=None, + **kwargs + ): + """Run the flow using the server strategy. + + The server strategy instructs the user to open the authorization URL in + their browser and will attempt to automatically open the URL for them. + It will start a local web server to listen for the authorization + response. Once authorization is complete the authorization server will + redirect the user's browser to the local web server. The web server + will get the authorization code from the response and shutdown. The + code is then exchanged for a token. + + Args: + host (str): The hostname for the local redirect server. This will + be served over http, not https. + bind_addr (str): Optionally provide an ip address for the redirect + server to listen on when it is not the same as host + (e.g. in a container). Default value is None, + which means that the redirect server will listen + on the ip address specified in the host parameter. + port (int): The port for the local redirect server. + authorization_prompt_message (str | None): The message to display to tell + the user to navigate to the authorization URL. If None or empty, + don't display anything. + success_message (str): The message to display in the web browser + the authorization flow is complete. + open_browser (bool): Whether or not to open the authorization URL + in the user's browser. + redirect_uri_trailing_slash (bool): whether or not to add trailing + slash when constructing the redirect_uri. Default value is True. + timeout_seconds (int): It will raise an error after the timeout timing + if there are no credentials response. The value is in seconds. + When set to None there is no timeout. + Default value is None. + token_audience (str): Passed along with the request for an access + token. Determines the endpoints with which the token can be + used. Optional. + browser (str): specify which browser to open for authentication. If not + specified this defaults to default browser. + kwargs: Additional keyword arguments passed through to + :meth:`authorization_url`. + + Returns: + google.oauth2.credentials.Credentials: The OAuth 2.0 credentials + for the user. + """ + wsgi_app = _RedirectWSGIApp(success_message) + # Fail fast if the address is occupied + wsgiref.simple_server.WSGIServer.allow_reuse_address = False + local_server = wsgiref.simple_server.make_server( + bind_addr or host, port, wsgi_app, handler_class=_WSGIRequestHandler + ) + + try: + redirect_uri_format = ( + "http://{}:{}/" if redirect_uri_trailing_slash else "http://{}:{}" + ) + self.redirect_uri = redirect_uri_format.format( + host, local_server.server_port + ) + auth_url, _ = self.authorization_url(**kwargs) + + if open_browser: + # if browser is None it defaults to default browser + webbrowser.get(browser).open(auth_url, new=1, autoraise=True) + + if authorization_prompt_message: + print(authorization_prompt_message.format(url=auth_url)) + + local_server.timeout = timeout_seconds + local_server.handle_request() + + # Note: using https here because oauthlib is very picky that + # OAuth 2.0 should only occur over https. + authorization_response = wsgi_app.last_request_uri.replace("http", "https") + self.fetch_token( + authorization_response=authorization_response, audience=token_audience + ) + finally: + local_server.server_close() + + return self.credentials + + +class _WSGIRequestHandler(wsgiref.simple_server.WSGIRequestHandler): + """Custom WSGIRequestHandler. + + Uses a named logger instead of printing to stderr. + """ + + def log_message(self, format, *args): + # pylint: disable=redefined-builtin + # (format is the argument name defined in the superclass.) + _LOGGER.info(format, *args) + + +class _RedirectWSGIApp(object): + """WSGI app to handle the authorization redirect. + + Stores the request URI and displays the given success message. + """ + + def __init__(self, success_message): + """ + Args: + success_message (str): The message to display in the web browser + the authorization flow is complete. + """ + self.last_request_uri = None + self._success_message = success_message + + def __call__(self, environ, start_response): + """WSGI Callable. + + Args: + environ (Mapping[str, Any]): The WSGI environment. + start_response (Callable[str, list]): The WSGI start_response + callable. + + Returns: + Iterable[bytes]: The response body. + """ + start_response("200 OK", [("Content-type", "text/plain; charset=utf-8")]) + self.last_request_uri = wsgiref.util.request_uri(environ) + return [self._success_message.encode("utf-8")] diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/helpers.py b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/helpers.py new file mode 100644 index 0000000000000000000000000000000000000000..25462f4c193c84aad5c935ad55910faa70f760e8 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/helpers.py @@ -0,0 +1,151 @@ +# Copyright 2017 Google Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Integration helpers. + +This module provides helpers for integrating with `requests-oauthlib`_. +Typically, you'll want to use the higher-level helpers in +:mod:`google_auth_oauthlib.flow`. + +.. _requests-oauthlib: http://requests-oauthlib.readthedocs.io/en/latest/ +""" + +import datetime +import json + +from google.auth import external_account_authorized_user +import google.oauth2.credentials +import requests_oauthlib + +_REQUIRED_CONFIG_KEYS = frozenset(("auth_uri", "token_uri", "client_id")) + + +def session_from_client_config(client_config, scopes, **kwargs): + """Creates a :class:`requests_oauthlib.OAuth2Session` from client + configuration loaded from a Google-format client secrets file. + + Args: + client_config (Mapping[str, Any]): The client + configuration in the Google `client secrets`_ format. + scopes (Sequence[str]): The list of scopes to request during the + flow. + kwargs: Any additional parameters passed to + :class:`requests_oauthlib.OAuth2Session` + + Raises: + ValueError: If the client configuration is not in the correct + format. + + Returns: + Tuple[requests_oauthlib.OAuth2Session, Mapping[str, Any]]: The new + oauthlib session and the validated client configuration. + + .. _client secrets: + https://github.com/googleapis/google-api-python-client/blob/main/docs/client-secrets.md + """ + + if "web" in client_config: + config = client_config["web"] + elif "installed" in client_config: + config = client_config["installed"] + else: + raise ValueError("Client secrets must be for a web or installed app.") + + if not _REQUIRED_CONFIG_KEYS.issubset(config.keys()): + raise ValueError("Client secrets is not in the correct format.") + + session = requests_oauthlib.OAuth2Session( + client_id=config["client_id"], scope=scopes, **kwargs + ) + + return session, client_config + + +def session_from_client_secrets_file(client_secrets_file, scopes, **kwargs): + """Creates a :class:`requests_oauthlib.OAuth2Session` instance from a + Google-format client secrets file. + + Args: + client_secrets_file (str): The path to the `client secrets`_ .json + file. + scopes (Sequence[str]): The list of scopes to request during the + flow. + kwargs: Any additional parameters passed to + :class:`requests_oauthlib.OAuth2Session` + + Returns: + Tuple[requests_oauthlib.OAuth2Session, Mapping[str, Any]]: The new + oauthlib session and the validated client configuration. + + .. _client secrets: + https://github.com/googleapis/google-api-python-client/blob/main/docs/client-secrets.md + """ + with open(client_secrets_file, "r") as json_file: + client_config = json.load(json_file) + + return session_from_client_config(client_config, scopes, **kwargs) + + +def credentials_from_session(session, client_config=None): + """Creates :class:`google.oauth2.credentials.Credentials` from a + :class:`requests_oauthlib.OAuth2Session`. + + :meth:`fetch_token` must be called on the session before before calling + this. This uses the session's auth token and the provided client + configuration to create :class:`google.oauth2.credentials.Credentials`. + This allows you to use the credentials from the session with Google + API client libraries. + + Args: + session (requests_oauthlib.OAuth2Session): The OAuth 2.0 session. + client_config (Mapping[str, Any]): The subset of the client + configuration to use. For example, if you have a web client + you would pass in `client_config['web']`. + + Returns: + google.oauth2.credentials.Credentials: The constructed credentials. + + Raises: + ValueError: If there is no access token in the session. + """ + client_config = client_config if client_config is not None else {} + + if not session.token: + raise ValueError( + "There is no access token for this session, did you call " "fetch_token?" + ) + + if "3pi" in client_config: + credentials = external_account_authorized_user.Credentials( + token=session.token["access_token"], + refresh_token=session.token.get("refresh_token"), + token_url=client_config.get("token_uri"), + client_id=client_config.get("client_id"), + client_secret=client_config.get("client_secret"), + token_info_url=client_config.get("token_info_url"), + scopes=session.scope, + ) + else: + credentials = google.oauth2.credentials.Credentials( + session.token["access_token"], + refresh_token=session.token.get("refresh_token"), + id_token=session.token.get("id_token"), + token_uri=client_config.get("token_uri"), + client_id=client_config.get("client_id"), + client_secret=client_config.get("client_secret"), + scopes=session.scope, + granted_scopes=session.token.get("scope"), + ) + credentials.expiry = datetime.datetime.utcfromtimestamp(session.token["expires_at"]) + return credentials diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/interactive.py b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/interactive.py new file mode 100644 index 0000000000000000000000000000000000000000..b1ed990ef435c9127430a2f4a3c269151463000e --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/interactive.py @@ -0,0 +1,172 @@ +# Copyright 2019 Google LLC +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# https://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Get user credentials from interactive code environments. + +This module contains helpers for getting user credentials from interactive +code environments installed on a development machine, such as Jupyter +notebooks. +""" + +from __future__ import absolute_import + +import contextlib +import socket + +import google_auth_oauthlib.flow + + +LOCALHOST = "localhost" +DEFAULT_PORTS_TO_TRY = 100 + + +def is_port_open(port): + """Check if a port is open on localhost. + Based on StackOverflow answer: https://stackoverflow.com/a/43238489/101923 + Parameters + ---------- + port : int + A port to check on localhost. + Returns + ------- + is_open : bool + True if a socket can be opened at the requested port. + """ + with contextlib.closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: + try: + sock.bind((LOCALHOST, port)) + sock.listen(1) + except socket.error: + is_open = False + else: + is_open = True + return is_open + + +def find_open_port(start=8080, stop=None): + """Find an open port between ``start`` and ``stop``. + Parameters + ---------- + start : Optional[int] + Beginning of range of ports to try. Defaults to 8080. + stop : Optional[int] + End of range of ports to try (not including exactly equals ``stop``). + This function tries 100 possible ports if no ``stop`` is specified. + Returns + ------- + Optional[int] + ``None`` if no open port is found, otherwise an integer indicating an + open port. + """ + if not stop: + stop = start + DEFAULT_PORTS_TO_TRY + + for port in range(start, stop): + if is_port_open(port): + return port + + # No open ports found. + return None + + +def get_user_credentials( + scopes, client_id, client_secret, minimum_port=8080, maximum_port=None +): + """Gets credentials associated with your Google user account. + + This function authenticates using your user credentials by going through + the OAuth 2.0 flow. You'll open a browser window to authenticate to your + Google account. The permissions it requests correspond to the scopes + you've provided. + + To obtain the ``client_id`` and ``client_secret``, create an **OAuth + client ID** with application type **Other** from the `Credentials page on + the Google Developer's Console + `_. Learn more + with the `Authenticating as an end user + `_ guide. + + Args: + scopes (Sequence[str]): + A list of scopes to use when authenticating to Google APIs. See + the `list of OAuth 2.0 scopes for Google APIs + `_. + client_id (str): + A string that identifies your application to Google APIs. Find + this value in the `Credentials page on the Google Developer's + Console + `_. + client_secret (str): + A string that verifies your application to Google APIs. Find this + value in the `Credentials page on the Google Developer's Console + `_. + minimum_port (int): + Beginning of range of ports to try for redirect URI HTTP server. + Defaults to 8080. + maximum_port (Optional[int]): + End of range of ports to try (not including exactly equals ``stop``). + This function tries 100 possible ports if no ``stop`` is specified. + + Returns: + google.oauth2.credentials.Credentials: + The OAuth 2.0 credentials for the user. + + Examples: + Get credentials for your user account and use them to run a query + with BigQuery:: + + import google_auth_oauthlib + + # TODO: Create a client ID for your project. + client_id = "YOUR-CLIENT-ID.apps.googleusercontent.com" + client_secret = "abc_ThIsIsAsEcReT" + + # TODO: Choose the needed scopes for your applications. + scopes = ["https://www.googleapis.com/auth/cloud-platform"] + + credentials = google_auth_oauthlib.get_user_credentials( + scopes, client_id, client_secret + ) + + # 1. Open the link. + # 2. Authorize the application to have access to your account. + # 3. Copy and paste the authorization code to the prompt. + + # Use the credentials to construct a client for Google APIs. + from google.cloud import bigquery + + bigquery_client = bigquery.Client( + credentials=credentials, project="your-project-id" + ) + print(list(bigquery_client.query("SELECT 1").result())) + """ + + client_config = { + "installed": { + "client_id": client_id, + "client_secret": client_secret, + "auth_uri": "https://accounts.google.com/o/oauth2/auth", + "token_uri": "https://oauth2.googleapis.com/token", + } + } + + app_flow = google_auth_oauthlib.flow.InstalledAppFlow.from_client_config( + client_config, scopes=scopes + ) + + port = find_open_port(start=minimum_port, stop=maximum_port) + if not port: + raise ConnectionError("Could not find open port.") + + return app_flow.run_local_server(host=LOCALHOST, port=port) diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/tool/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/tool/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/tool/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/tool/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb8cf319bb4dbd4e9870965cfcab5da545515819 Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/google_auth_oauthlib/tool/__pycache__/__init__.cpython-310.pyc differ diff --git a/evalkit_cambrian/lib/python3.10/site-packages/h11-0.14.0.dist-info/LICENSE.txt b/evalkit_cambrian/lib/python3.10/site-packages/h11-0.14.0.dist-info/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..8f080eae848f759c9173bfc0c79506357ebe5090 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/h11-0.14.0.dist-info/LICENSE.txt @@ -0,0 +1,22 @@ +The MIT License (MIT) + +Copyright (c) 2016 Nathaniel J. Smith and other contributors + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/INSTALLER b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/METADATA b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..2046024a647b9fc5cee6a4a1844ef7ab7aa14c8c --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/METADATA @@ -0,0 +1,97 @@ +Metadata-Version: 2.1 +Name: matplotlib-inline +Version: 0.1.7 +Summary: Inline Matplotlib backend for Jupyter +Author-email: IPython Development Team +License: BSD 3-Clause License + + Copyright (c) 2019-2022, IPython Development Team. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + 1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + 3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE + FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +Project-URL: Homepage, https://github.com/ipython/matplotlib-inline +Keywords: ipython,jupyter,matplotlib,python +Classifier: Development Status :: 5 - Production/Stable +Classifier: Framework :: IPython +Classifier: Framework :: Jupyter +Classifier: Framework :: Jupyter :: JupyterLab +Classifier: Framework :: Jupyter :: JupyterLab :: 3 +Classifier: Framework :: Jupyter :: JupyterLab :: 4 +Classifier: Intended Audience :: Developers +Classifier: Intended Audience :: Science/Research +Classifier: License :: OSI Approved :: BSD License +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3.12 +Classifier: Topic :: Multimedia :: Graphics +Requires-Python: >=3.8 +Description-Content-Type: text/markdown +License-File: LICENSE +Requires-Dist: traitlets + +# Matplotlib Inline Back-end for IPython and Jupyter + +This package provides support for matplotlib to display figures directly inline in the Jupyter notebook and related clients, as shown below. + +## Installation + +With conda: + +```bash +conda install -c conda-forge matplotlib-inline +``` + +With pip: + +```bash +pip install matplotlib-inline +``` + +## Usage + +Note that in current versions of JupyterLab and Jupyter Notebook, the explicit use of the `%matplotlib inline` directive is not needed anymore, though other third-party clients may still require it. + +This will produce a figure immediately below: + +```python +%matplotlib inline + +import matplotlib.pyplot as plt +import numpy as np + +x = np.linspace(0, 3*np.pi, 500) +plt.plot(x, np.sin(x**2)) +plt.title('A simple chirp'); +``` + +## License + +Licensed under the terms of the BSD 3-Clause License, by the IPython Development Team (see `LICENSE` file). diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/RECORD b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..2601ff52925e1d6b3582e7a5f8b897b6666ff075 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/RECORD @@ -0,0 +1,14 @@ +matplotlib_inline-0.1.7.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +matplotlib_inline-0.1.7.dist-info/LICENSE,sha256=hSGwNsZEjg4KpyE9RxO2_e4PTGTJ8yBFD3c0a_XA6OQ,1538 +matplotlib_inline-0.1.7.dist-info/METADATA,sha256=Xz23GdN-XdBaedxKOTUXCuChARrN9NvHcKHdnkpv08E,3873 +matplotlib_inline-0.1.7.dist-info/RECORD,, +matplotlib_inline-0.1.7.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +matplotlib_inline-0.1.7.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92 +matplotlib_inline-0.1.7.dist-info/entry_points.txt,sha256=NxSdh3hjUJgJ73Z6FN60JWKd4Ll30Iy1nlIoNAvYGIU,63 +matplotlib_inline-0.1.7.dist-info/top_level.txt,sha256=0ViJqRtJZLIS7IfjHrUgYI6RIvWY0cfk1OjAlp40Zsw,18 +matplotlib_inline/__init__.py,sha256=tnQF2ytXKVHudRzPup4ymHdSygJW8znm2Ox3CVF9FQs,75 +matplotlib_inline/__pycache__/__init__.cpython-310.pyc,, +matplotlib_inline/__pycache__/backend_inline.cpython-310.pyc,, +matplotlib_inline/__pycache__/config.cpython-310.pyc,, +matplotlib_inline/backend_inline.py,sha256=pR2qQcdCoXAEen7FXIyJvgRMaS4V9pker_IbabROH6E,11354 +matplotlib_inline/config.py,sha256=Z87OCv-LStYhOwQ2LmHDNxwkAn9BLFKTbHI7XSAT1Jc,3911 diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/REQUESTED b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/REQUESTED new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/WHEEL b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..bab98d675883cc7567a79df485cd7b4f015e376f --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/WHEEL @@ -0,0 +1,5 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.43.0) +Root-Is-Purelib: true +Tag: py3-none-any + diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/entry_points.txt b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/entry_points.txt new file mode 100644 index 0000000000000000000000000000000000000000..cc52c3383b61c80940879d05c7a51b0c2a96250a --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/entry_points.txt @@ -0,0 +1,2 @@ +[matplotlib.backend] +inline = matplotlib_inline.backend_inline diff --git a/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/top_level.txt b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..4b061e8006031c56c2c5ef5f56a342f8b2a60bc4 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/matplotlib_inline-0.1.7.dist-info/top_level.txt @@ -0,0 +1 @@ +matplotlib_inline diff --git a/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..efe6b91c6726e89233edec2018664e5d14fa0229 Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/__init__.cpython-310.pyc differ diff --git a/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/_abc.