diff --git a/.gitattributes b/.gitattributes index 4c88823817ca5ed4de8764b41639477fcb5bf102..87f6ffdb06f684b3b20ef8584f91ee7721d2fdfa 100644 --- a/.gitattributes +++ b/.gitattributes @@ -1859,3 +1859,4 @@ infer_4_30_0/lib/python3.10/site-packages/gradio_client/__pycache__/media_data.c infer_4_30_0/lib/python3.10/site-packages/torch/_decomp/__pycache__/decompositions.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text infer_4_30_0/lib/python3.10/site-packages/shapely/lib.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text infer_4_30_0/lib/python3.10/site-packages/torch/_dynamo/__pycache__/trace_rules.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text +janus/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_heuristic.so.9 filter=lfs diff=lfs merge=lfs -text diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi new file mode 100644 index 0000000000000000000000000000000000000000..efe58f1e400f5048ec7bf06fc7c7f8917953ce90 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_VariableFunctions.pyi @@ -0,0 +1,25699 @@ +# @generated by tools/pyi/gen_pyi.py from torch/_C/_VariableFunctions.pyi.in +# mypy: disable-error-code="type-arg" +# mypy: allow-untyped-defs + +import builtins +from typing import ( + Any, + Callable, + ContextManager, + Iterator, + List, + Literal, + NamedTuple, + Optional, + overload, + Sequence, + Tuple, + TypeVar, + Union, +) + +import torch +from torch import contiguous_format, Generator, inf, memory_format, strided, SymInt, Tensor +from torch.types import ( + _bool, + _complex, + _device, + _dtype, + _float, + _int, + _layout, + _qscheme, + _size, + Device, + Number, +) + +from torch._prims_common import DeviceLikeType + +@overload +def __and__(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def __and__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +@overload +def __lshift__(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def __lshift__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +@overload +def __or__(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def __or__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +@overload +def __rshift__(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def __rshift__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +@overload +def __xor__(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def __xor__(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +def _adaptive_avg_pool2d(input: Tensor, output_size: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]]) -> Tensor: ... +def _adaptive_avg_pool3d(input: Tensor, output_size: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]]) -> Tensor: ... +def _add_batch_dim(input: Tensor, batch_dim: _int, level: _int) -> Tensor: ... +@overload +def _add_relu(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def _add_relu(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... +@overload +def _add_relu_(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ... +@overload +def _add_relu_(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... +def _addmm_activation(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, use_gelu: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def _aminmax(input: Tensor) -> Tuple[Tensor, Tensor]: ... +@overload +def _aminmax(input: Tensor, dim: _int, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: ... +def _amp_foreach_non_finite_check_and_unscale_(self: Union[Tuple[Tensor, ...], List[Tensor]], found_inf: Tensor, inv_scale: Tensor) -> None: ... +def _amp_update_scale_(input: Tensor, growth_tracker: Tensor, found_inf: Tensor, scale_growth_factor: _float, scale_backoff_factor: _float, growth_interval: _int) -> Tensor: ... +@overload +def _assert_async(input: Tensor) -> None: + r""" + _assert_async(tensor) -> void + + Asynchronously assert that the contents of tensor are nonzero. For CPU tensors, + this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for + CUDA tensors, we DO NOT synchronize and you may only find out the assertion + failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for + testing invariants in CUDA tensors without giving up performance. This function + is NOT intended to be used for regular error checking, as it will trash your CUDA + context if the assert fails (forcing you to restart your PyTorch process.) + + Args: + tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero + elements (including False for boolean tensors) cause an assertion failure + to be raised. + """ + ... +@overload +def _assert_async(input: Tensor, assert_msg: str) -> None: + r""" + _assert_async(tensor) -> void + + Asynchronously assert that the contents of tensor are nonzero. For CPU tensors, + this is equivalent to ``assert tensor`` or ``assert tensor.is_nonzero()``; for + CUDA tensors, we DO NOT synchronize and you may only find out the assertion + failed at a later CUDA kernel launch. Asynchronous assertion can be helpful for + testing invariants in CUDA tensors without giving up performance. This function + is NOT intended to be used for regular error checking, as it will trash your CUDA + context if the assert fails (forcing you to restart your PyTorch process.) + + Args: + tensor (Tensor): a one element tensor to test to see if it is nonzero. Zero + elements (including False for boolean tensors) cause an assertion failure + to be raised. + """ + ... +def _assert_scalar(self: Union[Number, _complex], assert_msg: str) -> None: ... +def _assert_tensor_metadata(a: Tensor, size: Optional[Sequence[Union[_int, SymInt]]] = None, stride: Optional[Sequence[Union[_int, SymInt]]] = None, dtype: Optional[_dtype] = None) -> None: ... +def _batch_norm_impl_index(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, _int]: ... +def _cast_Byte(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Char(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Double(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Float(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Half(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Int(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Long(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _cast_Short(input: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _choose_qparams_per_tensor(input: Tensor, reduce_range: _bool = False) -> Tuple[_float, _int]: ... +def _chunk_cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int, num_chunks: _int, *, out: Optional[Tensor] = None) -> Tensor: ... +def _coalesce(input: Tensor) -> Tensor: ... +def _compute_linear_combination(input: Tensor, coefficients: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _conj(input: Tensor) -> Tensor: ... +def _conj_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _conj_physical(input: Tensor) -> Tensor: ... +def _convert_indices_from_coo_to_csr(input: Tensor, size: _int, *, out_int32: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... +def _convert_indices_from_csr_to_coo(crow_indices: Tensor, col_indices: Tensor, *, out_int32: _bool = False, transpose: _bool = False, out: Optional[Tensor] = None) -> Tensor: ... +def _convert_weight_to_int4pack(input: Tensor, innerKTiles: _int) -> Tensor: ... +@overload +def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: _size, groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool) -> Tensor: ... +@overload +def _convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, cudnn_enabled: _bool, allow_tf32: _bool) -> Tensor: ... +def _convolution_mode(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: str, dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def _copy_from(input: Tensor, dst: Tensor, non_blocking: _bool = False) -> Tensor: ... +def _copy_from_and_resize(input: Tensor, dst: Tensor) -> Tensor: ... +def _cslt_compress(input: Tensor) -> Tensor: ... +def _cslt_sparse_mm(compressed_A: Tensor, dense_B: Tensor, bias: Optional[Tensor] = None, alpha: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, transpose_result: _bool = False, alg_id: _int = 0) -> Tensor: ... +def _cslt_sparse_mm_search(compressed_A: Tensor, dense_B: Tensor, bias: Optional[Tensor] = None, alpha: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, transpose_result: _bool = False) -> _int: ... +@overload +def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int = 0, zero_infinity: _bool = False) -> Tuple[Tensor, Tensor]: ... +@overload +def _ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int = 0, zero_infinity: _bool = False) -> Tuple[Tensor, Tensor]: ... +@overload +def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ... +@overload +def _cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int, deterministic: _bool, zero_infinity: _bool) -> Tuple[Tensor, Tensor]: ... +def _cudnn_init_dropout_state(dropout: _float, train: _bool, dropout_seed: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +def _cudnn_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, weight_buf: Optional[Tensor], hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: Union[_int, SymInt], proj_size: Union[_int, SymInt], num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: Sequence[Union[_int, SymInt]], dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ... +def _cudnn_rnn_flatten_weight(weight_arr: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, input_size: Union[_int, SymInt], mode: _int, hidden_size: Union[_int, SymInt], proj_size: Union[_int, SymInt], num_layers: _int, batch_first: _bool, bidirectional: _bool) -> Tensor: ... +def _cufft_clear_plan_cache(device_index: _int) -> None: ... +def _cufft_get_plan_cache_max_size(device_index: _int) -> _int: ... +def _cufft_get_plan_cache_size(device_index: _int) -> _int: ... +def _cufft_set_plan_cache_max_size(device_index: _int, max_size: _int) -> None: ... +def _cummax_helper(input: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ... +def _cummin_helper(input: Tensor, values: Tensor, indices: Tensor, dim: _int) -> None: ... +def _debug_has_internal_overlap(input: Tensor) -> _int: ... +def _dim_arange(like: Tensor, dim: _int) -> Tensor: ... +def _dirichlet_grad(x: Tensor, alpha: Tensor, total: Tensor) -> Tensor: ... +def _disable_functionalization(): ... +@overload +def _efficientzerotensor(size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +@overload +def _efficientzerotensor(*size: Union[_int, SymInt], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +def _embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False, padding_idx: _int = -1) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +def _embedding_bag_forward_only(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False, padding_idx: _int = -1) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +@overload +def _empty_affine_quantized(size: Sequence[Union[_int, SymInt]], *, scale: _float = 1, zero_point: _int = 0, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +@overload +def _empty_affine_quantized(*size: Union[_int, SymInt], scale: _float = 1, zero_point: _int = 0, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +@overload +def _empty_per_channel_affine_quantized(size: Sequence[Union[_int, SymInt]], *, scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +@overload +def _empty_per_channel_affine_quantized(*size: Union[_int, SymInt], scales: Tensor, zero_points: Tensor, axis: _int, memory_format: Optional[memory_format] = contiguous_format, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +def _enable_functionalization(*, reapply_views: _bool = False): ... +def _euclidean_dist(x1: Tensor, x2: Tensor) -> Tensor: ... +def _fake_quantize_learnable_per_channel_affine(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int, grad_factor: _float = 1.0) -> Tensor: ... +def _fake_quantize_learnable_per_tensor_affine(input: Tensor, scale: Tensor, zero_point: Tensor, quant_min: _int, quant_max: _int, grad_factor: _float = 1.0) -> Tensor: ... +def _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(input: Tensor, scale: Tensor, zero_point: Tensor, fake_quant_enabled: Tensor, quant_min: _int, quant_max: _int) -> torch.return_types._fake_quantize_per_tensor_affine_cachemask_tensor_qparams: ... +def _fft_c2c(input: Tensor, dim: Sequence[Union[_int, SymInt]], normalization: _int, forward: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... +def _fft_c2r(input: Tensor, dim: _size, normalization: _int, last_dim_size: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: ... +def _fft_r2c(input: Tensor, dim: _size, normalization: _int, onesided: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... +def _fill_mem_eff_dropout_mask_(input: Tensor, dropout_p: _float, seed: _int, offset: _int) -> Tensor: ... +def _foobar(input: Tensor, arg1: _bool = True, arg2: _bool = True, *, arg3: _bool = True) -> Tensor: ... +def _foreach_abs(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_abs(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.abs` to each Tensor of the input list. + """ + ... +def _foreach_abs_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_abs_(self: List[Tensor]) -> None + + Apply :func:`torch.abs` to each Tensor of the input list. + """ + ... +def _foreach_acos(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_acos(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.acos` to each Tensor of the input list. + """ + ... +def _foreach_acos_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_acos_(self: List[Tensor]) -> None + + Apply :func:`torch.acos` to each Tensor of the input list. + """ + ... +@overload +def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_add(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> None: ... +@overload +def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor, *, alpha: Union[Number, _complex] = 1) -> None: ... +@overload +def _foreach_add_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcdiv(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> None: ... +@overload +def _foreach_addcdiv_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> None: ... +@overload +def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcmul(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Tensor) -> None: ... +@overload +def _foreach_addcmul_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensor1: Union[Tuple[Tensor, ...], List[Tensor]], tensor2: Union[Tuple[Tensor, ...], List[Tensor]], value: Union[Number, _complex] = 1) -> None: ... +def _foreach_asin(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_asin(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.asin` to each Tensor of the input list. + """ + ... +def _foreach_asin_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_asin_(self: List[Tensor]) -> None + + Apply :func:`torch.asin` to each Tensor of the input list. + """ + ... +def _foreach_atan(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_atan(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.atan` to each Tensor of the input list. + """ + ... +def _foreach_atan_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_atan_(self: List[Tensor]) -> None + + Apply :func:`torch.atan` to each Tensor of the input list. + """ + ... +def _foreach_ceil(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_ceil(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.ceil` to each Tensor of the input list. + """ + ... +def _foreach_ceil_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_ceil_(self: List[Tensor]) -> None + + Apply :func:`torch.ceil` to each Tensor of the input list. + """ + ... +@overload +def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_max(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_clamp_max_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +@overload +def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_min(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_clamp_min_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_copy_(self: Union[Tuple[Tensor, ...], List[Tensor]], src: Union[Tuple[Tensor, ...], List[Tensor]], non_blocking: _bool = False) -> None: ... +def _foreach_cos(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_cos(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.cos` to each Tensor of the input list. + """ + ... +def _foreach_cos_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_cos_(self: List[Tensor]) -> None + + Apply :func:`torch.cos` to each Tensor of the input list. + """ + ... +def _foreach_cosh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_cosh(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.cosh` to each Tensor of the input list. + """ + ... +def _foreach_cosh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_cosh_(self: List[Tensor]) -> None + + Apply :func:`torch.cosh` to each Tensor of the input list. + """ + ... +@overload +def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_div(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> None: ... +@overload +def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_div_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_erf(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_erf(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.erf` to each Tensor of the input list. + """ + ... +def _foreach_erf_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_erf_(self: List[Tensor]) -> None + + Apply :func:`torch.erf` to each Tensor of the input list. + """ + ... +def _foreach_erfc(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_erfc(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.erfc` to each Tensor of the input list. + """ + ... +def _foreach_erfc_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_erfc_(self: List[Tensor]) -> None + + Apply :func:`torch.erfc` to each Tensor of the input list. + """ + ... +def _foreach_exp(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_exp(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.exp` to each Tensor of the input list. + """ + ... +def _foreach_exp_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_exp_(self: List[Tensor]) -> None + + Apply :func:`torch.exp` to each Tensor of the input list. + """ + ... +def _foreach_expm1(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_expm1(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.expm1` to each Tensor of the input list. + """ + ... +def _foreach_expm1_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_expm1_(self: List[Tensor]) -> None + + Apply :func:`torch.expm1` to each Tensor of the input list. + """ + ... +def _foreach_floor(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_floor(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.floor` to each Tensor of the input list. + """ + ... +def _foreach_floor_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_floor_(self: List[Tensor]) -> None + + Apply :func:`torch.floor` to each Tensor of the input list. + """ + ... +def _foreach_frac(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_frac(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.frac` to each Tensor of the input list. + """ + ... +def _foreach_frac_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_frac_(self: List[Tensor]) -> None + + Apply :func:`torch.frac` to each Tensor of the input list. + """ + ... +@overload +def _foreach_lerp(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weight: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_lerp(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weights: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_lerp_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weight: Union[Number, _complex]) -> None: ... +@overload +def _foreach_lerp_(self: Union[Tuple[Tensor, ...], List[Tensor]], tensors1: Union[Tuple[Tensor, ...], List[Tensor]], weights: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_lgamma(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_lgamma(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.lgamma` to each Tensor of the input list. + """ + ... +def _foreach_lgamma_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_lgamma_(self: List[Tensor]) -> None + + Apply :func:`torch.lgamma` to each Tensor of the input list. + """ + ... +def _foreach_log(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_log(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.log` to each Tensor of the input list. + """ + ... +def _foreach_log10(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_log10(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.log10` to each Tensor of the input list. + """ + ... +def _foreach_log10_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_log10_(self: List[Tensor]) -> None + + Apply :func:`torch.log10` to each Tensor of the input list. + """ + ... +def _foreach_log1p(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_log1p(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.log1p` to each Tensor of the input list. + """ + ... +def _foreach_log1p_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_log1p_(self: List[Tensor]) -> None + + Apply :func:`torch.log1p` to each Tensor of the input list. + """ + ... +def _foreach_log2(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_log2(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.log2` to each Tensor of the input list. + """ + ... +def _foreach_log2_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_log2_(self: List[Tensor]) -> None + + Apply :func:`torch.log2` to each Tensor of the input list. + """ + ... +def _foreach_log_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_log_(self: List[Tensor]) -> None + + Apply :func:`torch.log` to each Tensor of the input list. + """ + ... +def _foreach_max(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_maximum(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_maximum_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +@overload +def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_minimum(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_minimum_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +@overload +def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_mul(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Tensor) -> None: ... +@overload +def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +@overload +def _foreach_mul_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_neg(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_neg(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.neg` to each Tensor of the input list. + """ + ... +def _foreach_neg_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_neg_(self: List[Tensor]) -> None + + Apply :func:`torch.neg` to each Tensor of the input list. + """ + ... +def _foreach_norm(self: Union[Tuple[Tensor, ...], List[Tensor]], ord: Union[Number, _complex] = 2, dtype: Optional[_dtype] = None) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_pow(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_pow(self: Union[Number, _complex], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Number, _complex]) -> None: ... +@overload +def _foreach_pow_(self: Union[Tuple[Tensor, ...], List[Tensor]], exponent: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_reciprocal(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_reciprocal(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.reciprocal` to each Tensor of the input list. + """ + ... +def _foreach_reciprocal_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_reciprocal_(self: List[Tensor]) -> None + + Apply :func:`torch.reciprocal` to each Tensor of the input list. + """ + ... +def _foreach_round(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_round(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.round` to each Tensor of the input list. + """ + ... +def _foreach_round_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_round_(self: List[Tensor]) -> None + + Apply :func:`torch.round` to each Tensor of the input list. + """ + ... +def _foreach_sigmoid(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_sigmoid(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.sigmoid` to each Tensor of the input list. + """ + ... +def _foreach_sigmoid_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_sigmoid_(self: List[Tensor]) -> None + + Apply :func:`torch.sigmoid` to each Tensor of the input list. + """ + ... +def _foreach_sign(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +def _foreach_sign_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: ... +def _foreach_sin(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_sin(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.sin` to each Tensor of the input list. + """ + ... +def _foreach_sin_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_sin_(self: List[Tensor]) -> None + + Apply :func:`torch.sin` to each Tensor of the input list. + """ + ... +def _foreach_sinh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_sinh(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.sinh` to each Tensor of the input list. + """ + ... +def _foreach_sinh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_sinh_(self: List[Tensor]) -> None + + Apply :func:`torch.sinh` to each Tensor of the input list. + """ + ... +def _foreach_sqrt(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_sqrt(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.sqrt` to each Tensor of the input list. + """ + ... +def _foreach_sqrt_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_sqrt_(self: List[Tensor]) -> None + + Apply :func:`torch.sqrt` to each Tensor of the input list. + """ + ... +@overload +def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_sub(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> Tuple[Tensor, ...]: ... +@overload +def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalars: Sequence[Union[Number, _complex]]) -> None: ... +@overload +def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], other: Union[Tuple[Tensor, ...], List[Tensor]], *, alpha: Union[Number, _complex] = 1) -> None: ... +@overload +def _foreach_sub_(self: Union[Tuple[Tensor, ...], List[Tensor]], scalar: Union[Number, _complex]) -> None: ... +def _foreach_tan(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_tan(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.tan` to each Tensor of the input list. + """ + ... +def _foreach_tan_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_tan_(self: List[Tensor]) -> None + + Apply :func:`torch.tan` to each Tensor of the input list. + """ + ... +def _foreach_tanh(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_tanh(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.tanh` to each Tensor of the input list. + """ + ... +def _foreach_tanh_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_tanh_(self: List[Tensor]) -> None + + Apply :func:`torch.tanh` to each Tensor of the input list. + """ + ... +def _foreach_trunc(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + _foreach_trunc(self: List[Tensor]) -> List[Tensor] + + Apply :func:`torch.trunc` to each Tensor of the input list. + """ + ... +def _foreach_trunc_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_trunc_(self: List[Tensor]) -> None + + Apply :func:`torch.trunc` to each Tensor of the input list. + """ + ... +def _foreach_zero_(self: Union[Tuple[Tensor, ...], List[Tensor]]) -> None: + r""" + _foreach_zero_(self: List[Tensor]) -> None + + Apply :func:`torch.zero` to each Tensor of the input list. + """ + ... +def _from_functional_tensor(t: Tensor) -> Tensor: ... +def _functional_assert_async(input: Tensor, assert_msg: str, dep_token: Tensor) -> Tensor: ... +def _functional_assert_scalar(self: Union[Number, _complex], assert_msg: str, dep_token: Tensor) -> Tensor: ... +def _functional_sym_constrain_range(size: Union[Number, _complex], min: Optional[_int], max: Optional[_int], dep_token: Tensor) -> Tensor: ... +def _functional_sym_constrain_range_for_size(size: Union[Number, _complex], min: Optional[_int], max: Optional[_int], dep_token: Tensor) -> Tensor: ... +def _functionalize_apply_view_metas(tensor: Tensor, base: Tensor) -> Tensor: ... +def _functionalize_are_all_mutations_hidden_from_autograd(t: Tensor) -> _bool: ... +def _functionalize_are_all_mutations_under_no_grad_or_inference_mode(t: Tensor) -> _bool: ... +def _functionalize_commit_update(t: Tensor) -> None: ... +def _functionalize_has_metadata_mutation(tensor: Tensor) -> _bool: ... +def _functionalize_is_symbolic(tensor: Tensor) -> _bool: ... +def _functionalize_mark_mutation_hidden_from_autograd(t: Tensor) -> None: ... +def _functionalize_replace(self_: Tensor, other: Tensor) -> None: ... +def _functionalize_set_storage_changed(tensor: Tensor) -> _bool: ... +def _functionalize_sync(t: Tensor) -> None: ... +def _functionalize_unsafe_set(dst: Tensor, src: Tensor) -> None: ... +def _functionalize_was_inductor_storage_resized(t: Tensor) -> _bool: ... +def _functionalize_was_storage_changed(tensor: Tensor) -> _bool: ... +def _fused_adagrad_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], state_sums: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: _float, lr_decay: _float, weight_decay: _float, eps: _float, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +@overload +def _fused_adam_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: Tensor, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +@overload +def _fused_adam_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: _float, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +@overload +def _fused_adamw_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: Tensor, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +@overload +def _fused_adamw_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], exp_avgs: Union[Tuple[Tensor, ...], List[Tensor]], exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], max_exp_avg_sqs: Union[Tuple[Tensor, ...], List[Tensor]], state_steps: Union[Tuple[Tensor, ...], List[Tensor]], *, lr: _float, beta1: _float, beta2: _float, weight_decay: _float, eps: _float, amsgrad: _bool, maximize: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +def _fused_dropout(input: Tensor, p: _float, generator: Optional[Generator] = None) -> Tuple[Tensor, Tensor]: ... +def _fused_moving_avg_obs_fq_helper(input: Tensor, observer_on: Tensor, fake_quant_on: Tensor, running_min: Tensor, running_max: Tensor, scale: Tensor, zero_point: Tensor, averaging_const: _float, quant_min: _int, quant_max: _int, ch_axis: _int, per_row_fake_quant: _bool = False, symmetric_quant: _bool = False) -> torch.return_types._fused_moving_avg_obs_fq_helper: ... +def _fused_sdp_choice(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: _float = 0.0, is_causal: _bool = False, *, scale: Optional[_float] = None, enable_gqa: _bool = False) -> _int: ... +@overload +def _fused_sgd_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], momentum_buffer_list: Union[Tuple[Tensor, ...], List[Tensor]], *, weight_decay: _float, momentum: _float, lr: Tensor, dampening: _float, nesterov: _bool, maximize: _bool, is_first_step: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +@overload +def _fused_sgd_(self: Union[Tuple[Tensor, ...], List[Tensor]], grads: Union[Tuple[Tensor, ...], List[Tensor]], momentum_buffer_list: Union[Tuple[Tensor, ...], List[Tensor]], *, weight_decay: _float, momentum: _float, lr: _float, dampening: _float, nesterov: _bool, maximize: _bool, is_first_step: _bool, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None) -> None: ... +def _fw_primal_copy(input: Tensor, level: _int, *, out: Optional[Tensor] = None) -> Tensor: ... +def _grid_sampler_2d_cpu_fallback(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... +def _has_compatible_shallow_copy_type(input: Tensor, from_: Tensor) -> _bool: ... +def _histogramdd_bin_edges(input: Tensor, bins: _size, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> Tuple[Tensor, ...]: ... +def _histogramdd_from_bin_cts(input: Tensor, bins: _size, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> Tensor: ... +def _histogramdd_from_bin_tensors(input: Tensor, bins: Union[Tuple[Tensor, ...], List[Tensor]], *, weight: Optional[Tensor] = None, density: _bool = False) -> Tensor: ... +def _index_put_impl_(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False, unsafe: _bool = False) -> Tensor: ... +def _indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _int_mm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _is_all_true(input: Tensor) -> Tensor: ... +def _is_any_true(input: Tensor) -> Tensor: ... +def _is_functional_tensor(t: Tensor) -> _bool: ... +def _is_functional_tensor_base(t: Tensor) -> _bool: ... +def _is_zerotensor(input: Tensor) -> _bool: ... +def _lazy_clone(input: Tensor) -> Tensor: ... +def _linalg_check_errors(info: Tensor, api_name: str, *, is_matrix: _bool) -> None: ... +def _linalg_det(A: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_det: ... +def _linalg_eigh(A: Tensor, UPLO: str = "L", compute_v: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_eigh: ... +def _linalg_slogdet(A: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_slogdet: ... +def _linalg_solve_ex(A: Tensor, B: Tensor, *, left: _bool = True, check_errors: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_solve_ex: ... +def _linalg_svd(A: Tensor, full_matrices: _bool = False, compute_uv: _bool = True, *, driver: Optional[str] = None, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types._linalg_svd: ... +def _log_softmax(input: Tensor, dim: _int, half_to_float: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... +def _log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input_dtype: _dtype, *, out: Optional[Tensor] = None) -> Tensor: ... +def _logcumsumexp(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: ... +def _lstm_mps(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]: ... +def _lu_with_info(input: Tensor, pivot: _bool = True, check_errors: _bool = True) -> torch.return_types._lu_with_info: ... +def _make_dep_token(*, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +def _make_dual(primal: Tensor, tangent: Tensor, level: _int) -> Tensor: ... +def _make_dual_copy(primal: Tensor, tangent: Tensor, level: _int, *, out: Optional[Tensor] = None) -> Tensor: ... +def _make_per_channel_quantized_tensor(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int) -> Tensor: ... +def _make_per_tensor_quantized_tensor(input: Tensor, scale: _float, zero_point: _int) -> Tensor: ... +def _masked_scale(input: Tensor, mask: Tensor, scale: _float) -> Tensor: ... +def _masked_softmax(input: Tensor, mask: Tensor, dim: Optional[_int] = None, mask_type: Optional[_int] = None) -> Tensor: ... +def _mixed_dtypes_linear(input: Tensor, weight: Tensor, scale: Tensor, *, bias: Optional[Tensor] = None, activation: Optional[str] = None) -> Tensor: ... +def _mkldnn_reshape(input: Tensor, shape: _size) -> Tensor: ... +def _mkldnn_transpose(input: Tensor, dim0: _int, dim1: _int) -> Tensor: ... +def _mkldnn_transpose_(input: Tensor, dim0: _int, dim1: _int) -> Tensor: ... +def _mps_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def _mps_convolution_transpose(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +@overload +def _native_batch_norm_legit(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Tensor, running_var: Tensor, training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... +@overload +def _native_batch_norm_legit(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... +def _native_batch_norm_legit_no_training(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Tensor, running_var: Tensor, momentum: _float, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... +def _native_multi_head_attention(query: Tensor, key: Tensor, value: Tensor, embed_dim: _int, num_head: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, mask: Optional[Tensor] = None, need_weights: _bool = True, average_attn_weights: _bool = True, mask_type: Optional[_int] = None) -> Tuple[Tensor, Tensor]: ... +def _neg_view(input: Tensor) -> Tensor: ... +def _neg_view_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _nested_compute_contiguous_strides_offsets(nested_size: Tensor) -> Tuple[Tensor, Tensor]: ... +def _nested_from_padded(padded: Tensor, cpu_nested_shape_example: Tensor, fuse_transform_0213: _bool = False) -> Tensor: ... +def _nested_from_padded_and_nested_example(padded: Tensor, nt_example: Tensor) -> Tensor: ... +def _nested_get_jagged_dummy(any: Tensor) -> Tensor: ... +def _nested_get_lengths(input: Tensor) -> Tensor: ... +def _nested_get_max_seqlen(input: Tensor) -> Tensor: ... +def _nested_get_min_seqlen(input: Tensor) -> Tensor: ... +def _nested_get_offsets(input: Tensor) -> Tensor: ... +def _nested_get_ragged_idx(input: Tensor) -> _int: ... +def _nested_get_values(input: Tensor) -> Tensor: ... +def _nested_get_values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _nested_tensor_from_mask(t: Tensor, mask: Tensor, mask_check: _bool = True) -> Tensor: ... +def _nested_tensor_from_mask_left_aligned(t: Tensor, mask: Tensor) -> _bool: ... +def _nested_tensor_from_tensor_list(list: Union[Tuple[Tensor, ...], List[Tensor]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = None) -> Tensor: ... +def _nested_tensor_softmax_with_shape(input: Tensor, query: Tensor) -> Tensor: ... +def _nested_view_from_buffer(input: Tensor, nested_size: Tensor, nested_strides: Tensor, offsets: Tensor) -> Tensor: ... +def _nested_view_from_buffer_copy(input: Tensor, nested_size: Tensor, nested_strides: Tensor, offsets: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _nested_view_from_jagged(input: Tensor, offsets: Tensor, dummy: Tensor, lengths: Optional[Tensor] = None, ragged_idx: _int = 1, min_seqlen: Optional[Tensor] = None, max_seqlen: Optional[Tensor] = None) -> Tensor: ... +def _nested_view_from_jagged_copy(input: Tensor, offsets: Tensor, dummy: Tensor, lengths: Optional[Tensor] = None, ragged_idx: _int = 1, min_seqlen: Optional[Tensor] = None, max_seqlen: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: ... +def _nnpack_available() -> _bool: ... +def _nnpack_spatial_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... +def _pack_padded_sequence(input: Tensor, lengths: Tensor, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... +def _pad_packed_sequence(data: Tensor, batch_sizes: Tensor, batch_first: _bool, padding_value: Union[Number, _complex], total_length: _int) -> Tuple[Tensor, Tensor]: ... +def _pin_memory(input: Tensor, device: Optional[Optional[DeviceLikeType]] = None) -> Tensor: ... +def _prelu_kernel(input: Tensor, weight: Tensor) -> Tensor: ... +def _print(s: str) -> None: ... +def _propagate_xla_data(input: Tensor, output: Tensor) -> None: ... +def _remove_batch_dim(input: Tensor, level: _int, batch_size: _int, out_dim: _int) -> Tensor: ... +def _reshape_alias_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None) -> Tensor: ... +def _reshape_from_tensor(input: Tensor, shape: Tensor) -> Tensor: ... +def _resize_output_(input: Tensor, size: Sequence[Union[_int, SymInt]], device: Optional[DeviceLikeType]) -> Tensor: ... +def _rowwise_prune(weight: Tensor, mask: Tensor, compressed_indices_dtype: _dtype) -> Tuple[Tensor, Tensor]: ... +def _safe_softmax(input: Tensor, dim: _int, dtype: Optional[_dtype] = None) -> Tensor: ... +def _sample_dirichlet(input: Tensor, generator: Optional[Generator] = None) -> Tensor: ... +def _saturate_weight_to_fp16(weight: Tensor) -> Tensor: ... +def _scaled_dot_product_attention_math(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: _float = 0.0, is_causal: _bool = False, dropout_mask: Optional[Tensor] = None, *, scale: Optional[_float] = None, enable_gqa: _bool = False) -> Tuple[Tensor, Tensor]: ... +def _scaled_dot_product_attention_math_for_mps(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: _float = 0.0, is_causal: _bool = False, dropout_mask: Optional[Tensor] = None, *, scale: Optional[_float] = None) -> Tuple[Tensor, Tensor]: ... +def _scaled_dot_product_cudnn_attention(query: Tensor, key: Tensor, value: Tensor, attn_bias: Optional[Tensor], compute_log_sumexp: _bool, dropout_p: _float = 0.0, is_causal: _bool = False, return_debug_mask: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_cudnn_attention: ... +def _scaled_dot_product_efficient_attention(query: Tensor, key: Tensor, value: Tensor, attn_bias: Optional[Tensor], compute_log_sumexp: _bool, dropout_p: _float = 0.0, is_causal: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_efficient_attention: ... +def _scaled_dot_product_flash_attention(query: Tensor, key: Tensor, value: Tensor, dropout_p: _float = 0.0, is_causal: _bool = False, return_debug_mask: _bool = False, *, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_flash_attention: ... +def _scaled_dot_product_flash_attention_for_cpu(query: Tensor, key: Tensor, value: Tensor, dropout_p: _float = 0.0, is_causal: _bool = False, *, attn_mask: Optional[Tensor] = None, scale: Optional[_float] = None) -> torch.return_types._scaled_dot_product_flash_attention_for_cpu: ... +def _scaled_mm(input: Tensor, mat2: Tensor, scale_a: Tensor, scale_b: Tensor, bias: Optional[Tensor] = None, scale_result: Optional[Tensor] = None, out_dtype: Optional[_dtype] = None, use_fast_accum: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... +def _shape_as_tensor(input: Tensor) -> Tensor: ... +def _sobol_engine_draw(quasi: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int, dtype: Optional[_dtype]) -> Tuple[Tensor, Tensor]: ... +def _sobol_engine_ff_(input: Tensor, n: _int, sobolstate: Tensor, dimension: _int, num_generated: _int) -> Tensor: ... +def _sobol_engine_initialize_state_(input: Tensor, dimension: _int) -> Tensor: ... +def _sobol_engine_scramble_(input: Tensor, ltm: Tensor, dimension: _int) -> Tensor: ... +def _softmax(input: Tensor, dim: _int, half_to_float: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... +def _softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input_dtype: _dtype, *, grad_input: Optional[Tensor] = None) -> Tensor: ... +def _sparse_broadcast_to(input: Tensor, size: _size) -> Tensor: ... +def _sparse_broadcast_to_copy(input: Tensor, size: _size, *, out: Optional[Tensor] = None) -> Tensor: ... +def _sparse_csr_prod(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ... +def _sparse_csr_sum(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: ... +def _sparse_log_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input: Tensor) -> Tensor: ... +def _sparse_semi_structured_addmm(input: Tensor, mat1: Tensor, mat1_meta: Tensor, mat2: Tensor, *, alpha: Union[Number, _complex] = 1, beta: Union[Number, _complex] = 1, out_dtype: Optional[_dtype] = None) -> Tensor: ... +def _sparse_semi_structured_apply(input: Tensor, thread_masks: Tensor) -> Tuple[Tensor, Tensor]: ... +def _sparse_semi_structured_apply_dense(input: Tensor, thread_masks: Tensor) -> Tensor: ... +def _sparse_semi_structured_linear(input: Tensor, weight: Tensor, meta: Tensor, *, bias: Optional[Tensor] = None, activation: Optional[str] = None, out_dtype: Optional[_dtype] = None) -> Tensor: ... +def _sparse_semi_structured_mm(mat1: Tensor, mat1_meta: Tensor, mat2: Tensor, *, out_dtype: Optional[_dtype] = None) -> Tensor: ... +def _sparse_semi_structured_tile(input: Tensor, algorithm: str = "", use_cutlass: _bool = True) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ... +def _sparse_softmax_backward_data(grad_output: Tensor, output: Tensor, dim: _int, input: Tensor) -> Tensor: ... +def _sparse_sparse_matmul(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def _sparse_sum(input: Tensor) -> Tensor: ... +@overload +def _sparse_sum(input: Tensor, *, dtype: _dtype) -> Tensor: ... +@overload +def _sparse_sum(input: Tensor, dim: Union[_int, _size]) -> Tensor: ... +@overload +def _sparse_sum(input: Tensor, dim: Union[_int, _size], *, dtype: _dtype) -> Tensor: ... +def _stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: ... +def _standard_gamma(input: Tensor, generator: Optional[Generator] = None) -> Tensor: ... +def _standard_gamma_grad(input: Tensor, output: Tensor) -> Tensor: ... +def _sync(t: Tensor) -> None: ... +@overload +def _test_autograd_multiple_dispatch(input: Tensor) -> Tensor: ... +@overload +def _test_autograd_multiple_dispatch(input: Tensor, b: _bool) -> Tensor: ... +def _test_autograd_multiple_dispatch_view(input: Tensor) -> Tensor: ... +def _test_autograd_multiple_dispatch_view_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _test_check_tensor(input: Tensor) -> Tensor: ... +def _test_functorch_fallback(input: Tensor, other: Tensor) -> Tensor: ... +def _test_parallel_materialize(input: Tensor, num_parallel: _int, skip_first: _bool = False) -> Tensor: ... +def _test_serialization_subcmul(input: Tensor, other: Tensor, alpha: Union[Number, _complex] = 1) -> Tensor: ... +def _to_cpu(tensors: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: ... +def _to_functional_tensor(t: Tensor) -> Tensor: ... +def _to_sparse_semi_structured(dense: Tensor) -> Tuple[Tensor, Tensor]: ... +def _transform_bias_rescale_qkv(qkv: Tensor, qkv_bias: Tensor, num_heads: _int) -> Tuple[Tensor, Tensor, Tensor]: ... +def _transformer_encoder_layer_fwd(src: Tensor, embed_dim: _int, num_heads: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, use_gelu: _bool, norm_first: _bool, eps: _float, norm_weight_1: Tensor, norm_bias_1: Tensor, norm_weight_2: Tensor, norm_bias_2: Tensor, ffn_weight_1: Tensor, ffn_bias_1: Tensor, ffn_weight_2: Tensor, ffn_bias_2: Tensor, mask: Optional[Tensor] = None, mask_type: Optional[_int] = None) -> Tensor: ... +def _trilinear(i1: Tensor, i2: Tensor, i3: Tensor, expand1: _size, expand2: _size, expand3: _size, sumdim: _size, unroll_dim: _int = 1) -> Tensor: ... +def _triton_multi_head_attention(query: Tensor, key: Tensor, value: Tensor, embed_dim: _int, num_head: _int, qkv_weight: Tensor, qkv_bias: Tensor, proj_weight: Tensor, proj_bias: Tensor, mask: Optional[Tensor] = None) -> Tensor: ... +def _triton_scaled_dot_attention(q: Tensor, k: Tensor, v: Tensor, dropout_p: _float = 0.0) -> Tensor: ... +def _unique(input: Tensor, sorted: _bool = True, return_inverse: _bool = False) -> Tuple[Tensor, Tensor]: ... +def _unique2(input: Tensor, sorted: _bool = True, return_inverse: _bool = False, return_counts: _bool = False) -> Tuple[Tensor, Tensor, Tensor]: ... +def _unpack_dual(dual: Tensor, level: _int) -> torch.return_types._unpack_dual: ... +def _unsafe_index(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]]) -> Tensor: ... +def _unsafe_index_put(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... +def _unsafe_masked_index(input: Tensor, mask: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], fill: Union[Number, _complex]) -> Tensor: ... +def _unsafe_masked_index_put_accumulate(input: Tensor, mask: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor) -> Tensor: ... +@overload +def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int) -> _bool: ... +@overload +def _use_cudnn_ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int) -> _bool: ... +def _use_cudnn_rnn_flatten_weight() -> _bool: ... +def _validate_compressed_sparse_indices(is_crow: _bool, compressed_idx: Tensor, plain_idx: Tensor, cdim: _int, dim: _int, nnz: _int) -> None: ... +def _validate_sparse_bsc_tensor_args(ccol_indices: Tensor, row_indices: Tensor, values: Tensor, size: _size) -> None: ... +def _validate_sparse_bsr_tensor_args(crow_indices: Tensor, col_indices: Tensor, values: Tensor, size: _size) -> None: ... +def _validate_sparse_compressed_tensor_args(compressed_indices: Tensor, plain_indices: Tensor, values: Tensor, size: _size, layout: _layout) -> None: ... +def _validate_sparse_coo_tensor_args(indices: Tensor, values: Tensor, size: _size, is_coalesced: Optional[_bool] = None) -> None: ... +def _validate_sparse_csc_tensor_args(ccol_indices: Tensor, row_indices: Tensor, values: Tensor, size: _size) -> None: ... +def _validate_sparse_csr_tensor_args(crow_indices: Tensor, col_indices: Tensor, values: Tensor, size: _size) -> None: ... +def _values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def _weight_int4pack_mm(input: Tensor, mat2: Tensor, qGroupSize: _int, qScaleAndZeros: Tensor) -> Tensor: ... +def _weight_int8pack_mm(input: Tensor, mat2: Tensor, scales: Tensor) -> Tensor: ... +def _weight_norm(v: Tensor, g: Tensor, dim: _int = 0) -> Tensor: ... +def _weight_norm_interface(v: Tensor, g: Tensor, dim: _int = 0) -> Tuple[Tensor, Tensor]: ... +def _wrapped_linear_prepack(weight: Tensor, weight_scale: Tensor, weight_zero_point: Tensor, bias: Tensor) -> Tensor: ... +def _wrapped_quantized_linear_prepacked(input: Tensor, input_scale: Tensor, input_zero_point: Tensor, packed_weight: Tensor, output_scale: Tensor, output_zero_point: Tensor, out_channel: _int) -> Tensor: ... +def abs(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + abs(input, *, out=None) -> Tensor + + Computes the absolute value of each element in :attr:`input`. + + .. math:: + \text{out}_{i} = |\text{input}_{i}| + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.abs(torch.tensor([-1, -2, 3])) + tensor([ 1, 2, 3]) + """ + ... +def abs_(input: Tensor) -> Tensor: ... +def absolute(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + absolute(input, *, out=None) -> Tensor + + Alias for :func:`torch.abs` + """ + ... +def acos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + acos(input, *, out=None) -> Tensor + + Computes the inverse cosine of each element in :attr:`input`. + + .. math:: + \text{out}_{i} = \cos^{-1}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.3348, -0.5889, 0.2005, -0.1584]) + >>> torch.acos(a) + tensor([ 1.2294, 2.2004, 1.3690, 1.7298]) + """ + ... +def acos_(input: Tensor) -> Tensor: ... +def acosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + acosh(input, *, out=None) -> Tensor + + Returns a new tensor with the inverse hyperbolic cosine of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \cosh^{-1}(\text{input}_{i}) + + Note: + The domain of the inverse hyperbolic cosine is `[1, inf)` and values outside this range + will be mapped to ``NaN``, except for `+ INF` for which the output is mapped to `+ INF`. + + Args: + input (Tensor): the input tensor. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4).uniform_(1, 2) + >>> a + tensor([ 1.3192, 1.9915, 1.9674, 1.7151 ]) + >>> torch.acosh(a) + tensor([ 0.7791, 1.3120, 1.2979, 1.1341 ]) + """ + ... +def acosh_(input: Tensor) -> Tensor: ... +def adaptive_avg_pool1d(input: Tensor, output_size: Union[_int, _size]) -> Tensor: ... +def adaptive_max_pool1d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ... +@overload +def add(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + add(input, other, *, alpha=1, out=None) -> Tensor + + Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to add to :attr:`input`. + + Keyword arguments: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Examples:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) + >>> torch.add(a, 20) + tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) + + >>> b = torch.randn(4) + >>> b + tensor([-0.9732, -0.3497, 0.6245, 0.4022]) + >>> c = torch.randn(4, 1) + >>> c + tensor([[ 0.3743], + [-1.7724], + [-0.5811], + [-0.8017]]) + >>> torch.add(b, c, alpha=10) + tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], + [-18.6971, -18.0736, -17.0994, -17.3216], + [ -6.7845, -6.1610, -5.1868, -5.4090], + [ -8.9902, -8.3667, -7.3925, -7.6147]]) + """ + ... +@overload +def add(self: Tensor, alpha: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + add(input, other, *, alpha=1, out=None) -> Tensor + + Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to add to :attr:`input`. + + Keyword arguments: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Examples:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) + >>> torch.add(a, 20) + tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) + + >>> b = torch.randn(4) + >>> b + tensor([-0.9732, -0.3497, 0.6245, 0.4022]) + >>> c = torch.randn(4, 1) + >>> c + tensor([[ 0.3743], + [-1.7724], + [-0.5811], + [-0.8017]]) + >>> torch.add(b, c, alpha=10) + tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], + [-18.6971, -18.0736, -17.0994, -17.3216], + [ -6.7845, -6.1610, -5.1868, -5.4090], + [ -8.9902, -8.3667, -7.3925, -7.6147]]) + """ + ... +@overload +def add(self: Tensor, alpha: Union[Number, _complex], other: Tensor, *, out: Tensor) -> Tensor: + r""" + add(input, other, *, alpha=1, out=None) -> Tensor + + Adds :attr:`other`, scaled by :attr:`alpha`, to :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i + \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to add to :attr:`input`. + + Keyword arguments: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Examples:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) + >>> torch.add(a, 20) + tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) + + >>> b = torch.randn(4) + >>> b + tensor([-0.9732, -0.3497, 0.6245, 0.4022]) + >>> c = torch.randn(4, 1) + >>> c + tensor([[ 0.3743], + [-1.7724], + [-0.5811], + [-0.8017]]) + >>> torch.add(b, c, alpha=10) + tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], + [-18.6971, -18.0736, -17.0994, -17.3216], + [ -6.7845, -6.1610, -5.1868, -5.4090], + [ -8.9902, -8.3667, -7.3925, -7.6147]]) + """ + ... +@overload +def addbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor) -> Tensor: + r""" + addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored + in :attr:`batch1` and :attr:`batch2`, + with a reduced add step (all matrix multiplications get accumulated + along the first dimension). + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the + same number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + .. math:: + out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` + must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + input (Tensor): matrix to be added + alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.addbmm(M, batch1, batch2) + tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], + [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], + [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) + """ + ... +@overload +def addbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: + r""" + addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored + in :attr:`batch1` and :attr:`batch2`, + with a reduced add step (all matrix multiplications get accumulated + along the first dimension). + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the + same number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + .. math:: + out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` + must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + input (Tensor): matrix to be added + alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.addbmm(M, batch1, batch2) + tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], + [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], + [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) + """ + ... +@overload +def addbmm(input: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored + in :attr:`batch1` and :attr:`batch2`, + with a reduced add step (all matrix multiplications get accumulated + along the first dimension). + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the + same number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + .. math:: + out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` + must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + input (Tensor): matrix to be added + alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.addbmm(M, batch1, batch2) + tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], + [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], + [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) + """ + ... +@overload +def addbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: + r""" + addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored + in :attr:`batch1` and :attr:`batch2`, + with a reduced add step (all matrix multiplications get accumulated + along the first dimension). + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the + same number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + .. math:: + out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` + must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + input (Tensor): matrix to be added + alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.addbmm(M, batch1, batch2) + tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], + [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], + [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) + """ + ... +@overload +def addbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: + r""" + addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored + in :attr:`batch1` and :attr:`batch2`, + with a reduced add step (all matrix multiplications get accumulated + along the first dimension). + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the + same number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + .. math:: + out = \beta\ \text{input} + \alpha\ (\sum_{i=0}^{b-1} \text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` + must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + input (Tensor): matrix to be added + alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.addbmm(M, batch1, batch2) + tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], + [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], + [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) + """ + ... +@overload +def addcdiv(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor) -> Tensor: + r""" + addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, + multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. + + .. warning:: + Integer division with addcdiv is no longer supported, and in a future + release addcdiv will perform a true division of tensor1 and tensor2. + The historic addcdiv behavior can be implemented as + (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) + for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. + The future addcdiv behavior is just the latter implementation: + (input + value * tensor1 / tensor2), for all dtypes. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} + + + The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the numerator tensor + tensor2 (Tensor): the denominator tensor + + Keyword args: + value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcdiv(t, t1, t2, value=0.1) + tensor([[-0.2312, -3.6496, 0.1312], + [-1.0428, 3.4292, -0.1030], + [-0.5369, -0.9829, 0.0430]]) + """ + ... +@overload +def addcdiv(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: + r""" + addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, + multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. + + .. warning:: + Integer division with addcdiv is no longer supported, and in a future + release addcdiv will perform a true division of tensor1 and tensor2. + The historic addcdiv behavior can be implemented as + (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) + for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. + The future addcdiv behavior is just the latter implementation: + (input + value * tensor1 / tensor2), for all dtypes. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} + + + The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the numerator tensor + tensor2 (Tensor): the denominator tensor + + Keyword args: + value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcdiv(t, t1, t2, value=0.1) + tensor([[-0.2312, -3.6496, 0.1312], + [-1.0428, 3.4292, -0.1030], + [-0.5369, -0.9829, 0.0430]]) + """ + ... +@overload +def addcdiv(input: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addcdiv(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, + multiplies the result by the scalar :attr:`value` and adds it to :attr:`input`. + + .. warning:: + Integer division with addcdiv is no longer supported, and in a future + release addcdiv will perform a true division of tensor1 and tensor2. + The historic addcdiv behavior can be implemented as + (input + value * torch.trunc(tensor1 / tensor2)).to(input.dtype) + for integer inputs and as (input + value * tensor1 / tensor2) for float inputs. + The future addcdiv behavior is just the latter implementation: + (input + value * tensor1 / tensor2), for all dtypes. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} + + + The shapes of :attr:`input`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the numerator tensor + tensor2 (Tensor): the denominator tensor + + Keyword args: + value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcdiv(t, t1, t2, value=0.1) + tensor([[-0.2312, -3.6496, 0.1312], + [-1.0428, 3.4292, -0.1030], + [-0.5369, -0.9829, 0.0430]]) + """ + ... +@overload +def addcmul(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor) -> Tensor: + r""" + addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise multiplication of :attr:`tensor1` + by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` + and adds it to :attr:`input`. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i + + The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the tensor to be multiplied + tensor2 (Tensor): the tensor to be multiplied + + Keyword args: + value (Number, optional): multiplier for :math:`tensor1 .* tensor2` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcmul(t, t1, t2, value=0.1) + tensor([[-0.8635, -0.6391, 1.6174], + [-0.7617, -0.5879, 1.7388], + [-0.8353, -0.6249, 1.6511]]) + """ + ... +@overload +def addcmul(self: Tensor, value: Union[Number, _complex], tensor1: Tensor, tensor2: Tensor, *, out: Tensor) -> Tensor: + r""" + addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise multiplication of :attr:`tensor1` + by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` + and adds it to :attr:`input`. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i + + The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the tensor to be multiplied + tensor2 (Tensor): the tensor to be multiplied + + Keyword args: + value (Number, optional): multiplier for :math:`tensor1 .* tensor2` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcmul(t, t1, t2, value=0.1) + tensor([[-0.8635, -0.6391, 1.6174], + [-0.7617, -0.5879, 1.7388], + [-0.8353, -0.6249, 1.6511]]) + """ + ... +@overload +def addcmul(input: Tensor, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addcmul(input, tensor1, tensor2, *, value=1, out=None) -> Tensor + + Performs the element-wise multiplication of :attr:`tensor1` + by :attr:`tensor2`, multiplies the result by the scalar :attr:`value` + and adds it to :attr:`input`. + + .. math:: + \text{out}_i = \text{input}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i + + The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be + :ref:`broadcastable `. + + For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be + a real number, otherwise an integer. + + Args: + input (Tensor): the tensor to be added + tensor1 (Tensor): the tensor to be multiplied + tensor2 (Tensor): the tensor to be multiplied + + Keyword args: + value (Number, optional): multiplier for :math:`tensor1 .* tensor2` + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(1, 3) + >>> t1 = torch.randn(3, 1) + >>> t2 = torch.randn(1, 3) + >>> torch.addcmul(t, t1, t2, value=0.1) + tensor([[-0.8635, -0.6391, 1.6174], + [-0.7617, -0.5879, 1.7388], + [-0.8353, -0.6249, 1.6511]]) + """ + ... +@overload +def addmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor) -> Tensor: + r""" + addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. + The matrix :attr:`input` is added to the final result. + + If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operation has support for arguments with :ref:`sparse layouts`. If + :attr:`input` is sparse the result will have the same layout and if :attr:`out` + is provided it must have the same layout as :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): matrix to be added + mat1 (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2, 3) + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.addmm(M, mat1, mat2) + tensor([[-4.8716, 1.4671, -1.3746], + [ 0.7573, -3.9555, -2.8681]]) + """ + ... +@overload +def addmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: + r""" + addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. + The matrix :attr:`input` is added to the final result. + + If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operation has support for arguments with :ref:`sparse layouts`. If + :attr:`input` is sparse the result will have the same layout and if :attr:`out` + is provided it must have the same layout as :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): matrix to be added + mat1 (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2, 3) + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.addmm(M, mat1, mat2) + tensor([[-4.8716, 1.4671, -1.3746], + [ 0.7573, -3.9555, -2.8681]]) + """ + ... +@overload +def addmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. + The matrix :attr:`input` is added to the final result. + + If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operation has support for arguments with :ref:`sparse layouts`. If + :attr:`input` is sparse the result will have the same layout and if :attr:`out` + is provided it must have the same layout as :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): matrix to be added + mat1 (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2, 3) + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.addmm(M, mat1, mat2) + tensor([[-4.8716, 1.4671, -1.3746], + [ 0.7573, -3.9555, -2.8681]]) + """ + ... +@overload +def addmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: + r""" + addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. + The matrix :attr:`input` is added to the final result. + + If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operation has support for arguments with :ref:`sparse layouts`. If + :attr:`input` is sparse the result will have the same layout and if :attr:`out` + is provided it must have the same layout as :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): matrix to be added + mat1 (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2, 3) + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.addmm(M, mat1, mat2) + tensor([[-4.8716, 1.4671, -1.3746], + [ 0.7573, -3.9555, -2.8681]]) + """ + ... +@overload +def addmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor, *, out: Tensor) -> Tensor: + r""" + addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. + The matrix :attr:`input` is added to the final result. + + If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a :math:`(n \times p)` tensor + and :attr:`out` will be a :math:`(n \times p)` tensor. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat1` and :attr:`mat2` and the added matrix :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operation has support for arguments with :ref:`sparse layouts`. If + :attr:`input` is sparse the result will have the same layout and if :attr:`out` + is provided it must have the same layout as :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): matrix to be added + mat1 (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2, 3) + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.addmm(M, mat1, mat2) + tensor([[-4.8716, 1.4671, -1.3746], + [ 0.7573, -3.9555, -2.8681]]) + """ + ... +@overload +def addmv(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor) -> Tensor: + r""" + addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`mat` and + the vector :attr:`vec`. + The vector :attr:`input` is added to the final result. + + If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a 1-D tensor of size `n` and + :attr:`out` will be 1-D tensor of size `n`. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + Args: + input (Tensor): vector to be added + mat (Tensor): matrix to be matrix multiplied + vec (Tensor): vector to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2) + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.addmv(M, mat, vec) + tensor([-0.3768, -5.5565]) + """ + ... +@overload +def addmv(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: + r""" + addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`mat` and + the vector :attr:`vec`. + The vector :attr:`input` is added to the final result. + + If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a 1-D tensor of size `n` and + :attr:`out` will be 1-D tensor of size `n`. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + Args: + input (Tensor): vector to be added + mat (Tensor): matrix to be matrix multiplied + vec (Tensor): vector to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2) + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.addmv(M, mat, vec) + tensor([-0.3768, -5.5565]) + """ + ... +@overload +def addmv(input: Tensor, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`mat` and + the vector :attr:`vec`. + The vector :attr:`input` is added to the final result. + + If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a 1-D tensor of size `n` and + :attr:`out` will be 1-D tensor of size `n`. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + Args: + input (Tensor): vector to be added + mat (Tensor): matrix to be matrix multiplied + vec (Tensor): vector to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2) + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.addmv(M, mat, vec) + tensor([-0.3768, -5.5565]) + """ + ... +@overload +def addmv(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: + r""" + addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`mat` and + the vector :attr:`vec`. + The vector :attr:`input` is added to the final result. + + If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a 1-D tensor of size `n` and + :attr:`out` will be 1-D tensor of size `n`. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + Args: + input (Tensor): vector to be added + mat (Tensor): matrix to be matrix multiplied + vec (Tensor): vector to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2) + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.addmv(M, mat, vec) + tensor([-0.3768, -5.5565]) + """ + ... +@overload +def addmv(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor, *, out: Tensor) -> Tensor: + r""" + addmv(input, mat, vec, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`mat` and + the vector :attr:`vec`. + The vector :attr:`input` is added to the final result. + + If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a 1-D tensor of size `n` and + :attr:`out` will be 1-D tensor of size `n`. + + :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between + :attr:`mat` and :attr:`vec` and the added tensor :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + Args: + input (Tensor): vector to be added + mat (Tensor): matrix to be matrix multiplied + vec (Tensor): vector to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(2) + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.addmv(M, mat, vec) + tensor([-0.3768, -5.5565]) + """ + ... +@overload +def addmv_(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat: Tensor, vec: Tensor) -> Tensor: ... +@overload +def addmv_(input: Tensor, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: ... +@overload +def addmv_(beta: Union[Number, _complex], self: Tensor, mat: Tensor, vec: Tensor) -> Tensor: ... +@overload +def addr(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], vec1: Tensor, vec2: Tensor) -> Tensor: + r""" + addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` + and adds it to the matrix :attr:`input`. + + Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the + outer product between :attr:`vec1` and :attr:`vec2` and the added matrix + :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector + of size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a matrix of size + :math:`(n \times m)` and :attr:`out` will be a matrix of size + :math:`(n \times m)`. + + Args: + input (Tensor): matrix to be added + vec1 (Tensor): the first vector of the outer product + vec2 (Tensor): the second vector of the outer product + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> vec1 = torch.arange(1., 4.) + >>> vec2 = torch.arange(1., 3.) + >>> M = torch.zeros(3, 2) + >>> torch.addr(M, vec1, vec2) + tensor([[ 1., 2.], + [ 2., 4.], + [ 3., 6.]]) + """ + ... +@overload +def addr(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: + r""" + addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` + and adds it to the matrix :attr:`input`. + + Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the + outer product between :attr:`vec1` and :attr:`vec2` and the added matrix + :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector + of size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a matrix of size + :math:`(n \times m)` and :attr:`out` will be a matrix of size + :math:`(n \times m)`. + + Args: + input (Tensor): matrix to be added + vec1 (Tensor): the first vector of the outer product + vec2 (Tensor): the second vector of the outer product + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> vec1 = torch.arange(1., 4.) + >>> vec2 = torch.arange(1., 3.) + >>> M = torch.zeros(3, 2) + >>> torch.addr(M, vec1, vec2) + tensor([[ 1., 2.], + [ 2., 4.], + [ 3., 6.]]) + """ + ... +@overload +def addr(input: Tensor, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` + and adds it to the matrix :attr:`input`. + + Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the + outer product between :attr:`vec1` and :attr:`vec2` and the added matrix + :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector + of size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a matrix of size + :math:`(n \times m)` and :attr:`out` will be a matrix of size + :math:`(n \times m)`. + + Args: + input (Tensor): matrix to be added + vec1 (Tensor): the first vector of the outer product + vec2 (Tensor): the second vector of the outer product + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> vec1 = torch.arange(1., 4.) + >>> vec2 = torch.arange(1., 3.) + >>> M = torch.zeros(3, 2) + >>> torch.addr(M, vec1, vec2) + tensor([[ 1., 2.], + [ 2., 4.], + [ 3., 6.]]) + """ + ... +@overload +def addr(beta: Union[Number, _complex], self: Tensor, vec1: Tensor, vec2: Tensor) -> Tensor: + r""" + addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` + and adds it to the matrix :attr:`input`. + + Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the + outer product between :attr:`vec1` and :attr:`vec2` and the added matrix + :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector + of size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a matrix of size + :math:`(n \times m)` and :attr:`out` will be a matrix of size + :math:`(n \times m)`. + + Args: + input (Tensor): matrix to be added + vec1 (Tensor): the first vector of the outer product + vec2 (Tensor): the second vector of the outer product + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> vec1 = torch.arange(1., 4.) + >>> vec2 = torch.arange(1., 3.) + >>> M = torch.zeros(3, 2) + >>> torch.addr(M, vec1, vec2) + tensor([[ 1., 2.], + [ 2., 4.], + [ 3., 6.]]) + """ + ... +@overload +def addr(beta: Union[Number, _complex], self: Tensor, vec1: Tensor, vec2: Tensor, *, out: Tensor) -> Tensor: + r""" + addr(input, vec1, vec2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` + and adds it to the matrix :attr:`input`. + + Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the + outer product between :attr:`vec1` and :attr:`vec2` and the added matrix + :attr:`input` respectively. + + .. math:: + \text{out} = \beta\ \text{input} + \alpha\ (\text{vec1} \otimes \text{vec2}) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector + of size `m`, then :attr:`input` must be + :ref:`broadcastable ` with a matrix of size + :math:`(n \times m)` and :attr:`out` will be a matrix of size + :math:`(n \times m)`. + + Args: + input (Tensor): matrix to be added + vec1 (Tensor): the first vector of the outer product + vec2 (Tensor): the second vector of the outer product + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> vec1 = torch.arange(1., 4.) + >>> vec2 = torch.arange(1., 3.) + >>> M = torch.zeros(3, 2) + >>> torch.addr(M, vec1, vec2) + tensor([[ 1., 2.], + [ 2., 4.], + [ 3., 6.]]) + """ + ... +def adjoint(input: Tensor) -> Tensor: + r""" + adjoint(Tensor) -> Tensor + Returns a view of the tensor conjugated and with the last two dimensions transposed. + + ``x.adjoint()`` is equivalent to ``x.transpose(-2, -1).conj()`` for complex tensors and + to ``x.transpose(-2, -1)`` for real tensors. + + Example:: + >>> x = torch.arange(4, dtype=torch.float) + >>> A = torch.complex(x, x).reshape(2, 2) + >>> A + tensor([[0.+0.j, 1.+1.j], + [2.+2.j, 3.+3.j]]) + >>> A.adjoint() + tensor([[0.-0.j, 2.-2.j], + [1.-1.j, 3.-3.j]]) + >>> (A.adjoint() == A.mH).all() + tensor(True) + """ + ... +def affine_grid_generator(theta: Tensor, size: Sequence[Union[_int, SymInt]], align_corners: _bool) -> Tensor: ... +def alias_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.alias`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def all(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + all(input) -> Tensor + + Tests if all elements in :attr:`input` evaluate to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.all(a) + tensor(False, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.all(a) + tensor(False) + + .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if all elements in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(4, 2).bool() + >>> a + tensor([[True, True], + [True, False], + [True, True], + [True, True]], dtype=torch.bool) + >>> torch.all(a, dim=1) + tensor([ True, False, True, True], dtype=torch.bool) + >>> torch.all(a, dim=0) + tensor([ True, False], dtype=torch.bool) + """ + ... +@overload +def all(input: Tensor, dim: Optional[_size] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + all(input) -> Tensor + + Tests if all elements in :attr:`input` evaluate to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.all(a) + tensor(False, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.all(a) + tensor(False) + + .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if all elements in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(4, 2).bool() + >>> a + tensor([[True, True], + [True, False], + [True, True], + [True, True]], dtype=torch.bool) + >>> torch.all(a, dim=1) + tensor([ True, False, True, True], dtype=torch.bool) + >>> torch.all(a, dim=0) + tensor([ True, False], dtype=torch.bool) + """ + ... +@overload +def all(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + all(input) -> Tensor + + Tests if all elements in :attr:`input` evaluate to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.all(a) + tensor(False, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.all(a) + tensor(False) + + .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if all elements in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(4, 2).bool() + >>> a + tensor([[True, True], + [True, False], + [True, True], + [True, True]], dtype=torch.bool) + >>> torch.all(a, dim=1) + tensor([ True, False, True, True], dtype=torch.bool) + >>> torch.all(a, dim=0) + tensor([ True, False], dtype=torch.bool) + """ + ... +@overload +def all(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + all(input) -> Tensor + + Tests if all elements in :attr:`input` evaluate to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.all(a) + tensor(False, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.all(a) + tensor(False) + + .. function:: all(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if all elements in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(4, 2).bool() + >>> a + tensor([[True, True], + [True, False], + [True, True], + [True, True]], dtype=torch.bool) + >>> torch.all(a, dim=1) + tensor([ True, False, True, True], dtype=torch.bool) + >>> torch.all(a, dim=0) + tensor([ True, False], dtype=torch.bool) + """ + ... +def allclose(input: Tensor, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> _bool: + r""" + allclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool + + This function checks if :attr:`input` and :attr:`other` satisfy the condition: + + .. math:: + \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert + + elementwise, for all elements of :attr:`input` and :attr:`other`. The behaviour of this function is analogous to + `numpy.allclose `_ + + Args: + input (Tensor): first tensor to compare + other (Tensor): second tensor to compare + atol (float, optional): absolute tolerance. Default: 1e-08 + rtol (float, optional): relative tolerance. Default: 1e-05 + equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` + + Example:: + + >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) + False + >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) + True + >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) + False + >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) + True + """ + ... +def alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def alpha_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def amax(input: Tensor, dim: Union[_int, _size] = (), keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + amax(input, dim, keepdim=False, *, out=None) -> Tensor + + Returns the maximum value of each slice of the :attr:`input` tensor in the given + dimension(s) :attr:`dim`. + + .. note:: + The difference between ``max``/``min`` and ``amax``/``amin`` is: + - ``amax``/``amin`` supports reducing on multiple dimensions, + - ``amax``/``amin`` does not return indices, + - ``amax``/``amin`` evenly distributes gradient between equal values, + while ``max(dim)``/``min(dim)`` propagates gradient only to a single + index in the source tensor. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.8177, 1.4878, -0.2491, 0.9130], + [-0.7158, 1.1775, 2.0992, 0.4817], + [-0.0053, 0.0164, -1.3738, -0.0507], + [ 1.9700, 1.1106, -1.0318, -1.0816]]) + >>> torch.amax(a, 1) + tensor([1.4878, 2.0992, 0.0164, 1.9700]) + """ + ... +def amin(input: Tensor, dim: Union[_int, _size] = (), keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + amin(input, dim, keepdim=False, *, out=None) -> Tensor + + Returns the minimum value of each slice of the :attr:`input` tensor in the given + dimension(s) :attr:`dim`. + + .. note:: + The difference between ``max``/``min`` and ``amax``/``amin`` is: + - ``amax``/``amin`` supports reducing on multiple dimensions, + - ``amax``/``amin`` does not return indices, + - ``amax``/``amin`` evenly distributes gradient between equal values, + while ``max(dim)``/``min(dim)`` propagates gradient only to a single + index in the source tensor. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.6451, -0.4866, 0.2987, -1.3312], + [-0.5744, 1.2980, 1.8397, -0.2713], + [ 0.9128, 0.9214, -1.7268, -0.2995], + [ 0.9023, 0.4853, 0.9075, -1.6165]]) + >>> torch.amin(a, 1) + tensor([-1.3312, -0.5744, -1.7268, -1.6165]) + """ + ... +def aminmax(input: Tensor, *, dim: Optional[_int] = None, keepdim: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.aminmax: + r""" + aminmax(input, *, dim=None, keepdim=False, out=None) -> (Tensor min, Tensor max) + + Computes the minimum and maximum values of the :attr:`input` tensor. + + Args: + input (Tensor): + The input tensor + + Keyword Args: + dim (Optional[int]): + The dimension along which to compute the values. If `None`, + computes the values over the entire :attr:`input` tensor. + Default is `None`. + keepdim (bool): + If `True`, the reduced dimensions will be kept in the output + tensor as dimensions with size 1 for broadcasting, otherwise + they will be removed, as if calling (:func:`torch.squeeze`). + Default is `False`. + out (Optional[Tuple[Tensor, Tensor]]): + Optional tensors on which to write the result. Must have the same + shape and dtype as the expected output. + Default is `None`. + + Returns: + A named tuple `(min, max)` containing the minimum and maximum values. + + Raises: + RuntimeError + If any of the dimensions to compute the values over has size 0. + + .. note:: + NaN values are propagated to the output if at least one value is NaN. + + .. seealso:: + :func:`torch.amin` computes just the minimum value + :func:`torch.amax` computes just the maximum value + + Example:: + + >>> torch.aminmax(torch.tensor([1, -3, 5])) + torch.return_types.aminmax( + min=tensor(-3), + max=tensor(5)) + + >>> # aminmax propagates NaNs + >>> torch.aminmax(torch.tensor([1, -3, 5, torch.nan])) + torch.return_types.aminmax( + min=tensor(nan), + max=tensor(nan)) + + >>> t = torch.arange(10).view(2, 5) + >>> t + tensor([[0, 1, 2, 3, 4], + [5, 6, 7, 8, 9]]) + >>> t.aminmax(dim=0, keepdim=True) + torch.return_types.aminmax( + min=tensor([[0, 1, 2, 3, 4]]), + max=tensor([[5, 6, 7, 8, 9]])) + """ + ... +def angle(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + angle(input, *, out=None) -> Tensor + + Computes the element-wise angle (in radians) of the given :attr:`input` tensor. + + .. math:: + \text{out}_{i} = angle(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + .. note:: Starting in PyTorch 1.8, angle returns pi for negative real numbers, + zero for non-negative real numbers, and propagates NaNs. Previously + the function would return zero for all real numbers and not propagate + floating-point NaNs. + + Example:: + + >>> torch.angle(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]))*180/3.14159 + tensor([ 135., 135, -45]) + """ + ... +@overload +def any(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + any(input) -> Tensor + + Tests if any element in :attr:`input` evaluates to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.any(a) + tensor(True, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.any(a) + tensor(True) + + .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if any element in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 2) < 0 + >>> a + tensor([[ True, True], + [False, True], + [ True, True], + [False, False]]) + >>> torch.any(a, 1) + tensor([ True, True, True, False]) + >>> torch.any(a, 0) + tensor([True, True]) + """ + ... +@overload +def any(input: Tensor, dim: Optional[_size] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + any(input) -> Tensor + + Tests if any element in :attr:`input` evaluates to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.any(a) + tensor(True, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.any(a) + tensor(True) + + .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if any element in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 2) < 0 + >>> a + tensor([[ True, True], + [False, True], + [ True, True], + [False, False]]) + >>> torch.any(a, 1) + tensor([ True, True, True, False]) + >>> torch.any(a, 0) + tensor([True, True]) + """ + ... +@overload +def any(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + any(input) -> Tensor + + Tests if any element in :attr:`input` evaluates to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.any(a) + tensor(True, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.any(a) + tensor(True) + + .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if any element in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 2) < 0 + >>> a + tensor([[ True, True], + [False, True], + [ True, True], + [False, False]]) + >>> torch.any(a, 1) + tensor([ True, True, True, False]) + >>> torch.any(a, 0) + tensor([True, True]) + """ + ... +@overload +def any(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + any(input) -> Tensor + + Tests if any element in :attr:`input` evaluates to `True`. + + .. note:: This function matches the behaviour of NumPy in returning + output of dtype `bool` for all supported dtypes except `uint8`. + For `uint8` the dtype of output is `uint8` itself. + + Example:: + + >>> a = torch.rand(1, 2).bool() + >>> a + tensor([[False, True]], dtype=torch.bool) + >>> torch.any(a) + tensor(True, dtype=torch.bool) + >>> a = torch.arange(0, 3) + >>> a + tensor([0, 1, 2]) + >>> torch.any(a) + tensor(True) + + .. function:: any(input, dim, keepdim=False, *, out=None) -> Tensor + :noindex: + + For each row of :attr:`input` in the given dimension :attr:`dim`, + returns `True` if any element in the row evaluate to `True` and `False` otherwise. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 2) < 0 + >>> a + tensor([[ True, True], + [False, True], + [ True, True], + [False, False]]) + >>> torch.any(a, 1) + tensor([ True, True, True, False]) + >>> torch.any(a, 0) + tensor([True, True]) + """ + ... +@overload +def arange(start: Number, end: Number, step: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +@overload +def arange(start: Number, end: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +@overload +def arange(end: Number, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +@overload +def arange(end: Union[Number, _complex], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +@overload +def arange(start: Union[Number, _complex], end: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +@overload +def arange(start: Union[Number, _complex], end: Union[Number, _complex], step: Union[Number, _complex] = 1, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil` + with values from the interval ``[start, end)`` taken with common difference + :attr:`step` beginning from `start`. + + Note that non-integer :attr:`step` is subject to floating point rounding errors when + comparing against :attr:`end`; to avoid inconsistency, we advise subtracting a small epsilon from :attr:`end` + in such cases. + + .. math:: + \text{out}_{{i+1}} = \text{out}_{i} + \text{step} + + Args: + start (Number): the starting value for the set of points. Default: ``0``. + end (Number): the ending value for the set of points + step (Number): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `stop` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.arange(5) + tensor([ 0, 1, 2, 3, 4]) + >>> torch.arange(1, 4) + tensor([ 1, 2, 3]) + >>> torch.arange(1, 2.5, 0.5) + tensor([ 1.0000, 1.5000, 2.0000]) + """ + ... +def arccos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arccos(input, *, out=None) -> Tensor + + Alias for :func:`torch.acos`. + """ + ... +def arccos_(input: Tensor) -> Tensor: ... +def arccosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arccosh(input, *, out=None) -> Tensor + + Alias for :func:`torch.acosh`. + """ + ... +def arccosh_(input: Tensor) -> Tensor: ... +def arcsin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arcsin(input, *, out=None) -> Tensor + + Alias for :func:`torch.asin`. + """ + ... +def arcsin_(input: Tensor) -> Tensor: ... +def arcsinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arcsinh(input, *, out=None) -> Tensor + + Alias for :func:`torch.asinh`. + """ + ... +def arcsinh_(input: Tensor) -> Tensor: ... +def arctan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arctan(input, *, out=None) -> Tensor + + Alias for :func:`torch.atan`. + """ + ... +def arctan2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arctan2(input, other, *, out=None) -> Tensor + Alias for :func:`torch.atan2`. + """ + ... +def arctan_(input: Tensor) -> Tensor: ... +def arctanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + arctanh(input, *, out=None) -> Tensor + + Alias for :func:`torch.atanh`. + """ + ... +def arctanh_(input: Tensor) -> Tensor: ... +def argmax(input: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + argmax(input) -> LongTensor + + Returns the indices of the maximum value of all elements in the :attr:`input` tensor. + + This is the second value returned by :meth:`torch.max`. See its + documentation for the exact semantics of this method. + + .. note:: If there are multiple maximal values then the indices of the first maximal value are returned. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], + [-0.7401, -0.8805, -0.3402, -1.1936], + [ 0.4907, -1.3948, -1.0691, -0.3132], + [-1.6092, 0.5419, -0.2993, 0.3195]]) + >>> torch.argmax(a) + tensor(0) + + .. function:: argmax(input, dim, keepdim=False) -> LongTensor + :noindex: + + Returns the indices of the maximum values of a tensor across a dimension. + + This is the second value returned by :meth:`torch.max`. See its + documentation for the exact semantics of this method. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. If ``None``, the argmax of the flattened input is returned. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 1.3398, 0.2663, -0.2686, 0.2450], + [-0.7401, -0.8805, -0.3402, -1.1936], + [ 0.4907, -1.3948, -1.0691, -0.3132], + [-1.6092, 0.5419, -0.2993, 0.3195]]) + >>> torch.argmax(a, dim=1) + tensor([ 0, 2, 0, 1]) + """ + ... +def argmin(input: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + argmin(input, dim=None, keepdim=False) -> LongTensor + + Returns the indices of the minimum value(s) of the flattened tensor or along a dimension + + This is the second value returned by :meth:`torch.min`. See its + documentation for the exact semantics of this method. + + .. note:: If there are multiple minimal values then the indices of the first minimal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. If ``None``, the argmin of the flattened input is returned. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.1139, 0.2254, -0.1381, 0.3687], + [ 1.0100, -1.1975, -0.0102, -0.4732], + [-0.9240, 0.1207, -0.7506, -1.0213], + [ 1.7809, -1.2960, 0.9384, 0.1438]]) + >>> torch.argmin(a) + tensor(13) + >>> torch.argmin(a, dim=1) + tensor([ 2, 1, 3, 1]) + >>> torch.argmin(a, dim=1, keepdim=True) + tensor([[2], + [1], + [3], + [1]]) + """ + ... +@overload +def argsort(input: Tensor, *, stable: _bool, dim: _int = -1, descending: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + argsort(input, dim=-1, descending=False, stable=False) -> Tensor + + Returns the indices that sort a tensor along a given dimension in ascending + order by value. + + This is the second value returned by :meth:`torch.sort`. See its documentation + for the exact semantics of this method. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. If ``False``, the relative order of values + which compare equal is not guaranteed. ``True`` is slower. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): controls the relative order of equivalent elements + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], + [ 0.1598, 0.0788, -0.0745, -1.2700], + [ 1.2208, 1.0722, -0.7064, 1.2564], + [ 0.0669, -0.2318, -0.8229, -0.9280]]) + + + >>> torch.argsort(a, dim=1) + tensor([[2, 0, 3, 1], + [3, 2, 1, 0], + [2, 1, 0, 3], + [3, 2, 1, 0]]) + """ + ... +@overload +def argsort(input: Tensor, dim: _int = -1, descending: _bool = False) -> Tensor: + r""" + argsort(input, dim=-1, descending=False, stable=False) -> Tensor + + Returns the indices that sort a tensor along a given dimension in ascending + order by value. + + This is the second value returned by :meth:`torch.sort`. See its documentation + for the exact semantics of this method. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. If ``False``, the relative order of values + which compare equal is not guaranteed. ``True`` is slower. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): controls the relative order of equivalent elements + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], + [ 0.1598, 0.0788, -0.0745, -1.2700], + [ 1.2208, 1.0722, -0.7064, 1.2564], + [ 0.0669, -0.2318, -0.8229, -0.9280]]) + + + >>> torch.argsort(a, dim=1) + tensor([[2, 0, 3, 1], + [3, 2, 1, 0], + [2, 1, 0, 3], + [3, 2, 1, 0]]) + """ + ... +@overload +def argsort(input: Tensor, dim: Union[str, ellipsis, None], descending: _bool = False) -> Tensor: + r""" + argsort(input, dim=-1, descending=False, stable=False) -> Tensor + + Returns the indices that sort a tensor along a given dimension in ascending + order by value. + + This is the second value returned by :meth:`torch.sort`. See its documentation + for the exact semantics of this method. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. If ``False``, the relative order of values + which compare equal is not guaranteed. ``True`` is slower. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): controls the relative order of equivalent elements + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0785, 1.5267, -0.8521, 0.4065], + [ 0.1598, 0.0788, -0.0745, -1.2700], + [ 1.2208, 1.0722, -0.7064, 1.2564], + [ 0.0669, -0.2318, -0.8229, -0.9280]]) + + + >>> torch.argsort(a, dim=1) + tensor([[2, 0, 3, 1], + [3, 2, 1, 0], + [2, 1, 0, 3], + [3, 2, 1, 0]]) + """ + ... +def argwhere(input: Tensor) -> Tensor: + r""" + argwhere(input) -> Tensor + + Returns a tensor containing the indices of all non-zero elements of + :attr:`input`. Each row in the result contains the indices of a non-zero + element in :attr:`input`. The result is sorted lexicographically, with + the last index changing the fastest (C-style). + + If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor + :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of + non-zero elements in the :attr:`input` tensor. + + .. note:: + This function is similar to NumPy's `argwhere`. + + When :attr:`input` is on CUDA, this function causes host-device synchronization. + + Args: + {input} + + Example:: + + >>> t = torch.tensor([1, 0, 1]) + >>> torch.argwhere(t) + tensor([[0], + [2]]) + >>> t = torch.tensor([[1, 0, 1], [0, 1, 1]]) + >>> torch.argwhere(t) + tensor([[0, 0], + [0, 2], + [1, 1], + [1, 2]]) + """ + ... +def as_strided(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + as_strided(input, size, stride, storage_offset=None) -> Tensor + + Create a view of an existing `torch.Tensor` :attr:`input` with specified + :attr:`size`, :attr:`stride` and :attr:`storage_offset`. + + .. warning:: + Prefer using other view functions, like :meth:`torch.Tensor.expand`, + to setting a view's strides manually with `as_strided`, as this + function's behavior depends on the implementation of a tensor's storage. + The constructed view of the storage must only refer to elements within + the storage or a runtime error will be thrown, and if the view is + "overlapped" (with multiple indices referring to the same element in + memory) its behavior is undefined. + + Args: + input (Tensor): the input tensor. + size (tuple or ints): the shape of the output tensor + stride (tuple or ints): the stride of the output tensor + storage_offset (int, optional): the offset in the underlying storage of the output tensor. + If ``None``, the storage_offset of the output tensor will match the input tensor. + + Example:: + + >>> x = torch.randn(3, 3) + >>> x + tensor([[ 0.9039, 0.6291, 1.0795], + [ 0.1586, 2.1939, -0.4900], + [-0.1909, -0.7503, 1.9355]]) + >>> t = torch.as_strided(x, (2, 2), (1, 2)) + >>> t + tensor([[0.9039, 1.0795], + [0.6291, 0.1586]]) + >>> t = torch.as_strided(x, (2, 2), (1, 2), 1) + tensor([[0.6291, 0.1586], + [1.0795, 2.1939]]) + """ + ... +def as_strided_(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: ... +def as_strided_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.as_strided`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def as_strided_scatter(input: Tensor, src: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + as_strided_scatter(input, src, size, stride, storage_offset=None) -> Tensor + + Embeds the values of the :attr:`src` tensor into :attr:`input` along + the elements corresponding to the result of calling + input.as_strided(size, stride, storage_offset). + + This function returns a tensor with fresh storage; it does not + return a view. + + Args: + input (Tensor): the input tensor. + size (tuple or ints): the shape of the output tensor + stride (tuple or ints): the stride of the output tensor + storage_offset (int, optional): the offset in the underlying storage of the output tensor + + .. note:: + + :attr:`src` must be of the proper size in order to be embedded + into :attr:`input`. Specifically, it should have the same shape as + `torch.as_strided(input, size, stride, storage_offset)` + + Example:: + + >>> a = torch.arange(4).reshape(2, 2) + 1 + >>> a + tensor([[1, 2], + [3, 4]]) + >>> b = torch.zeros(3, 3) + >>> b + tensor([[0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.]]) + >>> torch.as_strided_scatter(b, a, (2, 2), (1, 2)) + tensor([[1., 3., 2.], + [4., 0., 0.], + [0., 0., 0.]]) + """ + ... +def as_tensor(data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None) -> Tensor: + r""" + as_tensor(data, dtype=None, device=None) -> Tensor + + Converts :attr:`data` into a tensor, sharing data and preserving autograd + history if possible. + + If :attr:`data` is already a tensor with the requested dtype and device + then :attr:`data` itself is returned, but if :attr:`data` is a + tensor with a different dtype or device then it's copied as if using + `data.to(dtype=dtype, device=device)`. + + If :attr:`data` is a NumPy array (an ndarray) with the same dtype and device then a + tensor is constructed using :func:`torch.from_numpy`. + + If :attr:`data` is a CuPy array, the returned tensor will be located on the same device as the CuPy array unless + specifically overwritten by :attr:`device` or a default device. + + .. seealso:: + + :func:`torch.tensor` never shares its data and creates a new "leaf tensor" (see :doc:`/notes/autograd`). + + + Args: + data (array_like): Initial data for the tensor. Can be a list, tuple, + NumPy ``ndarray``, scalar, and other types. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, infers data type from :attr:`data`. + device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor + then the device of data is used. If None and data is not a tensor then + the result tensor is constructed on the current device. + + + Example:: + + >>> a = numpy.array([1, 2, 3]) + >>> t = torch.as_tensor(a) + >>> t + tensor([ 1, 2, 3]) + >>> t[0] = -1 + >>> a + array([-1, 2, 3]) + + >>> a = numpy.array([1, 2, 3]) + >>> t = torch.as_tensor(a, device=torch.device('cuda')) + >>> t + tensor([ 1, 2, 3]) + >>> t[0] = -1 + >>> a + array([1, 2, 3]) + """ + ... +def asarray(obj: Any, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, copy: Optional[_bool] = None, requires_grad: _bool = False) -> Tensor: + r""" + asarray(obj, *, dtype=None, device=None, copy=None, requires_grad=False) -> Tensor + + Converts :attr:`obj` to a tensor. + + :attr:`obj` can be one of: + + 1. a tensor + 2. a NumPy array or a NumPy scalar + 3. a DLPack capsule + 4. an object that implements Python's buffer protocol + 5. a scalar + 6. a sequence of scalars + + When :attr:`obj` is a tensor, NumPy array, or DLPack capsule the returned tensor will, + by default, not require a gradient, have the same datatype as :attr:`obj`, be on the + same device, and share memory with it. These properties can be controlled with the + :attr:`dtype`, :attr:`device`, :attr:`copy`, and :attr:`requires_grad` keyword arguments. + If the returned tensor is of a different datatype, on a different device, or a copy is + requested then it will not share its memory with :attr:`obj`. If :attr:`requires_grad` + is ``True`` then the returned tensor will require a gradient, and if :attr:`obj` is + also a tensor with an autograd history then the returned tensor will have the same history. + + When :attr:`obj` is not a tensor, NumPy array, or DLPack capsule but implements Python's + buffer protocol then the buffer is interpreted as an array of bytes grouped according to + the size of the datatype passed to the :attr:`dtype` keyword argument. (If no datatype is + passed then the default floating point datatype is used, instead.) The returned tensor + will have the specified datatype (or default floating point datatype if none is specified) + and, by default, be on the CPU device and share memory with the buffer. + + When :attr:`obj` is a NumPy scalar, the returned tensor will be a 0-dimensional tensor on + the CPU and that doesn't share its memory (i.e. ``copy=True``). By default datatype will + be the PyTorch datatype corresponding to the NumPy's scalar's datatype. + + When :attr:`obj` is none of the above but a scalar, or a sequence of scalars then the + returned tensor will, by default, infer its datatype from the scalar values, be on the + current default device, and not share its memory. + + .. seealso:: + + :func:`torch.tensor` creates a tensor that always copies the data from the input object. + :func:`torch.from_numpy` creates a tensor that always shares memory from NumPy arrays. + :func:`torch.frombuffer` creates a tensor that always shares memory from objects that + implement the buffer protocol. + :func:`torch.from_dlpack` creates a tensor that always shares memory from + DLPack capsules. + + Args: + obj (object): a tensor, NumPy array, DLPack Capsule, object that implements Python's + buffer protocol, scalar, or sequence of scalars. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the datatype of the returned tensor. + Default: ``None``, which causes the datatype of the returned tensor to be + inferred from :attr:`obj`. + copy (bool, optional): controls whether the returned tensor shares memory with :attr:`obj`. + Default: ``None``, which causes the returned tensor to share memory with :attr:`obj` + whenever possible. If ``True`` then the returned tensor does not share its memory. + If ``False`` then the returned tensor shares its memory with :attr:`obj` and an + error is thrown if it cannot. + device (:class:`torch.device`, optional): the device of the returned tensor. + Default: ``None``, which causes the device of :attr:`obj` to be used. Or, if + :attr:`obj` is a Python sequence, the current default device will be used. + requires_grad (bool, optional): whether the returned tensor requires grad. + Default: ``False``, which causes the returned tensor not to require a gradient. + If ``True``, then the returned tensor will require a gradient, and if :attr:`obj` + is also a tensor with an autograd history then the returned tensor will have + the same history. + + Example:: + + >>> a = torch.tensor([1, 2, 3]) + >>> # Shares memory with tensor 'a' + >>> b = torch.asarray(a) + >>> a.data_ptr() == b.data_ptr() + True + >>> # Forces memory copy + >>> c = torch.asarray(a, copy=True) + >>> a.data_ptr() == c.data_ptr() + False + + >>> a = torch.tensor([1., 2., 3.], requires_grad=True) + >>> b = a + 2 + >>> b + tensor([3., 4., 5.], grad_fn=) + >>> # Shares memory with tensor 'b', with no grad + >>> c = torch.asarray(b) + >>> c + tensor([3., 4., 5.]) + >>> # Shares memory with tensor 'b', retaining autograd history + >>> d = torch.asarray(b, requires_grad=True) + >>> d + tensor([3., 4., 5.], grad_fn=) + + >>> array = numpy.array([1, 2, 3]) + >>> # Shares memory with array 'array' + >>> t1 = torch.asarray(array) + >>> array.__array_interface__['data'][0] == t1.data_ptr() + True + >>> # Copies memory due to dtype mismatch + >>> t2 = torch.asarray(array, dtype=torch.float32) + >>> array.__array_interface__['data'][0] == t2.data_ptr() + False + + >>> scalar = numpy.float64(0.5) + >>> torch.asarray(scalar) + tensor(0.5000, dtype=torch.float64) + """ + ... +def asin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + asin(input, *, out=None) -> Tensor + + Returns a new tensor with the arcsine of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \sin^{-1}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.5962, 1.4985, -0.4396, 1.4525]) + >>> torch.asin(a) + tensor([-0.6387, nan, -0.4552, nan]) + """ + ... +def asin_(input: Tensor) -> Tensor: ... +def asinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + asinh(input, *, out=None) -> Tensor + + Returns a new tensor with the inverse hyperbolic sine of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \sinh^{-1}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.1606, -1.4267, -1.0899, -1.0250 ]) + >>> torch.asinh(a) + tensor([ 0.1599, -1.1534, -0.9435, -0.8990 ]) + """ + ... +def asinh_(input: Tensor) -> Tensor: ... +def atan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + atan(input, *, out=None) -> Tensor + + Returns a new tensor with the arctangent of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \tan^{-1}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) + >>> torch.atan(a) + tensor([ 0.2299, 0.2487, -0.5591, -0.5727]) + """ + ... +def atan2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + atan2(input, other, *, out=None) -> Tensor + + Element-wise arctangent of :math:`\text{input}_{i} / \text{other}_{i}` + with consideration of the quadrant. Returns a new tensor with the signed angles + in radians between vector :math:`(\text{other}_{i}, \text{input}_{i})` + and vector :math:`(1, 0)`. (Note that :math:`\text{other}_{i}`, the second + parameter, is the x-coordinate, while :math:`\text{input}_{i}`, the first + parameter, is the y-coordinate.) + + The shapes of ``input`` and ``other`` must be + :ref:`broadcastable `. + + Args: + input (Tensor): the first input tensor + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.9041, 0.0196, -0.3108, -2.4423]) + >>> torch.atan2(a, torch.randn(4)) + tensor([ 0.9833, 0.0811, -1.9743, -1.4151]) + """ + ... +def atan_(input: Tensor) -> Tensor: ... +def atanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + atanh(input, *, out=None) -> Tensor + + Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`. + + Note: + The domain of the inverse hyperbolic tangent is `(-1, 1)` and values outside this range + will be mapped to ``NaN``, except for the values `1` and `-1` for which the output is + mapped to `+/-INF` respectively. + + .. math:: + \text{out}_{i} = \tanh^{-1}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4).uniform_(-1, 1) + >>> a + tensor([ -0.9385, 0.2968, -0.8591, -0.1871 ]) + >>> torch.atanh(a) + tensor([ -1.7253, 0.3060, -1.2899, -0.1893 ]) + """ + ... +def atanh_(input: Tensor) -> Tensor: ... +def avg_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, ceil_mode: _bool = False, count_include_pad: _bool = True) -> Tensor: ... +@overload +def baddbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor) -> Tensor: + r""" + baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices in :attr:`batch1` + and :attr:`batch2`. + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same + number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a + :math:`(b \times n \times p)` tensor and :attr:`out` will be a + :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the + same as the scaling factors used in :meth:`torch.addbmm`. + + .. math:: + \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the tensor to be added + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(10, 3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.baddbmm(M, batch1, batch2).size() + torch.Size([10, 3, 5]) + """ + ... +@overload +def baddbmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: + r""" + baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices in :attr:`batch1` + and :attr:`batch2`. + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same + number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a + :math:`(b \times n \times p)` tensor and :attr:`out` will be a + :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the + same as the scaling factors used in :meth:`torch.addbmm`. + + .. math:: + \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the tensor to be added + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(10, 3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.baddbmm(M, batch1, batch2).size() + torch.Size([10, 3, 5]) + """ + ... +@overload +def baddbmm(input: Tensor, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices in :attr:`batch1` + and :attr:`batch2`. + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same + number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a + :math:`(b \times n \times p)` tensor and :attr:`out` will be a + :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the + same as the scaling factors used in :meth:`torch.addbmm`. + + .. math:: + \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the tensor to be added + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(10, 3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.baddbmm(M, batch1, batch2).size() + torch.Size([10, 3, 5]) + """ + ... +@overload +def baddbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor) -> Tensor: + r""" + baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices in :attr:`batch1` + and :attr:`batch2`. + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same + number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a + :math:`(b \times n \times p)` tensor and :attr:`out` will be a + :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the + same as the scaling factors used in :meth:`torch.addbmm`. + + .. math:: + \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the tensor to be added + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(10, 3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.baddbmm(M, batch1, batch2).size() + torch.Size([10, 3, 5]) + """ + ... +@overload +def baddbmm(beta: Union[Number, _complex], self: Tensor, batch1: Tensor, batch2: Tensor, *, out: Tensor) -> Tensor: + r""" + baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices in :attr:`batch1` + and :attr:`batch2`. + :attr:`input` is added to the final result. + + :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same + number of matrices. + + If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a + :math:`(b \times m \times p)` tensor, then :attr:`input` must be + :ref:`broadcastable ` with a + :math:`(b \times n \times p)` tensor and :attr:`out` will be a + :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the + same as the scaling factors used in :meth:`torch.addbmm`. + + .. math:: + \text{out}_i = \beta\ \text{input}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) + + If :attr:`beta` is 0, then :attr:`input` will be ignored, and `nan` and `inf` in + it will not be propagated. + + For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and + :attr:`alpha` must be real numbers, otherwise they should be integers. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the tensor to be added + batch1 (Tensor): the first batch of matrices to be multiplied + batch2 (Tensor): the second batch of matrices to be multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`input` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + + Example:: + + >>> M = torch.randn(10, 3, 5) + >>> batch1 = torch.randn(10, 3, 4) + >>> batch2 = torch.randn(10, 4, 5) + >>> torch.baddbmm(M, batch1, batch2).size() + torch.Size([10, 3, 5]) + """ + ... +@overload +def bartlett_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + bartlett_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Bartlett window function. + + .. math:: + w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} + \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ + 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ + \end{cases}, + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.bartlett_window(L, periodic=True)`` equal to + ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +@overload +def bartlett_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + bartlett_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Bartlett window function. + + .. math:: + w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} + \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ + 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ + \end{cases}, + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.bartlett_window(L, periodic=True)`` equal to + ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +def batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ... +def batch_norm_backward_elemt(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], sum_dy: Tensor, sum_dy_xmu: Tensor, count: Tensor) -> Tensor: ... +def batch_norm_backward_reduce(grad_out: Tensor, input: Tensor, mean: Tensor, invstd: Tensor, weight: Optional[Tensor], input_g: _bool, weight_g: _bool, bias_g: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +def batch_norm_elemt(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, invstd: Tensor, eps: _float, *, out: Optional[Tensor] = None) -> Tensor: ... +def batch_norm_gather_stats(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, count: _int) -> Tuple[Tensor, Tensor]: ... +def batch_norm_gather_stats_with_counts(input: Tensor, mean: Tensor, invstd: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float, eps: _float, counts: Tensor) -> Tuple[Tensor, Tensor]: ... +def batch_norm_stats(input: Tensor, eps: _float) -> Tuple[Tensor, Tensor]: ... +def batch_norm_update_stats(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor], momentum: _float) -> Tuple[Tensor, Tensor]: ... +@overload +def bernoulli(input: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + bernoulli(input, *, generator=None, out=None) -> Tensor + + Draws binary random numbers (0 or 1) from a Bernoulli distribution. + + The :attr:`input` tensor should be a tensor containing probabilities + to be used for drawing the binary random number. + Hence, all values in :attr:`input` have to be in the range: + :math:`0 \leq \text{input}_i \leq 1`. + + The :math:`\text{i}^{th}` element of the output tensor will draw a + value :math:`1` according to the :math:`\text{i}^{th}` probability value given + in :attr:`input`. + + .. math:: + \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) + + The returned :attr:`out` tensor only has values 0 or 1 and is of the same + shape as :attr:`input`. + + :attr:`out` can have integral ``dtype``, but :attr:`input` must have floating + point ``dtype``. + + Args: + input (Tensor): the input tensor of probability values for the Bernoulli distribution + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] + >>> a + tensor([[ 0.1737, 0.0950, 0.3609], + [ 0.7148, 0.0289, 0.2676], + [ 0.9456, 0.8937, 0.7202]]) + >>> torch.bernoulli(a) + tensor([[ 1., 0., 0.], + [ 0., 0., 0.], + [ 1., 1., 1.]]) + + >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 + >>> torch.bernoulli(a) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]]) + >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 + >>> torch.bernoulli(a) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]]) + """ + ... +@overload +def bernoulli(input: Tensor, p: _float, *, generator: Optional[Generator] = None) -> Tensor: + r""" + bernoulli(input, *, generator=None, out=None) -> Tensor + + Draws binary random numbers (0 or 1) from a Bernoulli distribution. + + The :attr:`input` tensor should be a tensor containing probabilities + to be used for drawing the binary random number. + Hence, all values in :attr:`input` have to be in the range: + :math:`0 \leq \text{input}_i \leq 1`. + + The :math:`\text{i}^{th}` element of the output tensor will draw a + value :math:`1` according to the :math:`\text{i}^{th}` probability value given + in :attr:`input`. + + .. math:: + \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) + + The returned :attr:`out` tensor only has values 0 or 1 and is of the same + shape as :attr:`input`. + + :attr:`out` can have integral ``dtype``, but :attr:`input` must have floating + point ``dtype``. + + Args: + input (Tensor): the input tensor of probability values for the Bernoulli distribution + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] + >>> a + tensor([[ 0.1737, 0.0950, 0.3609], + [ 0.7148, 0.0289, 0.2676], + [ 0.9456, 0.8937, 0.7202]]) + >>> torch.bernoulli(a) + tensor([[ 1., 0., 0.], + [ 0., 0., 0.], + [ 1., 1., 1.]]) + + >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 + >>> torch.bernoulli(a) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]]) + >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 + >>> torch.bernoulli(a) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.], + [ 0., 0., 0.]]) + """ + ... +def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: ... +def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = None, pos_weight: Optional[Tensor] = None, reduction: _int = 1) -> Tensor: ... +def bincount(input: Tensor, weights: Optional[Tensor] = None, minlength: _int = 0) -> Tensor: + r""" + bincount(input, weights=None, minlength=0) -> Tensor + + Count the frequency of each value in an array of non-negative ints. + + The number of bins (size 1) is one larger than the largest value in + :attr:`input` unless :attr:`input` is empty, in which case the result is a + tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least + :attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size + :attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``, + ``out[n] += weights[i]`` if :attr:`weights` is specified else + ``out[n] += 1``. + + Note: + This operation may produce nondeterministic gradients when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. + + Arguments: + input (Tensor): 1-d int tensor + weights (Tensor): optional, weight for each value in the input tensor. + Should be of same size as input tensor. + minlength (int): optional, minimum number of bins. Should be non-negative. + + Returns: + output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if + :attr:`input` is non-empty, else ``Size(0)`` + + Example:: + + >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) + >>> weights = torch.linspace(0, 1, steps=5) + >>> input, weights + (tensor([4, 3, 6, 3, 4]), + tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) + + >>> torch.bincount(input) + tensor([0, 0, 0, 2, 2, 0, 1]) + + >>> input.bincount(weights) + tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000]) + """ + ... +def binomial(count: Tensor, prob: Tensor, generator: Optional[Generator] = None) -> Tensor: ... +@overload +def bitwise_and(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_and(input, other, *, out=None) -> Tensor + + Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical AND. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([1, 0, 3], dtype=torch.int8) + >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ False, True, False]) + """ + ... +@overload +def bitwise_and(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + bitwise_and(input, other, *, out=None) -> Tensor + + Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical AND. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([1, 0, 3], dtype=torch.int8) + >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ False, True, False]) + """ + ... +@overload +def bitwise_and(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_and(input, other, *, out=None) -> Tensor + + Computes the bitwise AND of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical AND. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([1, 0, 3], dtype=torch.int8) + >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ False, True, False]) + """ + ... +@overload +def bitwise_left_shift(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_left_shift(input, other, *, out=None) -> Tensor + + Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i << \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 24], dtype=torch.int8) + """ + ... +@overload +def bitwise_left_shift(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + bitwise_left_shift(input, other, *, out=None) -> Tensor + + Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i << \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 24], dtype=torch.int8) + """ + ... +@overload +def bitwise_left_shift(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_left_shift(input, other, *, out=None) -> Tensor + + Computes the left arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i << \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_left_shift(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 24], dtype=torch.int8) + """ + ... +def bitwise_not(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_not(input, *, out=None) -> Tensor + + Computes the bitwise NOT of the given input tensor. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical NOT. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8)) + tensor([ 0, 1, -4], dtype=torch.int8) + """ + ... +@overload +def bitwise_or(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_or(input, other, *, out=None) -> Tensor + + Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical OR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -2, 3], dtype=torch.int8) + >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, True, False]) + """ + ... +@overload +def bitwise_or(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + bitwise_or(input, other, *, out=None) -> Tensor + + Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical OR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -2, 3], dtype=torch.int8) + >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, True, False]) + """ + ... +@overload +def bitwise_or(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_or(input, other, *, out=None) -> Tensor + + Computes the bitwise OR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical OR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_or(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -2, 3], dtype=torch.int8) + >>> torch.bitwise_or(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, True, False]) + """ + ... +@overload +def bitwise_right_shift(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_right_shift(input, other, *, out=None) -> Tensor + + Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + In any case, if the value of the right operand is negative or is greater + or equal to the number of bits in the promoted left operand, the behavior is undefined. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i >> \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -7, 3], dtype=torch.int8) + """ + ... +@overload +def bitwise_right_shift(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + bitwise_right_shift(input, other, *, out=None) -> Tensor + + Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + In any case, if the value of the right operand is negative or is greater + or equal to the number of bits in the promoted left operand, the behavior is undefined. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i >> \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -7, 3], dtype=torch.int8) + """ + ... +@overload +def bitwise_right_shift(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_right_shift(input, other, *, out=None) -> Tensor + + Computes the right arithmetic shift of :attr:`input` by :attr:`other` bits. + The input tensor must be of integral type. This operator supports + :ref:`broadcasting to a common shape ` and + :ref:`type promotion `. + In any case, if the value of the right operand is negative or is greater + or equal to the number of bits in the promoted left operand, the behavior is undefined. + + The operation applied is: + + .. math:: + \text{out}_i = \text{input}_i >> \text{other}_i + + Args: + input (Tensor or Scalar): the first input tensor + other (Tensor or Scalar): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_right_shift(torch.tensor([-2, -7, 31], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-1, -7, 3], dtype=torch.int8) + """ + ... +@overload +def bitwise_xor(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_xor(input, other, *, out=None) -> Tensor + + Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical XOR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 0], dtype=torch.int8) + >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, False, False]) + """ + ... +@overload +def bitwise_xor(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + bitwise_xor(input, other, *, out=None) -> Tensor + + Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical XOR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 0], dtype=torch.int8) + >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, False, False]) + """ + ... +@overload +def bitwise_xor(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + bitwise_xor(input, other, *, out=None) -> Tensor + + Computes the bitwise XOR of :attr:`input` and :attr:`other`. The input tensor must be of + integral or Boolean types. For bool tensors, it computes the logical XOR. + + Args: + input: the first input tensor + other: the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) + tensor([-2, -2, 0], dtype=torch.int8) + >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) + tensor([ True, False, False]) + """ + ... +@overload +def blackman_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + blackman_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Blackman window function. + + .. math:: + w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.blackman_window(L, periodic=True)`` equal to + ``torch.blackman_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +@overload +def blackman_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + blackman_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Blackman window function. + + .. math:: + w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.blackman_window(L, periodic=True)`` equal to + ``torch.blackman_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +def bmm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + bmm(input, mat2, *, out=None) -> Tensor + + Performs a batch matrix-matrix product of matrices stored in :attr:`input` + and :attr:`mat2`. + + :attr:`input` and :attr:`mat2` must be 3-D tensors each containing + the same number of matrices. + + If :attr:`input` is a :math:`(b \times n \times m)` tensor, :attr:`mat2` is a + :math:`(b \times m \times p)` tensor, :attr:`out` will be a + :math:`(b \times n \times p)` tensor. + + .. math:: + \text{out}_i = \text{input}_i \mathbin{@} \text{mat2}_i + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + .. note:: This function does not :ref:`broadcast `. + For broadcasting matrix products, see :func:`torch.matmul`. + + Args: + input (Tensor): the first batch of matrices to be multiplied + mat2 (Tensor): the second batch of matrices to be multiplied + + Keyword Args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> input = torch.randn(10, 3, 4) + >>> mat2 = torch.randn(10, 4, 5) + >>> res = torch.bmm(input, mat2) + >>> res.size() + torch.Size([10, 3, 5]) + """ + ... +def broadcast_to(input: Tensor, size: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + broadcast_to(input, shape) -> Tensor + + Broadcasts :attr:`input` to the shape :attr:`\shape`. + Equivalent to calling ``input.expand(shape)``. See :meth:`~Tensor.expand` for details. + + Args: + input (Tensor): the input tensor. + shape (list, tuple, or :class:`torch.Size`): the new shape. + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> torch.broadcast_to(x, (3, 3)) + tensor([[1, 2, 3], + [1, 2, 3], + [1, 2, 3]]) + """ + ... +@overload +def bucketize(input: Tensor, boundaries: Tensor, *, out_int32: _bool = False, right: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor + + Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the + boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size + as :attr:`input`. If :attr:`right` is False (default), then the left boundary is open. Note that + this behavior is opposite the behavior of + `numpy.digitize `_. + More formally, the returned index satisfies the following rules: + + .. list-table:: + :widths: 15 85 + :header-rows: 1 + + * - :attr:`right` + - *returned index satisfies* + * - False + - ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]`` + * - True + - ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]`` + + Args: + input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). + boundaries (Tensor): 1-D tensor, must contain a strictly increasing sequence, or the return value is undefined. + + Keyword args: + out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. + Default value is False, i.e. default output data type is torch.int64. + right (bool, optional): if False, return the first suitable location that is found. If True, return the + last such index. If no suitable index found, return 0 for non-numerical value + (eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index). + In other words, if False, gets the lower bound index for each value in :attr:`input` + from :attr:`boundaries`. If True, gets the upper bound index instead. + Default value is False. + out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided. + + + Example:: + + >>> boundaries = torch.tensor([1, 3, 5, 7, 9]) + >>> boundaries + tensor([1, 3, 5, 7, 9]) + >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) + >>> v + tensor([[3, 6, 9], + [3, 6, 9]]) + >>> torch.bucketize(v, boundaries) + tensor([[1, 3, 4], + [1, 3, 4]]) + >>> torch.bucketize(v, boundaries, right=True) + tensor([[2, 3, 5], + [2, 3, 5]]) + """ + ... +@overload +def bucketize(self: Union[Number, _complex], boundaries: Tensor, *, out_int32: _bool = False, right: _bool = False) -> Tensor: + r""" + bucketize(input, boundaries, *, out_int32=False, right=False, out=None) -> Tensor + + Returns the indices of the buckets to which each value in the :attr:`input` belongs, where the + boundaries of the buckets are set by :attr:`boundaries`. Return a new tensor with the same size + as :attr:`input`. If :attr:`right` is False (default), then the left boundary is open. Note that + this behavior is opposite the behavior of + `numpy.digitize `_. + More formally, the returned index satisfies the following rules: + + .. list-table:: + :widths: 15 85 + :header-rows: 1 + + * - :attr:`right` + - *returned index satisfies* + * - False + - ``boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]`` + * - True + - ``boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]`` + + Args: + input (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). + boundaries (Tensor): 1-D tensor, must contain a strictly increasing sequence, or the return value is undefined. + + Keyword args: + out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. + Default value is False, i.e. default output data type is torch.int64. + right (bool, optional): if False, return the first suitable location that is found. If True, return the + last such index. If no suitable index found, return 0 for non-numerical value + (eg. nan, inf) or the size of :attr:`boundaries` (one pass the last index). + In other words, if False, gets the lower bound index for each value in :attr:`input` + from :attr:`boundaries`. If True, gets the upper bound index instead. + Default value is False. + out (Tensor, optional): the output tensor, must be the same size as :attr:`input` if provided. + + + Example:: + + >>> boundaries = torch.tensor([1, 3, 5, 7, 9]) + >>> boundaries + tensor([1, 3, 5, 7, 9]) + >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) + >>> v + tensor([[3, 6, 9], + [3, 6, 9]]) + >>> torch.bucketize(v, boundaries) + tensor([[1, 3, 4], + [1, 3, 4]]) + >>> torch.bucketize(v, boundaries, right=True) + tensor([[2, 3, 5], + [2, 3, 5]]) + """ + ... +def can_cast(from_: _dtype, to: _dtype) -> _bool: + r""" + can_cast(from_, to) -> bool + + Determines if a type conversion is allowed under PyTorch casting rules + described in the type promotion :ref:`documentation `. + + Args: + from\_ (dtype): The original :class:`torch.dtype`. + to (dtype): The target :class:`torch.dtype`. + + Example:: + + >>> torch.can_cast(torch.double, torch.float) + True + >>> torch.can_cast(torch.float, torch.int) + False + """ + ... +@overload +def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cat(tensors, dim=0, *, out=None) -> Tensor + + Concatenates the given sequence of :attr:`seq` tensors in the given dimension. + All tensors must either have the same shape (except in the concatenating + dimension) or be a 1-D empty tensor with size ``(0,)``. + + :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` + and :func:`torch.chunk`. + + :func:`torch.cat` can be best understood via examples. + + .. seealso:: + + :func:`torch.stack` concatenates the given sequence along a new dimension. + + Args: + tensors (sequence of Tensors): any python sequence of tensors of the same type. + Non-empty tensors provided must have the same shape, except in the + cat dimension. + dim (int, optional): the dimension over which the tensors are concatenated + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497]]) + >>> torch.cat((x, x, x), 0) + tensor([[ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497], + [ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497], + [ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497]]) + >>> torch.cat((x, x, x), 1) + tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, + -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, + -0.5790, 0.1497]]) + """ + ... +@overload +def cat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: + r""" + cat(tensors, dim=0, *, out=None) -> Tensor + + Concatenates the given sequence of :attr:`seq` tensors in the given dimension. + All tensors must either have the same shape (except in the concatenating + dimension) or be a 1-D empty tensor with size ``(0,)``. + + :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` + and :func:`torch.chunk`. + + :func:`torch.cat` can be best understood via examples. + + .. seealso:: + + :func:`torch.stack` concatenates the given sequence along a new dimension. + + Args: + tensors (sequence of Tensors): any python sequence of tensors of the same type. + Non-empty tensors provided must have the same shape, except in the + cat dimension. + dim (int, optional): the dimension over which the tensors are concatenated + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497]]) + >>> torch.cat((x, x, x), 0) + tensor([[ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497], + [ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497], + [ 0.6580, -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497]]) + >>> torch.cat((x, x, x), 1) + tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, + -1.0969, -0.4614], + [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, + -0.5790, 0.1497]]) + """ + ... +def ccol_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def ceil(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ceil(input, *, out=None) -> Tensor + + Returns a new tensor with the ceil of the elements of :attr:`input`, + the smallest integer greater than or equal to each element. + + For integer inputs, follows the array-api convention of returning a + copy of the input tensor. + + .. math:: + \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.6341, -1.4208, -1.0900, 0.5826]) + >>> torch.ceil(a) + tensor([-0., -1., -1., 1.]) + """ + ... +def ceil_(input: Tensor) -> Tensor: ... +def celu(input: Tensor, alpha: Union[Number, _complex] = 1.0) -> Tensor: ... +def celu_(input: Tensor, alpha: Union[Number, _complex] = 1.0) -> Tensor: ... +def channel_shuffle(input: Tensor, groups: Union[_int, SymInt]) -> Tensor: ... +def cholesky(input: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cholesky(input, upper=False, *, out=None) -> Tensor + + Computes the Cholesky decomposition of a symmetric positive-definite + matrix :math:`A` or for batches of symmetric positive-definite matrices. + + If :attr:`upper` is ``True``, the returned matrix ``U`` is upper-triangular, and + the decomposition has the form: + + .. math:: + + A = U^TU + + If :attr:`upper` is ``False``, the returned matrix ``L`` is lower-triangular, and + the decomposition has the form: + + .. math:: + + A = LL^T + + If :attr:`upper` is ``True``, and :math:`A` is a batch of symmetric positive-definite + matrices, then the returned tensor will be composed of upper-triangular Cholesky factors + of each of the individual matrices. Similarly, when :attr:`upper` is ``False``, the returned + tensor will be composed of lower-triangular Cholesky factors of each of the individual + matrices. + + .. warning:: + + :func:`torch.cholesky` is deprecated in favor of :func:`torch.linalg.cholesky` + and will be removed in a future PyTorch release. + + ``L = torch.cholesky(A)`` should be replaced with + + .. code:: python + + L = torch.linalg.cholesky(A) + + ``U = torch.cholesky(A, upper=True)`` should be replaced with + + .. code:: python + + U = torch.linalg.cholesky(A).mH + + This transform will produce equivalent results for all valid (symmetric positive definite) inputs. + + Args: + input (Tensor): the input tensor :math:`A` of size :math:`(*, n, n)` where `*` is zero or more + batch dimensions consisting of symmetric positive-definite matrices. + upper (bool, optional): flag that indicates whether to return a + upper or lower triangular matrix. Default: ``False`` + + Keyword args: + out (Tensor, optional): the output matrix + + Example:: + + >>> a = torch.randn(3, 3) + >>> a = a @ a.mT + 1e-3 # make symmetric positive-definite + >>> l = torch.cholesky(a) + >>> a + tensor([[ 2.4112, -0.7486, 1.4551], + [-0.7486, 1.3544, 0.1294], + [ 1.4551, 0.1294, 1.6724]]) + >>> l + tensor([[ 1.5528, 0.0000, 0.0000], + [-0.4821, 1.0592, 0.0000], + [ 0.9371, 0.5487, 0.7023]]) + >>> l @ l.mT + tensor([[ 2.4112, -0.7486, 1.4551], + [-0.7486, 1.3544, 0.1294], + [ 1.4551, 0.1294, 1.6724]]) + >>> a = torch.randn(3, 2, 2) # Example for batched input + >>> a = a @ a.mT + 1e-03 # make symmetric positive-definite + >>> l = torch.cholesky(a) + >>> z = l @ l.mT + >>> torch.dist(z, a) + tensor(2.3842e-07) + """ + ... +def cholesky_inverse(input: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cholesky_inverse(L, upper=False, *, out=None) -> Tensor + + Computes the inverse of a complex Hermitian or real symmetric + positive-definite matrix given its Cholesky decomposition. + + Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, + and :math:`L` its Cholesky decomposition such that: + + .. math:: + + A = LL^{\text{H}} + + where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, + and the transpose when :math:`L` is real-valued. + + Computes the inverse matrix :math:`A^{-1}`. + + Supports input of float, double, cfloat and cdouble dtypes. + Also supports batches of matrices, and if :math:`A` is a batch of matrices + then the output has the same batch dimensions. + + Args: + L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions + consisting of lower or upper triangular Cholesky decompositions of + symmetric or Hermitian positive-definite matrices. + upper (bool, optional): flag that indicates whether :math:`L` is lower triangular + or upper triangular. Default: ``False`` + + Keyword args: + out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. + + Example:: + + >>> A = torch.randn(3, 3) + >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix + >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition + >>> torch.cholesky_inverse(L) + tensor([[ 1.9314, 1.2251, -0.0889], + [ 1.2251, 2.4439, 0.2122], + [-0.0889, 0.2122, 0.1412]]) + >>> A.inverse() + tensor([[ 1.9314, 1.2251, -0.0889], + [ 1.2251, 2.4439, 0.2122], + [-0.0889, 0.2122, 0.1412]]) + + >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) + >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices + >>> L = torch.linalg.cholesky(A) + >>> torch.dist(torch.inverse(A), torch.cholesky_inverse(L)) + tensor(5.6358e-7) + """ + ... +def cholesky_solve(input: Tensor, input2: Tensor, upper: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cholesky_solve(B, L, upper=False, *, out=None) -> Tensor + + Computes the solution of a system of linear equations with complex Hermitian + or real symmetric positive-definite lhs given its Cholesky decomposition. + + Let :math:`A` be a complex Hermitian or real symmetric positive-definite matrix, + and :math:`L` its Cholesky decomposition such that: + + .. math:: + + A = LL^{\text{H}} + + where :math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, + and the transpose when :math:`L` is real-valued. + + Returns the solution :math:`X` of the following linear system: + + .. math:: + + AX = B + + Supports inputs of float, double, cfloat and cdouble dtypes. + Also supports batches of matrices, and if :math:`A` or :math:`B` is a batch of matrices + then the output has the same batch dimensions. + + Args: + B (Tensor): right-hand side tensor of shape `(*, n, k)` + where :math:`*` is zero or more batch dimensions + L (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions + consisting of lower or upper triangular Cholesky decompositions of + symmetric or Hermitian positive-definite matrices. + upper (bool, optional): flag that indicates whether :math:`L` is lower triangular + or upper triangular. Default: ``False``. + + Keyword args: + out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`. + + Example:: + + >>> A = torch.randn(3, 3) + >>> A = A @ A.T + torch.eye(3) * 1e-3 # Creates a symmetric positive-definite matrix + >>> L = torch.linalg.cholesky(A) # Extract Cholesky decomposition + >>> B = torch.randn(3, 2) + >>> torch.cholesky_solve(B, L) + tensor([[ -8.1625, 19.6097], + [ -5.8398, 14.2387], + [ -4.3771, 10.4173]]) + >>> A.inverse() @ B + tensor([[ -8.1626, 19.6097], + [ -5.8398, 14.2387], + [ -4.3771, 10.4173]]) + + >>> A = torch.randn(3, 2, 2, dtype=torch.complex64) + >>> A = A @ A.mH + torch.eye(2) * 1e-3 # Batch of Hermitian positive-definite matrices + >>> L = torch.linalg.cholesky(A) + >>> B = torch.randn(2, 1, dtype=torch.complex64) + >>> X = torch.cholesky_solve(B, L) + >>> torch.dist(X, A.inverse() @ B) + tensor(1.6881e-5) + """ + ... +def choose_qparams_optimized(input: Tensor, numel: _int, n_bins: _int, ratio: _float, bit_width: _int) -> Tuple[Tensor, Tensor]: ... +def chunk(input: Tensor, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + chunk(input, chunks, dim=0) -> List of Tensors + + Attempts to split a tensor into the specified number of chunks. Each chunk is a view of + the input tensor. + + + .. note:: + + This function may return fewer than the specified number of chunks! + + .. seealso:: + + :func:`torch.tensor_split` a function that always returns exactly the specified number of chunks + + If the tensor size along the given dimension :attr:`dim` is divisible by :attr:`chunks`, + all returned chunks will be the same size. + If the tensor size along the given dimension :attr:`dim` is not divisible by :attr:`chunks`, + all returned chunks will be the same size, except the last one. + If such division is not possible, this function may return fewer + than the specified number of chunks. + + Arguments: + input (Tensor): the tensor to split + chunks (int): number of chunks to return + dim (int): dimension along which to split the tensor + + Example: + >>> torch.arange(11).chunk(6) + (tensor([0, 1]), + tensor([2, 3]), + tensor([4, 5]), + tensor([6, 7]), + tensor([8, 9]), + tensor([10])) + >>> torch.arange(12).chunk(6) + (tensor([0, 1]), + tensor([2, 3]), + tensor([4, 5]), + tensor([6, 7]), + tensor([8, 9]), + tensor([10, 11])) + >>> torch.arange(13).chunk(6) + (tensor([0, 1, 2]), + tensor([3, 4, 5]), + tensor([6, 7, 8]), + tensor([ 9, 10, 11]), + tensor([12])) + """ + ... +@overload +def clamp(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + clamp(input, min=None, max=None, *, out=None) -> Tensor + + Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`. + Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns: + + .. math:: + y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i) + + If :attr:`min` is ``None``, there is no lower bound. + Or, if :attr:`max` is ``None`` there is no upper bound. + + + .. note:: + If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) ` + sets all elements in :attr:`input` to the value of :attr:`max`. + + Args: + input (Tensor): the input tensor. + min (Number or Tensor, optional): lower-bound of the range to be clamped to + max (Number or Tensor, optional): upper-bound of the range to be clamped to + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-1.7120, 0.1734, -0.0478, -0.0922]) + >>> torch.clamp(a, min=-0.5, max=0.5) + tensor([-0.5000, 0.1734, -0.0478, -0.0922]) + + >>> min = torch.linspace(-1, 1, steps=4) + >>> torch.clamp(a, min=min) + tensor([-1.0000, 0.1734, 0.3333, 1.0000]) + """ + ... +@overload +def clamp(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + clamp(input, min=None, max=None, *, out=None) -> Tensor + + Clamps all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]`. + Letting min_value and max_value be :attr:`min` and :attr:`max`, respectively, this returns: + + .. math:: + y_i = \min(\max(x_i, \text{min\_value}_i), \text{max\_value}_i) + + If :attr:`min` is ``None``, there is no lower bound. + Or, if :attr:`max` is ``None`` there is no upper bound. + + + .. note:: + If :attr:`min` is greater than :attr:`max` :func:`torch.clamp(..., min, max) ` + sets all elements in :attr:`input` to the value of :attr:`max`. + + Args: + input (Tensor): the input tensor. + min (Number or Tensor, optional): lower-bound of the range to be clamped to + max (Number or Tensor, optional): upper-bound of the range to be clamped to + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-1.7120, 0.1734, -0.0478, -0.0922]) + >>> torch.clamp(a, min=-0.5, max=0.5) + tensor([-0.5000, 0.1734, -0.0478, -0.0922]) + + >>> min = torch.linspace(-1, 1, steps=4) + >>> torch.clamp(a, min=min) + tensor([-1.0000, 0.1734, 0.3333, 1.0000]) + """ + ... +@overload +def clamp_(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ... +@overload +def clamp_(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ... +@overload +def clamp_max(input: Tensor, max: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def clamp_max(input: Tensor, max: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def clamp_max_(input: Tensor, max: Tensor) -> Tensor: ... +@overload +def clamp_max_(input: Tensor, max: Union[Number, _complex]) -> Tensor: ... +@overload +def clamp_min(input: Tensor, min: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def clamp_min(input: Tensor, min: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def clamp_min_(input: Tensor, min: Tensor) -> Tensor: ... +@overload +def clamp_min_(input: Tensor, min: Union[Number, _complex]) -> Tensor: ... +@overload +def clip(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + clip(input, min=None, max=None, *, out=None) -> Tensor + + Alias for :func:`torch.clamp`. + """ + ... +@overload +def clip(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + clip(input, min=None, max=None, *, out=None) -> Tensor + + Alias for :func:`torch.clamp`. + """ + ... +@overload +def clip_(input: Tensor, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: ... +@overload +def clip_(input: Tensor, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: ... +def clone(input: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: + r""" + clone(input, *, memory_format=torch.preserve_format) -> Tensor + + Returns a copy of :attr:`input`. + + .. note:: + + This function is differentiable, so gradients will flow back from the + result of this operation to :attr:`input`. To create a tensor without an + autograd relationship to :attr:`input` see :meth:`~Tensor.detach`. + + Args: + input (Tensor): the input tensor. + + Keyword args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned tensor. Default: ``torch.preserve_format``. + """ + ... +def col_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.col_indices`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def column_stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + column_stack(tensors, *, out=None) -> Tensor + + Creates a new tensor by horizontally stacking the tensors in :attr:`tensors`. + + Equivalent to ``torch.hstack(tensors)``, except each zero or one dimensional tensor ``t`` + in :attr:`tensors` is first reshaped into a ``(t.numel(), 1)`` column before being stacked horizontally. + + Args: + tensors (sequence of Tensors): sequence of tensors to concatenate + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([1, 2, 3]) + >>> b = torch.tensor([4, 5, 6]) + >>> torch.column_stack((a, b)) + tensor([[1, 4], + [2, 5], + [3, 6]]) + >>> a = torch.arange(5) + >>> b = torch.arange(10).reshape(5, 2) + >>> torch.column_stack((a, b, b)) + tensor([[0, 0, 1, 0, 1], + [1, 2, 3, 2, 3], + [2, 4, 5, 4, 5], + [3, 6, 7, 6, 7], + [4, 8, 9, 8, 9]]) + """ + ... +def combinations(input: Tensor, r: _int = 2, with_replacement: _bool = False) -> Tensor: + r""" + combinations(input, r=2, with_replacement=False) -> seq + + Compute combinations of length :math:`r` of the given tensor. The behavior is similar to + python's `itertools.combinations` when `with_replacement` is set to `False`, and + `itertools.combinations_with_replacement` when `with_replacement` is set to `True`. + + Arguments: + input (Tensor): 1D vector. + r (int, optional): number of elements to combine + with_replacement (bool, optional): whether to allow duplication in combination + + Returns: + Tensor: A tensor equivalent to converting all the input tensors into lists, do + `itertools.combinations` or `itertools.combinations_with_replacement` on these + lists, and finally convert the resulting list into tensor. + + Example:: + + >>> a = [1, 2, 3] + >>> list(itertools.combinations(a, r=2)) + [(1, 2), (1, 3), (2, 3)] + >>> list(itertools.combinations(a, r=3)) + [(1, 2, 3)] + >>> list(itertools.combinations_with_replacement(a, r=2)) + [(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)] + >>> tensor_a = torch.tensor(a) + >>> torch.combinations(tensor_a) + tensor([[1, 2], + [1, 3], + [2, 3]]) + >>> torch.combinations(tensor_a, r=3) + tensor([[1, 2, 3]]) + >>> torch.combinations(tensor_a, with_replacement=True) + tensor([[1, 1], + [1, 2], + [1, 3], + [2, 2], + [2, 3], + [3, 3]]) + """ + ... +def complex(real: Tensor, imag: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + complex(real, imag, *, out=None) -> Tensor + + Constructs a complex tensor with its real part equal to :attr:`real` and its + imaginary part equal to :attr:`imag`. + + Args: + real (Tensor): The real part of the complex tensor. Must be half, float or double. + imag (Tensor): The imaginary part of the complex tensor. Must be same dtype + as :attr:`real`. + + Keyword args: + out (Tensor): If the inputs are ``torch.float32``, must be + ``torch.complex64``. If the inputs are ``torch.float64``, must be + ``torch.complex128``. + + Example:: + + >>> real = torch.tensor([1, 2], dtype=torch.float32) + >>> imag = torch.tensor([3, 4], dtype=torch.float32) + >>> z = torch.complex(real, imag) + >>> z + tensor([(1.+3.j), (2.+4.j)]) + >>> z.dtype + torch.complex64 + """ + ... +@overload +def concat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + concat(tensors, dim=0, *, out=None) -> Tensor + + Alias of :func:`torch.cat`. + """ + ... +@overload +def concat(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: + r""" + concat(tensors, dim=0, *, out=None) -> Tensor + + Alias of :func:`torch.cat`. + """ + ... +@overload +def concatenate(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + concatenate(tensors, axis=0, out=None) -> Tensor + + Alias of :func:`torch.cat`. + """ + ... +@overload +def concatenate(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: + r""" + concatenate(tensors, axis=0, out=None) -> Tensor + + Alias of :func:`torch.cat`. + """ + ... +def conj(input: Tensor) -> Tensor: + r""" + conj(input) -> Tensor + + Returns a view of :attr:`input` with a flipped conjugate bit. If :attr:`input` has a non-complex dtype, + this function just returns :attr:`input`. + + .. note:: + :func:`torch.conj` performs a lazy conjugation, but the actual conjugated tensor can be materialized + at any time using :func:`torch.resolve_conj`. + + .. warning:: In the future, :func:`torch.conj` may return a non-writeable view for an :attr:`input` of + non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` + when :attr:`input` is of non-complex dtype to be compatible with this change. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) + >>> x.is_conj() + False + >>> y = torch.conj(x) + >>> y.is_conj() + True + """ + ... +def conj_physical(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + conj_physical(input, *, out=None) -> Tensor + + Computes the element-wise conjugate of the given :attr:`input` tensor. + If :attr:`input` has a non-complex dtype, this function just returns :attr:`input`. + + .. note:: + This performs the conjugate operation regardless of the fact conjugate bit is set or not. + + .. warning:: In the future, :func:`torch.conj_physical` may return a non-writeable view for an :attr:`input` of + non-complex dtype. It's recommended that programs not modify the tensor returned by :func:`torch.conj_physical` + when :attr:`input` is of non-complex dtype to be compatible with this change. + + .. math:: + \text{out}_{i} = conj(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.conj_physical(torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j])) + tensor([-1 - 1j, -2 - 2j, 3 + 3j]) + """ + ... +def conj_physical_(input: Tensor) -> Tensor: ... +def constant_pad_nd(input: Tensor, pad: Sequence[Union[_int, SymInt]], value: Union[Number, _complex] = 0) -> Tensor: ... +@overload +def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +@overload +def conv1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +@overload +def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +@overload +def conv2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +@overload +def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +@overload +def conv3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: str = "valid", dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, groups: Union[_int, SymInt] = 1) -> Tensor: ... +def conv_tbc(input: Tensor, weight: Tensor, bias: Tensor, pad: _int = 0) -> Tensor: ... +def conv_transpose1d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... +def conv_transpose2d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... +def conv_transpose3d(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None, stride: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1, padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, output_padding: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 0, groups: Union[_int, SymInt] = 1, dilation: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]] = 1) -> Tensor: ... +def convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], transposed: _bool, output_padding: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +@overload +def copysign(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + copysign(input, other, *, out=None) -> Tensor + + Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise. + + .. math:: + \text{out}_{i} = \begin{cases} + -|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\ + |\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\ + \end{cases} + + + Supports :ref:`broadcasting to a common shape `, + and integer and float inputs. + + Args: + input (Tensor): magnitudes. + other (Tensor or Number): contains value(s) whose signbit(s) are + applied to the magnitudes in :attr:`input`. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(5) + >>> a + tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244]) + >>> torch.copysign(a, 1) + tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244]) + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.7079, 0.2778, -1.0249, 0.5719], + [-0.0059, -0.2600, -0.4475, -1.3948], + [ 0.3667, -0.9567, -2.5757, -0.1751], + [ 0.2046, -0.0742, 0.2998, -0.1054]]) + >>> b = torch.randn(4) + tensor([ 0.2373, 0.3120, 0.3190, -1.1128]) + >>> torch.copysign(a, b) + tensor([[ 0.7079, 0.2778, 1.0249, -0.5719], + [ 0.0059, 0.2600, 0.4475, -1.3948], + [ 0.3667, 0.9567, 2.5757, -0.1751], + [ 0.2046, 0.0742, 0.2998, -0.1054]]) + >>> a = torch.tensor([1.]) + >>> b = torch.tensor([-0.]) + >>> torch.copysign(a, b) + tensor([-1.]) + + .. note:: + copysign handles signed zeros. If the other argument has a negative zero (-0), + the corresponding output value will be negative. + """ + ... +@overload +def copysign(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + copysign(input, other, *, out=None) -> Tensor + + Create a new floating-point tensor with the magnitude of :attr:`input` and the sign of :attr:`other`, elementwise. + + .. math:: + \text{out}_{i} = \begin{cases} + -|\text{input}_{i}| & \text{if } \text{other}_{i} \leq -0.0 \\ + |\text{input}_{i}| & \text{if } \text{other}_{i} \geq 0.0 \\ + \end{cases} + + + Supports :ref:`broadcasting to a common shape `, + and integer and float inputs. + + Args: + input (Tensor): magnitudes. + other (Tensor or Number): contains value(s) whose signbit(s) are + applied to the magnitudes in :attr:`input`. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(5) + >>> a + tensor([-1.2557, -0.0026, -0.5387, 0.4740, -0.9244]) + >>> torch.copysign(a, 1) + tensor([1.2557, 0.0026, 0.5387, 0.4740, 0.9244]) + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.7079, 0.2778, -1.0249, 0.5719], + [-0.0059, -0.2600, -0.4475, -1.3948], + [ 0.3667, -0.9567, -2.5757, -0.1751], + [ 0.2046, -0.0742, 0.2998, -0.1054]]) + >>> b = torch.randn(4) + tensor([ 0.2373, 0.3120, 0.3190, -1.1128]) + >>> torch.copysign(a, b) + tensor([[ 0.7079, 0.2778, 1.0249, -0.5719], + [ 0.0059, 0.2600, 0.4475, -1.3948], + [ 0.3667, 0.9567, 2.5757, -0.1751], + [ 0.2046, 0.0742, 0.2998, -0.1054]]) + >>> a = torch.tensor([1.]) + >>> b = torch.tensor([-0.]) + >>> torch.copysign(a, b) + tensor([-1.]) + + .. note:: + copysign handles signed zeros. If the other argument has a negative zero (-0), + the corresponding output value will be negative. + """ + ... +def corrcoef(input: Tensor) -> Tensor: + r""" + corrcoef(input) -> Tensor + + Estimates the Pearson product-moment correlation coefficient matrix of the variables given by the :attr:`input` matrix, + where rows are the variables and columns are the observations. + + .. note:: + + The correlation coefficient matrix R is computed using the covariance matrix C as given by + :math:`R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }` + + .. note:: + + Due to floating point rounding, the resulting array may not be Hermitian and its diagonal elements may not be 1. + The real and imaginary values are clipped to the interval [-1, 1] in an attempt to improve this situation. + + Args: + input (Tensor): A 2D matrix containing multiple variables and observations, or a + Scalar or 1D vector representing a single variable. + + Returns: + (Tensor) The correlation coefficient matrix of the variables. + + .. seealso:: + + :func:`torch.cov` covariance matrix. + + Example:: + + >>> x = torch.tensor([[0, 1, 2], [2, 1, 0]]) + >>> torch.corrcoef(x) + tensor([[ 1., -1.], + [-1., 1.]]) + >>> x = torch.randn(2, 4) + >>> x + tensor([[-0.2678, -0.0908, -0.3766, 0.2780], + [-0.5812, 0.1535, 0.2387, 0.2350]]) + >>> torch.corrcoef(x) + tensor([[1.0000, 0.3582], + [0.3582, 1.0000]]) + >>> torch.corrcoef(x[0]) + tensor(1.) + """ + ... +def cos(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cos(input, *, out=None) -> Tensor + + Returns a new tensor with the cosine of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \cos(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) + >>> torch.cos(a) + tensor([ 0.1395, 0.2957, 0.6553, 0.5574]) + """ + ... +def cos_(input: Tensor) -> Tensor: ... +def cosh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cosh(input, *, out=None) -> Tensor + + Returns a new tensor with the hyperbolic cosine of the elements of + :attr:`input`. + + .. math:: + \text{out}_{i} = \cosh(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.1632, 1.1835, -0.6979, -0.7325]) + >>> torch.cosh(a) + tensor([ 1.0133, 1.7860, 1.2536, 1.2805]) + + .. note:: + When :attr:`input` is on the CPU, the implementation of torch.cosh may use + the Sleef library, which rounds very large results to infinity or negative + infinity. See `here `_ for details. + """ + ... +def cosh_(input: Tensor) -> Tensor: ... +def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: _float = 0.0, reduction: _int = 1) -> Tensor: ... +def cosine_similarity(x1: Tensor, x2: Tensor, dim: _int = 1, eps: _float = 1e-08) -> Tensor: ... +@overload +def count_nonzero(input: Tensor, dim: Optional[_int] = None) -> Tensor: + r""" + count_nonzero(input, dim=None) -> Tensor + + Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`. + If no dim is specified then all non-zeros in the tensor are counted. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros. + + Example:: + + >>> x = torch.zeros(3,3) + >>> x[torch.randn(3,3) > 0.5] = 1 + >>> x + tensor([[0., 1., 1.], + [0., 0., 0.], + [0., 0., 1.]]) + >>> torch.count_nonzero(x) + tensor(3) + >>> torch.count_nonzero(x, dim=0) + tensor([0, 1, 2]) + """ + ... +@overload +def count_nonzero(input: Tensor, dim: _size) -> Tensor: + r""" + count_nonzero(input, dim=None) -> Tensor + + Counts the number of non-zero values in the tensor :attr:`input` along the given :attr:`dim`. + If no dim is specified then all non-zeros in the tensor are counted. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): Dim or tuple of dims along which to count non-zeros. + + Example:: + + >>> x = torch.zeros(3,3) + >>> x[torch.randn(3,3) > 0.5] = 1 + >>> x + tensor([[0., 1., 1.], + [0., 0., 0.], + [0., 0., 1.]]) + >>> torch.count_nonzero(x) + tensor(3) + >>> torch.count_nonzero(x, dim=0) + tensor([0, 1, 2]) + """ + ... +def cov(input: Tensor, *, correction: _int = 1, fweights: Optional[Tensor] = None, aweights: Optional[Tensor] = None) -> Tensor: + r""" + cov(input, *, correction=1, fweights=None, aweights=None) -> Tensor + + Estimates the covariance matrix of the variables given by the :attr:`input` matrix, where rows are + the variables and columns are the observations. + + A covariance matrix is a square matrix giving the covariance of each pair of variables. The diagonal contains + the variance of each variable (covariance of a variable with itself). By definition, if :attr:`input` represents + a single variable (Scalar or 1D) then its variance is returned. + + The sample covariance of the variables :math:`x` and :math:`y` is given by: + + .. math:: + \text{cov}(x,y) = \frac{\sum^{N}_{i = 1}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\max(0,~N~-~\delta N)} + + where :math:`\bar{x}` and :math:`\bar{y}` are the simple means of the :math:`x` and :math:`y` respectively, and + :math:`\delta N` is the :attr:`correction`. + + If :attr:`fweights` and/or :attr:`aweights` are provided, the weighted covariance + is calculated, which is given by: + + .. math:: + \text{cov}_w(x,y) = \frac{\sum^{N}_{i = 1}w_i(x_{i} - \mu_x^*)(y_{i} - \mu_y^*)} + {\max(0,~\sum^{N}_{i = 1}w_i~-~\frac{\sum^{N}_{i = 1}w_ia_i}{\sum^{N}_{i = 1}w_i}~\delta N)} + + where :math:`w` denotes :attr:`fweights` or :attr:`aweights` (``f`` and ``a`` for brevity) based on whichever is + provided, or :math:`w = f \times a` if both are provided, and + :math:`\mu_x^* = \frac{\sum^{N}_{i = 1}w_ix_{i} }{\sum^{N}_{i = 1}w_i}` is the weighted mean of the variable. If not + provided, ``f`` and/or ``a`` can be seen as a :math:`\mathbb{1}` vector of appropriate size. + + Args: + input (Tensor): A 2D matrix containing multiple variables and observations, or a + Scalar or 1D vector representing a single variable. + + Keyword Args: + correction (int, optional): difference between the sample size and sample degrees of freedom. + Defaults to Bessel's correction, ``correction = 1`` which returns the unbiased estimate, + even if both :attr:`fweights` and :attr:`aweights` are specified. ``correction = 0`` + will return the simple average. Defaults to ``1``. + fweights (tensor, optional): A Scalar or 1D tensor of observation vector frequencies representing the number of + times each observation should be repeated. Its numel must equal the number of columns of :attr:`input`. + Must have integral dtype. Ignored if ``None``. Defaults to ``None``. + aweights (tensor, optional): A Scalar or 1D array of observation vector weights. + These relative weights are typically large for observations considered "important" and smaller for + observations considered less "important". Its numel must equal the number of columns of :attr:`input`. + Must have floating point dtype. Ignored if ``None``. Defaults to ``None``. + + Returns: + (Tensor) The covariance matrix of the variables. + + .. seealso:: + + :func:`torch.corrcoef` normalized covariance matrix. + + Example:: + >>> x = torch.tensor([[0, 2], [1, 1], [2, 0]]).T + >>> x + tensor([[0, 1, 2], + [2, 1, 0]]) + >>> torch.cov(x) + tensor([[ 1., -1.], + [-1., 1.]]) + >>> torch.cov(x, correction=0) + tensor([[ 0.6667, -0.6667], + [-0.6667, 0.6667]]) + >>> fw = torch.randint(1, 10, (3,)) + >>> fw + tensor([1, 6, 9]) + >>> aw = torch.rand(3) + >>> aw + tensor([0.4282, 0.0255, 0.4144]) + >>> torch.cov(x, fweights=fw, aweights=aw) + tensor([[ 0.4169, -0.4169], + [-0.4169, 0.4169]]) + """ + ... +def cross(input: Tensor, other: Tensor, dim: Optional[_int] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + cross(input, other, dim=None, *, out=None) -> Tensor + + + Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` + and :attr:`other`. + + Supports input of float, double, cfloat and cdouble dtypes. Also supports batches + of vectors, for which it computes the product along the dimension :attr:`dim`. + In this case, the output has the same batch dimensions as the inputs. + + .. warning:: + If :attr:`dim` is not given, it defaults to the first dimension found + with the size 3. Note that this might be unexpected. + + This behavior is deprecated and will be changed to match that of :func:`torch.linalg.cross` + in a future release. + + .. seealso:: + :func:`torch.linalg.cross` which has dim=-1 as default. + + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + dim (int, optional): the dimension to take the cross-product in. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4, 3) + >>> a + tensor([[-0.3956, 1.1455, 1.6895], + [-0.5849, 1.3672, 0.3599], + [-1.1626, 0.7180, -0.0521], + [-0.1339, 0.9902, -2.0225]]) + >>> b = torch.randn(4, 3) + >>> b + tensor([[-0.0257, -1.4725, -1.2251], + [-1.1479, -0.7005, -1.9757], + [-1.3904, 0.3726, -1.1836], + [-0.9688, -0.7153, 0.2159]]) + >>> torch.cross(a, b, dim=1) + tensor([[ 1.0844, -0.5281, 0.6120], + [-2.4490, -1.5687, 1.9792], + [-0.8304, -1.3037, 0.5650], + [-1.2329, 1.9883, 1.0551]]) + >>> torch.cross(a, b) + tensor([[ 1.0844, -0.5281, 0.6120], + [-2.4490, -1.5687, 1.9792], + [-0.8304, -1.3037, 0.5650], + [-1.2329, 1.9883, 1.0551]]) + """ + ... +def crow_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.crow_indices`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: _size, target_lengths: _size, blank: _int = 0, reduction: _int = 1, zero_infinity: _bool = False) -> Tensor: ... +@overload +def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: _int = 0, reduction: _int = 1, zero_infinity: _bool = False) -> Tensor: ... +def cudnn_affine_grid_generator(theta: Tensor, N: _int, C: _int, H: _int, W: _int) -> Tensor: ... +def cudnn_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +def cudnn_convolution(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, allow_tf32: _bool, *, out: Optional[Tensor] = None) -> Tensor: ... +def cudnn_convolution_add_relu(input: Tensor, weight: Tensor, z: Tensor, alpha: Optional[Union[Number, _complex]], bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def cudnn_convolution_relu(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def cudnn_convolution_transpose(input: Tensor, weight: Tensor, padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool, allow_tf32: _bool) -> Tensor: ... +def cudnn_grid_sampler(input: Tensor, grid: Tensor) -> Tensor: ... +def cudnn_is_acceptable(input: Tensor) -> _bool: ... +@overload +def cummax(input: Tensor, dim: _int, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummax: + r""" + cummax(input, dim, *, out=None) -> (Tensor, LongTensor) + Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of + elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index + location of each maximum value found in the dimension :attr:`dim`. + + .. math:: + y_i = max(x_1, x_2, x_3, \dots, x_i) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284, + 1.9946, -0.8209]) + >>> torch.cummax(a, dim=0) + torch.return_types.cummax( + values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696, + 1.9946, 1.9946]), + indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8])) + """ + ... +@overload +def cummax(input: Tensor, dim: Union[str, ellipsis, None], *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummax: + r""" + cummax(input, dim, *, out=None) -> (Tensor, LongTensor) + Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative maximum of + elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index + location of each maximum value found in the dimension :attr:`dim`. + + .. math:: + y_i = max(x_1, x_2, x_3, \dots, x_i) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([-0.3449, -1.5447, 0.0685, -1.5104, -1.1706, 0.2259, 1.4696, -1.3284, + 1.9946, -0.8209]) + >>> torch.cummax(a, dim=0) + torch.return_types.cummax( + values=tensor([-0.3449, -0.3449, 0.0685, 0.0685, 0.0685, 0.2259, 1.4696, 1.4696, + 1.9946, 1.9946]), + indices=tensor([0, 0, 2, 2, 2, 5, 6, 6, 8, 8])) + """ + ... +@overload +def cummin(input: Tensor, dim: _int, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummin: + r""" + cummin(input, dim, *, out=None) -> (Tensor, LongTensor) + Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of + elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index + location of each maximum value found in the dimension :attr:`dim`. + + .. math:: + y_i = min(x_1, x_2, x_3, \dots, x_i) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762, + 0.9165, 1.6684]) + >>> torch.cummin(a, dim=0) + torch.return_types.cummin( + values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298, + -1.3298, -1.3298]), + indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4])) + """ + ... +@overload +def cummin(input: Tensor, dim: Union[str, ellipsis, None], *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.cummin: + r""" + cummin(input, dim, *, out=None) -> (Tensor, LongTensor) + Returns a namedtuple ``(values, indices)`` where ``values`` is the cumulative minimum of + elements of :attr:`input` in the dimension :attr:`dim`. And ``indices`` is the index + location of each maximum value found in the dimension :attr:`dim`. + + .. math:: + y_i = min(x_1, x_2, x_3, \dots, x_i) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([-0.2284, -0.6628, 0.0975, 0.2680, -1.3298, -0.4220, -0.3885, 1.1762, + 0.9165, 1.6684]) + >>> torch.cummin(a, dim=0) + torch.return_types.cummin( + values=tensor([-0.2284, -0.6628, -0.6628, -0.6628, -1.3298, -1.3298, -1.3298, -1.3298, + -1.3298, -1.3298]), + indices=tensor([0, 1, 1, 1, 4, 4, 4, 4, 4, 4])) + """ + ... +@overload +def cumprod(input: Tensor, dim: _int, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + cumprod(input, dim, *, dtype=None, out=None) -> Tensor + + Returns the cumulative product of elements of :attr:`input` in the dimension + :attr:`dim`. + + For example, if :attr:`input` is a vector of size N, the result will also be + a vector of size N, with elements. + + .. math:: + y_i = x_1 \times x_2\times x_3\times \dots \times x_i + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, + -0.2129, -0.4206, 0.1968]) + >>> torch.cumprod(a, dim=0) + tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, + 0.0014, -0.0006, -0.0001]) + + >>> a[5] = 0.0 + >>> torch.cumprod(a, dim=0) + tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, + 