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/_abc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c98600e4baaffe9020ba6f00548c19b8b21f1346 Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/multidict/__pycache__/_abc.cpython-310.pyc differ diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/INSTALLER b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/License.txt b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/License.txt new file mode 100644 index 0000000000000000000000000000000000000000..b491c70e0aef319022ded661e111ddbd45b8a17f --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/License.txt @@ -0,0 +1,1568 @@ +End User License Agreement +-------------------------- + + +Preface +------- + +The Software License Agreement in Chapter 1 and the Supplement +in Chapter 2 contain license terms and conditions that govern +the use of NVIDIA software. By accepting this agreement, you +agree to comply with all the terms and conditions applicable +to the product(s) included herein. + + +NVIDIA Driver + + +Description + +This package contains the operating system driver and +fundamental system software components for NVIDIA GPUs. + + +NVIDIA CUDA Toolkit + + +Description + +The NVIDIA CUDA Toolkit provides command-line and graphical +tools for building, debugging and optimizing the performance +of applications accelerated by NVIDIA GPUs, runtime and math +libraries, and documentation including programming guides, +user manuals, and API references. + + +Default Install Location of CUDA Toolkit + +Windows platform: + +%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.# + +Linux platform: + +/usr/local/cuda-#.# + +Mac platform: + +/Developer/NVIDIA/CUDA-#.# + + +NVIDIA CUDA Samples + + +Description + +This package includes over 100+ CUDA examples that demonstrate +various CUDA programming principles, and efficient CUDA +implementation of algorithms in specific application domains. + + +Default Install Location of CUDA Samples + +Windows platform: + +%ProgramData%\NVIDIA Corporation\CUDA Samples\v#.# + +Linux platform: + +/usr/local/cuda-#.#/samples + +and + +$HOME/NVIDIA_CUDA-#.#_Samples + +Mac platform: + +/Developer/NVIDIA/CUDA-#.#/samples + + +NVIDIA Nsight Visual Studio Edition (Windows only) + + +Description + +NVIDIA Nsight Development Platform, Visual Studio Edition is a +development environment integrated into Microsoft Visual +Studio that provides tools for debugging, profiling, analyzing +and optimizing your GPU computing and graphics applications. + + +Default Install Location of Nsight Visual Studio Edition + +Windows platform: + +%ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.# + + +1. License Agreement for NVIDIA Software Development Kits +--------------------------------------------------------- + + +Release Date: July 26, 2018 +--------------------------- + + +Important NoticeRead before downloading, installing, +copying or using the licensed software: +------------------------------------------------------- + +This license agreement, including exhibits attached +("Agreement”) is a legal agreement between you and NVIDIA +Corporation ("NVIDIA") and governs your use of a NVIDIA +software development kit (“SDK”). + +Each SDK has its own set of software and materials, but here +is a description of the types of items that may be included in +a SDK: source code, header files, APIs, data sets and assets +(examples include images, textures, models, scenes, videos, +native API input/output files), binary software, sample code, +libraries, utility programs, programming code and +documentation. + +This Agreement can be accepted only by an adult of legal age +of majority in the country in which the SDK is used. + +If you are entering into this Agreement on behalf of a company +or other legal entity, you represent that you have the legal +authority to bind the entity to this Agreement, in which case +“you” will mean the entity you represent. + +If you don’t have the required age or authority to accept +this Agreement, or if you don’t accept all the terms and +conditions of this Agreement, do not download, install or use +the SDK. + +You agree to use the SDK only for purposes that are permitted +by (a) this Agreement, and (b) any applicable law, regulation +or generally accepted practices or guidelines in the relevant +jurisdictions. + + +1.1. License + + +1.1.1. License Grant + +Subject to the terms of this Agreement, NVIDIA hereby grants +you a non-exclusive, non-transferable license, without the +right to sublicense (except as expressly provided in this +Agreement) to: + + 1. Install and use the SDK, + + 2. Modify and create derivative works of sample source code + delivered in the SDK, and + + 3. Distribute those portions of the SDK that are identified + in this Agreement as distributable, as incorporated in + object code format into a software application that meets + the distribution requirements indicated in this Agreement. + + +1.1.2. Distribution Requirements + +These are the distribution requirements for you to exercise +the distribution grant: + + 1. Your application must have material additional + functionality, beyond the included portions of the SDK. + + 2. The distributable portions of the SDK shall only be + accessed by your application. + + 3. The following notice shall be included in modifications + and derivative works of sample source code distributed: + “This software contains source code provided by NVIDIA + Corporation.” + + 4. Unless a developer tool is identified in this Agreement + as distributable, it is delivered for your internal use + only. + + 5. The terms under which you distribute your application + must be consistent with the terms of this Agreement, + including (without limitation) terms relating to the + license grant and license restrictions and protection of + NVIDIA’s intellectual property rights. Additionally, you + agree that you will protect the privacy, security and + legal rights of your application users. + + 6. You agree to notify NVIDIA in writing of any known or + suspected distribution or use of the SDK not in compliance + with the requirements of this Agreement, and to enforce + the terms of your agreements with respect to distributed + SDK. + + +1.1.3. Authorized Users + +You may allow employees and contractors of your entity or of +your subsidiary(ies) to access and use the SDK from your +secure network to perform work on your behalf. + +If you are an academic institution you may allow users +enrolled or employed by the academic institution to access and +use the SDK from your secure network. + +You are responsible for the compliance with the terms of this +Agreement by your authorized users. If you become aware that +your authorized users didn’t follow the terms of this +Agreement, you agree to take reasonable steps to resolve the +non-compliance and prevent new occurrences. + + +1.1.4. Pre-Release SDK + +The SDK versions identified as alpha, beta, preview or +otherwise as pre-release, may not be fully functional, may +contain errors or design flaws, and may have reduced or +different security, privacy, accessibility, availability, and +reliability standards relative to commercial versions of +NVIDIA software and materials. Use of a pre-release SDK may +result in unexpected results, loss of data, project delays or +other unpredictable damage or loss. + +You may use a pre-release SDK at your own risk, understanding +that pre-release SDKs are not intended for use in production +or business-critical systems. + +NVIDIA may choose not to make available a commercial version +of any pre-release SDK. NVIDIA may also choose to abandon +development and terminate the availability of a pre-release +SDK at any time without liability. + + +1.1.5. Updates + +NVIDIA may, at its option, make available patches, workarounds +or other updates to this SDK. Unless the updates are provided +with their separate governing terms, they are deemed part of +the SDK licensed to you as provided in this Agreement. You +agree that the form and content of the SDK that NVIDIA +provides may change without prior notice to you. While NVIDIA +generally maintains compatibility between versions, NVIDIA may +in some cases make changes that introduce incompatibilities in +future versions of the SDK. + + +1.1.6. Third Party Licenses + +The SDK may come bundled with, or otherwise include or be +distributed with, third party software licensed by a NVIDIA +supplier and/or open source software provided under an open +source license. Use of third party software is subject to the +third-party license terms, or in the absence of third party +terms, the terms of this Agreement. Copyright to third party +software is held by the copyright holders indicated in the +third-party software or license. + + +1.1.7. Reservation of Rights + +NVIDIA reserves all rights, title, and interest in and to the +SDK, not expressly granted to you under this Agreement. + + +1.2. Limitations + +The following license limitations apply to your use of the +SDK: + + 1. You may not reverse engineer, decompile or disassemble, + or remove copyright or other proprietary notices from any + portion of the SDK or copies of the SDK. + + 2. Except as expressly provided in this Agreement, you may + not copy, sell, rent, sublicense, transfer, distribute, + modify, or create derivative works of any portion of the + SDK. For clarity, you may not distribute or sublicense the + SDK as a stand-alone product. + + 3. Unless you have an agreement with NVIDIA for this + purpose, you may not indicate that an application created + with the SDK is sponsored or endorsed by NVIDIA. + + 4. You may not bypass, disable, or circumvent any + encryption, security, digital rights management or + authentication mechanism in the SDK. + + 5. You may not use the SDK in any manner that would cause it + to become subject to an open source software license. As + examples, licenses that require as a condition of use, + modification, and/or distribution that the SDK be: + + a. Disclosed or distributed in source code form; + + b. Licensed for the purpose of making derivative works; + or + + c. Redistributable at no charge. + + 6. Unless you have an agreement with NVIDIA for this + purpose, you may not use the SDK with any system or + application where the use or failure of the system or + application can reasonably be expected to threaten or + result in personal injury, death, or catastrophic loss. + Examples include use in avionics, navigation, military, + medical, life support or other life critical applications. + NVIDIA does not design, test or manufacture the SDK for + these critical uses and NVIDIA shall not be liable to you + or any third party, in whole or in part, for any claims or + damages arising from such uses. + + 7. You agree to defend, indemnify and hold harmless NVIDIA + and its affiliates, and their respective employees, + contractors, agents, officers and directors, from and + against any and all claims, damages, obligations, losses, + liabilities, costs or debt, fines, restitutions and + expenses (including but not limited to attorney’s fees + and costs incident to establishing the right of + indemnification) arising out of or related to your use of + the SDK outside of the scope of this Agreement, or not in + compliance with its terms. + + +1.3. Ownership + + 1. NVIDIA or its licensors hold all rights, title and + interest in and to the SDK and its modifications and + derivative works, including their respective intellectual + property rights, subject to your rights described in this + section. This SDK may include software and materials from + NVIDIA’s licensors, and these licensors are intended + third party beneficiaries that may enforce this Agreement + with respect to their intellectual property rights. + + 2. You hold all rights, title and interest in and to your + applications and your derivative works of the sample + source code delivered in the SDK, including their + respective intellectual property rights, subject to + NVIDIA’s rights described in this section. + + 3. You may, but don’t have to, provide to NVIDIA + suggestions, feature requests or other feedback regarding + the SDK, including possible enhancements or modifications + to the SDK. For any feedback that you voluntarily provide, + you hereby grant NVIDIA and its affiliates a perpetual, + non-exclusive, worldwide, irrevocable license to use, + reproduce, modify, license, sublicense (through multiple + tiers of sublicensees), and distribute (through multiple + tiers of distributors) it without the payment of any + royalties or fees to you. NVIDIA will use feedback at its + choice. NVIDIA is constantly looking for ways to improve + its products, so you may send feedback to NVIDIA through + the developer portal at https://developer.nvidia.com. + + +1.4. No Warranties + +THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL +FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND +ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND +OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, +BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS +FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE +ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO +WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF +DEALING OR COURSE OF TRADE. + + +1.5. Limitation of Liability + +TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS +AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, +PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS +OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF +PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION +WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK, +WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH +OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), +PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF +LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES +TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS +AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE +NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS +LIMIT. + +These exclusions and limitations of liability shall apply +regardless if NVIDIA or its affiliates have been advised of +the possibility of such damages, and regardless of whether a +remedy fails its essential purpose. These exclusions and +limitations of liability form an essential basis of the +bargain between the parties, and, absent any of these +exclusions or limitations of liability, the provisions of this +Agreement, including, without limitation, the economic terms, +would be substantially different. + + +1.6. Termination + + 1. This Agreement will continue to apply until terminated by + either you or NVIDIA as described below. + + 2. If you want to terminate this Agreement, you may do so by + stopping to use the SDK. + + 3. NVIDIA may, at any time, terminate this Agreement if: + + a. (i) you fail to comply with any term of this + Agreement and the non-compliance is not fixed within + thirty (30) days following notice from NVIDIA (or + immediately if you violate NVIDIA’s intellectual + property rights); + + b. (ii) you commence or participate in any legal + proceeding against NVIDIA with respect to the SDK; or + + c. (iii) NVIDIA decides to no longer provide the SDK in + a country or, in NVIDIA’s sole discretion, the + continued use of it is no longer commercially viable. + + 4. Upon any termination of this Agreement, you agree to + promptly discontinue use of the SDK and destroy all copies + in your possession or control. Your prior distributions in + accordance with this Agreement are not affected by the + termination of this Agreement. Upon written request, you + will certify in writing that you have complied with your + commitments under this section. Upon any termination of + this Agreement all provisions survive except for the + license grant provisions. + + +1.7. General + +If you wish to assign this Agreement or your rights and +obligations, including by merger, consolidation, dissolution +or operation of law, contact NVIDIA to ask for permission. Any +attempted assignment not approved by NVIDIA in writing shall +be void and of no effect. NVIDIA may assign, delegate or +transfer this Agreement and its rights and obligations, and if +to a non-affiliate you will be notified. + +You agree to cooperate with NVIDIA and provide reasonably +requested information to verify your compliance with this +Agreement. + +This Agreement will be governed in all respects by the laws of +the United States and of the State of Delaware as those laws +are applied to contracts entered into and performed entirely +within Delaware by Delaware residents, without regard to the +conflicts of laws principles. The United Nations Convention on +Contracts for the International Sale of Goods is specifically +disclaimed. You agree to all terms of this Agreement in the +English language. + +The state or federal courts residing in Santa Clara County, +California shall have exclusive jurisdiction over any dispute +or claim arising out of this Agreement. Notwithstanding this, +you agree that NVIDIA shall still be allowed to apply for +injunctive remedies or an equivalent type of urgent legal +relief in any jurisdiction. + +If any court of competent jurisdiction determines that any +provision of this Agreement is illegal, invalid or +unenforceable, such provision will be construed as limited to +the extent necessary to be consistent with and fully +enforceable under the law and the remaining provisions will +remain in full force and effect. Unless otherwise specified, +remedies are cumulative. + +Each party acknowledges and agrees that the other is an +independent contractor in the performance of this Agreement. + +The SDK has been developed entirely at private expense and is +“commercial items” consisting of “commercial computer +software” and “commercial computer software +documentation” provided with RESTRICTED RIGHTS. Use, +duplication or disclosure by the U.S. Government or a U.S. +Government subcontractor is subject to the restrictions in +this Agreement pursuant to DFARS 227.7202-3(a) or as set forth +in subparagraphs (c)(1) and (2) of the Commercial Computer +Software - Restricted Rights clause at FAR 52.227-19, as +applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas +Expressway, Santa Clara, CA 95051. + +The SDK is subject to United States export laws and +regulations. You agree that you will not ship, transfer or +export the SDK into any country, or use the SDK in any manner, +prohibited by the United States Bureau of Industry and +Security or economic sanctions regulations administered by the +U.S. Department of Treasury’s Office of Foreign Assets +Control (OFAC), or any applicable export laws, restrictions or +regulations. These laws include restrictions on destinations, +end users and end use. By accepting this Agreement, you +confirm that you are not a resident or citizen of any country +currently embargoed by the U.S. and that you are not otherwise +prohibited from receiving the SDK. + +Any notice delivered by NVIDIA to you under this Agreement +will be delivered via mail, email or fax. You agree that any +notices that NVIDIA sends you electronically will satisfy any +legal communication requirements. Please direct your legal +notices or other correspondence to NVIDIA Corporation, 2788 +San Tomas Expressway, Santa Clara, California 95051, United +States of America, Attention: Legal Department. + +This Agreement and any exhibits incorporated into this +Agreement constitute the entire agreement of the parties with +respect to the subject matter of this Agreement and supersede +all prior negotiations or documentation exchanged between the +parties relating to this SDK license. Any additional and/or +conflicting terms on documents issued by you are null, void, +and invalid. Any amendment or waiver under this Agreement +shall be in writing and signed by representatives of both +parties. + + +2. CUDA Toolkit Supplement to Software License Agreement for +NVIDIA Software Development Kits +------------------------------------------------------------ + + +Release date: August 16, 2018 +----------------------------- + +The terms in this supplement govern your use of the NVIDIA +CUDA Toolkit SDK under the terms of your license agreement +(“Agreement”) as modified by this supplement. Capitalized +terms used but not defined below have the meaning assigned to +them in the Agreement. + +This supplement is an exhibit to the Agreement and is +incorporated as an integral part of the Agreement. In the +event of conflict between the terms in this supplement and the +terms in the Agreement, the terms in this supplement govern. + + +2.1. License Scope + +The SDK is licensed for you to develop applications only for +use in systems with NVIDIA GPUs. + + +2.2. Distribution + +The portions of the SDK that are distributable under the +Agreement are listed in Attachment A. + + +2.3. Operating Systems + +Those portions of the SDK designed exclusively for use on the +Linux or FreeBSD operating systems, or other operating systems +derived from the source code to these operating systems, may +be copied and redistributed for use in accordance with this +Agreement, provided that the object code files are not +modified in any way (except for unzipping of compressed +files). + + +2.4. Audio and Video Encoders and Decoders + +You acknowledge and agree that it is your sole responsibility +to obtain any additional third-party licenses required to +make, have made, use, have used, sell, import, and offer for +sale your products or services that include or incorporate any +third-party software and content relating to audio and/or +video encoders and decoders from, including but not limited +to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A., +MPEG-LA, and Coding Technologies. NVIDIA does not grant to you +under this Agreement any necessary patent or other rights with +respect to any audio and/or video encoders and decoders. + + +2.5. Licensing + +If the distribution terms in this Agreement are not suitable +for your organization, or for any questions regarding this +Agreement, please contact NVIDIA at +nvidia-compute-license-questions@nvidia.com. + + +2.6. Attachment A + +The following portions of the SDK are distributable under the +Agreement: + +Component + +CUDA Runtime + +Windows + +cudart.dll, cudart_static.lib, cudadevrt.lib + +Mac OSX + +libcudart.dylib, libcudart_static.a, libcudadevrt.a + +Linux + +libcudart.so, libcudart_static.a, libcudadevrt.a + +Android + +libcudart.so, libcudart_static.a, libcudadevrt.a + +Component + +CUDA FFT Library + +Windows + +cufft.dll, cufftw.dll, cufft.lib, cufftw.lib + +Mac OSX + +libcufft.dylib, libcufft_static.a, libcufftw.dylib, +libcufftw_static.a + +Linux + +libcufft.so, libcufft_static.a, libcufftw.so, +libcufftw_static.a + +Android + +libcufft.so, libcufft_static.a, libcufftw.so, +libcufftw_static.a + +Component + +CUDA BLAS Library + +Windows + +cublas.dll, cublasLt.dll + +Mac OSX + +libcublas.dylib, libcublasLt.dylib, libcublas_static.a, +libcublasLt_static.a + +Linux + +libcublas.so, libcublasLt.so, libcublas_static.a, +libcublasLt_static.a + +Android + +libcublas.so, libcublasLt.so, libcublas_static.a, +libcublasLt_static.a + +Component + +NVIDIA "Drop-in" BLAS Library + +Windows + +nvblas.dll + +Mac OSX + +libnvblas.dylib + +Linux + +libnvblas.so + +Component + +CUDA Sparse Matrix Library + +Windows + +cusparse.dll, cusparse.lib + +Mac OSX + +libcusparse.dylib, libcusparse_static.a + +Linux + +libcusparse.so, libcusparse_static.a + +Android + +libcusparse.so, libcusparse_static.a + +Component + +CUDA Linear Solver Library + +Windows + +cusolver.dll, cusolver.lib + +Mac OSX + +libcusolver.dylib, libcusolver_static.a + +Linux + +libcusolver.so, libcusolver_static.a + +Android + +libcusolver.so, libcusolver_static.a + +Component + +CUDA Random Number Generation Library + +Windows + +curand.dll, curand.lib + +Mac OSX + +libcurand.dylib, libcurand_static.a + +Linux + +libcurand.so, libcurand_static.a + +Android + +libcurand.so, libcurand_static.a + +Component + +CUDA Accelerated Graph Library + +Component + +NVIDIA Performance Primitives Library + +Windows + +nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll, +nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll, +nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib, +nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll, +nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib + +Mac OSX + +libnppc.dylib, libnppc_static.a, libnppial.dylib, +libnppial_static.a, libnppicc.dylib, libnppicc_static.a, +libnppicom.dylib, libnppicom_static.a, libnppidei.dylib, +libnppidei_static.a, libnppif.dylib, libnppif_static.a, +libnppig.dylib, libnppig_static.a, libnppim.dylib, +libnppisu_static.a, libnppitc.dylib, libnppitc_static.a, +libnpps.dylib, libnpps_static.a + +Linux + +libnppc.so, libnppc_static.a, libnppial.so, +libnppial_static.a, libnppicc.so, libnppicc_static.a, +libnppicom.so, libnppicom_static.a, libnppidei.so, +libnppidei_static.a, libnppif.so, libnppif_static.a +libnppig.so, libnppig_static.a, libnppim.so, +libnppim_static.a, libnppist.so, libnppist_static.a, +libnppisu.so, libnppisu_static.a, libnppitc.so +libnppitc_static.a, libnpps.so, libnpps_static.a + +Android + +libnppc.so, libnppc_static.a, libnppial.so, +libnppial_static.a, libnppicc.so, libnppicc_static.a, +libnppicom.so, libnppicom_static.a, libnppidei.so, +libnppidei_static.a, libnppif.so, libnppif_static.a +libnppig.so, libnppig_static.a, libnppim.so, +libnppim_static.a, libnppist.so, libnppist_static.a, +libnppisu.so, libnppisu_static.a, libnppitc.so +libnppitc_static.a, libnpps.so, libnpps_static.a + +Component + +NVIDIA JPEG Library + +Linux + +libnvjpeg.so, libnvjpeg_static.a + +Component + +Internal common library required for statically linking to +cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP + +Mac OSX + +libculibos.a + +Linux + +libculibos.a + +Component + +NVIDIA Runtime Compilation Library and Header + +All + +nvrtc.h + +Windows + +nvrtc.dll, nvrtc-builtins.dll + +Mac OSX + +libnvrtc.dylib, libnvrtc-builtins.dylib + +Linux + +libnvrtc.so, libnvrtc-builtins.so + +Component + +NVIDIA Optimizing Compiler Library + +Windows + +nvvm.dll + +Mac OSX + +libnvvm.dylib + +Linux + +libnvvm.so + +Component + +NVIDIA Common Device Math Functions Library + +Windows + +libdevice.10.bc + +Mac OSX + +libdevice.10.bc + +Linux + +libdevice.10.bc + +Component + +CUDA Occupancy Calculation Header Library + +All + +cuda_occupancy.h + +Component + +CUDA Half Precision Headers + +All + +cuda_fp16.h, cuda_fp16.hpp + +Component + +CUDA Profiling Tools Interface (CUPTI) Library + +Windows + +cupti.dll + +Mac OSX + +libcupti.dylib + +Linux + +libcupti.so + +Component + +NVIDIA Tools Extension Library + +Windows + +nvToolsExt.dll, nvToolsExt.lib + +Mac OSX + +libnvToolsExt.dylib + +Linux + +libnvToolsExt.so + +Component + +NVIDIA CUDA Driver Libraries + +Linux + +libcuda.so, libnvidia-fatbinaryloader.so, +libnvidia-ptxjitcompiler.so + +The NVIDIA CUDA Driver Libraries are only distributable in +applications that meet this criteria: + + 1. The application was developed starting from a NVIDIA CUDA + container obtained from Docker Hub or the NVIDIA GPU + Cloud, and + + 2. The resulting application is packaged as a Docker + container and distributed to users on Docker Hub or the + NVIDIA GPU Cloud only. + + +2.7. Attachment B + + +Additional Licensing Obligations + +The following third party components included in the SOFTWARE +are licensed to Licensee pursuant to the following terms and +conditions: + + 1. Licensee's use of the GDB third party component is + subject to the terms and conditions of GNU GPL v3: + + This product includes copyrighted third-party software licensed + under the terms of the GNU General Public License v3 ("GPL v3"). + All third-party software packages are copyright by their respective + authors. GPL v3 terms and conditions are hereby incorporated into + the Agreement by this reference: http://www.gnu.org/licenses/gpl.txt + + Consistent with these licensing requirements, the software + listed below is provided under the terms of the specified + open source software licenses. To obtain source code for + software provided under licenses that require + redistribution of source code, including the GNU General + Public License (GPL) and GNU Lesser General Public License + (LGPL), contact oss-requests@nvidia.com. This offer is + valid for a period of three (3) years from the date of the + distribution of this product by NVIDIA CORPORATION. + + Component License + CUDA-GDB GPL v3 + + 2. Licensee represents and warrants that any and all third + party licensing and/or royalty payment obligations in + connection with Licensee's use of the H.264 video codecs + are solely the responsibility of Licensee. + + 3. Licensee's use of the Thrust library is subject to the + terms and conditions of the Apache License Version 2.0. + All third-party software packages are copyright by their + respective authors. Apache License Version 2.0 terms and + conditions are hereby incorporated into the Agreement by + this reference. + http://www.apache.org/licenses/LICENSE-2.0.html + + In addition, Licensee acknowledges the following notice: + Thrust includes source code from the Boost Iterator, + Tuple, System, and Random Number libraries. + + Boost Software License - Version 1.0 - August 17th, 2003 + . . . . + + Permission is hereby granted, free of charge, to any person or + organization obtaining a copy of the software and accompanying + documentation covered by this license (the "Software") to use, + reproduce, display, distribute, execute, and transmit the Software, + and to prepare derivative works of the Software, and to permit + third-parties to whom the Software is furnished to do so, all + subject to the following: + + The copyright notices in the Software and this entire statement, + including the above license grant, this restriction and the following + disclaimer, must be included in all copies of the Software, in whole + or in part, and all derivative works of the Software, unless such + copies or derivative works are solely in the form of machine-executable + object code generated by a source language processor. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND + NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR + ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR + OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING + FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + OTHER DEALINGS IN THE SOFTWARE. + + 4. Licensee's use of the LLVM third party component is + subject to the following terms and conditions: + + ====================================================== + LLVM Release License + ====================================================== + University of Illinois/NCSA + Open Source License + + Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign. + All rights reserved. + + Developed by: + + LLVM Team + + University of Illinois at Urbana-Champaign + + http://llvm.org + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to + deal with the Software without restriction, including without limitation the + rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + sell copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimers. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimers in the + documentation and/or other materials provided with the distribution. + + * Neither the names of the LLVM Team, University of Illinois at Urbana- + Champaign, nor the names of its contributors may be used to endorse or + promote products derived from this Software without specific prior + written permission. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR + OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS WITH THE SOFTWARE. + + 5. Licensee's use (e.g. nvprof) of the PCRE third party + component is subject to the following terms and + conditions: + + ------------ + PCRE LICENCE + ------------ + PCRE is a library of functions to support regular expressions whose syntax + and semantics are as close as possible to those of the Perl 5 language. + Release 8 of PCRE is distributed under the terms of the "BSD" licence, as + specified below. The documentation for PCRE, supplied in the "doc" + directory, is distributed under the same terms as the software itself. The + basic library functions are written in C and are freestanding. Also + included in the distribution is a set of C++ wrapper functions, and a just- + in-time compiler that can be used to optimize pattern matching. These are + both optional features that can be omitted when the library is built. + + THE BASIC LIBRARY FUNCTIONS + --------------------------- + Written by: Philip Hazel + Email local part: ph10 + Email domain: cam.ac.uk + University of Cambridge Computing Service, + Cambridge, England. + Copyright (c) 1997-2012 University of Cambridge + All rights reserved. + + PCRE JUST-IN-TIME COMPILATION SUPPORT + ------------------------------------- + Written by: Zoltan Herczeg + Email local part: hzmester + Emain domain: freemail.hu + Copyright(c) 2010-2012 Zoltan Herczeg + All rights reserved. + + STACK-LESS JUST-IN-TIME COMPILER + -------------------------------- + Written by: Zoltan Herczeg + Email local part: hzmester + Emain domain: freemail.hu + Copyright(c) 2009-2012 Zoltan Herczeg + All rights reserved. + + THE C++ WRAPPER FUNCTIONS + ------------------------- + Contributed by: Google Inc. + Copyright (c) 2007-2012, Google Inc. + All rights reserved. + + THE "BSD" LICENCE + ----------------- + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + * Neither the name of the University of Cambridge nor the name of Google + Inc. nor the names of their contributors may be used to endorse or + promote products derived from this software without specific prior + written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + + 6. Some of the cuBLAS library routines were written by or + derived from code written by Vasily Volkov and are subject + to the Modified Berkeley Software Distribution License as + follows: + + Copyright (c) 2007-2009, Regents of the University of California + + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * Neither the name of the University of California, Berkeley nor + the names of its contributors may be used to endorse or promote + products derived from this software without specific prior + written permission. + + THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + + 7. Some of the cuBLAS library routines were written by or + derived from code written by Davide Barbieri and are + subject to the Modified Berkeley Software Distribution + License as follows: + + Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata. + + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * The name of the author may not be used to endorse or promote + products derived from this software without specific prior + written permission. + + THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + + 8. Some of the cuBLAS library routines were derived from + code developed by the University of Tennessee and are + subject to the Modified Berkeley Software Distribution + License as follows: + + Copyright (c) 2010 The University of Tennessee. + + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer listed in this license in the documentation and/or + other materials provided with the distribution. + * Neither the name of the copyright holders nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 9. Some of the cuBLAS library routines were written by or + derived from code written by Jonathan Hogg and are subject + to the Modified Berkeley Software Distribution License as + follows: + + Copyright (c) 2012, The Science and Technology Facilities Council (STFC). + + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * Neither the name of the STFC nor the names of its contributors + may be used to endorse or promote products derived from this + software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN + IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 10. Some of the cuBLAS library routines were written by or + derived from code written by Ahmad M. Abdelfattah, David + Keyes, and Hatem Ltaief, and are subject to the Apache + License, Version 2.0, as follows: + + -- (C) Copyright 2013 King Abdullah University of Science and Technology + Authors: + Ahmad Abdelfattah (ahmad.ahmad@kaust.edu.sa) + David Keyes (david.keyes@kaust.edu.sa) + Hatem Ltaief (hatem.ltaief@kaust.edu.sa) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of the King Abdullah University of Science and + Technology nor the names of its contributors may be used to endorse + or promote products derived from this software without specific prior + written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE + + 11. Some of the cuSPARSE library routines were written by or + derived from code written by Li-Wen Chang and are subject + to the NCSA Open Source License as follows: + + Copyright (c) 2012, University of Illinois. + + All rights reserved. + + Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal with the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimers in the documentation and/or other materials provided + with the distribution. + * Neither the names of IMPACT Group, University of Illinois, nor + the names of its contributors may be used to endorse or promote + products derived from this Software without specific prior + written permission. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER + IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR + IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE + SOFTWARE. + + 12. Some of the cuRAND library routines were written by or + derived from code written by Mutsuo Saito and Makoto + Matsumoto and are subject to the following license: + + Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima + University. All rights reserved. + + Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima + University and University of Tokyo. All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * Neither the name of the Hiroshima University nor the names of + its contributors may be used to endorse or promote products + derived from this software without specific prior written + permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 13. Some of the cuRAND library routines were derived from + code developed by D. E. Shaw Research and are subject to + the following license: + + Copyright 2010-2011, D. E. Shaw Research. + + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions, and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions, and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + * Neither the name of D. E. Shaw Research nor the names of its + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 14. Some of the Math library routines were written by or + derived from code developed by Norbert Juffa and are + subject to the following license: + + Copyright (c) 2015-2017, Norbert Juffa + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions + are met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 15. Licensee's use of the lz4 third party component is + subject to the following terms and conditions: + + Copyright (C) 2011-2013, Yann Collet. + BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following disclaimer + in the documentation and/or other materials provided with the + distribution. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + 16. The NPP library uses code from the Boost Math Toolkit, + and is subject to the following license: + + Boost Software License - Version 1.0 - August 17th, 2003 + . . . . + + Permission is hereby granted, free of charge, to any person or + organization obtaining a copy of the software and accompanying + documentation covered by this license (the "Software") to use, + reproduce, display, distribute, execute, and transmit the Software, + and to prepare derivative works of the Software, and to permit + third-parties to whom the Software is furnished to do so, all + subject to the following: + + The copyright notices in the Software and this entire statement, + including the above license grant, this restriction and the following + disclaimer, must be included in all copies of the Software, in whole + or in part, and all derivative works of the Software, unless such + copies or derivative works are solely in the form of machine-executable + object code generated by a source language processor. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND + NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR + ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR + OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING + FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + OTHER DEALINGS IN THE SOFTWARE. + + 17. Portions of the Nsight Eclipse Edition is subject to the + following license: + + The Eclipse Foundation makes available all content in this plug-in + ("Content"). Unless otherwise indicated below, the Content is provided + to you under the terms and conditions of the Eclipse Public License + Version 1.0 ("EPL"). A copy of the EPL is available at http:// + www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program" + will mean the Content. + + If you did not receive this Content directly from the Eclipse + Foundation, the Content is being redistributed by another party + ("Redistributor") and different terms and conditions may apply to your + use of any object code in the Content. Check the Redistributor's + license that was provided with the Content. If no such license exists, + contact the Redistributor. Unless otherwise indicated below, the terms + and conditions of the EPL still apply to any source code in the + Content and such source code may be obtained at http://www.eclipse.org. + + 18. Some of the cuBLAS library routines uses code from + OpenAI, which is subject to the following license: + + License URL + https://github.com/openai/openai-gemm/blob/master/LICENSE + + License Text + The MIT License + + Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc. + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + THE SOFTWARE. + + 19. Licensee's use of the Visual Studio Setup Configuration + Samples is subject to the following license: + + The MIT License (MIT) + Copyright (C) Microsoft Corporation. All rights reserved. + + Permission is hereby granted, free of charge, to any person + obtaining a copy of this software and associated documentation + files (the "Software"), to deal in the Software without restriction, + including without limitation the rights to use, copy, modify, merge, + publish, distribute, sublicense, and/or sell copies of the Software, + and to permit persons to whom the Software is furnished to do so, + subject to the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + + 20. Licensee's use of linmath.h header for CPU functions for + GL vector/matrix operations from lunarG is subject to the + Apache License Version 2.0. + + 21. The DX12-CUDA sample uses the d3dx12.h header, which is + subject to the MIT license . + +----------------- diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/METADATA b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..16c88b0d2e630c13b7e035931a931a55b75b5971 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/METADATA @@ -0,0 +1,35 @@ +Metadata-Version: 2.1 +Name: nvidia-curand-cu11 +Version: 10.3.0.86 +Summary: CURAND native runtime libraries +Home-page: https://developer.nvidia.com/cuda-zone +Author: Nvidia CUDA Installer Team +Author-email: compute_installer@nvidia.com +License: NVIDIA Proprietary Software +Keywords: cuda,nvidia,runtime,machine learning,deep learning +Classifier: Development Status :: 4 - Beta +Classifier: Intended Audience :: Developers +Classifier: Intended Audience :: Education +Classifier: Intended Audience :: Science/Research +Classifier: License :: Other/Proprietary License +Classifier: Natural Language :: English +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3 :: Only +Classifier: Topic :: Scientific/Engineering +Classifier: Topic :: Scientific/Engineering :: Mathematics +Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence +Classifier: Topic :: Software Development +Classifier: Topic :: Software Development :: Libraries +Classifier: Operating System :: Microsoft :: Windows +Classifier: Operating System :: POSIX :: Linux +Requires-Python: >=3 +License-File: License.txt + +CURAND native runtime libraries diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/RECORD b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..07183e681a2f78b6b45cffc8b0052c5458a375f0 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/RECORD @@ -0,0 +1,32 @@ +nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/__pycache__/__init__.cpython-310.pyc,, +nvidia/curand/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/curand/__pycache__/__init__.cpython-310.pyc,, +nvidia/curand/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/curand/include/__pycache__/__init__.cpython-310.pyc,, +nvidia/curand/include/curand.h,sha256=duUMdlPliB_djlgE8rv-E8J3Awre2pTDLiqc5eK-qZ0,43965 +nvidia/curand/include/curand_discrete.h,sha256=2qD3BkI622XEu0444wVP7HeYkKAx0Rjr2HDhqU4SA7E,3486 +nvidia/curand/include/curand_discrete2.h,sha256=ZrQTO5R9x83AMX88uq7M8M94DLSC5VEz0PAkfcwtQeg,10883 +nvidia/curand/include/curand_globals.h,sha256=bES1Kx0NrATXk1DReMMkqWrB062nOnaAp39y22wViXU,3717 +nvidia/curand/include/curand_kernel.h,sha256=8R_1VsYarc8ECbYVAITSVisCi9WcPt5UhMX005R45sA,52714 +nvidia/curand/include/curand_lognormal.h,sha256=-X-iNkJSzWpAYYjogm689EJTZfzore9sxU7ObddljLk,28142 +nvidia/curand/include/curand_mrg32k3a.h,sha256=ZVVREjGNsJQJ-3IzZZ_LKGtGteslicb8E0Aly49BKPs,170296 +nvidia/curand/include/curand_mtgp32.h,sha256=Qhrmx0pHWF-P2Uu5bKwYE9ymEWq3c7qBzCITVMaKMfI,7845 +nvidia/curand/include/curand_mtgp32_host.h,sha256=9eLM7OQxVsb59Qvv0Uzd2mHNY5-bF8AXS5uIzDERWRM,18266 +nvidia/curand/include/curand_mtgp32_kernel.h,sha256=KN6wkEisXbi1E-38KYZFmdDoP1a__BOgV2uc-E44cuk,13710 +nvidia/curand/include/curand_mtgp32dc_p_11213.h,sha256=7_gGYUH47UugIAEt60vYH5nFa-QUwTpDwSEgLg9cZts,276889 +nvidia/curand/include/curand_normal.h,sha256=AvPh8Q9M-xHtj_wAeMNCcB2JSsV401zy7vRp8WGmNtc,26926 +nvidia/curand/include/curand_normal_static.h,sha256=uG82DfUglNO-k67SIsNVt2kbf86qCMFWxr1vjncjUOw,4649 +nvidia/curand/include/curand_philox4x32_x.h,sha256=myBP5wxkqqs53fBowXAtDMo9BLSGAyrWrIfRXNW-3YM,7146 +nvidia/curand/include/curand_poisson.h,sha256=VmzdCnstyeS7j1enTzcPnyugBrgfCpv6zNulnb5p6g0,25409 +nvidia/curand/include/curand_precalc.h,sha256=I6NZdgT42fMm9qSCtP-rlOAqt4Zsqgal0ajktcPmEak,1392393 +nvidia/curand/include/curand_uniform.h,sha256=gpmRgQu5r6ppgLTg60NXoDdVJS6wMUy6jC5bh8l04e8,17472 +nvidia/curand/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/curand/lib/__pycache__/__init__.cpython-310.pyc,, +nvidia/curand/lib/libcurand.so.10,sha256=l4E9-Rbr6GE--41XEnuRGUAzMqZNkpv9FyRSwUDhAd4,101334448 +nvidia_curand_cu11-10.3.0.86.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +nvidia_curand_cu11-10.3.0.86.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262 +nvidia_curand_cu11-10.3.0.86.dist-info/METADATA,sha256=iZzT2G6DE3UKnCNmXcCbgresNj_ibNc9u4HA3PjgXo8,1509 +nvidia_curand_cu11-10.3.0.86.dist-info/RECORD,, +nvidia_curand_cu11-10.3.0.86.dist-info/WHEEL,sha256=6NTOzyjaR-9aJxJquqd0X0mRtq4MUYsP0w_ppLcEVkQ,108 +nvidia_curand_cu11-10.3.0.86.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7 diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/WHEEL b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..2cbd0cba57b06979b7006f8f837931386d6836ce --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/WHEEL @@ -0,0 +1,5 @@ +Wheel-Version: 1.0 +Generator: setuptools (72.2.0) +Root-Is-Purelib: true +Tag: py3-none-manylinux2014_x86_64 + diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/top_level.txt b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..862f7abf232cdfbb928609856247292e81c9decb --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_curand_cu11-10.3.0.86.dist-info/top_level.txt @@ -0,0 +1 @@ +nvidia diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/METADATA b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..b3e4a52e9cbba7e3fc0ffd3ac79817726cc6de5e --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/METADATA @@ -0,0 +1,35 @@ +Metadata-Version: 2.1 +Name: nvidia-nvtx-cu12 +Version: 12.1.105 +Summary: NVIDIA Tools Extension +Home-page: https://developer.nvidia.com/cuda-zone +Author: Nvidia CUDA Installer Team +Author-email: cuda_installer@nvidia.com +License: NVIDIA Proprietary Software +Keywords: cuda,nvidia,runtime,machine learning,deep learning +Classifier: Development Status :: 4 - Beta +Classifier: Intended Audience :: Developers +Classifier: Intended Audience :: Education +Classifier: Intended Audience :: Science/Research +Classifier: License :: Other/Proprietary License +Classifier: Natural Language :: English +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.5 +Classifier: Programming Language :: Python :: 3.6 +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3 :: Only +Classifier: Topic :: Scientific/Engineering +Classifier: Topic :: Scientific/Engineering :: Mathematics +Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence +Classifier: Topic :: Software Development +Classifier: Topic :: Software Development :: Libraries +Classifier: Operating System :: Microsoft :: Windows +Classifier: Operating System :: POSIX :: Linux +Requires-Python: >=3 +License-File: License.txt + +A C-based API for annotating events, code ranges, and resources in your applications. Applications which integrate NVTX can use the Visual Profiler to capture and visualize these events and ranges. diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/RECORD b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..5349f6a78a53a5a2a6e4c1af3da3eee1bde2d6f1 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/RECORD @@ -0,0 +1,37 @@ +nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/__pycache__/__init__.cpython-310.pyc,, +nvidia/nvtx/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/nvtx/__pycache__/__init__.cpython-310.pyc,, +nvidia/nvtx/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/nvtx/include/__pycache__/__init__.cpython-310.pyc,, +nvidia/nvtx/include/nvToolsExt.h,sha256=OiT6v1G2-vlkYnpDQZjiGT1O-THDyk1gw2021qMRvQM,53680 +nvidia/nvtx/include/nvToolsExtCuda.h,sha256=UDA1pbmvoRFmlJ11Et9tIMEztOtOVw-10mO27Q6K8jg,6009 +nvidia/nvtx/include/nvToolsExtCudaRt.h,sha256=6IbgdRGObly53jzRqvsZ4FQoTrXJOJwSyCOLuXr9ncA,5192 +nvidia/nvtx/include/nvToolsExtOpenCL.h,sha256=gETZH9ch_o6MYE_BYQ2pj9SSuxyAo1H4ptmRK-DMWSo,8360 +nvidia/nvtx/include/nvToolsExtSync.h,sha256=wqONIiycUPaUUCzQBmCippilgKt8sOL9tpzG773u0nY,14562 +nvidia/nvtx/include/nvtx3/nvToolsExt.h,sha256=TFEF3fx1043EwMdbS7FqvvavwK0koZeGrIOAsCrB12s,52247 +nvidia/nvtx/include/nvtx3/nvToolsExtCuda.h,sha256=4ZbZHUMcmHRf4SdKB7nH0E3uHd_9ZhZBuwuWPItK-Vs,6204 +nvidia/nvtx/include/nvtx3/nvToolsExtCudaRt.h,sha256=boW0zdYobNFFE9wwxCyzBGBLcSGtdbQ5osKjQGNC2E8,5393 +nvidia/nvtx/include/nvtx3/nvToolsExtOpenCL.h,sha256=RPfsZl3lHAPIOCzTipmz07-vaiIO4cxelcx12EjB2L0,8563 +nvidia/nvtx/include/nvtx3/nvToolsExtSync.h,sha256=C-HIVBaupxYom3BqMggQ_ePq1bxFhw8kXsOfYJKBWrI,14756 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImpl.h,sha256=jEnYF3MyLsD72euw2It3Bz0X0GK4Xv_htEd8BeIrPjY,23333 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCore.h,sha256=sYpWqZfYrjsMddxtezPX3qSTIbAOn4dlEoLiYQ9M2nM,9756 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCudaRt_v3.h,sha256=SoaiprvsI80yLmEAnlFX0iFufv6RtKjjMMrVwQZjjQI,4775 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplCuda_v3.h,sha256=IEor-ISqComCRGVDdIzKBLU3eWCuDI0Igqz-eRKKcvg,5550 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplOpenCL_v3.h,sha256=iPR2x74bJE3plFQBT9FWGBaTm4sC-Pll6WAjpKRnz7g,8275 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxImplSync_v3.h,sha256=TqwQfEUVbwc58bpHioE13NMweFhOuHXNql65BnLzhvc,5022 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInit.h,sha256=foajOFacvLGx3BN5ntw5v8o4J3OY4hqkVZE5ZC0x3e4,14716 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInitDecls.h,sha256=-Qyxcy9CDXOBhEtYZ8L7iYd6daJ9aCeyQM48X0BafMM,9361 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxInitDefs.h,sha256=dLhOV4knhNrmT2DnUNzXreOt_Qc6GAa3yIlmqJFCeVI,35432 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxLinkOnce.h,sha256=Jp-z6LTz_p8fKRulcFfdcskIxzcZ6ybbHkGB9mpJa2M,3863 +nvidia/nvtx/include/nvtx3/nvtxDetail/nvtxTypes.h,sha256=jkbCwyvIP1G-Ef8SwYp4kDi69hjZbzaxKSk7ScgrNI8,17352 +nvidia/nvtx/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia/nvtx/lib/__pycache__/__init__.cpython-310.pyc,, +nvidia/nvtx/lib/libnvToolsExt.so.1,sha256=hH148nXIzJdEKieAcyBL3BoACf_CVZv3JIxw2SEF39w,40136 +nvidia_nvtx_cu12-12.1.105.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +nvidia_nvtx_cu12-12.1.105.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262 +nvidia_nvtx_cu12-12.1.105.dist-info/METADATA,sha256=LP0Xeqykb8k4yxR2_JzTBqGwxALQERIJbbmP1k6-Z3Y,1660 +nvidia_nvtx_cu12-12.1.105.dist-info/RECORD,, +nvidia_nvtx_cu12-12.1.105.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL,sha256=-kQi_VMfvRQozZJT7HUPMfY-5vLo0LVTmAylNJ3Ft98,106 +nvidia_nvtx_cu12-12.1.105.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7 diff --git a/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..06e355fe0e3ed7077903f119ae6928a17da8eb6f --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/nvidia_nvtx_cu12-12.1.105.dist-info/WHEEL @@ -0,0 +1,5 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.37.1) +Root-Is-Purelib: true +Tag: py3-none-manylinux1_x86_64 + diff --git a/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__init__.py b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..791de9d92342872ff53d876a42677c204a974fdc --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__init__.py @@ -0,0 +1,139 @@ +from __future__ import annotations + +import sys as _sys +from typing import Any as _Any + +from ._pydantic_core import ( + ArgsKwargs, + MultiHostUrl, + PydanticCustomError, + PydanticKnownError, + PydanticOmit, + PydanticSerializationError, + PydanticSerializationUnexpectedValue, + PydanticUndefined, + PydanticUndefinedType, + PydanticUseDefault, + SchemaError, + SchemaSerializer, + SchemaValidator, + Some, + TzInfo, + Url, + ValidationError, + __version__, + from_json, + to_json, + to_jsonable_python, + validate_core_schema, +) +from .core_schema import CoreConfig, CoreSchema, CoreSchemaType, ErrorType + +if _sys.version_info < (3, 11): + from typing_extensions import NotRequired as _NotRequired +else: + from typing import NotRequired as _NotRequired + +if _sys.version_info < (3, 12): + from typing_extensions import TypedDict as _TypedDict +else: + from typing import TypedDict as _TypedDict + +__all__ = [ + '__version__', + 'CoreConfig', + 'CoreSchema', + 'CoreSchemaType', + 'SchemaValidator', + 'SchemaSerializer', + 'Some', + 'Url', + 'MultiHostUrl', + 'ArgsKwargs', + 'PydanticUndefined', + 'PydanticUndefinedType', + 'SchemaError', + 'ErrorDetails', + 'InitErrorDetails', + 'ValidationError', + 'PydanticCustomError', + 'PydanticKnownError', + 'PydanticOmit', + 'PydanticUseDefault', + 'PydanticSerializationError', + 'PydanticSerializationUnexpectedValue', + 'TzInfo', + 'to_json', + 'from_json', + 'to_jsonable_python', + 'validate_core_schema', +] + + +class ErrorDetails(_TypedDict): + type: str + """ + The type of error that occurred, this is an identifier designed for + programmatic use that will change rarely or never. + + `type` is unique for each error message, and can hence be used as an identifier to build custom error messages. + """ + loc: tuple[int | str, ...] + """Tuple of strings and ints identifying where in the schema the error occurred.""" + msg: str + """A human readable error message.""" + input: _Any + """The input data at this `loc` that caused the error.""" + ctx: _NotRequired[dict[str, _Any]] + """ + Values which are required to render the error message, and could hence be useful in rendering custom error messages. + Also useful for passing custom error data forward. + """ + + +class InitErrorDetails(_TypedDict): + type: str | PydanticCustomError + """The type of error that occurred, this should a "slug" identifier that changes rarely or never.""" + loc: _NotRequired[tuple[int | str, ...]] + """Tuple of strings and ints identifying where in the schema the error occurred.""" + input: _Any + """The input data at this `loc` that caused the error.""" + ctx: _NotRequired[dict[str, _Any]] + """ + Values which are required to render the error message, and could hence be useful in rendering custom error messages. + Also useful for passing custom error data forward. + """ + + +class ErrorTypeInfo(_TypedDict): + """ + Gives information about errors. + """ + + type: ErrorType + """The type of error that occurred, this should a "slug" identifier that changes rarely or never.""" + message_template_python: str + """String template to render a human readable error message from using context, when the input is Python.""" + example_message_python: str + """Example of a human readable error message, when the input is Python.""" + message_template_json: _NotRequired[str] + """String template to render a human readable error message from using context, when the input is JSON data.""" + example_message_json: _NotRequired[str] + """Example of a human readable error message, when the input is JSON data.""" + example_context: dict[str, _Any] | None + """Example of context values.""" + + +class MultiHostHost(_TypedDict): + """ + A host part of a multi-host URL. + """ + + username: str | None + """The username part of this host, or `None`.""" + password: str | None + """The password part of this host, or `None`.""" + host: str | None + """The host part of this host, or `None`.""" + port: int | None + """The port part of this host, or `None`.""" diff --git a/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__pycache__/__init__.cpython-310.pyc b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..030686bcb49020211847abd5638476d45d8b5746 Binary files /dev/null and b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/__pycache__/__init__.cpython-310.pyc differ diff --git a/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/_pydantic_core.pyi b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/_pydantic_core.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f3103f28fb44355c2afdb623f51c6608958ad873 --- /dev/null +++ b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/_pydantic_core.pyi @@ -0,0 +1,1013 @@ +import datetime +from collections.abc import Mapping +from typing import Any, Callable, Generic, Literal, TypeVar, final + +from _typeshed import SupportsAllComparisons +from typing_extensions import LiteralString, Self, TypeAlias + +from pydantic_core import ErrorDetails, ErrorTypeInfo, InitErrorDetails, MultiHostHost +from pydantic_core.core_schema import CoreConfig, CoreSchema, ErrorType + +__all__ = [ + '__version__', + 'build_profile', + 'build_info', + '_recursion_limit', + 'ArgsKwargs', + 'SchemaValidator', + 'SchemaSerializer', + 'Url', + 'MultiHostUrl', + 'SchemaError', + 'ValidationError', + 'PydanticCustomError', + 'PydanticKnownError', + 'PydanticOmit', + 'PydanticUseDefault', + 'PydanticSerializationError', + 'PydanticSerializationUnexpectedValue', + 'PydanticUndefined', + 'PydanticUndefinedType', + 'Some', + 'to_json', + 'from_json', + 'to_jsonable_python', + 'list_all_errors', + 'TzInfo', + 'validate_core_schema', +] +__version__: str +build_profile: str +build_info: str +_recursion_limit: int + +_T = TypeVar('_T', default=Any, covariant=True) + +_StringInput: TypeAlias = 'dict[str, _StringInput]' + +@final +class Some(Generic[_T]): + """ + Similar to Rust's [`Option::Some`](https://doc.rust-lang.org/std/option/enum.Option.html) type, this + identifies a value as being present, and provides a way to access it. + + Generally used in a union with `None` to different between "some value which could be None" and no value. + """ + + __match_args__ = ('value',) + + @property + def value(self) -> _T: + """ + Returns the value wrapped by `Some`. + """ + @classmethod + def __class_getitem__(cls, item: Any, /) -> type[Self]: ... + +@final +class SchemaValidator: + """ + `SchemaValidator` is the Python wrapper for `pydantic-core`'s Rust validation logic, internally it owns one + `CombinedValidator` which may in turn own more `CombinedValidator`s which make up the full schema validator. + """ + + # note: pyo3 currently supports __new__, but not __init__, though we include __init__ stubs + # and docstrings here (and in the following classes) for documentation purposes + + def __init__(self, schema: CoreSchema, config: CoreConfig | None = None) -> None: + """Initializes the `SchemaValidator`. + + Arguments: + schema: The `CoreSchema` to use for validation. + config: Optionally a [`CoreConfig`][pydantic_core.core_schema.CoreConfig] to configure validation. + """ + + def __new__(cls, schema: CoreSchema, config: CoreConfig | None = None) -> Self: ... + @property + def title(self) -> str: + """ + The title of the schema, as used in the heading of [`ValidationError.__str__()`][pydantic_core.ValidationError]. + """ + def validate_python( + self, + input: Any, + *, + strict: bool | None = None, + from_attributes: bool | None = None, + context: Any | None = None, + self_instance: Any | None = None, + allow_partial: bool | Literal['off', 'on', 'trailing-strings'] = False, + ) -> Any: + """ + Validate a Python object against the schema and return the validated object. + + Arguments: + input: The Python object to validate. + strict: Whether to validate the object in strict mode. + If `None`, the value of [`CoreConfig.strict`][pydantic_core.core_schema.CoreConfig] is used. + from_attributes: Whether to validate objects as inputs to models by extracting attributes. + If `None`, the value of [`CoreConfig.from_attributes`][pydantic_core.core_schema.CoreConfig] is used. + context: The context to use for validation, this is passed to functional validators as + [`info.context`][pydantic_core.core_schema.ValidationInfo.context]. + self_instance: An instance of a model set attributes on from validation, this is used when running + validation from the `__init__` method of a model. + allow_partial: Whether to allow partial validation; if `True` errors in the last element of sequences + and mappings are ignored. + `'trailing-strings'` means any final unfinished JSON string is included in the result. + + Raises: + ValidationError: If validation fails. + Exception: Other error types maybe raised if internal errors occur. + + Returns: + The validated object. + """ + def isinstance_python( + self, + input: Any, + *, + strict: bool | None = None, + from_attributes: bool | None = None, + context: Any | None = None, + self_instance: Any | None = None, + ) -> bool: + """ + Similar to [`validate_python()`][pydantic_core.SchemaValidator.validate_python] but returns a boolean. + + Arguments match `validate_python()`. This method will not raise `ValidationError`s but will raise internal + errors. + + Returns: + `True` if validation succeeds, `False` if validation fails. + """ + def validate_json( + self, + input: str | bytes | bytearray, + *, + strict: bool | None = None, + context: Any | None = None, + self_instance: Any | None = None, + allow_partial: bool | Literal['off', 'on', 'trailing-strings'] = False, + ) -> Any: + """ + Validate JSON data directly against the schema and return the validated Python object. + + This method should be significantly faster than `validate_python(json.loads(json_data))` as it avoids the + need to create intermediate Python objects + + It also handles constructing the correct Python type even in strict mode, where + `validate_python(json.loads(json_data))` would fail validation. + + Arguments: + input: The JSON data to validate. + strict: Whether to validate the object in strict mode. + If `None`, the value of [`CoreConfig.strict`][pydantic_core.core_schema.CoreConfig] is used. + context: The context to use for validation, this is passed to functional validators as + [`info.context`][pydantic_core.core_schema.ValidationInfo.context]. + self_instance: An instance of a model set attributes on from validation. + allow_partial: Whether to allow partial validation; if `True` incomplete JSON will be parsed successfully + and errors in the last element of sequences and mappings are ignored. + `'trailing-strings'` means any final unfinished JSON string is included in the result. + + Raises: + ValidationError: If validation fails or if the JSON data is invalid. + Exception: Other error types maybe raised if internal errors occur. + + Returns: + The validated Python object. + """ + def validate_strings( + self, + input: _StringInput, + *, + strict: bool | None = None, + context: Any | None = None, + allow_partial: bool | Literal['off', 'on', 'trailing-strings'] = False, + ) -> Any: + """ + Validate a string against the schema and return the validated Python object. + + This is similar to `validate_json` but applies to scenarios where the input will be a string but not + JSON data, e.g. URL fragments, query parameters, etc. + + Arguments: + input: The input as a string, or bytes/bytearray if `strict=False`. + strict: Whether to validate the object in strict mode. + If `None`, the value of [`CoreConfig.strict`][pydantic_core.core_schema.CoreConfig] is used. + context: The context to use for validation, this is passed to functional validators as + [`info.context`][pydantic_core.core_schema.ValidationInfo.context]. + allow_partial: Whether to allow partial validation; if `True` errors in the last element of sequences + and mappings are ignored. + `'trailing-strings'` means any final unfinished JSON string is included in the result. + + Raises: + ValidationError: If validation fails or if the JSON data is invalid. + Exception: Other error types maybe raised if internal errors occur. + + Returns: + The validated Python object. + """ + def validate_assignment( + self, + obj: Any, + field_name: str, + field_value: Any, + *, + strict: bool | None = None, + from_attributes: bool | None = None, + context: Any | None = None, + ) -> dict[str, Any] | tuple[dict[str, Any], dict[str, Any] | None, set[str]]: + """ + Validate an assignment to a field on a model. + + Arguments: + obj: The model instance being assigned to. + field_name: The name of the field to validate assignment for. + field_value: The value to assign to the field. + strict: Whether to validate the object in strict mode. + If `None`, the value of [`CoreConfig.strict`][pydantic_core.core_schema.CoreConfig] is used. + from_attributes: Whether to validate objects as inputs to models by extracting attributes. + If `None`, the value of [`CoreConfig.from_attributes`][pydantic_core.core_schema.CoreConfig] is used. + context: The context to use for validation, this is passed to functional validators as + [`info.context`][pydantic_core.core_schema.ValidationInfo.context]. + + Raises: + ValidationError: If validation fails. + Exception: Other error types maybe raised if internal errors occur. + + Returns: + Either the model dict or a tuple of `(model_data, model_extra, fields_set)` + """ + def get_default_value(self, *, strict: bool | None = None, context: Any = None) -> Some | None: + """ + Get the default value for the schema, including running default value validation. + + Arguments: + strict: Whether to validate the default value in strict mode. + If `None`, the value of [`CoreConfig.strict`][pydantic_core.core_schema.CoreConfig] is used. + context: The context to use for validation, this is passed to functional validators as + [`info.context`][pydantic_core.core_schema.ValidationInfo.context]. + + Raises: + ValidationError: If validation fails. + Exception: Other error types maybe raised if internal errors occur. + + Returns: + `None` if the schema has no default value, otherwise a [`Some`][pydantic_core.Some] containing the default. + """ + +# In reality, `bool` should be replaced by `Literal[True]` but mypy fails to correctly apply bidirectional type inference +# (e.g. when using `{'a': {'b': True}}`). +_IncEx: TypeAlias = set[int] | set[str] | Mapping[int, _IncEx | bool] | Mapping[str, _IncEx | bool] + +@final +class SchemaSerializer: + """ + `SchemaSerializer` is the Python wrapper for `pydantic-core`'s Rust serialization logic, internally it owns one + `CombinedSerializer` which may in turn own more `CombinedSerializer`s which make up the full schema serializer. + """ + + def __init__(self, schema: CoreSchema, config: CoreConfig | None = None) -> None: + """Initializes the `SchemaSerializer`. + + Arguments: + schema: The `CoreSchema` to use for serialization. + config: Optionally a [`CoreConfig`][pydantic_core.core_schema.CoreConfig] to to configure serialization. + """ + + def __new__(cls, schema: CoreSchema, config: CoreConfig | None = None) -> Self: ... + def to_python( + self, + value: Any, + *, + mode: str | None = None, + include: _IncEx | None = None, + exclude: _IncEx | None = None, + by_alias: bool = True, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal['none', 'warn', 'error'] = True, + fallback: Callable[[Any], Any] | None = None, + serialize_as_any: bool = False, + context: Any | None = None, + ) -> Any: + """ + Serialize/marshal a Python object to a Python object including transforming and filtering data. + + Arguments: + value: The Python object to serialize. + mode: The serialization mode to use, either `'python'` or `'json'`, defaults to `'python'`. In JSON mode, + all values are converted to JSON compatible types, e.g. `None`, `int`, `float`, `str`, `list`, `dict`. + include: A set of fields to include, if `None` all fields are included. + exclude: A set of fields to exclude, if `None` no fields are excluded. + by_alias: Whether to use the alias names of fields. + exclude_unset: Whether to exclude fields that are not set, + e.g. are not included in `__pydantic_fields_set__`. + exclude_defaults: Whether to exclude fields that are equal to their default value. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: Whether to enable serialization and validation round-trip support. + warnings: How to handle invalid fields. False/"none" ignores them, True/"warn" logs errors, + "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. + fallback: A function to call when an unknown value is encountered, + if `None` a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + context: The context to use for serialization, this is passed to functional serializers as + [`info.context`][pydantic_core.core_schema.SerializationInfo.context]. + + Raises: + PydanticSerializationError: If serialization fails and no `fallback` function is provided. + + Returns: + The serialized Python object. + """ + def to_json( + self, + value: Any, + *, + indent: int | None = None, + include: _IncEx | None = None, + exclude: _IncEx | None = None, + by_alias: bool = True, + exclude_unset: bool = False, + exclude_defaults: bool = False, + exclude_none: bool = False, + round_trip: bool = False, + warnings: bool | Literal['none', 'warn', 'error'] = True, + fallback: Callable[[Any], Any] | None = None, + serialize_as_any: bool = False, + context: Any | None = None, + ) -> bytes: + """ + Serialize a Python object to JSON including transforming and filtering data. + + Arguments: + value: The Python object to serialize. + indent: If `None`, the JSON will be compact, otherwise it will be pretty-printed with the indent provided. + include: A set of fields to include, if `None` all fields are included. + exclude: A set of fields to exclude, if `None` no fields are excluded. + by_alias: Whether to use the alias names of fields. + exclude_unset: Whether to exclude fields that are not set, + e.g. are not included in `__pydantic_fields_set__`. + exclude_defaults: Whether to exclude fields that are equal to their default value. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: Whether to enable serialization and validation round-trip support. + warnings: How to handle invalid fields. False/"none" ignores them, True/"warn" logs errors, + "error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError]. + fallback: A function to call when an unknown value is encountered, + if `None` a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + context: The context to use for serialization, this is passed to functional serializers as + [`info.context`][pydantic_core.core_schema.SerializationInfo.context]. + + Raises: + PydanticSerializationError: If serialization fails and no `fallback` function is provided. + + Returns: + JSON bytes. + """ + +def to_json( + value: Any, + *, + indent: int | None = None, + include: _IncEx | None = None, + exclude: _IncEx | None = None, + by_alias: bool = True, + exclude_none: bool = False, + round_trip: bool = False, + timedelta_mode: Literal['iso8601', 'float'] = 'iso8601', + bytes_mode: Literal['utf8', 'base64', 'hex'] = 'utf8', + inf_nan_mode: Literal['null', 'constants', 'strings'] = 'constants', + serialize_unknown: bool = False, + fallback: Callable[[Any], Any] | None = None, + serialize_as_any: bool = False, + context: Any | None = None, +) -> bytes: + """ + Serialize a Python object to JSON including transforming and filtering data. + + This is effectively a standalone version of [`SchemaSerializer.to_json`][pydantic_core.SchemaSerializer.to_json]. + + Arguments: + value: The Python object to serialize. + indent: If `None`, the JSON will be compact, otherwise it will be pretty-printed with the indent provided. + include: A set of fields to include, if `None` all fields are included. + exclude: A set of fields to exclude, if `None` no fields are excluded. + by_alias: Whether to use the alias names of fields. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: Whether to enable serialization and validation round-trip support. + timedelta_mode: How to serialize `timedelta` objects, either `'iso8601'` or `'float'`. + bytes_mode: How to serialize `bytes` objects, either `'utf8'`, `'base64'`, or `'hex'`. + inf_nan_mode: How to serialize `Infinity`, `-Infinity` and `NaN` values, either `'null'`, `'constants'`, or `'strings'`. + serialize_unknown: Attempt to serialize unknown types, `str(value)` will be used, if that fails + `""` will be used. + fallback: A function to call when an unknown value is encountered, + if `None` a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + context: The context to use for serialization, this is passed to functional serializers as + [`info.context`][pydantic_core.core_schema.SerializationInfo.context]. + + Raises: + PydanticSerializationError: If serialization fails and no `fallback` function is provided. + + Returns: + JSON bytes. + """ + +def from_json( + data: str | bytes | bytearray, + *, + allow_inf_nan: bool = True, + cache_strings: bool | Literal['all', 'keys', 'none'] = True, + allow_partial: bool | Literal['off', 'on', 'trailing-strings'] = False, +) -> Any: + """ + Deserialize JSON data to a Python object. + + This is effectively a faster version of `json.loads()`, with some extra functionality. + + Arguments: + data: The JSON data to deserialize. + allow_inf_nan: Whether to allow `Infinity`, `-Infinity` and `NaN` values as `json.loads()` does by default. + cache_strings: Whether to cache strings to avoid constructing new Python objects, + this should have a significant impact on performance while increasing memory usage slightly, + `all/True` means cache all strings, `keys` means cache only dict keys, `none/False` means no caching. + allow_partial: Whether to allow partial deserialization, if `True` JSON data is returned if the end of the + input is reached before the full object is deserialized, e.g. `["aa", "bb", "c` would return `['aa', 'bb']`. + `'trailing-strings'` means any final unfinished JSON string is included in the result. + + Raises: + ValueError: If deserialization fails. + + Returns: + The deserialized Python object. + """ + +def to_jsonable_python( + value: Any, + *, + include: _IncEx | None = None, + exclude: _IncEx | None = None, + by_alias: bool = True, + exclude_none: bool = False, + round_trip: bool = False, + timedelta_mode: Literal['iso8601', 'float'] = 'iso8601', + bytes_mode: Literal['utf8', 'base64', 'hex'] = 'utf8', + inf_nan_mode: Literal['null', 'constants', 'strings'] = 'constants', + serialize_unknown: bool = False, + fallback: Callable[[Any], Any] | None = None, + serialize_as_any: bool = False, + context: Any | None = None, +) -> Any: + """ + Serialize/marshal a Python object to a JSON-serializable Python object including transforming and filtering data. + + This is effectively a standalone version of + [`SchemaSerializer.to_python(mode='json')`][pydantic_core.SchemaSerializer.to_python]. + + Args: + value: The Python object to serialize. + include: A set of fields to include, if `None` all fields are included. + exclude: A set of fields to exclude, if `None` no fields are excluded. + by_alias: Whether to use the alias names of fields. + exclude_none: Whether to exclude fields that have a value of `None`. + round_trip: Whether to enable serialization and validation round-trip support. + timedelta_mode: How to serialize `timedelta` objects, either `'iso8601'` or `'float'`. + bytes_mode: How to serialize `bytes` objects, either `'utf8'`, `'base64'`, or `'hex'`. + inf_nan_mode: How to serialize `Infinity`, `-Infinity` and `NaN` values, either `'null'`, `'constants'`, or `'strings'`. + serialize_unknown: Attempt to serialize unknown types, `str(value)` will be used, if that fails + `""` will be used. + fallback: A function to call when an unknown value is encountered, + if `None` a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised. + serialize_as_any: Whether to serialize fields with duck-typing serialization behavior. + context: The context to use for serialization, this is passed to functional serializers as + [`info.context`][pydantic_core.core_schema.SerializationInfo.context]. + + Raises: + PydanticSerializationError: If serialization fails and no `fallback` function is provided. + + Returns: + The serialized Python object. + """ + +class Url(SupportsAllComparisons): + """ + A URL type, internal logic uses the [url rust crate](https://docs.rs/url/latest/url/) originally developed + by Mozilla. + """ + + def __init__(self, url: str) -> None: ... + def __new__(cls, url: str) -> Self: ... + @property + def scheme(self) -> str: ... + @property + def username(self) -> str | None: ... + @property + def password(self) -> str | None: ... + @property + def host(self) -> str | None: ... + def unicode_host(self) -> str | None: ... + @property + def port(self) -> int | None: ... + @property + def path(self) -> str | None: ... + @property + def query(self) -> str | None: ... + def query_params(self) -> list[tuple[str, str]]: ... + @property + def fragment(self) -> str | None: ... + def unicode_string(self) -> str: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + def __deepcopy__(self, memo: dict) -> str: ... + @classmethod + def build( + cls, + *, + scheme: str, + username: str | None = None, + password: str | None = None, + host: str, + port: int | None = None, + path: str | None = None, + query: str | None = None, + fragment: str | None = None, + ) -> Self: ... + +class MultiHostUrl(SupportsAllComparisons): + """ + A URL type with support for multiple hosts, as used by some databases for DSNs, e.g. `https://foo.com,bar.com/path`. + + Internal URL logic uses the [url rust crate](https://docs.rs/url/latest/url/) originally developed + by Mozilla. + """ + + def __init__(self, url: str) -> None: ... + def __new__(cls, url: str) -> Self: ... + @property + def scheme(self) -> str: ... + @property + def path(self) -> str | None: ... + @property + def query(self) -> str | None: ... + def query_params(self) -> list[tuple[str, str]]: ... + @property + def fragment(self) -> str | None: ... + def hosts(self) -> list[MultiHostHost]: ... + def unicode_string(self) -> str: ... + def __repr__(self) -> str: ... + def __str__(self) -> str: ... + def __deepcopy__(self, memo: dict) -> Self: ... + @classmethod + def build( + cls, + *, + scheme: str, + hosts: list[MultiHostHost] | None = None, + username: str | None = None, + password: str | None = None, + host: str | None = None, + port: int | None = None, + path: str | None = None, + query: str | None = None, + fragment: str | None = None, + ) -> Self: ... + +@final +class SchemaError(Exception): + """ + Information about errors that occur while building a [`SchemaValidator`][pydantic_core.SchemaValidator] + or [`SchemaSerializer`][pydantic_core.SchemaSerializer]. + """ + + def error_count(self) -> int: + """ + Returns: + The number of errors in the schema. + """ + def errors(self) -> list[ErrorDetails]: + """ + Returns: + A list of [`ErrorDetails`][pydantic_core.ErrorDetails] for each error in the schema. + """ + +class ValidationError(ValueError): + """ + `ValidationError` is the exception raised by `pydantic-core` when validation fails, it contains a list of errors + which detail why validation failed. + """ + @classmethod + def from_exception_data( + cls, + title: str, + line_errors: list[InitErrorDetails], + input_type: Literal['python', 'json'] = 'python', + hide_input: bool = False, + ) -> Self: + """ + Python constructor for a Validation Error. + + The API for constructing validation errors will probably change in the future, + hence the static method rather than `__init__`. + + Arguments: + title: The title of the error, as used in the heading of `str(validation_error)` + line_errors: A list of [`InitErrorDetails`][pydantic_core.InitErrorDetails] which contain information + about errors that occurred during validation. + input_type: Whether the error is for a Python object or JSON. + hide_input: Whether to hide the input value in the error message. + """ + @property + def title(self) -> str: + """ + The title of the error, as used in the heading of `str(validation_error)`. + """ + def error_count(self) -> int: + """ + Returns: + The number of errors in the validation error. + """ + def errors( + self, *, include_url: bool = True, include_context: bool = True, include_input: bool = True + ) -> list[ErrorDetails]: + """ + Details about each error in the validation error. + + Args: + include_url: Whether to include a URL to documentation on the error each error. + include_context: Whether to include the context of each error. + include_input: Whether to include the input value of each error. + + Returns: + A list of [`ErrorDetails`][pydantic_core.ErrorDetails] for each error in the validation error. + """ + def json( + self, + *, + indent: int | None = None, + include_url: bool = True, + include_context: bool = True, + include_input: bool = True, + ) -> str: + """ + Same as [`errors()`][pydantic_core.ValidationError.errors] but returns a JSON string. + + Args: + indent: The number of spaces to indent the JSON by, or `None` for no indentation - compact JSON. + include_url: Whether to include a URL to documentation on the error each error. + include_context: Whether to include the context of each error. + include_input: Whether to include the input value of each error. + + Returns: + a JSON string. + """ + + def __repr__(self) -> str: + """ + A string representation of the validation error. + + Whether or not documentation URLs are included in the repr is controlled by the + environment variable `PYDANTIC_ERRORS_INCLUDE_URL` being set to `1` or + `true`; by default, URLs are shown. + + Due to implementation details, this environment variable can only be set once, + before the first validation error is created. + """ + +class PydanticCustomError(ValueError): + """A custom exception providing flexible error handling for Pydantic validators. + + You can raise this error in custom validators when you'd like flexibility in regards to the error type, message, and context. + + Example: + ```py + from pydantic_core import PydanticCustomError + + def custom_validator(v) -> None: + if v <= 10: + raise PydanticCustomError('custom_value_error', 'Value must be greater than {value}', {'value': 10, 'extra_context': 'extra_data'}) + return v + ``` + """ + + def __init__( + self, error_type: LiteralString, message_template: LiteralString, context: dict[str, Any] | None = None + ) -> None: + """Initializes the `PydanticCustomError`. + + Arguments: + error_type: The error type. + message_template: The message template. + context: The data to inject into the message template. + """ + + def __new__( + cls, error_type: LiteralString, message_template: LiteralString, context: dict[str, Any] | None = None + ) -> Self: ... + @property + def context(self) -> dict[str, Any] | None: + """Values which are required to render the error message, and could hence be useful in passing error data forward.""" + + @property + def type(self) -> str: + """The error type associated with the error. For consistency with Pydantic, this is typically a snake_case string.""" + + @property + def message_template(self) -> str: + """The message template associated with the error. This is a string that can be formatted with context variables in `{curly_braces}`.""" + + def message(self) -> str: + """The formatted message associated with the error. This presents as the message template with context variables appropriately injected.""" + +@final +class PydanticKnownError(ValueError): + """A helper class for raising exceptions that mimic Pydantic's built-in exceptions, with more flexibility in regards to context. + + Unlike [`PydanticCustomError`][pydantic_core.PydanticCustomError], the `error_type` argument must be a known `ErrorType`. + + Example: + ```py + from pydantic_core import PydanticKnownError + + def custom_validator(v) -> None: + if v <= 10: + raise PydanticKnownError(error_type='greater_than', context={'gt': 10}) + return v + ``` + """ + + def __init__(self, error_type: ErrorType, context: dict[str, Any] | None = None) -> None: + """Initializes the `PydanticKnownError`. + + Arguments: + error_type: The error type. + context: The data to inject into the message template. + """ + + def __new__(cls, error_type: ErrorType, context: dict[str, Any] | None = None) -> Self: ... + @property + def context(self) -> dict[str, Any] | None: + """Values which are required to render the error message, and could hence be useful in passing error data forward.""" + + @property + def type(self) -> ErrorType: + """The type of the error.""" + + @property + def message_template(self) -> str: + """The message template associated with the provided error type. This is a string that can be formatted with context variables in `{curly_braces}`.""" + + def message(self) -> str: + """The formatted message associated with the error. This presents as the message template with context variables appropriately injected.""" + +@final +class PydanticOmit(Exception): + """An exception to signal that a field should be omitted from a generated result. + + This could span from omitting a field from a JSON Schema to omitting a field from a serialized result. + Upcoming: more robust support for using PydanticOmit in custom serializers is still in development. + Right now, this is primarily used in the JSON Schema generation process. + + Example: + ```py + from typing import Callable + + from pydantic_core import PydanticOmit + + from pydantic import BaseModel + from pydantic.json_schema import GenerateJsonSchema, JsonSchemaValue + + + class MyGenerateJsonSchema(GenerateJsonSchema): + def handle_invalid_for_json_schema(self, schema, error_info) -> JsonSchemaValue: + raise PydanticOmit + + + class Predicate(BaseModel): + name: str = 'no-op' + func: Callable = lambda x: x + + + instance_example = Predicate() + + validation_schema = instance_example.model_json_schema(schema_generator=MyGenerateJsonSchema, mode='validation') + print(validation_schema) + ''' + {'properties': {'name': {'default': 'no-op', 'title': 'Name', 'type': 'string'}}, 'title': 'Predicate', 'type': 'object'} + ''' + ``` + + For a more in depth example / explanation, see the [customizing JSON schema](../concepts/json_schema.md#customizing-the-json-schema-generation-process) docs. + """ + + def __new__(cls) -> Self: ... + +@final +class PydanticUseDefault(Exception): + """An exception to signal that standard validation either failed or should be skipped, and the default value should be used instead. + + This warning can be raised in custom valiation functions to redirect the flow of validation. + + Example: + ```py + from pydantic_core import PydanticUseDefault + from datetime import datetime + from pydantic import BaseModel, field_validator + + + class Event(BaseModel): + name: str = 'meeting' + time: datetime + + @field_validator('name', mode='plain') + def name_must_be_present(cls, v) -> str: + if not v or not isinstance(v, str): + raise PydanticUseDefault() + return v + + + event1 = Event(name='party', time=datetime(2024, 1, 1, 12, 0, 0)) + print(repr(event1)) + # > Event(name='party', time=datetime.datetime(2024, 1, 1, 12, 0)) + event2 = Event(time=datetime(2024, 1, 1, 12, 0, 0)) + print(repr(event2)) + # > Event(name='meeting', time=datetime.datetime(2024, 1, 1, 12, 0)) + ``` + + For an additional example, seethe [validating partial json data](../concepts/json.md#partial-json-parsing) section of the Pydantic documentation. + """ + + def __new__(cls) -> Self: ... + +@final +class PydanticSerializationError(ValueError): + """An error raised when an issue occurs during serialization. + + In custom serializers, this error can be used to indicate that serialization has failed. + """ + + def __init__(self, message: str) -> None: + """Initializes the `PydanticSerializationError`. + + Arguments: + message: The message associated with the error. + """ + + def __new__(cls, message: str) -> Self: ... + +@final +class PydanticSerializationUnexpectedValue(ValueError): + """An error raised when an unexpected value is encountered during serialization. + + This error is often caught and coerced into a warning, as `pydantic-core` generally makes a best attempt + at serializing values, in contrast with validation where errors are eagerly raised. + + Example: + ```py + from pydantic import BaseModel, field_serializer + from pydantic_core import PydanticSerializationUnexpectedValue + + class BasicPoint(BaseModel): + x: int + y: int + + @field_serializer('*') + def serialize(self, v): + if not isinstance(v, int): + raise PydanticSerializationUnexpectedValue(f'Expected type `int`, got {type(v)} with value {v}') + return v + + point = BasicPoint(x=1, y=2) + # some sort of mutation + point.x = 'a' + + print(point.model_dump()) + ''' + UserWarning: Pydantic serializer warnings: + PydanticSerializationUnexpectedValue(Expected type `int`, got with value a) + return self.__pydantic_serializer__.to_python( + {'x': 'a', 'y': 2} + ''' + ``` + + This is often used internally in `pydantic-core` when unexpected types are encountered during serialization, + but it can also be used by users in custom serializers, as seen above. + """ + + def __init__(self, message: str) -> None: + """Initializes the `PydanticSerializationUnexpectedValue`. + + Arguments: + message: The message associated with the unexpected value. + """ + + def __new__(cls, message: str | None = None) -> Self: ... + +@final +class ArgsKwargs: + """A construct used to store arguments and keyword arguments for a function call. + + This data structure is generally used to store information for core schemas associated with functions (like in an arguments schema). + This data structure is also currently used for some validation against dataclasses. + + Example: + ```py + from pydantic.dataclasses import dataclass + from pydantic import model_validator + + + @dataclass + class Model: + a: int + b: int + + @model_validator(mode="before") + @classmethod + def no_op_validator(cls, values): + print(values) + return values + + Model(1, b=2) + #> ArgsKwargs((1,), {"b": 2}) + + Model(1, 2) + #> ArgsKwargs((1, 2), {}) + + Model(a=1, b=2) + #> ArgsKwargs((), {"a": 1, "b": 2}) + ``` + """ + + def __init__(self, args: tuple[Any, ...], kwargs: dict[str, Any] | None = None) -> None: + """Initializes the `ArgsKwargs`. + + Arguments: + args: The arguments (inherently ordered) for a function call. + kwargs: The keyword arguments for a function call + """ + + def __new__(cls, args: tuple[Any, ...], kwargs: dict[str, Any] | None = None) -> Self: ... + @property + def args(self) -> tuple[Any, ...]: + """The arguments (inherently ordered) for a function call.""" + + @property + def kwargs(self) -> dict[str, Any] | None: + """The keyword arguments for a function call.""" + +@final +class PydanticUndefinedType: + """A type used as a sentinel for undefined values.""" + + def __copy__(self) -> Self: ... + def __deepcopy__(self, memo: Any) -> Self: ... + +PydanticUndefined: PydanticUndefinedType + +def list_all_errors() -> list[ErrorTypeInfo]: + """ + Get information about all built-in errors. + + Returns: + A list of `ErrorTypeInfo` typed dicts. + """ +@final +class TzInfo(datetime.tzinfo): + """An `pydantic-core` implementation of the abstract [`datetime.tzinfo`] class.""" + + # Docstrings for attributes sourced from the abstract base class, [`datetime.tzinfo`](https://docs.python.org/3/library/datetime.html#datetime.tzinfo). + + def tzname(self, dt: datetime.datetime | None) -> str | None: + """Return the time zone name corresponding to the [`datetime`][datetime.datetime] object _dt_, as a string. + + For more info, see [`tzinfo.tzname`][datetime.tzinfo.tzname]. + """ + + def utcoffset(self, dt: datetime.datetime | None) -> datetime.timedelta | None: + """Return offset of local time from UTC, as a [`timedelta`][datetime.timedelta] object that is positive east of UTC. If local time is west of UTC, this should be negative. + + More info can be found at [`tzinfo.utcoffset`][datetime.tzinfo.utcoffset]. + """ + + def dst(self, dt: datetime.datetime | None) -> datetime.timedelta | None: + """Return the daylight saving time (DST) adjustment, as a [`timedelta`][datetime.timedelta] object or `None` if DST information isn’t known. + + More info can be found at[`tzinfo.dst`][datetime.tzinfo.dst].""" + + def fromutc(self, dt: datetime.datetime) -> datetime.datetime: + """Adjust the date and time data associated datetime object _dt_, returning an equivalent datetime in self’s local time. + + More info can be found at [`tzinfo.fromutc`][datetime.tzinfo.fromutc].""" + + def __deepcopy__(self, _memo: dict[Any, Any]) -> TzInfo: ... + +def validate_core_schema(schema: CoreSchema, *, strict: bool | None = None) -> CoreSchema: + """Validate a core schema. + + This currently uses lax mode for validation (i.e. will coerce strings to dates and such) + but may use strict mode in the future. + We may also remove this function altogether, do not rely on it being present if you are + using pydantic-core directly. + """ diff --git a/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/py.typed b/evalkit_cambrian/lib/python3.10/site-packages/pydantic_core/py.typed new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_compositeexplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_compositeexplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..2540f4df92e1ba255b4ac36cce81a2e58500d4cc --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_amp_foreach_non_finite_check_and_unscale_compositeexplicitautograd_dispatch.h @@ -0,0 +1,25 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeexplicitautograd { + +TORCH_API ::std::tuple<::std::vector,at::Tensor> _amp_foreach_non_finite_check_and_unscale(at::TensorList self, const at::Tensor & found_inf, const at::Tensor & inv_scale); +TORCH_API void _amp_foreach_non_finite_check_and_unscale_out(at::TensorList out, at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale); +TORCH_API void _amp_foreach_non_finite_check_and_unscale_outf(at::TensorList self, at::Tensor & found_inf, const at::Tensor & inv_scale, at::TensorList out); + +} // namespace compositeexplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cpu_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cpu_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..1a39763975e6672474b93d246f5007a9527cc819 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fft_c2c_cpu_dispatch.h @@ -0,0 +1,28 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace cpu { + +TORCH_API at::Tensor _fft_c2c(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward); +TORCH_API at::Tensor _fft_c2c_symint(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward); +TORCH_API at::Tensor & _fft_c2c_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward); +TORCH_API at::Tensor & _fft_c2c_outf(const at::Tensor & self, at::IntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out); +TORCH_API at::Tensor & _fft_c2c_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward); +TORCH_API at::Tensor & _fft_c2c_symint_outf(const at::Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward, at::Tensor & out); + +} // namespace cpu +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_frac_cuda_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_frac_cuda_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..be2715382e60a5ef9e942bdf1932e524d7276299 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_frac_cuda_dispatch.h @@ -0,0 +1,24 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace cuda { + +TORCH_API ::std::vector _foreach_frac(at::TensorList self); +TORCH_API void _foreach_frac_(at::TensorList self); + +} // namespace cuda +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_dropout_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_dropout_native.h new file mode 100644 index 0000000000000000000000000000000000000000..b123aa0b0e05e64dd71ad2101cac542433dbdae8 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_dropout_native.h @@ -0,0 +1,22 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API ::std::tuple _fused_dropout_out(const at::Tensor & self, double p, ::std::optional generator, at::Tensor & out0, at::Tensor & out1); +TORCH_API ::std::tuple fused_dropout_cuda(const at::Tensor & self, double p, ::std::optional generator=::std::nullopt); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_meta_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_meta_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..2fd2f3131bbf8abf00646c51b096348be35fe58c --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_log_softmax_backward_data_meta_dispatch.h @@ -0,0 +1,25 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace meta { + +TORCH_API at::Tensor _log_softmax_backward_data(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype); +TORCH_API at::Tensor & _log_softmax_backward_data_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype); +TORCH_API at::Tensor & _log_softmax_backward_data_outf(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, at::ScalarType input_dtype, at::Tensor & out); + +} // namespace meta +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_channel_quantized_tensor_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_channel_quantized_tensor_native.h new file mode 100644 index 0000000000000000000000000000000000000000..2a6f90dd87402c9c39151641e0e75aaaaa433f29 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_make_per_channel_quantized_tensor_native.h @@ -0,0 +1,23 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor & _make_per_channel_quantized_tensor_out(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, at::Tensor & out); +TORCH_API at::Tensor make_per_channel_quantized_tensor_cpu(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis); +TORCH_API at::Tensor make_per_channel_quantized_tensor_cuda(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_jagged_copy_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_jagged_copy_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..846b99a15a4d9bbea12bb028ed17122e5e34a3e3 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_nested_view_from_jagged_copy_ops.h @@ -0,0 +1,39 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API _nested_view_from_jagged_copy { + using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, const ::std::optional &, int64_t, const ::std::optional &, const ::std::optional &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_view_from_jagged_copy") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_view_from_jagged_copy(Tensor self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1, Tensor? min_seqlen=None, Tensor? max_seqlen=None) -> Tensor") + static at::Tensor call(const at::Tensor & self, const at::Tensor & offsets, const at::Tensor & dummy, const ::std::optional & lengths, int64_t ragged_idx, const ::std::optional & min_seqlen, const ::std::optional & max_seqlen); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & offsets, const at::Tensor & dummy, const ::std::optional & lengths, int64_t ragged_idx, const ::std::optional & min_seqlen, const ::std::optional & max_seqlen); +}; + +struct TORCH_API _nested_view_from_jagged_copy_out { + using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, const ::std::optional &, int64_t, const ::std::optional &, const ::std::optional &, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_nested_view_from_jagged_copy") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_nested_view_from_jagged_copy.out(Tensor self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1, Tensor? min_seqlen=None, Tensor? max_seqlen=None, *, Tensor(a!) out) -> Tensor(a!)") + static at::Tensor & call(const at::Tensor & self, const at::Tensor & offsets, const at::Tensor & dummy, const ::std::optional & lengths, int64_t ragged_idx, const ::std::optional & min_seqlen, const ::std::optional & max_seqlen, at::Tensor & out); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & offsets, const at::Tensor & dummy, const ::std::optional & lengths, int64_t ragged_idx, const ::std::optional & min_seqlen, const ::std::optional & max_seqlen, at::Tensor & out); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_print_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_print_native.h new file mode 100644 index 0000000000000000000000000000000000000000..c956ce8abf198faa36c4d2427e9de99468b9db08 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_print_native.h @@ -0,0 +1,21 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API void _print(c10::string_view s); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_with_dims.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_with_dims.h new file mode 100644 index 0000000000000000000000000000000000000000..795bd1faae2dcad68ab0237901c6b77a880be4fc --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_with_dims.h @@ -0,0 +1,34 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::_sparse_compressed_tensor_with_dims(int nnz, int dense_dim, int[] size, int[] blocksize, ScalarType index_dtype, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor +inline at::Tensor _sparse_compressed_tensor_with_dims(int64_t nnz, int64_t dense_dim, at::IntArrayRef size, at::IntArrayRef blocksize, at::ScalarType index_dtype, at::TensorOptions options) { + return at::_ops::_sparse_compressed_tensor_with_dims::call(nnz, dense_dim, size, blocksize, index_dtype, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt()); +} +// aten::_sparse_compressed_tensor_with_dims(int nnz, int dense_dim, int[] size, int[] blocksize, ScalarType index_dtype, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor +inline at::Tensor _sparse_compressed_tensor_with_dims(int64_t nnz, int64_t dense_dim, at::IntArrayRef size, at::IntArrayRef blocksize, at::ScalarType index_dtype, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory) { + return at::_ops::_sparse_compressed_tensor_with_dims::call(nnz, dense_dim, size, blocksize, index_dtype, dtype, layout, device, pin_memory); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_compositeexplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_compositeexplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..01aab769ee9e990baa7720b039e7373a362177fa --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_log_softmax_backward_data_compositeexplicitautograd_dispatch.h @@ -0,0 +1,24 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeexplicitautograd { + +TORCH_API at::Tensor & _sparse_log_softmax_backward_data_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self); +TORCH_API at::Tensor & _sparse_log_softmax_backward_data_outf(const at::Tensor & grad_output, const at::Tensor & output, int64_t dim, const at::Tensor & self, at::Tensor & out); + +} // namespace compositeexplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_test_string_default.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_test_string_default.h new file mode 100644 index 0000000000000000000000000000000000000000..b66d90b21246ccbbc23de03cb37da576ae1d7e2c --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_test_string_default.h @@ -0,0 +1,30 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::_test_string_default(Tensor dummy, str a="\"'\\", str b='"\'\\') -> Tensor +inline at::Tensor _test_string_default(const at::Tensor & dummy, c10::string_view a="\"'\\", c10::string_view b="\"'\\") { + return at::_ops::_test_string_default::call(dummy, a, b); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..2bf756c622fa3c86d763e44787735626268da822 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_unique_ops.h @@ -0,0 +1,39 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API _unique { + using schema = ::std::tuple (const at::Tensor &, bool, bool); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_unique") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)") + static ::std::tuple call(const at::Tensor & self, bool sorted, bool return_inverse); + static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, bool sorted, bool return_inverse); +}; + +struct TORCH_API _unique_out { + using schema = ::std::tuple (const at::Tensor &, bool, bool, at::Tensor &, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_unique") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_unique.out(Tensor self, bool sorted=True, bool return_inverse=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))") + static ::std::tuple call(const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1); + static ::std::tuple redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, bool sorted, bool return_inverse, at::Tensor & out0, at::Tensor & out1); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_csc_tensor_args.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_csc_tensor_args.h new file mode 100644 index 0000000000000000000000000000000000000000..ffc09c3de26d8cf26ef0a19ad3927a930c3f792a --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_csc_tensor_args.h @@ -0,0 +1,30 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::_validate_sparse_csc_tensor_args(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size) -> () +inline void _validate_sparse_csc_tensor_args(const at::Tensor & ccol_indices, const at::Tensor & row_indices, const at::Tensor & values, at::IntArrayRef size) { + return at::_ops::_validate_sparse_csc_tensor_args::call(ccol_indices, row_indices, values, size); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/acos_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/acos_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..986f166cc893c0a15f85b9397b5393d778bf480c --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/acos_ops.h @@ -0,0 +1,50 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API acos { + using schema = at::Tensor (const at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::acos") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "acos(Tensor self) -> Tensor") + static at::Tensor call(const at::Tensor & self); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self); +}; + +struct TORCH_API acos_ { + using schema = at::Tensor & (at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::acos_") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "acos_(Tensor(a!) self) -> Tensor(a!)") + static at::Tensor & call(at::Tensor & self); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self); +}; + +struct TORCH_API acos_out { + using schema = at::Tensor & (const at::Tensor &, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::acos") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)") + static at::Tensor & call(const at::Tensor & self, at::Tensor & out); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool3d_backward_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool3d_backward_native.h new file mode 100644 index 0000000000000000000000000000000000000000..674ad5fa72774174cb83781f5b458b9b2fbd8b0e --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/adaptive_max_pool3d_backward_native.h @@ -0,0 +1,26 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace at { +namespace native { +struct TORCH_API structured_adaptive_max_pool3d_backward_out_cpu : public at::meta::structured_adaptive_max_pool3d_backward { +void impl(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, const at::Tensor & grad_input); +}; +struct TORCH_API structured_adaptive_max_pool3d_backward_out_cuda : public at::meta::structured_adaptive_max_pool3d_backward { +void impl(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & indices, const at::Tensor & grad_input); +}; +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos.h new file mode 100644 index 0000000000000000000000000000000000000000..c7bb87a17fdcda558cb013c63c3824ff1124e526 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos.h @@ -0,0 +1,44 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::arccos(Tensor self) -> Tensor +inline at::Tensor arccos(const at::Tensor & self) { + return at::_ops::arccos::call(self); +} + +// aten::arccos_(Tensor(a!) self) -> Tensor(a!) +inline at::Tensor & arccos_(at::Tensor & self) { + return at::_ops::arccos_::call(self); +} + +// aten::arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & arccos_out(at::Tensor & out, const at::Tensor & self) { + return at::_ops::arccos_out::call(self, out); +} +// aten::arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & arccos_outf(const at::Tensor & self, at::Tensor & out) { + return at::_ops::arccos_out::call(self, out); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos_native.h new file mode 100644 index 0000000000000000000000000000000000000000..4782be8fd671ecf48e9409bf7865f67ad1110837 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/arccos_native.h @@ -0,0 +1,23 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor arccos(const at::Tensor & self); +TORCH_API at::Tensor & arccos_out(const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor & arccos_(at::Tensor & self); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ceil_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ceil_native.h new file mode 100644 index 0000000000000000000000000000000000000000..6aa7c3b7db566cd77b44bfa15d56fcbb83cdfbee --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ceil_native.h @@ -0,0 +1,29 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace at { +namespace native { +struct TORCH_API structured_ceil_out : public at::meta::structured_ceil { +void impl(const at::Tensor & self, const at::Tensor & out); +}; +TORCH_API at::Tensor ceil_sparse(const at::Tensor & self); +TORCH_API at::Tensor & ceil_sparse_out(const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor & ceil_sparse_(at::Tensor & self); +TORCH_API at::Tensor ceil_sparse_csr(const at::Tensor & self); +TORCH_API at::Tensor & ceil_sparse_csr_out(const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor & ceil_sparse_csr_(at::Tensor & self); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..d3453ba515644d08ddb13760949b80131ba6d2ef --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/conv2d_compositeimplicitautograd_dispatch.h @@ -0,0 +1,26 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeimplicitautograd { + +TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const ::std::optional & bias={}, at::IntArrayRef stride=1, at::IntArrayRef padding=0, at::IntArrayRef dilation=1, int64_t groups=1); +TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const ::std::optional & bias={}, c10::SymIntArrayRef stride=c10::SymInt(1), c10::SymIntArrayRef padding=c10::SymInt(0), c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1); +TORCH_API at::Tensor conv2d(const at::Tensor & input, const at::Tensor & weight, const ::std::optional & bias, at::IntArrayRef stride, c10::string_view padding, at::IntArrayRef dilation=1, int64_t groups=1); +TORCH_API at::Tensor conv2d_symint(const at::Tensor & input, const at::Tensor & weight, const ::std::optional & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation=c10::SymInt(1), c10::SymInt groups=1); + +} // namespace compositeimplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/expand_as_compositeimplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/expand_as_compositeimplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..2198ce01f90ba6fa51f1c4c601e619c2b465870c --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/expand_as_compositeimplicitautograd_dispatch.h @@ -0,0 +1,23 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeimplicitautograd { + +TORCH_API at::Tensor expand_as(const at::Tensor & self, const at::Tensor & other); + +} // namespace compositeimplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftfreq.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftfreq.h new file mode 100644 index 0000000000000000000000000000000000000000..bf9b64442bed66d352f4946f779453c6212a0572 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/fft_fftfreq.h @@ -0,0 +1,43 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::fft_fftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor +inline at::Tensor fft_fftfreq(int64_t n, double d=1.0, at::TensorOptions options={}) { + return at::_ops::fft_fftfreq::call(n, d, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt()); +} +// aten::fft_fftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor +inline at::Tensor fft_fftfreq(int64_t n, double d, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory) { + return at::_ops::fft_fftfreq::call(n, d, dtype, layout, device, pin_memory); +} + +// aten::fft_fftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & fft_fftfreq_out(at::Tensor & out, int64_t n, double d=1.0) { + return at::_ops::fft_fftfreq_out::call(n, d, out); +} +// aten::fft_fftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & fft_fftfreq_outf(int64_t n, double d, at::Tensor & out) { + return at::_ops::fft_fftfreq_out::call(n, d, out); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/flip_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/flip_native.h new file mode 100644 index 0000000000000000000000000000000000000000..f6116ea9ed74a5ba3aeb31d23ade36b91fd9230e --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/flip_native.h @@ -0,0 +1,22 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor & flip_out(const at::Tensor & self, at::IntArrayRef dims, at::Tensor & out); +TORCH_API at::Tensor flip(const at::Tensor & self, at::IntArrayRef dims); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h new file mode 100644 index 0000000000000000000000000000000000000000..bc02b7b5d204985332d22011e72f99444fc28d0e --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/glu_backward_native.h @@ -0,0 +1,24 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor glu_backward_cpu(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim); +TORCH_API at::Tensor & glu_backward_cpu_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input); +TORCH_API at::Tensor glu_backward_cuda(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim); +TORCH_API at::Tensor & glu_backward_cuda_out(const at::Tensor & grad_output, const at::Tensor & self, int64_t dim, at::Tensor & grad_input); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..ac26a2555027ce42c1f16d68a38c2d410c436a43 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/lgamma_ops.h @@ -0,0 +1,50 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API lgamma_out { + using schema = at::Tensor & (const at::Tensor &, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lgamma") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lgamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)") + static at::Tensor & call(const at::Tensor & self, at::Tensor & out); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out); +}; + +struct TORCH_API lgamma_ { + using schema = at::Tensor & (at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lgamma_") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lgamma_(Tensor(a!) self) -> Tensor(a!)") + static at::Tensor & call(at::Tensor & self); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self); +}; + +struct TORCH_API lgamma { + using schema = at::Tensor (const at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::lgamma") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "lgamma(Tensor self) -> Tensor") + static at::Tensor call(const at::Tensor & self); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/logit_backward_compositeexplicitautogradnonfunctional_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/logit_backward_compositeexplicitautogradnonfunctional_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..3b8e3b83c7ed918c028c3caec1ad22ed8c087e8d --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/logit_backward_compositeexplicitautogradnonfunctional_dispatch.h @@ -0,0 +1,23 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeexplicitautogradnonfunctional { + +TORCH_API at::Tensor logit_backward(const at::Tensor & grad_output, const at::Tensor & self, ::std::optional eps=::std::nullopt); + +} // namespace compositeexplicitautogradnonfunctional +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_compositeimplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_compositeimplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..ea56b707a0ac0e9398f61c2b7ed8d815afa88f64 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/margin_ranking_loss_compositeimplicitautograd_dispatch.h @@ -0,0 +1,23 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeimplicitautograd { + +TORCH_API at::Tensor margin_ranking_loss(const at::Tensor & input1, const at::Tensor & input2, const at::Tensor & target, double margin=0.0, int64_t reduction=at::Reduction::Mean); + +} // namespace compositeimplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_with_indices_backward_compositeexplicitautogradnonfunctional_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_with_indices_backward_compositeexplicitautogradnonfunctional_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..3ff969183a4b7be6dac728dbc965f73e89b12012 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_pool2d_with_indices_backward_compositeexplicitautogradnonfunctional_dispatch.h @@ -0,0 +1,23 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeexplicitautogradnonfunctional { + +TORCH_API at::Tensor max_pool2d_with_indices_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, at::IntArrayRef dilation, bool ceil_mode, const at::Tensor & indices); + +} // namespace compositeexplicitautogradnonfunctional +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool3d_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool3d_native.h new file mode 100644 index 0000000000000000000000000000000000000000..85b946fa1d9efd43e4699315d041a8bcb04bd9a9 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/max_unpool3d_native.h @@ -0,0 +1,24 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor max_unpooling3d_forward_cpu(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding); +TORCH_API at::Tensor & max_unpooling3d_forward_out_cpu(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out); +TORCH_API at::Tensor max_unpooling3d_forward_cuda(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding); +TORCH_API at::Tensor & max_unpooling3d_forward_out_cuda(const at::Tensor & self, const at::Tensor & indices, at::IntArrayRef output_size, at::IntArrayRef stride, at::IntArrayRef padding, at::Tensor & out); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/median_compositeexplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/median_compositeexplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..062ae20866c71d27358f8fc6acc46e7a1098d616 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/median_compositeexplicitautograd_dispatch.h @@ -0,0 +1,25 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeexplicitautograd { + +TORCH_API at::Tensor & median_out(at::Tensor & out, const at::Tensor & self); +TORCH_API at::Tensor & median_outf(const at::Tensor & self, at::Tensor & out); +TORCH_API ::std::tuple median(const at::Tensor & self, int64_t dim, bool keepdim=false); + +} // namespace compositeexplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_adaptive_avg_pool2d_backward_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_adaptive_avg_pool2d_backward_native.h new file mode 100644 index 0000000000000000000000000000000000000000..587dffda34c5919c403320a8899ef8a9a978df3d --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/mkldnn_adaptive_avg_pool2d_backward_native.h @@ -0,0 +1,22 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor & mkldnn_adaptive_avg_pool2d_backward_out(const at::Tensor & grad_output, const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor mkldnn_adaptive_avg_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nanmean_compositeimplicitautograd_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nanmean_compositeimplicitautograd_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..532e7986a6b0ca442438b5b8dd3b1cc2cfe40240 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nanmean_compositeimplicitautograd_dispatch.h @@ -0,0 +1,25 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace compositeimplicitautograd { + +TORCH_API at::Tensor nanmean(const at::Tensor & self, at::OptionalIntArrayRef dim=::std::nullopt, bool keepdim=false, ::std::optional dtype=::std::nullopt); +TORCH_API at::Tensor & nanmean_out(at::Tensor & out, const at::Tensor & self, at::OptionalIntArrayRef dim=::std::nullopt, bool keepdim=false, ::std::optional dtype=::std::nullopt); +TORCH_API at::Tensor & nanmean_outf(const at::Tensor & self, at::OptionalIntArrayRef dim, bool keepdim, ::std::optional dtype, at::Tensor & out); + +} // namespace compositeimplicitautograd +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/native_norm_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/native_norm_native.h new file mode 100644 index 0000000000000000000000000000000000000000..86f8cb25a1d4c6aa1a52ef21e6ffedcc246ad190 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/native_norm_native.h @@ -0,0 +1,24 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor & native_norm_out(const at::Tensor & self, const at::Scalar & p, at::Tensor & out); +TORCH_API at::Tensor norm_sparse(const at::Tensor & self, const at::Scalar & p=2); +TORCH_API at::Tensor & native_norm_ScalarOpt_dim_dtype_out(const at::Tensor & self, const ::std::optional & p, at::IntArrayRef dim, bool keepdim, ::std::optional dtype, at::Tensor & out); +TORCH_API at::Tensor norm_sparse(const at::Tensor & self, const ::std::optional & p, at::IntArrayRef dim, bool keepdim, ::std::optional dtype); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nonzero_numpy.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nonzero_numpy.h new file mode 100644 index 0000000000000000000000000000000000000000..80afbe27694ba7875e09fb6c7b086e1da3482c04 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/nonzero_numpy.h @@ -0,0 +1,30 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::nonzero_numpy(Tensor self) -> Tensor[] +inline ::std::vector nonzero_numpy(const at::Tensor & self) { + return at::_ops::nonzero_numpy::call(self); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ones_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ones_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..de1bd8fca513f97bd5154e90166344beedae7afe --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/ones_ops.h @@ -0,0 +1,61 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API ones_names { + using schema = at::Tensor (at::IntArrayRef, ::std::optional, ::std::optional, ::std::optional, ::std::optional, ::std::optional); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::ones") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor") + static at::Tensor call(at::IntArrayRef size, ::std::optional names, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, ::std::optional names, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory); +}; + +struct TORCH_API ones { + using schema = at::Tensor (c10::SymIntArrayRef, ::std::optional, ::std::optional, ::std::optional, ::std::optional); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::ones") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "ones(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor") + static at::Tensor call(c10::SymIntArrayRef size, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, ::std::optional dtype, ::std::optional layout, ::std::optional device, ::std::optional pin_memory); +}; + +struct TORCH_API ones_out { + using schema = at::Tensor & (c10::SymIntArrayRef, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::ones") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "ones.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)") + static at::Tensor & call(c10::SymIntArrayRef size, at::Tensor & out); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, c10::SymIntArrayRef size, at::Tensor & out); +}; + +struct TORCH_API ones_names_out { + using schema = at::Tensor & (at::IntArrayRef, ::std::optional, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::ones") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "names_out") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "ones.names_out(int[] size, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)") + static at::Tensor & call(at::IntArrayRef size, ::std::optional names, at::Tensor & out); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::IntArrayRef size, ::std::optional names, at::Tensor & out); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/quantized_rnn_relu_cell_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/quantized_rnn_relu_cell_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..6672ec0739c14e88e7e7eb2cbf94c98dc6f0ef86 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/quantized_rnn_relu_cell_ops.h @@ -0,0 +1,28 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API quantized_rnn_relu_cell { + using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Tensor &, const at::Scalar &, const at::Scalar &, const at::Scalar &, const at::Scalar &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::quantized_rnn_relu_cell") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor") + static at::Tensor call(const at::Tensor & input, const at::Tensor & hx, const at::Tensor & w_ih, const at::Tensor & w_hh, const at::Tensor & b_ih, const at::Tensor & b_hh, const at::Tensor & packed_ih, const at::Tensor & packed_hh, const at::Tensor & col_offsets_ih, const at::Tensor & col_offsets_hh, const at::Scalar & scale_ih, const at::Scalar & scale_hh, const at::Scalar & zero_point_ih, const at::Scalar & zero_point_hh); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, const at::Tensor & hx, const at::Tensor & w_ih, const at::Tensor & w_hh, const at::Tensor & b_ih, const at::Tensor & b_hh, const at::Tensor & packed_ih, const at::Tensor & packed_hh, const at::Tensor & col_offsets_ih, const at::Tensor & col_offsets_hh, const at::Scalar & scale_ih, const at::Scalar & scale_hh, const at::Scalar & zero_point_ih, const at::Scalar & zero_point_hh); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad1d_backward_cpu_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad1d_backward_cpu_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..4299fabddb76a284091f854ba1edc6240c61874d --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad1d_backward_cpu_dispatch.h @@ -0,0 +1,28 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace cpu { + +TORCH_API at::Tensor reflection_pad1d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef padding); +TORCH_API at::Tensor reflection_pad1d_backward_symint(const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding); +TORCH_API at::Tensor & reflection_pad1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef padding); +TORCH_API at::Tensor & reflection_pad1d_backward_outf(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef padding, at::Tensor & grad_input); +TORCH_API at::Tensor & reflection_pad1d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding); +TORCH_API at::Tensor & reflection_pad1d_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding, at::Tensor & grad_input); + +} // namespace cpu +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad3d_cpu_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad3d_cpu_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..268fcd9ab0852a8228b33204dd4d6c19a84fe40a --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/reflection_pad3d_cpu_dispatch.h @@ -0,0 +1,28 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace cpu { + +TORCH_API at::Tensor reflection_pad3d(const at::Tensor & self, at::IntArrayRef padding); +TORCH_API at::Tensor reflection_pad3d_symint(const at::Tensor & self, c10::SymIntArrayRef padding); +TORCH_API at::Tensor & reflection_pad3d_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef padding); +TORCH_API at::Tensor & reflection_pad3d_outf(const at::Tensor & self, at::IntArrayRef padding, at::Tensor & out); +TORCH_API at::Tensor & reflection_pad3d_symint_out(at::Tensor & out, const at::Tensor & self, c10::SymIntArrayRef padding); +TORCH_API at::Tensor & reflection_pad3d_symint_outf(const at::Tensor & self, c10::SymIntArrayRef padding, at::Tensor & out); + +} // namespace cpu +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/replication_pad2d_backward_ops.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/replication_pad2d_backward_ops.h new file mode 100644 index 0000000000000000000000000000000000000000..242d8c97a3b6b05a8a7298d357a4dafb6a4b1f9a --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/replication_pad2d_backward_ops.h @@ -0,0 +1,39 @@ +#pragma once + +// @generated by torchgen/gen.py from Operator.h + +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { +namespace _ops { + + +struct TORCH_API replication_pad2d_backward_grad_input { + using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef, at::Tensor &); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::replication_pad2d_backward") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "grad_input") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "replication_pad2d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!)") + static at::Tensor & call(const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding, at::Tensor & grad_input); + static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding, at::Tensor & grad_input); +}; + +struct TORCH_API replication_pad2d_backward { + using schema = at::Tensor (const at::Tensor &, const at::Tensor &, c10::SymIntArrayRef); + using ptr_schema = schema*; + // See Note [static constexpr char* members for windows NVCC] + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::replication_pad2d_backward") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "") + STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "replication_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor") + static at::Tensor call(const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding); + static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad_output, const at::Tensor & self, c10::SymIntArrayRef padding); +}; + +}} // namespace at::_ops diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/round_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/round_native.h new file mode 100644 index 0000000000000000000000000000000000000000..9b660dfd67ba03a6eb21679136b580e8e8a0b8f8 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/round_native.h @@ -0,0 +1,32 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +namespace at { +namespace native { +struct TORCH_API structured_round_out : public at::meta::structured_round { +void impl(const at::Tensor & self, const at::Tensor & out); +}; +TORCH_API at::Tensor round_sparse(const at::Tensor & self); +TORCH_API at::Tensor & round_sparse_out(const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor & round_sparse_(at::Tensor & self); +TORCH_API at::Tensor round_sparse_csr(const at::Tensor & self); +TORCH_API at::Tensor & round_sparse_csr_out(const at::Tensor & self, at::Tensor & out); +TORCH_API at::Tensor & round_sparse_csr_(at::Tensor & self); +struct TORCH_API structured_round_decimals_out : public at::meta::structured_round_decimals { +void impl(const at::Tensor & self, int64_t decimals, const at::Tensor & out); +}; +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/scatter_reduce_meta_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/scatter_reduce_meta_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..4dba6685f9cd4f1a64bd32688981acd777631822 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/scatter_reduce_meta_dispatch.h @@ -0,0 +1,26 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace meta { + +TORCH_API at::Tensor scatter_reduce(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & src, c10::string_view reduce, bool include_self=true); +TORCH_API at::Tensor & scatter_reduce_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & src, c10::string_view reduce, bool include_self=true); +TORCH_API at::Tensor & scatter_reduce_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & src, c10::string_view reduce, bool include_self, at::Tensor & out); +TORCH_API at::Tensor & scatter_reduce_(at::Tensor & self, int64_t dim, const at::Tensor & index, const at::Tensor & src, c10::string_view reduce, bool include_self=true); + +} // namespace meta +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/slice_native.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/slice_native.h new file mode 100644 index 0000000000000000000000000000000000000000..e7bf6e5a59a2585296f47693fb44377acf0ed754 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/slice_native.h @@ -0,0 +1,21 @@ +#pragma once + +// @generated by torchgen/gen.py from NativeFunction.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +namespace at { +namespace native { +TORCH_API at::Tensor slice(const at::Tensor & self, int64_t dim=0, ::std::optional start=::std::nullopt, ::std::optional end=::std::nullopt, int64_t step=1); +} // namespace native +} // namespace at diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/special_log_softmax.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/special_log_softmax.h new file mode 100644 index 0000000000000000000000000000000000000000..b52322581bbb5a6ef10c71b910d4b544b5b1b9a5 --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/special_log_softmax.h @@ -0,0 +1,30 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::special_log_softmax(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor +inline at::Tensor special_log_softmax(const at::Tensor & self, int64_t dim, ::std::optional dtype=::std::nullopt) { + return at::_ops::special_log_softmax::call(self, dim, dtype); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/split.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/split.h new file mode 100644 index 0000000000000000000000000000000000000000..c44ecf5e7f08e8bbf7a61b855f3116671f0be7da --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/split.h @@ -0,0 +1,69 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] +inline ::std::vector split(const at::Tensor & self, int64_t split_size, int64_t dim=0) { + return at::_ops::split_Tensor::call(self, split_size, dim); +} +namespace symint { + template ::value>> + ::std::vector split(const at::Tensor & self, int64_t split_size, int64_t dim=0) { + return at::_ops::split_Tensor::call(self, split_size, dim); + } +} + +// aten::split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[] +inline ::std::vector split_symint(const at::Tensor & self, c10::SymInt split_size, int64_t dim=0) { + return at::_ops::split_Tensor::call(self, split_size, dim); +} +namespace symint { + template ::value>> + ::std::vector split(const at::Tensor & self, c10::SymInt split_size, int64_t dim=0) { + return at::_ops::split_Tensor::call(self, split_size, dim); + } +} + +// aten::split.sizes(Tensor(a -> *) self, SymInt[] split_size, int dim=0) -> Tensor(a)[] +inline ::std::vector split(const at::Tensor & self, at::IntArrayRef split_size, int64_t dim=0) { + return at::_ops::split_sizes::call(self, c10::fromIntArrayRefSlow(split_size), dim); +} +namespace symint { + template ::value>> + ::std::vector split(const at::Tensor & self, at::IntArrayRef split_size, int64_t dim=0) { + return at::_ops::split_sizes::call(self, c10::fromIntArrayRefSlow(split_size), dim); + } +} + +// aten::split.sizes(Tensor(a -> *) self, SymInt[] split_size, int dim=0) -> Tensor(a)[] +inline ::std::vector split_symint(const at::Tensor & self, c10::SymIntArrayRef split_size, int64_t dim=0) { + return at::_ops::split_sizes::call(self, split_size, dim); +} +namespace symint { + template ::value>> + ::std::vector split(const at::Tensor & self, c10::SymIntArrayRef split_size, int64_t dim=0) { + return at::_ops::split_sizes::call(self, split_size, dim); + } +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/squeeze_copy.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/squeeze_copy.h new file mode 100644 index 0000000000000000000000000000000000000000..ff4f9298dac95005da509d3b38aa479f1e4071cf --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/squeeze_copy.h @@ -0,0 +1,67 @@ +#pragma once + +// @generated by torchgen/gen.py from Function.h + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + + +#include + +namespace at { + + +// aten::squeeze_copy(Tensor self) -> Tensor +inline at::Tensor squeeze_copy(const at::Tensor & self) { + return at::_ops::squeeze_copy::call(self); +} + +// aten::squeeze_copy.dim(Tensor self, int dim) -> Tensor +inline at::Tensor squeeze_copy(const at::Tensor & self, int64_t dim) { + return at::_ops::squeeze_copy_dim::call(self, dim); +} + +// aten::squeeze_copy.dims(Tensor self, int[] dim) -> Tensor +inline at::Tensor squeeze_copy(const at::Tensor & self, at::IntArrayRef dim) { + return at::_ops::squeeze_copy_dims::call(self, dim); +} + +// aten::squeeze_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_out(at::Tensor & out, const at::Tensor & self) { + return at::_ops::squeeze_copy_out::call(self, out); +} +// aten::squeeze_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_outf(const at::Tensor & self, at::Tensor & out) { + return at::_ops::squeeze_copy_out::call(self, out); +} + +// aten::squeeze_copy.dim_out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_out(at::Tensor & out, const at::Tensor & self, int64_t dim) { + return at::_ops::squeeze_copy_dim_out::call(self, dim, out); +} +// aten::squeeze_copy.dim_out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_outf(const at::Tensor & self, int64_t dim, at::Tensor & out) { + return at::_ops::squeeze_copy_dim_out::call(self, dim, out); +} + +// aten::squeeze_copy.dims_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim) { + return at::_ops::squeeze_copy_dims_out::call(self, dim, out); +} +// aten::squeeze_copy.dims_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!) +inline at::Tensor & squeeze_copy_outf(const at::Tensor & self, at::IntArrayRef dim, at::Tensor & out) { + return at::_ops::squeeze_copy_dims_out::call(self, dim, out); +} + +} diff --git a/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/xlogy_meta_dispatch.h b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/xlogy_meta_dispatch.h new file mode 100644 index 0000000000000000000000000000000000000000..d7ac12b254998e5d772f0fd116055e160080f0fd --- /dev/null +++ b/infer_4_47_1/lib/python3.10/site-packages/torch/include/ATen/ops/xlogy_meta_dispatch.h @@ -0,0 +1,26 @@ +#pragma once +// @generated by torchgen/gen.py from DispatchKeyFunction.h + +// NB: The implementing C++ file is RegisterDispatchKey.cpp + +// The only #includes we need are for custom classes that have defaults in the C++ API +#include +#include +#include + +// Forward declarations of any types needed in the operator signatures. +// We can't directly include these classes because it will cause circular include dependencies. +// This file is included by TensorBody.h, which defines the Tensor class. +#include + +namespace at { + +namespace meta { + +TORCH_API at::Tensor xlogy(const at::Tensor & self, const at::Tensor & other); +TORCH_API at::Tensor & xlogy_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & other); +TORCH_API at::Tensor & xlogy_outf(const at::Tensor & self, const at::Tensor & other, at::Tensor & out); +TORCH_API at::Tensor & xlogy_(at::Tensor & self, const at::Tensor & other); + +} // namespace meta +} // namespace at