0.0000, -0.0000, -0.0000]) + """ + ... +@overload +def cumprod(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + cumprod(input, dim, *, dtype=None, out=None) -> Tensor + + Returns the cumulative product of elements of :attr:`input` in the dimension + :attr:`dim`. + + For example, if :attr:`input` is a vector of size N, the result will also be + a vector of size N, with elements. + + .. math:: + y_i = x_1 \times x_2\times x_3\times \dots \times x_i + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(10) + >>> a + tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, + -0.2129, -0.4206, 0.1968]) + >>> torch.cumprod(a, dim=0) + tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, + 0.0014, -0.0006, -0.0001]) + + >>> a[5] = 0.0 + >>> torch.cumprod(a, dim=0) + tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, + 0.0000, -0.0000, -0.0000]) + """ + ... +@overload +def cumsum(input: Tensor, dim: _int, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + cumsum(input, dim, *, dtype=None, out=None) -> Tensor + + Returns the cumulative sum of elements of :attr:`input` in the dimension + :attr:`dim`. + + For example, if :attr:`input` is a vector of size N, the result will also be + a vector of size N, with elements. + + .. math:: + y_i = x_1 + x_2 + x_3 + \dots + x_i + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randint(1, 20, (10,)) + >>> a + tensor([13, 7, 3, 10, 13, 3, 15, 10, 9, 10]) + >>> torch.cumsum(a, dim=0) + tensor([13, 20, 23, 33, 46, 49, 64, 74, 83, 93]) + """ + ... +@overload +def cumsum(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + cumsum(input, dim, *, dtype=None, out=None) -> Tensor + + Returns the cumulative sum of elements of :attr:`input` in the dimension + :attr:`dim`. + + For example, if :attr:`input` is a vector of size N, the result will also be + a vector of size N, with elements. + + .. math:: + y_i = x_1 + x_2 + x_3 + \dots + x_i + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randint(1, 20, (10,)) + >>> a + tensor([13, 7, 3, 10, 13, 3, 15, 10, 9, 10]) + >>> torch.cumsum(a, dim=0) + tensor([13, 20, 23, 33, 46, 49, 64, 74, 83, 93]) + """ + ... +@overload +def cumulative_trapezoid(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: + r""" + cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor + + Cumulatively computes the `trapezoidal rule `_ + along :attr:`dim`. By default the spacing between elements is assumed to be 1, but + :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be + used to specify arbitrary spacing along :attr:`dim`. + + For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid` + and this function is that, :func:`torch.trapezoid` returns a value for each integration, + where as this function returns a cumulative value for every spacing within the integration. This + is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum. + + Arguments: + y (Tensor): Values to use when computing the trapezoidal rule. + x (Tensor): If specified, defines spacing between values as specified above. + + Keyword arguments: + dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` + are specified then this defaults to 1. Effectively multiplies the result by its value. + dim (int): The dimension along which to compute the trapezoidal rule. + The last (inner-most) dimension by default. + + Examples:: + + >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. + >>> y = torch.tensor([1, 5, 10]) + >>> torch.cumulative_trapezoid(y) + tensor([3., 10.5]) + + >>> # Computes the same trapezoidal rule directly up to each element to verify + >>> (1 + 5) / 2 + 3.0 + >>> (1 + 10 + 10) / 2 + 10.5 + + >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 + >>> # NOTE: the result is the same as before, but multiplied by 2 + >>> torch.cumulative_trapezoid(y, dx=2) + tensor([6., 21.]) + + >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing + >>> x = torch.tensor([1, 3, 6]) + >>> torch.cumulative_trapezoid(y, x) + tensor([6., 28.5]) + + >>> # Computes the same trapezoidal rule directly up to each element to verify + >>> ((3 - 1) * (1 + 5)) / 2 + 6.0 + >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 + 28.5 + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix + >>> y = torch.arange(9).reshape(3, 3) + tensor([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> torch.cumulative_trapezoid(y) + tensor([[ 0.5, 2.], + [ 3.5, 8.], + [ 6.5, 14.]]) + + >>> # Cumulatively computes the trapezoidal rule for each column of the matrix + >>> torch.cumulative_trapezoid(y, dim=0) + tensor([[ 1.5, 2.5, 3.5], + [ 6.0, 8.0, 10.0]]) + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with the same arbitrary spacing + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([1, 3, 6]) + >>> torch.cumulative_trapezoid(y, x) + tensor([[2., 5.], + [2., 5.], + [2., 5.]]) + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with different arbitrary spacing per row + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) + >>> torch.cumulative_trapezoid(y, x) + tensor([[1., 2.], + [2., 4.], + [3., 6.]]) + """ + ... +@overload +def cumulative_trapezoid(y: Tensor, *, dx: Union[Number, _complex] = 1, dim: _int = -1) -> Tensor: + r""" + cumulative_trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor + + Cumulatively computes the `trapezoidal rule `_ + along :attr:`dim`. By default the spacing between elements is assumed to be 1, but + :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be + used to specify arbitrary spacing along :attr:`dim`. + + For more details, please read :func:`torch.trapezoid`. The difference between :func:`torch.trapezoid` + and this function is that, :func:`torch.trapezoid` returns a value for each integration, + where as this function returns a cumulative value for every spacing within the integration. This + is analogous to how `.sum` returns a value and `.cumsum` returns a cumulative sum. + + Arguments: + y (Tensor): Values to use when computing the trapezoidal rule. + x (Tensor): If specified, defines spacing between values as specified above. + + Keyword arguments: + dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` + are specified then this defaults to 1. Effectively multiplies the result by its value. + dim (int): The dimension along which to compute the trapezoidal rule. + The last (inner-most) dimension by default. + + Examples:: + + >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. + >>> y = torch.tensor([1, 5, 10]) + >>> torch.cumulative_trapezoid(y) + tensor([3., 10.5]) + + >>> # Computes the same trapezoidal rule directly up to each element to verify + >>> (1 + 5) / 2 + 3.0 + >>> (1 + 10 + 10) / 2 + 10.5 + + >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 + >>> # NOTE: the result is the same as before, but multiplied by 2 + >>> torch.cumulative_trapezoid(y, dx=2) + tensor([6., 21.]) + + >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing + >>> x = torch.tensor([1, 3, 6]) + >>> torch.cumulative_trapezoid(y, x) + tensor([6., 28.5]) + + >>> # Computes the same trapezoidal rule directly up to each element to verify + >>> ((3 - 1) * (1 + 5)) / 2 + 6.0 + >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 + 28.5 + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix + >>> y = torch.arange(9).reshape(3, 3) + tensor([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> torch.cumulative_trapezoid(y) + tensor([[ 0.5, 2.], + [ 3.5, 8.], + [ 6.5, 14.]]) + + >>> # Cumulatively computes the trapezoidal rule for each column of the matrix + >>> torch.cumulative_trapezoid(y, dim=0) + tensor([[ 1.5, 2.5, 3.5], + [ 6.0, 8.0, 10.0]]) + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with the same arbitrary spacing + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([1, 3, 6]) + >>> torch.cumulative_trapezoid(y, x) + tensor([[2., 5.], + [2., 5.], + [2., 5.]]) + + >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with different arbitrary spacing per row + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) + >>> torch.cumulative_trapezoid(y, x) + tensor([[1., 2.], + [2., 4.], + [3., 6.]]) + """ + ... +def deg2rad(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + deg2rad(input, *, out=None) -> Tensor + + Returns a new tensor with each of the elements of :attr:`input` + converted from angles in degrees to radians. + + Args: + input (Tensor): the input tensor. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([[180.0, -180.0], [360.0, -360.0], [90.0, -90.0]]) + >>> torch.deg2rad(a) + tensor([[ 3.1416, -3.1416], + [ 6.2832, -6.2832], + [ 1.5708, -1.5708]]) + """ + ... +def deg2rad_(input: Tensor) -> Tensor: ... +@overload +def dequantize(input: Tensor) -> Tensor: + r""" + dequantize(tensor) -> Tensor + + Returns an fp32 Tensor by dequantizing a quantized Tensor + + Args: + tensor (Tensor): A quantized Tensor + + .. function:: dequantize(tensors) -> sequence of Tensors + :noindex: + + Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors + + Args: + tensors (sequence of Tensors): A list of quantized Tensors + """ + ... +@overload +def dequantize(tensors: Union[Tuple[Tensor, ...], List[Tensor]]) -> Tuple[Tensor, ...]: + r""" + dequantize(tensor) -> Tensor + + Returns an fp32 Tensor by dequantizing a quantized Tensor + + Args: + tensor (Tensor): A quantized Tensor + + .. function:: dequantize(tensors) -> sequence of Tensors + :noindex: + + Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors + + Args: + tensors (sequence of Tensors): A list of quantized Tensors + """ + ... +def det(input: Tensor) -> Tensor: + r""" + det(input) -> Tensor + + Alias for :func:`torch.linalg.det` + """ + ... +def detach(input: Tensor) -> Tensor: ... +def detach_(input: Tensor) -> Tensor: ... +def detach_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.detach`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def diag(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + diag(input, diagonal=0, *, out=None) -> Tensor + + - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor + with the elements of :attr:`input` as the diagonal. + - If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with + the diagonal elements of :attr:`input`. + + The argument :attr:`diagonal` controls which diagonal to consider: + + - If :attr:`diagonal` = 0, it is the main diagonal. + - If :attr:`diagonal` > 0, it is above the main diagonal. + - If :attr:`diagonal` < 0, it is below the main diagonal. + + Args: + input (Tensor): the input tensor. + diagonal (int, optional): the diagonal to consider + + Keyword args: + out (Tensor, optional): the output tensor. + + .. seealso:: + + :func:`torch.diagonal` always returns the diagonal of its input. + + :func:`torch.diagflat` always constructs a tensor with diagonal elements + specified by the input. + + Examples: + + Get the square matrix where the input vector is the diagonal:: + + >>> a = torch.randn(3) + >>> a + tensor([ 0.5950,-0.0872, 2.3298]) + >>> torch.diag(a) + tensor([[ 0.5950, 0.0000, 0.0000], + [ 0.0000,-0.0872, 0.0000], + [ 0.0000, 0.0000, 2.3298]]) + >>> torch.diag(a, 1) + tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], + [ 0.0000, 0.0000,-0.0872, 0.0000], + [ 0.0000, 0.0000, 0.0000, 2.3298], + [ 0.0000, 0.0000, 0.0000, 0.0000]]) + + Get the k-th diagonal of a given matrix:: + + >>> a = torch.randn(3, 3) + >>> a + tensor([[-0.4264, 0.0255,-0.1064], + [ 0.8795,-0.2429, 0.1374], + [ 0.1029,-0.6482,-1.6300]]) + >>> torch.diag(a, 0) + tensor([-0.4264,-0.2429,-1.6300]) + >>> torch.diag(a, 1) + tensor([ 0.0255, 0.1374]) + """ + ... +def diag_embed(input: Tensor, offset: _int = 0, dim1: _int = -2, dim2: _int = -1) -> Tensor: + r""" + diag_embed(input, offset=0, dim1=-2, dim2=-1) -> Tensor + + Creates a tensor whose diagonals of certain 2D planes (specified by + :attr:`dim1` and :attr:`dim2`) are filled by :attr:`input`. + To facilitate creating batched diagonal matrices, the 2D planes formed by + the last two dimensions of the returned tensor are chosen by default. + + The argument :attr:`offset` controls which diagonal to consider: + + - If :attr:`offset` = 0, it is the main diagonal. + - If :attr:`offset` > 0, it is above the main diagonal. + - If :attr:`offset` < 0, it is below the main diagonal. + + The size of the new matrix will be calculated to make the specified diagonal + of the size of the last input dimension. + Note that for :attr:`offset` other than :math:`0`, the order of :attr:`dim1` + and :attr:`dim2` matters. Exchanging them is equivalent to changing the + sign of :attr:`offset`. + + Applying :meth:`torch.diagonal` to the output of this function with + the same arguments yields a matrix identical to input. However, + :meth:`torch.diagonal` has different default dimensions, so those + need to be explicitly specified. + + Args: + input (Tensor): the input tensor. Must be at least 1-dimensional. + offset (int, optional): which diagonal to consider. Default: 0 + (main diagonal). + dim1 (int, optional): first dimension with respect to which to + take diagonal. Default: -2. + dim2 (int, optional): second dimension with respect to which to + take diagonal. Default: -1. + + Example:: + + >>> a = torch.randn(2, 3) + >>> torch.diag_embed(a) + tensor([[[ 1.5410, 0.0000, 0.0000], + [ 0.0000, -0.2934, 0.0000], + [ 0.0000, 0.0000, -2.1788]], + + [[ 0.5684, 0.0000, 0.0000], + [ 0.0000, -1.0845, 0.0000], + [ 0.0000, 0.0000, -1.3986]]]) + + >>> torch.diag_embed(a, offset=1, dim1=0, dim2=2) + tensor([[[ 0.0000, 1.5410, 0.0000, 0.0000], + [ 0.0000, 0.5684, 0.0000, 0.0000]], + + [[ 0.0000, 0.0000, -0.2934, 0.0000], + [ 0.0000, 0.0000, -1.0845, 0.0000]], + + [[ 0.0000, 0.0000, 0.0000, -2.1788], + [ 0.0000, 0.0000, 0.0000, -1.3986]], + + [[ 0.0000, 0.0000, 0.0000, 0.0000], + [ 0.0000, 0.0000, 0.0000, 0.0000]]]) + """ + ... +def diagflat(input: Tensor, offset: _int = 0) -> Tensor: + r""" + diagflat(input, offset=0) -> Tensor + + - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor + with the elements of :attr:`input` as the diagonal. + - If :attr:`input` is a tensor with more than one dimension, then returns a + 2-D tensor with diagonal elements equal to a flattened :attr:`input`. + + The argument :attr:`offset` controls which diagonal to consider: + + - If :attr:`offset` = 0, it is the main diagonal. + - If :attr:`offset` > 0, it is above the main diagonal. + - If :attr:`offset` < 0, it is below the main diagonal. + + Args: + input (Tensor): the input tensor. + offset (int, optional): the diagonal to consider. Default: 0 (main + diagonal). + + Examples:: + + >>> a = torch.randn(3) + >>> a + tensor([-0.2956, -0.9068, 0.1695]) + >>> torch.diagflat(a) + tensor([[-0.2956, 0.0000, 0.0000], + [ 0.0000, -0.9068, 0.0000], + [ 0.0000, 0.0000, 0.1695]]) + >>> torch.diagflat(a, 1) + tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], + [ 0.0000, 0.0000, -0.9068, 0.0000], + [ 0.0000, 0.0000, 0.0000, 0.1695], + [ 0.0000, 0.0000, 0.0000, 0.0000]]) + + >>> a = torch.randn(2, 2) + >>> a + tensor([[ 0.2094, -0.3018], + [-0.1516, 1.9342]]) + >>> torch.diagflat(a) + tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], + [ 0.0000, -0.3018, 0.0000, 0.0000], + [ 0.0000, 0.0000, -0.1516, 0.0000], + [ 0.0000, 0.0000, 0.0000, 1.9342]]) + """ + ... +@overload +def diagonal(input: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: + r""" + diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor + + Returns a partial view of :attr:`input` with the its diagonal elements + with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension + at the end of the shape. + + The argument :attr:`offset` controls which diagonal to consider: + + - If :attr:`offset` = 0, it is the main diagonal. + - If :attr:`offset` > 0, it is above the main diagonal. + - If :attr:`offset` < 0, it is below the main diagonal. + + Applying :meth:`torch.diag_embed` to the output of this function with + the same arguments yields a diagonal matrix with the diagonal entries + of the input. However, :meth:`torch.diag_embed` has different default + dimensions, so those need to be explicitly specified. + + Args: + input (Tensor): the input tensor. Must be at least 2-dimensional. + offset (int, optional): which diagonal to consider. Default: 0 + (main diagonal). + dim1 (int, optional): first dimension with respect to which to + take diagonal. Default: 0. + dim2 (int, optional): second dimension with respect to which to + take diagonal. Default: 1. + + .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. + + Examples:: + + >>> a = torch.randn(3, 3) + >>> a + tensor([[-1.0854, 1.1431, -0.1752], + [ 0.8536, -0.0905, 0.0360], + [ 0.6927, -0.3735, -0.4945]]) + + + >>> torch.diagonal(a, 0) + tensor([-1.0854, -0.0905, -0.4945]) + + + >>> torch.diagonal(a, 1) + tensor([ 1.1431, 0.0360]) + + + >>> x = torch.randn(2, 5, 4, 2) + >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) + tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], + [-1.1065, 1.0401, -0.2235, -0.7938]], + + [[-1.7325, -0.3081, 0.6166, 0.2335], + [ 1.0500, 0.7336, -0.3836, -1.1015]]]) + """ + ... +@overload +def diagonal(input: Tensor, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int = 0) -> Tensor: + r""" + diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor + + Returns a partial view of :attr:`input` with the its diagonal elements + with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension + at the end of the shape. + + The argument :attr:`offset` controls which diagonal to consider: + + - If :attr:`offset` = 0, it is the main diagonal. + - If :attr:`offset` > 0, it is above the main diagonal. + - If :attr:`offset` < 0, it is below the main diagonal. + + Applying :meth:`torch.diag_embed` to the output of this function with + the same arguments yields a diagonal matrix with the diagonal entries + of the input. However, :meth:`torch.diag_embed` has different default + dimensions, so those need to be explicitly specified. + + Args: + input (Tensor): the input tensor. Must be at least 2-dimensional. + offset (int, optional): which diagonal to consider. Default: 0 + (main diagonal). + dim1 (int, optional): first dimension with respect to which to + take diagonal. Default: 0. + dim2 (int, optional): second dimension with respect to which to + take diagonal. Default: 1. + + .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. + + Examples:: + + >>> a = torch.randn(3, 3) + >>> a + tensor([[-1.0854, 1.1431, -0.1752], + [ 0.8536, -0.0905, 0.0360], + [ 0.6927, -0.3735, -0.4945]]) + + + >>> torch.diagonal(a, 0) + tensor([-1.0854, -0.0905, -0.4945]) + + + >>> torch.diagonal(a, 1) + tensor([ 1.1431, 0.0360]) + + + >>> x = torch.randn(2, 5, 4, 2) + >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) + tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], + [-1.1065, 1.0401, -0.2235, -0.7938]], + + [[-1.7325, -0.3081, 0.6166, 0.2335], + [ 1.0500, 0.7336, -0.3836, -1.1015]]]) + """ + ... +def diagonal_copy(input: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.diagonal`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def diagonal_scatter(input: Tensor, src: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: + r""" + diagonal_scatter(input, src, offset=0, dim1=0, dim2=1) -> Tensor + + Embeds the values of the :attr:`src` tensor into :attr:`input` along + the diagonal elements of :attr:`input`, with respect to :attr:`dim1` + and :attr:`dim2`. + + This function returns a tensor with fresh storage; it does not + return a view. + + The argument :attr:`offset` controls which diagonal to consider: + + - If :attr:`offset` = 0, it is the main diagonal. + - If :attr:`offset` > 0, it is above the main diagonal. + - If :attr:`offset` < 0, it is below the main diagonal. + + Args: + input (Tensor): the input tensor. Must be at least 2-dimensional. + src (Tensor): the tensor to embed into :attr:`input`. + offset (int, optional): which diagonal to consider. Default: 0 + (main diagonal). + dim1 (int, optional): first dimension with respect to which to + take diagonal. Default: 0. + dim2 (int, optional): second dimension with respect to which to + take diagonal. Default: 1. + + .. note:: + + :attr:`src` must be of the proper size in order to be embedded + into :attr:`input`. Specifically, it should have the same shape as + ``torch.diagonal(input, offset, dim1, dim2)`` + + Examples:: + + >>> a = torch.zeros(3, 3) + >>> a + tensor([[0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.]]) + + >>> torch.diagonal_scatter(a, torch.ones(3), 0) + tensor([[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]]) + + >>> torch.diagonal_scatter(a, torch.ones(2), 1) + tensor([[0., 1., 0.], + [0., 0., 1.], + [0., 0., 0.]]) + """ + ... +def diff(input: Tensor, n: _int = 1, dim: _int = -1, prepend: Optional[Tensor] = None, append: Optional[Tensor] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + diff(input, n=1, dim=-1, prepend=None, append=None) -> Tensor + + Computes the n-th forward difference along the given dimension. + + The first-order differences are given by `out[i] = input[i + 1] - input[i]`. Higher-order + differences are calculated by using :func:`torch.diff` recursively. + + Args: + input (Tensor): the tensor to compute the differences on + n (int, optional): the number of times to recursively compute the difference + dim (int, optional): the dimension to compute the difference along. + Default is the last dimension. + prepend, append (Tensor, optional): values to prepend or append to + :attr:`input` along :attr:`dim` before computing the difference. + Their dimensions must be equivalent to that of input, and their shapes + must match input's shape except on :attr:`dim`. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([1, 3, 2]) + >>> torch.diff(a) + tensor([ 2, -1]) + >>> b = torch.tensor([4, 5]) + >>> torch.diff(a, append=b) + tensor([ 2, -1, 2, 1]) + >>> c = torch.tensor([[1, 2, 3], [3, 4, 5]]) + >>> torch.diff(c, dim=0) + tensor([[2, 2, 2]]) + >>> torch.diff(c, dim=1) + tensor([[1, 1], + [1, 1]]) + """ + ... +def digamma(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + digamma(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.digamma`. + """ + ... +def dist(input: Tensor, other: Tensor, p: Union[Number, _complex] = 2) -> Tensor: + r""" + dist(input, other, p=2) -> Tensor + + Returns the p-norm of (:attr:`input` - :attr:`other`) + + The shapes of :attr:`input` and :attr:`other` must be + :ref:`broadcastable `. + + Args: + input (Tensor): the input tensor. + other (Tensor): the Right-hand-side input tensor + p (float, optional): the norm to be computed + + Example:: + + >>> x = torch.randn(4) + >>> x + tensor([-1.5393, -0.8675, 0.5916, 1.6321]) + >>> y = torch.randn(4) + >>> y + tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) + >>> torch.dist(x, y, 3.5) + tensor(1.6727) + >>> torch.dist(x, y, 3) + tensor(1.6973) + >>> torch.dist(x, y, 0) + tensor(4.) + >>> torch.dist(x, y, 1) + tensor(2.6537) + """ + ... +def div(input: Union[Tensor, Number], other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + div(input, other, *, rounding_mode=None, out=None) -> Tensor + + Divides each element of the input ``input`` by the corresponding element of + :attr:`other`. + + .. math:: + \text{out}_i = \frac{\text{input}_i}{\text{other}_i} + + .. note:: + By default, this performs a "true" division like Python 3. + See the :attr:`rounding_mode` argument for floor division. + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + Always promotes integer types to the default scalar type. + + Args: + input (Tensor): the dividend + other (Tensor or Number): the divisor + + Keyword args: + rounding_mode (str, optional): Type of rounding applied to the result: + + * None - default behavior. Performs no rounding and, if both :attr:`input` and + :attr:`other` are integer types, promotes the inputs to the default scalar type. + Equivalent to true division in Python (the ``/`` operator) and NumPy's ``np.true_divide``. + * ``"trunc"`` - rounds the results of the division towards zero. + Equivalent to C-style integer division. + * ``"floor"`` - rounds the results of the division down. + Equivalent to floor division in Python (the ``//`` operator) and NumPy's ``np.floor_divide``. + + out (Tensor, optional): the output tensor. + + Examples:: + + >>> x = torch.tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) + >>> torch.div(x, 0.5) + tensor([ 0.7620, 2.5548, -0.5944, -0.7438, 0.9274]) + + >>> a = torch.tensor([[-0.3711, -1.9353, -0.4605, -0.2917], + ... [ 0.1815, -1.0111, 0.9805, -1.5923], + ... [ 0.1062, 1.4581, 0.7759, -1.2344], + ... [-0.1830, -0.0313, 1.1908, -1.4757]]) + >>> b = torch.tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) + >>> torch.div(a, b) + tensor([[-0.4620, -6.6051, 0.5676, 1.2639], + [ 0.2260, -3.4509, -1.2086, 6.8990], + [ 0.1322, 4.9764, -0.9564, 5.3484], + [-0.2278, -0.1068, -1.4678, 6.3938]]) + + >>> torch.div(a, b, rounding_mode='trunc') + tensor([[-0., -6., 0., 1.], + [ 0., -3., -1., 6.], + [ 0., 4., -0., 5.], + [-0., -0., -1., 6.]]) + + >>> torch.div(a, b, rounding_mode='floor') + tensor([[-1., -7., 0., 1.], + [ 0., -4., -2., 6.], + [ 0., 4., -1., 5.], + [-1., -1., -2., 6.]]) + """ + ... +@overload +def divide(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + divide(input, other, *, rounding_mode=None, out=None) -> Tensor + + Alias for :func:`torch.div`. + """ + ... +@overload +def divide(input: Tensor, other: Tensor, *, rounding_mode: Optional[str], out: Optional[Tensor] = None) -> Tensor: + r""" + divide(input, other, *, rounding_mode=None, out=None) -> Tensor + + Alias for :func:`torch.div`. + """ + ... +@overload +def divide(input: Tensor, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: + r""" + divide(input, other, *, rounding_mode=None, out=None) -> Tensor + + Alias for :func:`torch.div`. + """ + ... +@overload +def divide(input: Tensor, other: Union[Number, _complex]) -> Tensor: + r""" + divide(input, other, *, rounding_mode=None, out=None) -> Tensor + + Alias for :func:`torch.div`. + """ + ... +def dot(input: Tensor, tensor: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + dot(input, tensor, *, out=None) -> Tensor + + Computes the dot product of two 1D tensors. + + .. note:: + + Unlike NumPy's dot, torch.dot intentionally only supports computing the dot product + of two 1D tensors with the same number of elements. + + Args: + input (Tensor): first tensor in the dot product, must be 1D. + tensor (Tensor): second tensor in the dot product, must be 1D. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) + tensor(7) + + >>> t1, t2 = torch.tensor([0, 1]), torch.tensor([2, 3]) + >>> torch.dot(t1, t2) + tensor(3) + """ + ... +def dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def dsmm(input: Tensor, mat2: Tensor) -> Tensor: ... +@overload +def dsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: + r""" + dsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors + depthwise according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) + (the split dimension is 2), except that if :attr:`indices_or_sections` is an integer + it must evenly divide the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.dsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(2, 2, 4) + >>> t + tensor([[[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]], + [[ 8., 9., 10., 11.], + [12., 13., 14., 15.]]]) + >>> torch.dsplit(t, 2) + (tensor([[[ 0., 1.], + [ 4., 5.]], + [[ 8., 9.], + [12., 13.]]]), + tensor([[[ 2., 3.], + [ 6., 7.]], + [[10., 11.], + [14., 15.]]])) + + >>> torch.dsplit(t, [3, 6]) + (tensor([[[ 0., 1., 2.], + [ 4., 5., 6.]], + [[ 8., 9., 10.], + [12., 13., 14.]]]), + tensor([[[ 3.], + [ 7.]], + [[11.], + [15.]]]), + tensor([], size=(2, 2, 0))) + """ + ... +@overload +def dsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: + r""" + dsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with three or more dimensions, into multiple tensors + depthwise according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=2) + (the split dimension is 2), except that if :attr:`indices_or_sections` is an integer + it must evenly divide the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.dsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(2, 2, 4) + >>> t + tensor([[[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.]], + [[ 8., 9., 10., 11.], + [12., 13., 14., 15.]]]) + >>> torch.dsplit(t, 2) + (tensor([[[ 0., 1.], + [ 4., 5.]], + [[ 8., 9.], + [12., 13.]]]), + tensor([[[ 2., 3.], + [ 6., 7.]], + [[10., 11.], + [14., 15.]]])) + + >>> torch.dsplit(t, [3, 6]) + (tensor([[[ 0., 1., 2.], + [ 4., 5., 6.]], + [[ 8., 9., 10.], + [12., 13., 14.]]]), + tensor([[[ 3.], + [ 7.]], + [[11.], + [15.]]]), + tensor([], size=(2, 2, 0))) + """ + ... +def dstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + dstack(tensors, *, out=None) -> Tensor + + Stack tensors in sequence depthwise (along third axis). + + This is equivalent to concatenation along the third axis after 1-D and 2-D tensors have been reshaped by :func:`torch.atleast_3d`. + + Args: + tensors (sequence of Tensors): sequence of tensors to concatenate + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([1, 2, 3]) + >>> b = torch.tensor([4, 5, 6]) + >>> torch.dstack((a,b)) + tensor([[[1, 4], + [2, 5], + [3, 6]]]) + >>> a = torch.tensor([[1],[2],[3]]) + >>> b = torch.tensor([[4],[5],[6]]) + >>> torch.dstack((a,b)) + tensor([[[1, 4]], + [[2, 5]], + [[3, 6]]]) + """ + ... +def embedding(weight: Tensor, indices: Tensor, padding_idx: Union[_int, SymInt] = -1, scale_grad_by_freq: _bool = False, sparse: _bool = False) -> Tensor: ... +@overload +def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool, mode: _int, sparse: _bool, per_sample_weights: Optional[Tensor], include_last_offset: _bool, padding_idx: Optional[_int]) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +@overload +def embedding_bag(weight: Tensor, indices: Tensor, offsets: Tensor, scale_grad_by_freq: _bool = False, mode: _int = 0, sparse: _bool = False, per_sample_weights: Optional[Tensor] = None, include_last_offset: _bool = False) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +def embedding_renorm_(input: Tensor, indices: Tensor, max_norm: _float, norm_type: _float) -> Tensor: ... +@overload +def empty(size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor + + Returns a tensor filled with uninitialized data. The shape of the tensor is + defined by the variable argument :attr:`size`. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. + + Example:: + + >>> torch.empty((2,3), dtype=torch.int64) + tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], + [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) + """ + ... +@overload +def empty(*size: Union[_int, SymInt], memory_format: Optional[memory_format] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor + + Returns a tensor filled with uninitialized data. The shape of the tensor is + defined by the variable argument :attr:`size`. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. + + Example:: + + >>> torch.empty((2,3), dtype=torch.int64) + tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], + [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) + """ + ... +@overload +def empty(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor + + Returns a tensor filled with uninitialized data. The shape of the tensor is + defined by the variable argument :attr:`size`. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. + + Example:: + + >>> torch.empty((2,3), dtype=torch.int64) + tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], + [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) + """ + ... +@overload +def empty(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor + + Returns a tensor filled with uninitialized data. The shape of the tensor is + defined by the variable argument :attr:`size`. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. + + Example:: + + >>> torch.empty((2,3), dtype=torch.int64) + tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], + [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) + """ + ... +def empty_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns an uninitialized tensor with the same size as :attr:`input`. + ``torch.empty_like(input)`` is equivalent to + ``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + Example:: + + >>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda') + >>> torch.empty_like(a) + tensor([[0, 0, 0], + [0, 0, 0]], device='cuda:0', dtype=torch.int32) + """ + ... +def empty_permuted(size: Sequence[Union[_int, SymInt]], physical_layout: _size, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty_permuted(size, physical_layout, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Creates an uninitialized, non-overlapping and dense tensor with the + specified :attr:`size`, with :attr:`physical_layout` specifying how the + dimensions are physically laid out in memory (each logical dimension is listed + from outermost to innermost). :attr:`physical_layout` is a generalization + of NCHW/NHWC notation: if each dimension is assigned a number according to + what order they occur in size (N=0, C=1, H=2, W=3), then NCHW is ``(0, 1, 2, 3)`` + while NHWC is ``(0, 2, 3, 1)``. Equivalently, the strides of the output + tensor ``t`` are such that ``t.stride(physical_layout[i]) == contiguous_strides[i]`` + (notably, this function is *not* equivalent to ``torch.empty(size).permute(physical_layout)``). + + Unlike :func:`torch.empty_strided`, this is guaranteed to produce a dense + tensor with no overlaps. If possible, prefer using this function over + :func:`torch.empty_strided` or manual use of :func:`torch.as_strided`. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (tuple of int): the shape of the output tensor + physical_layout (tuple of int): the ordering of dimensions physically in memory + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Examples: + + >>> torch.empty((2, 3, 5, 7)).stride() + (105, 35, 7, 1) + >>> torch.empty_permuted((2, 3, 5, 7), (0, 1, 2, 3)).stride() + (105, 35, 7, 1) + >>> torch.empty((2, 3, 5, 7), memory_format=torch.channels_last).stride() + (105, 1, 21, 3) + >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).stride() + (105, 1, 21, 3) + >>> torch.empty_permuted((2, 3, 5, 7), (0, 2, 3, 1)).dim_order() + (0, 2, 3, 1) + """ + ... +def empty_quantized(size: _size, qtensor: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +def empty_strided(size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Creates a tensor with the specified :attr:`size` and :attr:`stride` and filled with undefined data. + + .. warning:: + If the constructed tensor is "overlapped" (with multiple indices referring to the same element + in memory) its behavior is undefined. + + .. note:: + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, the output tensor is initialized to prevent any possible + nondeterministic behavior from using the data as an input to an operation. + Floating point and complex tensors are filled with NaN, and integer tensors + are filled with the maximum value. + + Args: + size (tuple of int): the shape of the output tensor + stride (tuple of int): the strides of the output tensor + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> a = torch.empty_strided((2, 3), (1, 2)) + >>> a + tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], + [0.0000e+00, 0.0000e+00, 3.0705e-41]]) + >>> a.stride() + (1, 2) + >>> a.size() + torch.Size([2, 3]) + """ + ... +@overload +def eq(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + eq(input, other, *, out=None) -> Tensor + + Computes element-wise equality + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[ True, False], + [False, True]]) + """ + ... +@overload +def eq(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + eq(input, other, *, out=None) -> Tensor + + Computes element-wise equality + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[ True, False], + [False, True]]) + """ + ... +def equal(input: Tensor, other: Tensor) -> _bool: + r""" + equal(input, other) -> bool + + ``True`` if two tensors have the same size and elements, ``False`` otherwise. + + Example:: + + >>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2])) + True + """ + ... +def erf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + erf(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.erf`. + """ + ... +def erf_(input: Tensor) -> Tensor: ... +def erfc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + erfc(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.erfc`. + """ + ... +def erfc_(input: Tensor) -> Tensor: ... +def erfinv(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + erfinv(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.erfinv`. + """ + ... +def exp(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + exp(input, *, out=None) -> Tensor + + Returns a new tensor with the exponential of the elements + of the input tensor :attr:`input`. + + .. math:: + y_{i} = e^{x_{i}} + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.exp(torch.tensor([0, math.log(2.)])) + tensor([ 1., 2.]) + """ + ... +def exp2(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + exp2(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.exp2`. + """ + ... +def exp2_(input: Tensor) -> Tensor: ... +def exp_(input: Tensor) -> Tensor: ... +def expand_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], *, implicit: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.expand`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def expm1(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + expm1(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.expm1`. + """ + ... +def expm1_(input: Tensor) -> Tensor: ... +@overload +def eye(n: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. + + Args: + n (int): the number of rows + m (int, optional): the number of columns with default being :attr:`n` + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere + + Example:: + + >>> torch.eye(3) + tensor([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + """ + ... +@overload +def eye(n: Union[_int, SymInt], m: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + eye(n, m=None, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. + + Args: + n (int): the number of rows + m (int, optional): the number of columns with default being :attr:`n` + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere + + Example:: + + >>> torch.eye(3) + tensor([[ 1., 0., 0.], + [ 0., 1., 0.], + [ 0., 0., 1.]]) + """ + ... +def fake_quantize_per_channel_affine(input: Tensor, scale: Tensor, zero_point: Tensor, axis: _int, quant_min: _int, quant_max: _int) -> Tensor: + r""" + fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) -> Tensor + + Returns a new tensor with the data in :attr:`input` fake quantized per channel using :attr:`scale`, + :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`, across the channel specified by :attr:`axis`. + + .. math:: + \text{output} = ( + min( + \text{quant\_max}, + max( + \text{quant\_min}, + \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} + ) + ) - \text{zero\_point} + ) \times \text{scale} + + Args: + input (Tensor): the input value(s), in ``torch.float32`` + scale (Tensor): quantization scale, per channel in ``torch.float32`` + zero_point (Tensor): quantization zero_point, per channel in ``torch.int32`` or ``torch.half`` or ``torch.float32`` + axis (int32): channel axis + quant_min (int64): lower bound of the quantized domain + quant_max (int64): upper bound of the quantized domain + + Returns: + Tensor: A newly fake_quantized per channel ``torch.float32`` tensor + + Example:: + + >>> x = torch.randn(2, 2, 2) + >>> x + tensor([[[-0.2525, -0.0466], + [ 0.3491, -0.2168]], + + [[-0.5906, 1.6258], + [ 0.6444, -0.0542]]]) + >>> scales = (torch.randn(2) + 1) * 0.05 + >>> scales + tensor([0.0475, 0.0486]) + >>> zero_points = torch.zeros(2).to(torch.int32) + >>> zero_points + tensor([0, 0]) + >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) + tensor([[[0.0000, 0.0000], + [0.3405, 0.0000]], + + [[0.0000, 1.6134], + [0.6323, 0.0000]]]) + """ + ... +@overload +def fake_quantize_per_tensor_affine(input: Tensor, scale: _float, zero_point: _int, quant_min: _int, quant_max: _int) -> Tensor: + r""" + fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor + + Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`, + :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`. + + .. math:: + \text{output} = ( + min( + \text{quant\_max}, + max( + \text{quant\_min}, + \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} + ) + ) - \text{zero\_point} + ) \times \text{scale} + + Args: + input (Tensor): the input value(s), ``torch.float32`` tensor + scale (double scalar or ``float32`` Tensor): quantization scale + zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point + quant_min (int64): lower bound of the quantized domain + quant_max (int64): upper bound of the quantized domain + + Returns: + Tensor: A newly fake_quantized ``torch.float32`` tensor + + Example:: + + >>> x = torch.randn(4) + >>> x + tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) + >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) + tensor([0.1000, 1.0000, 0.4000, 0.0000]) + >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) + tensor([0.1000, 1.0000, 0.4000, 0.0000]) + """ + ... +@overload +def fake_quantize_per_tensor_affine(input: Tensor, scale: Tensor, zero_point: Tensor, quant_min: _int, quant_max: _int) -> Tensor: + r""" + fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor + + Returns a new tensor with the data in :attr:`input` fake quantized using :attr:`scale`, + :attr:`zero_point`, :attr:`quant_min` and :attr:`quant_max`. + + .. math:: + \text{output} = ( + min( + \text{quant\_max}, + max( + \text{quant\_min}, + \text{std::nearby\_int}(\text{input} / \text{scale}) + \text{zero\_point} + ) + ) - \text{zero\_point} + ) \times \text{scale} + + Args: + input (Tensor): the input value(s), ``torch.float32`` tensor + scale (double scalar or ``float32`` Tensor): quantization scale + zero_point (int64 scalar or ``int32`` Tensor): quantization zero_point + quant_min (int64): lower bound of the quantized domain + quant_max (int64): upper bound of the quantized domain + + Returns: + Tensor: A newly fake_quantized ``torch.float32`` tensor + + Example:: + + >>> x = torch.randn(4) + >>> x + tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) + >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) + tensor([0.1000, 1.0000, 0.4000, 0.0000]) + >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) + tensor([0.1000, 1.0000, 0.4000, 0.0000]) + """ + ... +def fbgemm_linear_fp16_weight(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ... +def fbgemm_linear_fp16_weight_fp32_activation(input: Tensor, packed_weight: Tensor, bias: Tensor) -> Tensor: ... +def fbgemm_linear_int8_weight(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Union[Number, _complex], weight_zero_point: Union[Number, _complex], bias: Tensor) -> Tensor: ... +def fbgemm_linear_int8_weight_fp32_activation(input: Tensor, weight: Tensor, packed: Tensor, col_offsets: Tensor, weight_scale: Union[Number, _complex], weight_zero_point: Union[Number, _complex], bias: Tensor) -> Tensor: ... +def fbgemm_linear_quantize_weight(input: Tensor) -> Tuple[Tensor, Tensor, _float, _int]: ... +def fbgemm_pack_gemm_matrix_fp16(input: Tensor) -> Tensor: ... +@overload +def fbgemm_pack_quantized_matrix(input: Tensor) -> Tensor: ... +@overload +def fbgemm_pack_quantized_matrix(input: Tensor, K: _int, N: _int) -> Tensor: ... +def feature_alpha_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def feature_alpha_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def feature_dropout(input: Tensor, p: _float, train: _bool) -> Tensor: ... +def feature_dropout_(input: Tensor, p: _float, train: _bool) -> Tensor: ... +@overload +def fill(input: Tensor, value: Tensor) -> Tensor: ... +@overload +def fill(input: Tensor, value: Union[Number, _complex]) -> Tensor: ... +@overload +def fill_(input: Tensor, value: Tensor) -> Tensor: ... +@overload +def fill_(input: Tensor, value: Union[Number, _complex]) -> Tensor: ... +def fix(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + fix(input, *, out=None) -> Tensor + + Alias for :func:`torch.trunc` + """ + ... +def fix_(input: Tensor) -> Tensor: ... +@overload +def flatten(input: Tensor, start_dim: _int = 0, end_dim: _int = -1) -> Tensor: + r""" + flatten(input, start_dim=0, end_dim=-1) -> Tensor + + Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` + are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. + The order of elements in :attr:`input` is unchanged. + + Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, + or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can + be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the + flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. + + .. note:: + Flattening a zero-dimensional tensor will return a one-dimensional view. + + Args: + input (Tensor): the input tensor. + start_dim (int): the first dim to flatten + end_dim (int): the last dim to flatten + + Example:: + + >>> t = torch.tensor([[[1, 2], + ... [3, 4]], + ... [[5, 6], + ... [7, 8]]]) + >>> torch.flatten(t) + tensor([1, 2, 3, 4, 5, 6, 7, 8]) + >>> torch.flatten(t, start_dim=1) + tensor([[1, 2, 3, 4], + [5, 6, 7, 8]]) + """ + ... +@overload +def flatten(input: Tensor, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(input, start_dim=0, end_dim=-1) -> Tensor + + Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` + are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. + The order of elements in :attr:`input` is unchanged. + + Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, + or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can + be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the + flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. + + .. note:: + Flattening a zero-dimensional tensor will return a one-dimensional view. + + Args: + input (Tensor): the input tensor. + start_dim (int): the first dim to flatten + end_dim (int): the last dim to flatten + + Example:: + + >>> t = torch.tensor([[[1, 2], + ... [3, 4]], + ... [[5, 6], + ... [7, 8]]]) + >>> torch.flatten(t) + tensor([1, 2, 3, 4, 5, 6, 7, 8]) + >>> torch.flatten(t, start_dim=1) + tensor([[1, 2, 3, 4], + [5, 6, 7, 8]]) + """ + ... +@overload +def flatten(input: Tensor, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(input, start_dim=0, end_dim=-1) -> Tensor + + Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` + are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. + The order of elements in :attr:`input` is unchanged. + + Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, + or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can + be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the + flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. + + .. note:: + Flattening a zero-dimensional tensor will return a one-dimensional view. + + Args: + input (Tensor): the input tensor. + start_dim (int): the first dim to flatten + end_dim (int): the last dim to flatten + + Example:: + + >>> t = torch.tensor([[[1, 2], + ... [3, 4]], + ... [[5, 6], + ... [7, 8]]]) + >>> torch.flatten(t) + tensor([1, 2, 3, 4, 5, 6, 7, 8]) + >>> torch.flatten(t, start_dim=1) + tensor([[1, 2, 3, 4], + [5, 6, 7, 8]]) + """ + ... +@overload +def flatten(input: Tensor, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(input, start_dim=0, end_dim=-1) -> Tensor + + Flattens :attr:`input` by reshaping it into a one-dimensional tensor. If :attr:`start_dim` or :attr:`end_dim` + are passed, only dimensions starting with :attr:`start_dim` and ending with :attr:`end_dim` are flattened. + The order of elements in :attr:`input` is unchanged. + + Unlike NumPy's flatten, which always copies input's data, this function may return the original object, a view, + or copy. If no dimensions are flattened, then the original object :attr:`input` is returned. Otherwise, if input can + be viewed as the flattened shape, then that view is returned. Finally, only if the input cannot be viewed as the + flattened shape is input's data copied. See :meth:`torch.Tensor.view` for details on when a view will be returned. + + .. note:: + Flattening a zero-dimensional tensor will return a one-dimensional view. + + Args: + input (Tensor): the input tensor. + start_dim (int): the first dim to flatten + end_dim (int): the last dim to flatten + + Example:: + + >>> t = torch.tensor([[[1, 2], + ... [3, 4]], + ... [[5, 6], + ... [7, 8]]]) + >>> torch.flatten(t) + tensor([1, 2, 3, 4, 5, 6, 7, 8]) + >>> torch.flatten(t, start_dim=1) + tensor([[1, 2, 3, 4], + [5, 6, 7, 8]]) + """ + ... +def flip(input: Tensor, dims: _size) -> Tensor: + r""" + flip(input, dims) -> Tensor + + Reverse the order of an n-D tensor along given axis in dims. + + .. note:: + `torch.flip` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flip`, + which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, + `torch.flip` is expected to be slower than `np.flip`. + + Args: + input (Tensor): the input tensor. + dims (a list or tuple): axis to flip on + + Example:: + + >>> x = torch.arange(8).view(2, 2, 2) + >>> x + tensor([[[ 0, 1], + [ 2, 3]], + + [[ 4, 5], + [ 6, 7]]]) + >>> torch.flip(x, [0, 1]) + tensor([[[ 6, 7], + [ 4, 5]], + + [[ 2, 3], + [ 0, 1]]]) + """ + ... +def fliplr(input: Tensor) -> Tensor: + r""" + fliplr(input) -> Tensor + + Flip tensor in the left/right direction, returning a new tensor. + + Flip the entries in each row in the left/right direction. + Columns are preserved, but appear in a different order than before. + + Note: + Requires the tensor to be at least 2-D. + + .. note:: + `torch.fliplr` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.fliplr`, + which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, + `torch.fliplr` is expected to be slower than `np.fliplr`. + + Args: + input (Tensor): Must be at least 2-dimensional. + + Example:: + + >>> x = torch.arange(4).view(2, 2) + >>> x + tensor([[0, 1], + [2, 3]]) + >>> torch.fliplr(x) + tensor([[1, 0], + [3, 2]]) + """ + ... +def flipud(input: Tensor) -> Tensor: + r""" + flipud(input) -> Tensor + + Flip tensor in the up/down direction, returning a new tensor. + + Flip the entries in each column in the up/down direction. + Rows are preserved, but appear in a different order than before. + + Note: + Requires the tensor to be at least 1-D. + + .. note:: + `torch.flipud` makes a copy of :attr:`input`'s data. This is different from NumPy's `np.flipud`, + which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, + `torch.flipud` is expected to be slower than `np.flipud`. + + Args: + input (Tensor): Must be at least 1-dimensional. + + Example:: + + >>> x = torch.arange(4).view(2, 2) + >>> x + tensor([[0, 1], + [2, 3]]) + >>> torch.flipud(x) + tensor([[2, 3], + [0, 1]]) + """ + ... +@overload +def float_power(input: Tensor, exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + float_power(input, exponent, *, out=None) -> Tensor + + Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. + If neither input is complex returns a ``torch.float64`` tensor, + and if one or more inputs is complex returns a ``torch.complex128`` tensor. + + .. note:: + This function always computes in double precision, unlike :func:`torch.pow`, + which implements more typical :ref:`type promotion `. + This is useful when the computation needs to be performed in a wider or more precise dtype, + or the results of the computation may contain fractional values not representable in the input dtypes, + like when an integer base is raised to a negative integer exponent. + + Args: + input (Tensor or Number): the base value(s) + exponent (Tensor or Number): the exponent value(s) + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randint(10, (4,)) + >>> a + tensor([6, 4, 7, 1]) + >>> torch.float_power(a, 2) + tensor([36., 16., 49., 1.], dtype=torch.float64) + + >>> a = torch.arange(1, 5) + >>> a + tensor([ 1, 2, 3, 4]) + >>> exp = torch.tensor([2, -3, 4, -5]) + >>> exp + tensor([ 2, -3, 4, -5]) + >>> torch.float_power(a, exp) + tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) + """ + ... +@overload +def float_power(self: Union[Number, _complex], exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + float_power(input, exponent, *, out=None) -> Tensor + + Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. + If neither input is complex returns a ``torch.float64`` tensor, + and if one or more inputs is complex returns a ``torch.complex128`` tensor. + + .. note:: + This function always computes in double precision, unlike :func:`torch.pow`, + which implements more typical :ref:`type promotion `. + This is useful when the computation needs to be performed in a wider or more precise dtype, + or the results of the computation may contain fractional values not representable in the input dtypes, + like when an integer base is raised to a negative integer exponent. + + Args: + input (Tensor or Number): the base value(s) + exponent (Tensor or Number): the exponent value(s) + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randint(10, (4,)) + >>> a + tensor([6, 4, 7, 1]) + >>> torch.float_power(a, 2) + tensor([36., 16., 49., 1.], dtype=torch.float64) + + >>> a = torch.arange(1, 5) + >>> a + tensor([ 1, 2, 3, 4]) + >>> exp = torch.tensor([2, -3, 4, -5]) + >>> exp + tensor([ 2, -3, 4, -5]) + >>> torch.float_power(a, exp) + tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) + """ + ... +@overload +def float_power(input: Tensor, exponent: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + float_power(input, exponent, *, out=None) -> Tensor + + Raises :attr:`input` to the power of :attr:`exponent`, elementwise, in double precision. + If neither input is complex returns a ``torch.float64`` tensor, + and if one or more inputs is complex returns a ``torch.complex128`` tensor. + + .. note:: + This function always computes in double precision, unlike :func:`torch.pow`, + which implements more typical :ref:`type promotion `. + This is useful when the computation needs to be performed in a wider or more precise dtype, + or the results of the computation may contain fractional values not representable in the input dtypes, + like when an integer base is raised to a negative integer exponent. + + Args: + input (Tensor or Number): the base value(s) + exponent (Tensor or Number): the exponent value(s) + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randint(10, (4,)) + >>> a + tensor([6, 4, 7, 1]) + >>> torch.float_power(a, 2) + tensor([36., 16., 49., 1.], dtype=torch.float64) + + >>> a = torch.arange(1, 5) + >>> a + tensor([ 1, 2, 3, 4]) + >>> exp = torch.tensor([2, -3, 4, -5]) + >>> exp + tensor([ 2, -3, 4, -5]) + >>> torch.float_power(a, exp) + tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64) + """ + ... +def floor(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + floor(input, *, out=None) -> Tensor + + Returns a new tensor with the floor of the elements of :attr:`input`, + the largest integer less than or equal to each element. + + For integer inputs, follows the array-api convention of returning a + copy of the input tensor. + + .. math:: + \text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.8166, 1.5308, -0.2530, -0.2091]) + >>> torch.floor(a) + tensor([-1., 1., -1., -1.]) + """ + ... +def floor_(input: Tensor) -> Tensor: ... +def floor_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor] = None) -> Tensor: + r""" + floor_divide(input, other, *, out=None) -> Tensor + + .. note:: + + Before PyTorch 1.13 :func:`torch.floor_divide` incorrectly performed + truncation division. To restore the previous behavior use + :func:`torch.div` with ``rounding_mode='trunc'``. + + Computes :attr:`input` divided by :attr:`other`, elementwise, and floors + the result. + + .. math:: + \text{{out}}_i = \text{floor} \left( \frac{{\text{{input}}_i}}{{\text{{other}}_i}} \right) + + + + Supports broadcasting to a common shape, type promotion, and integer and float inputs. + + Args: + input (Tensor or Number): the dividend + other (Tensor or Number): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([4.0, 3.0]) + >>> b = torch.tensor([2.0, 2.0]) + >>> torch.floor_divide(a, b) + tensor([2.0, 1.0]) + >>> torch.floor_divide(a, 1.4) + tensor([2.0, 2.0]) + """ + ... +def fmax(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + fmax(input, other, *, out=None) -> Tensor + + Computes the element-wise maximum of :attr:`input` and :attr:`other`. + + This is like :func:`torch.maximum` except it handles NaNs differently: + if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the maximum. + Only if both elements are NaN is NaN propagated. + + This function is a wrapper around C++'s ``std::fmax`` and is similar to NumPy's ``fmax`` function. + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and floating-point inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')]) + >>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')]) + >>> torch.fmax(a, b) + tensor([9.7000, 0.5000, 3.1000, nan]) + """ + ... +def fmin(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + fmin(input, other, *, out=None) -> Tensor + + Computes the element-wise minimum of :attr:`input` and :attr:`other`. + + This is like :func:`torch.minimum` except it handles NaNs differently: + if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the minimum. + Only if both elements are NaN is NaN propagated. + + This function is a wrapper around C++'s ``std::fmin`` and is similar to NumPy's ``fmin`` function. + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and floating-point inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([2.2, float('nan'), 2.1, float('nan')]) + >>> b = torch.tensor([-9.3, 0.1, float('nan'), float('nan')]) + >>> torch.fmin(a, b) + tensor([-9.3000, 0.1000, 2.1000, nan]) + """ + ... +@overload +def fmod(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + fmod(input, other, *, out=None) -> Tensor + + Applies C++'s `std::fmod `_ entrywise. + The result has the same sign as the dividend :attr:`input` and its absolute value + is less than that of :attr:`other`. + + This function may be defined in terms of :func:`torch.div` as + + .. code:: python + + torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and float inputs. + + .. note:: + + When the divisor is zero, returns ``NaN`` for floating point dtypes + on both CPU and GPU; raises ``RuntimeError`` for integer division by + zero on CPU; Integer division by zero on GPU may return any value. + + .. note:: + + Complex inputs are not supported. In some cases, it is not mathematically + possible to satisfy the definition of a modulo operation with complex numbers. + + .. seealso:: + + :func:`torch.remainder` which implements Python's modulus operator. + This one is defined using division rounding down the result. + + Args: + input (Tensor): the dividend + other (Tensor or Scalar): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) + tensor([-1., -0., -1., 1., 0., 1.]) + >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5) + tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) + """ + ... +@overload +def fmod(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + fmod(input, other, *, out=None) -> Tensor + + Applies C++'s `std::fmod `_ entrywise. + The result has the same sign as the dividend :attr:`input` and its absolute value + is less than that of :attr:`other`. + + This function may be defined in terms of :func:`torch.div` as + + .. code:: python + + torch.fmod(a, b) == a - a.div(b, rounding_mode="trunc") * b + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and float inputs. + + .. note:: + + When the divisor is zero, returns ``NaN`` for floating point dtypes + on both CPU and GPU; raises ``RuntimeError`` for integer division by + zero on CPU; Integer division by zero on GPU may return any value. + + .. note:: + + Complex inputs are not supported. In some cases, it is not mathematically + possible to satisfy the definition of a modulo operation with complex numbers. + + .. seealso:: + + :func:`torch.remainder` which implements Python's modulus operator. + This one is defined using division rounding down the result. + + Args: + input (Tensor): the dividend + other (Tensor or Scalar): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) + tensor([-1., -0., -1., 1., 0., 1.]) + >>> torch.fmod(torch.tensor([1, 2, 3, 4, 5]), -1.5) + tensor([1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) + """ + ... +def frac(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + frac(input, *, out=None) -> Tensor + + Computes the fractional portion of each element in :attr:`input`. + + .. math:: + \text{out}_{i} = \text{input}_{i} - \left\lfloor |\text{input}_{i}| \right\rfloor * \operatorname{sgn}(\text{input}_{i}) + + Example:: + + >>> torch.frac(torch.tensor([1, 2.5, -3.2])) + tensor([ 0.0000, 0.5000, -0.2000]) + """ + ... +def frac_(input: Tensor) -> Tensor: ... +def frexp(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.frexp: + r""" + frexp(input, *, out=None) -> (Tensor mantissa, Tensor exponent) + + Decomposes :attr:`input` into mantissa and exponent tensors + such that :math:`\text{input} = \text{mantissa} \times 2^{\text{exponent}}`. + + The range of mantissa is the open interval (-1, 1). + + Supports float inputs. + + Args: + input (Tensor): the input tensor + + + Keyword args: + out (tuple, optional): the output tensors + + Example:: + + >>> x = torch.arange(9.) + >>> mantissa, exponent = torch.frexp(x) + >>> mantissa + tensor([0.0000, 0.5000, 0.5000, 0.7500, 0.5000, 0.6250, 0.7500, 0.8750, 0.5000]) + >>> exponent + tensor([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=torch.int32) + >>> torch.ldexp(mantissa, exponent) + tensor([0., 1., 2., 3., 4., 5., 6., 7., 8.]) + """ + ... +def frobenius_norm(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... +def from_file(filename: str, shared: Optional[_bool] = None, size: Optional[_int] = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + from_file(filename, shared=None, size=0, *, dtype=None, layout=None, device=None, pin_memory=False) + + Creates a CPU tensor with a storage backed by a memory-mapped file. + + If ``shared`` is True, then memory is shared between processes. All changes are written to the file. + If ``shared`` is False, then changes to the tensor do not affect the file. + + ``size`` is the number of elements in the Tensor. If ``shared`` is ``False``, then the file must contain + at least ``size * sizeof(dtype)`` bytes. If ``shared`` is ``True`` the file will be created if needed. + + .. note:: + Only CPU tensors can be mapped to files. + + .. note:: + For now, tensors with storages backed by a memory-mapped file cannot be created in pinned memory. + + + Args: + filename (str): file name to map + shared (bool): whether to share memory (whether ``MAP_SHARED`` or ``MAP_PRIVATE`` is passed to the + underlying `mmap(2) call `_) + size (int): number of elements in the tensor + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + >>> t = torch.randn(2, 5, dtype=torch.float64) + >>> t.numpy().tofile('storage.pt') + >>> t_mapped = torch.from_file('storage.pt', shared=False, size=10, dtype=torch.float64) + """ + ... +def from_numpy(ndarray) -> Tensor: + r""" + from_numpy(ndarray) -> Tensor + + Creates a :class:`Tensor` from a :class:`numpy.ndarray`. + + The returned tensor and :attr:`ndarray` share the same memory. Modifications to + the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned + tensor is not resizable. + + It currently accepts :attr:`ndarray` with dtypes of ``numpy.float64``, + ``numpy.float32``, ``numpy.float16``, ``numpy.complex64``, ``numpy.complex128``, + ``numpy.int64``, ``numpy.int32``, ``numpy.int16``, ``numpy.int8``, ``numpy.uint8``, + and ``bool``. + + .. warning:: + Writing to a tensor created from a read-only NumPy array is not supported and will result in undefined behavior. + + Example:: + + >>> a = numpy.array([1, 2, 3]) + >>> t = torch.from_numpy(a) + >>> t + tensor([ 1, 2, 3]) + >>> t[0] = -1 + >>> a + array([-1, 2, 3]) + """ + ... +def frombuffer(buffer: Any, *, dtype: _dtype, count: int = -1, offset: int = 0, requires_grad: _bool = False) -> Tensor: + r""" + frombuffer(buffer, *, dtype, count=-1, offset=0, requires_grad=False) -> Tensor + + Creates a 1-dimensional :class:`Tensor` from an object that implements + the Python buffer protocol. + + Skips the first :attr:`offset` bytes in the buffer, and interprets the rest of + the raw bytes as a 1-dimensional tensor of type :attr:`dtype` with :attr:`count` + elements. + + Note that either of the following must be true: + + 1. :attr:`count` is a positive non-zero number, and the total number of bytes + in the buffer is more than :attr:`offset` plus :attr:`count` times the size + (in bytes) of :attr:`dtype`. + + 2. :attr:`count` is negative, and the length (number of bytes) of the buffer + subtracted by the :attr:`offset` is a multiple of the size (in bytes) of + :attr:`dtype`. + + The returned tensor and buffer share the same memory. Modifications to + the tensor will be reflected in the buffer and vice versa. The returned + tensor is not resizable. + + .. note:: + This function increments the reference count for the object that + owns the shared memory. Therefore, such memory will not be deallocated + before the returned tensor goes out of scope. + + .. warning:: + This function's behavior is undefined when passed an object implementing + the buffer protocol whose data is not on the CPU. Doing so is likely to + cause a segmentation fault. + + .. warning:: + This function does not try to infer the :attr:`dtype` (hence, it is not + optional). Passing a different :attr:`dtype` than its source may result + in unexpected behavior. + + Args: + buffer (object): a Python object that exposes the buffer interface. + + Keyword args: + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + count (int, optional): the number of desired elements to be read. + If negative, all the elements (until the end of the buffer) will be + read. Default: -1. + offset (int, optional): the number of bytes to skip at the start of + the buffer. Default: 0. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> import array + >>> a = array.array('i', [1, 2, 3]) + >>> t = torch.frombuffer(a, dtype=torch.int32) + >>> t + tensor([ 1, 2, 3]) + >>> t[0] = -1 + >>> a + array([-1, 2, 3]) + + >>> # Interprets the signed char bytes as 32-bit integers. + >>> # Each 4 signed char elements will be interpreted as + >>> # 1 signed 32-bit integer. + >>> import array + >>> a = array.array('b', [-1, 0, 0, 0]) + >>> torch.frombuffer(a, dtype=torch.int32) + tensor([255], dtype=torch.int32) + """ + ... +@overload +def full(size: _size, fill_value: Union[Number, _complex], *, out: Optional[Tensor] = None, layout: _layout = strided, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The + tensor's dtype is inferred from :attr:`fill_value`. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + fill_value (Scalar): the value to fill the output tensor with. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.full((2, 3), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416]]) + """ + ... +@overload +def full(size: _size, fill_value: Union[Number, _complex], *, names: List[Union[str, None]], layout: _layout = strided, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The + tensor's dtype is inferred from :attr:`fill_value`. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + fill_value (Scalar): the value to fill the output tensor with. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.full((2, 3), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416]]) + """ + ... +@overload +def full(size: Sequence[Union[_int, SymInt]], fill_value: Union[Number, _complex], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The + tensor's dtype is inferred from :attr:`fill_value`. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + fill_value (Scalar): the value to fill the output tensor with. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.full((2, 3), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416]]) + """ + ... +@overload +def full(size: _size, fill_value: Union[Number, _complex], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + full(size, fill_value, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a tensor of size :attr:`size` filled with :attr:`fill_value`. The + tensor's dtype is inferred from :attr:`fill_value`. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + fill_value (Scalar): the value to fill the output tensor with. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.full((2, 3), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416]]) + """ + ... +def full_like(input: Tensor, fill_value: Union[Number, _complex], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + full_like(input, fill_value, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`. + ``torch.full_like(input, fill_value)`` is equivalent to + ``torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + fill_value: the number to fill the output tensor with. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... +def fused_moving_avg_obs_fake_quant(input: Tensor, observer_on: Tensor, fake_quant_on: Tensor, running_min: Tensor, running_max: Tensor, scale: Tensor, zero_point: Tensor, averaging_const: _float, quant_min: _int, quant_max: _int, ch_axis: _int, per_row_fake_quant: _bool = False, symmetric_quant: _bool = False) -> Tensor: ... +@overload +def gather(input: Tensor, dim: _int, index: Tensor, *, sparse_grad: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor + + Gathers values along an axis specified by `dim`. + + For a 3-D tensor the output is specified by:: + + out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 + out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 + out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 + + :attr:`input` and :attr:`index` must have the same number of dimensions. + It is also required that ``index.size(d) <= input.size(d)`` for all + dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`. + Note that ``input`` and ``index`` do not broadcast against each other. + + Args: + input (Tensor): the source tensor + dim (int): the axis along which to index + index (LongTensor): the indices of elements to gather + + Keyword arguments: + sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor. + out (Tensor, optional): the destination tensor + + Example:: + + >>> t = torch.tensor([[1, 2], [3, 4]]) + >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) + tensor([[ 1, 1], + [ 4, 3]]) + """ + ... +@overload +def gather(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor + + Gathers values along an axis specified by `dim`. + + For a 3-D tensor the output is specified by:: + + out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 + out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 + out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 + + :attr:`input` and :attr:`index` must have the same number of dimensions. + It is also required that ``index.size(d) <= input.size(d)`` for all + dimensions ``d != dim``. :attr:`out` will have the same shape as :attr:`index`. + Note that ``input`` and ``index`` do not broadcast against each other. + + Args: + input (Tensor): the source tensor + dim (int): the axis along which to index + index (LongTensor): the indices of elements to gather + + Keyword arguments: + sparse_grad (bool, optional): If ``True``, gradient w.r.t. :attr:`input` will be a sparse tensor. + out (Tensor, optional): the destination tensor + + Example:: + + >>> t = torch.tensor([[1, 2], [3, 4]]) + >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) + tensor([[ 1, 1], + [ 4, 3]]) + """ + ... +def gcd(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + gcd(input, other, *, out=None) -> Tensor + + Computes the element-wise greatest common divisor (GCD) of :attr:`input` and :attr:`other`. + + Both :attr:`input` and :attr:`other` must have integer types. + + .. note:: + This defines :math:`gcd(0, 0) = 0`. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([5, 10, 15]) + >>> b = torch.tensor([3, 4, 5]) + >>> torch.gcd(a, b) + tensor([1, 2, 5]) + >>> c = torch.tensor([3]) + >>> torch.gcd(a, c) + tensor([1, 1, 3]) + """ + ... +def gcd_(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def ge(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ge(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \geq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[True, True], [False, True]]) + """ + ... +@overload +def ge(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + ge(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \geq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is greater than or equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[True, True], [False, True]]) + """ + ... +def geqrf(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.geqrf: + r""" + geqrf(input, *, out=None) -> (Tensor, Tensor) + + This is a low-level function for calling LAPACK's geqrf directly. This function + returns a namedtuple (a, tau) as defined in `LAPACK documentation for geqrf`_ . + + Computes a QR decomposition of :attr:`input`. + Both `Q` and `R` matrices are stored in the same output tensor `a`. + The elements of `R` are stored on and above the diagonal. + Elementary reflectors (or Householder vectors) implicitly defining matrix `Q` + are stored below the diagonal. + The results of this function can be used together with :func:`torch.linalg.householder_product` + to obtain the `Q` matrix or + with :func:`torch.ormqr`, which uses an implicit representation of the `Q` matrix, + for an efficient matrix-matrix multiplication. + + See `LAPACK documentation for geqrf`_ for further details. + + .. note:: + See also :func:`torch.linalg.qr`, which computes Q and R matrices, and :func:`torch.linalg.lstsq` + with the ``driver="gels"`` option for a function that can solve matrix equations using a QR decomposition. + + Args: + input (Tensor): the input matrix + + Keyword args: + out (tuple, optional): the output tuple of (Tensor, Tensor). Ignored if `None`. Default: `None`. + + .. _LAPACK documentation for geqrf: + http://www.netlib.org/lapack/explore-html/df/dc5/group__variants_g_ecomputational_ga3766ea903391b5cf9008132f7440ec7b.html + """ + ... +def ger(input: Tensor, vec2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ger(input, vec2, *, out=None) -> Tensor + + Alias of :func:`torch.outer`. + + .. warning:: + This function is deprecated and will be removed in a future PyTorch release. + Use :func:`torch.outer` instead. + """ + ... +def get_default_dtype() -> _dtype: + r""" + get_default_dtype() -> torch.dtype + + Get the current default floating point :class:`torch.dtype`. + + Example:: + + >>> torch.get_default_dtype() # initial default for floating point is torch.float32 + torch.float32 + >>> torch.set_default_dtype(torch.float64) + >>> torch.get_default_dtype() # default is now changed to torch.float64 + torch.float64 + """ + ... +def get_num_interop_threads() -> _int: + r""" + get_num_interop_threads() -> int + + Returns the number of threads used for inter-op parallelism on CPU + (e.g. in JIT interpreter) + """ + ... +def get_num_threads() -> _int: + r""" + get_num_threads() -> int + + Returns the number of threads used for parallelizing CPU operations + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Optional[Union[Number, _complex]] = None, dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Sequence[Union[Number, _complex]], dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Sequence[Union[Number, _complex]], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Union[Tuple[Tensor, ...], List[Tensor]], dim: Optional[_int] = None, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Union[Number, _complex], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, spacing: Union[Tuple[Tensor, ...], List[Tensor]], dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def gradient(input: Tensor, *, dim: _size, edge_order: _int = 1) -> Tuple[Tensor, ...]: + r""" + gradient(input, *, spacing=1, dim=None, edge_order=1) -> List of Tensors + + Estimates the gradient of a function :math:`g : \mathbb{R}^n \rightarrow \mathbb{R}` in + one or more dimensions using the `second-order accurate central differences method + `_ and + either first or second order estimates at the boundaries. + + The gradient of :math:`g` is estimated using samples. By default, when :attr:`spacing` is not + specified, the samples are entirely described by :attr:`input`, and the mapping of input coordinates + to an output is the same as the tensor's mapping of indices to values. For example, for a three-dimensional + :attr:`input` the function described is :math:`g : \mathbb{R}^3 \rightarrow \mathbb{R}`, and + :math:`g(1, 2, 3)\ == input[1, 2, 3]`. + + When :attr:`spacing` is specified, it modifies the relationship between :attr:`input` and input coordinates. + This is detailed in the "Keyword Arguments" section below. + + The gradient is estimated by estimating each partial derivative of :math:`g` independently. This estimation is + accurate if :math:`g` is in :math:`C^3` (it has at least 3 continuous derivatives), and the estimation can be + improved by providing closer samples. Mathematically, the value at each interior point of a partial derivative + is estimated using `Taylor's theorem with remainder `_. + Letting :math:`x` be an interior point with :math:`x-h_l` and :math:`x+h_r` be points neighboring + it to the left and right respectively, :math:`f(x+h_r)` and :math:`f(x-h_l)` can be estimated using: + + .. math:: + \begin{aligned} + f(x+h_r) = f(x) + h_r f'(x) + {h_r}^2 \frac{f''(x)}{2} + {h_r}^3 \frac{f'''(\xi_1)}{6}, \xi_1 \in (x, x+h_r) \\ + f(x-h_l) = f(x) - h_l f'(x) + {h_l}^2 \frac{f''(x)}{2} - {h_l}^3 \frac{f'''(\xi_2)}{6}, \xi_2 \in (x, x-h_l) \\ + \end{aligned} + + Using the fact that :math:`f \in C^3` and solving the linear system, we derive: + + .. math:: + f'(x) \approx \frac{ {h_l}^2 f(x+h_r) - {h_r}^2 f(x-h_l) + + ({h_r}^2-{h_l}^2 ) f(x) }{ {h_r} {h_l}^2 + {h_r}^2 {h_l} } + + .. note:: + We estimate the gradient of functions in complex domain + :math:`g : \mathbb{C}^n \rightarrow \mathbb{C}` in the same way. + + The value of each partial derivative at the boundary points is computed differently. See edge_order below. + + Args: + input (``Tensor``): the tensor that represents the values of the function + + Keyword args: + spacing (``scalar``, ``list of scalar``, ``list of Tensor``, optional): :attr:`spacing` can be used to modify + how the :attr:`input` tensor's indices relate to sample coordinates. If :attr:`spacing` is a scalar then + the indices are multiplied by the scalar to produce the coordinates. For example, if :attr:`spacing=2` the + indices (1, 2, 3) become coordinates (2, 4, 6). If :attr:`spacing` is a list of scalars then the corresponding + indices are multiplied. For example, if :attr:`spacing=(2, -1, 3)` the indices (1, 2, 3) become coordinates (2, -2, 9). + Finally, if :attr:`spacing` is a list of one-dimensional tensors then each tensor specifies the coordinates for + the corresponding dimension. For example, if the indices are (1, 2, 3) and the tensors are (t0, t1, t2), then + the coordinates are (t0[1], t1[2], t2[3]) + + dim (``int``, ``list of int``, optional): the dimension or dimensions to approximate the gradient over. By default + the partial gradient in every dimension is computed. Note that when :attr:`dim` is specified the elements of + the :attr:`spacing` argument must correspond with the specified dims." + + edge_order (``int``, optional): 1 or 2, for `first-order + `_ or + `second-order `_ + estimation of the boundary ("edge") values, respectively. + + Examples:: + + >>> # Estimates the gradient of f(x)=x^2 at points [-2, -1, 2, 4] + >>> coordinates = (torch.tensor([-2., -1., 1., 4.]),) + >>> values = torch.tensor([4., 1., 1., 16.], ) + >>> torch.gradient(values, spacing = coordinates) + (tensor([-3., -2., 2., 5.]),) + + >>> # Estimates the gradient of the R^2 -> R function whose samples are + >>> # described by the tensor t. Implicit coordinates are [0, 1] for the outermost + >>> # dimension and [0, 1, 2, 3] for the innermost dimension, and function estimates + >>> # partial derivative for both dimensions. + >>> t = torch.tensor([[1, 2, 4, 8], [10, 20, 40, 80]]) + >>> torch.gradient(t) + (tensor([[ 9., 18., 36., 72.], + [ 9., 18., 36., 72.]]), + tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]])) + + >>> # A scalar value for spacing modifies the relationship between tensor indices + >>> # and input coordinates by multiplying the indices to find the + >>> # coordinates. For example, below the indices of the innermost + >>> # 0, 1, 2, 3 translate to coordinates of [0, 2, 4, 6], and the indices of + >>> # the outermost dimension 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = 2.0) # dim = None (implicitly [0, 1]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.5000, 0.7500, 1.5000, 2.0000], + [ 5.0000, 7.5000, 15.0000, 20.0000]])) + >>> # doubling the spacing between samples halves the estimated partial gradients. + + >>> + >>> # Estimates only the partial derivative for dimension 1 + >>> torch.gradient(t, dim = 1) # spacing = None (implicitly 1.) + (tensor([[ 1.0000, 1.5000, 3.0000, 4.0000], + [10.0000, 15.0000, 30.0000, 40.0000]]),) + + >>> # When spacing is a list of scalars, the relationship between the tensor + >>> # indices and input coordinates changes based on dimension. + >>> # For example, below, the indices of the innermost dimension 0, 1, 2, 3 translate + >>> # to coordinates of [0, 3, 6, 9], and the indices of the outermost dimension + >>> # 0, 1 translate to coordinates of [0, 2]. + >>> torch.gradient(t, spacing = [3., 2.]) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + + >>> # The following example is a replication of the previous one with explicit + >>> # coordinates. + >>> coords = (torch.tensor([0, 2]), torch.tensor([0, 3, 6, 9])) + >>> torch.gradient(t, spacing = coords) + (tensor([[ 4.5000, 9.0000, 18.0000, 36.0000], + [ 4.5000, 9.0000, 18.0000, 36.0000]]), + tensor([[ 0.3333, 0.5000, 1.0000, 1.3333], + [ 3.3333, 5.0000, 10.0000, 13.3333]])) + """ + ... +@overload +def greater(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + greater(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.gt`. + """ + ... +@overload +def greater(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + greater(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.gt`. + """ + ... +@overload +def greater_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + greater_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.ge`. + """ + ... +@overload +def greater_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + greater_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.ge`. + """ + ... +def grid_sampler(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... +def grid_sampler_2d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... +def grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: _int, padding_mode: _int, align_corners: _bool) -> Tensor: ... +def group_norm(input: Tensor, num_groups: _int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: _float = 1e-05, cudnn_enabled: _bool = True) -> Tensor: ... +@overload +def gru(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... +@overload +def gru(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... +def gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... +@overload +def gt(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + gt(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} > \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere + + Example:: + + >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, True], [False, False]]) + """ + ... +@overload +def gt(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + gt(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} > \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is greater than :attr:`other` and False elsewhere + + Example:: + + >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, True], [False, False]]) + """ + ... +@overload +def hamming_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hamming window function. + + .. math:: + w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hamming_window(L, periodic=True)`` equal to + ``torch.hamming_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + .. note:: + This is a generalized version of :meth:`torch.hann_window`. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + alpha (float, optional): The coefficient :math:`\alpha` in the equation above + beta (float, optional): The coefficient :math:`\beta` in the equation above + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. + """ + ... +@overload +def hamming_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hamming window function. + + .. math:: + w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hamming_window(L, periodic=True)`` equal to + ``torch.hamming_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + .. note:: + This is a generalized version of :meth:`torch.hann_window`. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + alpha (float, optional): The coefficient :math:`\alpha` in the equation above + beta (float, optional): The coefficient :math:`\beta` in the equation above + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. + """ + ... +@overload +def hamming_window(window_length: _int, periodic: _bool, alpha: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hamming window function. + + .. math:: + w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hamming_window(L, periodic=True)`` equal to + ``torch.hamming_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + .. note:: + This is a generalized version of :meth:`torch.hann_window`. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + alpha (float, optional): The coefficient :math:`\alpha` in the equation above + beta (float, optional): The coefficient :math:`\beta` in the equation above + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. + """ + ... +@overload +def hamming_window(window_length: _int, periodic: _bool, alpha: _float, beta: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hamming window function. + + .. math:: + w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hamming_window(L, periodic=True)`` equal to + ``torch.hamming_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + .. note:: + This is a generalized version of :meth:`torch.hann_window`. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + alpha (float, optional): The coefficient :math:`\alpha` in the equation above + beta (float, optional): The coefficient :math:`\beta` in the equation above + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window. + """ + ... +@overload +def hann_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hann_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hann window function. + + .. math:: + w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = + \sin^2 \left( \frac{\pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hann_window(L, periodic=True)`` equal to + ``torch.hann_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +@overload +def hann_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + hann_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Hann window function. + + .. math:: + w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = + \sin^2 \left( \frac{\pi n}{N - 1} \right), + + where :math:`N` is the full window size. + + The input :attr:`window_length` is a positive integer controlling the + returned window size. :attr:`periodic` flag determines whether the returned + window trims off the last duplicate value from the symmetric window and is + ready to be used as a periodic window with functions like + :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in + above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have + ``torch.hann_window(L, periodic=True)`` equal to + ``torch.hann_window(L + 1, periodic=False)[:-1])``. + + .. note:: + If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. + + Arguments: + window_length (int): the size of returned window + periodic (bool, optional): If True, returns a window to be used as periodic + function. If False, return a symmetric window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). Only floating point types are supported. + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Returns: + Tensor: A 1-D tensor of size :math:`(\text{window\_length},)` containing the window + """ + ... +def hardshrink(input: Tensor, lambd: Union[Number, _complex] = 0.5, *, out: Optional[Tensor] = None) -> Tensor: ... +def heaviside(input: Tensor, values: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + heaviside(input, values, *, out=None) -> Tensor + + Computes the Heaviside step function for each element in :attr:`input`. + The Heaviside step function is defined as: + + .. math:: + \text{{heaviside}}(input, values) = \begin{cases} + 0, & \text{if input < 0}\\ + values, & \text{if input == 0}\\ + 1, & \text{if input > 0} + \end{cases} + + + Args: + input (Tensor): the input tensor. + values (Tensor): The values to use where :attr:`input` is zero. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> input = torch.tensor([-1.5, 0, 2.0]) + >>> values = torch.tensor([0.5]) + >>> torch.heaviside(input, values) + tensor([0.0000, 0.5000, 1.0000]) + >>> values = torch.tensor([1.2, -2.0, 3.5]) + >>> torch.heaviside(input, values) + tensor([0., -2., 1.]) + """ + ... +def hinge_embedding_loss(input: Tensor, target: Tensor, margin: _float = 1.0, reduction: _int = 1) -> Tensor: ... +def histc(input: Tensor, bins: _int = 100, min: Union[Number, _complex] = 0, max: Union[Number, _complex] = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + histc(input, bins=100, min=0, max=0, *, out=None) -> Tensor + + Computes the histogram of a tensor. + + The elements are sorted into equal width bins between :attr:`min` and + :attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and + maximum values of the data are used. + + Elements lower than min and higher than max and ``NaN`` elements are ignored. + + Args: + input (Tensor): the input tensor. + bins (int): number of histogram bins + min (Scalar): lower end of the range (inclusive) + max (Scalar): upper end of the range (inclusive) + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: Histogram represented as a tensor + + Example:: + + >>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3) + tensor([ 0., 2., 1., 0.]) + """ + ... +@overload +def histogram(input: Tensor, bins: Tensor, *, weight: Optional[Tensor] = None, density: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.histogram: + r""" + histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor) + + Computes a histogram of the values in a tensor. + + :attr:`bins` can be an integer or a 1D tensor. + + If :attr:`bins` is an int, it specifies the number of equal-width bins. + By default, the lower and upper range of the bins is determined by the + minimum and maximum elements of the input tensor. The :attr:`range` + argument can be provided to specify a range for the bins. + + If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges + including the rightmost edge. It should contain at least 2 elements + and its elements should be increasing. + + Args: + input (Tensor): the input tensor. + bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor, + defines the sequence of bin edges including the rightmost edge. + + Keyword args: + range (tuple of float): Defines the range of the bins. + weight (Tensor): If provided, weight should have the same shape as input. Each value in + input contributes its associated weight towards its bin's result. + density (bool): If False, the result will contain the count (or total weight) in each bin. + If True, the result is the value of the probability density function over the bins, + normalized such that the integral over the range of the bins is 1. + out (Tensor, optional): the output tensor. (tuple, optional): The result tuple of two output tensors (hist, bin_edges). + + Returns: + hist (Tensor): 1D Tensor containing the values of the histogram. + bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins. + + Example:: + + >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.])) + (tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) + >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True) + (tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) + """ + ... +@overload +def histogram(input: Tensor, bins: _int = 100, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.histogram: + r""" + histogram(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor) + + Computes a histogram of the values in a tensor. + + :attr:`bins` can be an integer or a 1D tensor. + + If :attr:`bins` is an int, it specifies the number of equal-width bins. + By default, the lower and upper range of the bins is determined by the + minimum and maximum elements of the input tensor. The :attr:`range` + argument can be provided to specify a range for the bins. + + If :attr:`bins` is a 1D tensor, it specifies the sequence of bin edges + including the rightmost edge. It should contain at least 2 elements + and its elements should be increasing. + + Args: + input (Tensor): the input tensor. + bins: int or 1D Tensor. If int, defines the number of equal-width bins. If tensor, + defines the sequence of bin edges including the rightmost edge. + + Keyword args: + range (tuple of float): Defines the range of the bins. + weight (Tensor): If provided, weight should have the same shape as input. Each value in + input contributes its associated weight towards its bin's result. + density (bool): If False, the result will contain the count (or total weight) in each bin. + If True, the result is the value of the probability density function over the bins, + normalized such that the integral over the range of the bins is 1. + out (Tensor, optional): the output tensor. (tuple, optional): The result tuple of two output tensors (hist, bin_edges). + + Returns: + hist (Tensor): 1D Tensor containing the values of the histogram. + bin_edges(Tensor): 1D Tensor containing the edges of the histogram bins. + + Example:: + + >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.])) + (tensor([ 0., 5., 2., 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) + >>> torch.histogram(torch.tensor([1., 2, 1]), bins=4, range=(0., 3.), weight=torch.tensor([1., 2., 4.]), density=True) + (tensor([ 0., 0.9524, 0.3810, 0.]), tensor([0., 0.75, 1.5, 2.25, 3.])) + """ + ... +@overload +def histogramdd(input: Tensor, bins: _int, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: + r""" + histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) + + Computes a multi-dimensional histogram of the values in a tensor. + + Interprets the elements of an input tensor whose innermost dimension has size N + as a collection of N-dimensional points. Maps each of the points into a set of + N-dimensional bins and returns the number of points (or total weight) in each bin. + + :attr:`input` must be a tensor with at least 2 dimensions. + If input has shape (M, N), each of its M rows defines a point in N-dimensional space. + If input has three or more dimensions, all but the last dimension are flattened. + + Each dimension is independently associated with its own strictly increasing sequence + of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D + tensors. Alternatively, bin edges may be constructed automatically by passing a + sequence of integers specifying the number of equal-width bins in each dimension. + + For each N-dimensional point in input: + - Each of its coordinates is binned independently among the bin edges + corresponding to its dimension + - Binning results are combined to identify the N-dimensional bin (if any) + into which the point falls + - If the point falls into a bin, the bin's count (or total weight) is incremented + - Points which do not fall into any bin do not contribute to the output + + :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. + + If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences + of bin edges. Each 1D tensor should contain a strictly increasing sequence with at + least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying + the left and right edges of all bins. Every bin is exclusive of its left edge. Only + the rightmost bin is inclusive of its right edge. + + If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins + in each dimension. By default, the leftmost and rightmost bin edges in each dimension + are determined by the minimum and maximum elements of the input tensor in the + corresponding dimension. The :attr:`range` argument can be provided to manually + specify the leftmost and rightmost bin edges in each dimension. + + If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. + + .. note:: + See also :func:`torch.histogram`, which specifically computes 1D histograms. + While :func:`torch.histogramdd` infers the dimensionality of its bins and + binned values from the shape of :attr:`input`, :func:`torch.histogram` + accepts and flattens :attr:`input` of any shape. + + Args: + input (Tensor): the input tensor. + bins: Tensor[], int[], or int. + If Tensor[], defines the sequences of bin edges. + If int[], defines the number of equal-width bins in each dimension. + If int, defines the number of equal-width bins for all dimensions. + Keyword args: + range (sequence of float): Defines the leftmost and rightmost bin edges + in each dimension. + weight (Tensor): By default, each value in the input has weight 1. If a weight + tensor is passed, each N-dimensional coordinate in input + contributes its associated weight towards its bin's result. + The weight tensor should have the same shape as the :attr:`input` + tensor excluding its innermost dimension N. + density (bool): If False (default), the result will contain the count (or total weight) + in each bin. If True, each count (weight) is divided by the total count + (total weight), then divided by the volume of its associated bin. + Returns: + hist (Tensor): N-dimensional Tensor containing the values of the histogram. + bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. + + Example:: + >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], + ... weight=torch.tensor([1., 2., 4., 8.])) + torch.return_types.histogramdd( + hist=tensor([[0., 1., 0.], + [2., 0., 0.], + [4., 0., 8.]]), + bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), + tensor([0.0000, 0.6667, 1.3333, 2.0000]))) + + >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], + ... range=[0., 1., 0., 1.], density=True) + torch.return_types.histogramdd( + hist=tensor([[2., 0.], + [0., 2.]]), + bin_edges=(tensor([0.0000, 0.5000, 1.0000]), + tensor([0.0000, 0.5000, 1.0000]))) + """ + ... +@overload +def histogramdd(input: Tensor, bins: _size, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: + r""" + histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) + + Computes a multi-dimensional histogram of the values in a tensor. + + Interprets the elements of an input tensor whose innermost dimension has size N + as a collection of N-dimensional points. Maps each of the points into a set of + N-dimensional bins and returns the number of points (or total weight) in each bin. + + :attr:`input` must be a tensor with at least 2 dimensions. + If input has shape (M, N), each of its M rows defines a point in N-dimensional space. + If input has three or more dimensions, all but the last dimension are flattened. + + Each dimension is independently associated with its own strictly increasing sequence + of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D + tensors. Alternatively, bin edges may be constructed automatically by passing a + sequence of integers specifying the number of equal-width bins in each dimension. + + For each N-dimensional point in input: + - Each of its coordinates is binned independently among the bin edges + corresponding to its dimension + - Binning results are combined to identify the N-dimensional bin (if any) + into which the point falls + - If the point falls into a bin, the bin's count (or total weight) is incremented + - Points which do not fall into any bin do not contribute to the output + + :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. + + If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences + of bin edges. Each 1D tensor should contain a strictly increasing sequence with at + least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying + the left and right edges of all bins. Every bin is exclusive of its left edge. Only + the rightmost bin is inclusive of its right edge. + + If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins + in each dimension. By default, the leftmost and rightmost bin edges in each dimension + are determined by the minimum and maximum elements of the input tensor in the + corresponding dimension. The :attr:`range` argument can be provided to manually + specify the leftmost and rightmost bin edges in each dimension. + + If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. + + .. note:: + See also :func:`torch.histogram`, which specifically computes 1D histograms. + While :func:`torch.histogramdd` infers the dimensionality of its bins and + binned values from the shape of :attr:`input`, :func:`torch.histogram` + accepts and flattens :attr:`input` of any shape. + + Args: + input (Tensor): the input tensor. + bins: Tensor[], int[], or int. + If Tensor[], defines the sequences of bin edges. + If int[], defines the number of equal-width bins in each dimension. + If int, defines the number of equal-width bins for all dimensions. + Keyword args: + range (sequence of float): Defines the leftmost and rightmost bin edges + in each dimension. + weight (Tensor): By default, each value in the input has weight 1. If a weight + tensor is passed, each N-dimensional coordinate in input + contributes its associated weight towards its bin's result. + The weight tensor should have the same shape as the :attr:`input` + tensor excluding its innermost dimension N. + density (bool): If False (default), the result will contain the count (or total weight) + in each bin. If True, each count (weight) is divided by the total count + (total weight), then divided by the volume of its associated bin. + Returns: + hist (Tensor): N-dimensional Tensor containing the values of the histogram. + bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. + + Example:: + >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], + ... weight=torch.tensor([1., 2., 4., 8.])) + torch.return_types.histogramdd( + hist=tensor([[0., 1., 0.], + [2., 0., 0.], + [4., 0., 8.]]), + bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), + tensor([0.0000, 0.6667, 1.3333, 2.0000]))) + + >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], + ... range=[0., 1., 0., 1.], density=True) + torch.return_types.histogramdd( + hist=tensor([[2., 0.], + [0., 2.]]), + bin_edges=(tensor([0.0000, 0.5000, 1.0000]), + tensor([0.0000, 0.5000, 1.0000]))) + """ + ... +@overload +def histogramdd(input: Tensor, bins: Union[Tuple[Tensor, ...], List[Tensor]], range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogramdd: + r""" + histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[]) + + Computes a multi-dimensional histogram of the values in a tensor. + + Interprets the elements of an input tensor whose innermost dimension has size N + as a collection of N-dimensional points. Maps each of the points into a set of + N-dimensional bins and returns the number of points (or total weight) in each bin. + + :attr:`input` must be a tensor with at least 2 dimensions. + If input has shape (M, N), each of its M rows defines a point in N-dimensional space. + If input has three or more dimensions, all but the last dimension are flattened. + + Each dimension is independently associated with its own strictly increasing sequence + of bin edges. Bin edges may be specified explicitly by passing a sequence of 1D + tensors. Alternatively, bin edges may be constructed automatically by passing a + sequence of integers specifying the number of equal-width bins in each dimension. + + For each N-dimensional point in input: + - Each of its coordinates is binned independently among the bin edges + corresponding to its dimension + - Binning results are combined to identify the N-dimensional bin (if any) + into which the point falls + - If the point falls into a bin, the bin's count (or total weight) is incremented + - Points which do not fall into any bin do not contribute to the output + + :attr:`bins` can be a sequence of N 1D tensors, a sequence of N ints, or a single int. + + If :attr:`bins` is a sequence of N 1D tensors, it explicitly specifies the N sequences + of bin edges. Each 1D tensor should contain a strictly increasing sequence with at + least one element. A sequence of K bin edges defines K-1 bins, explicitly specifying + the left and right edges of all bins. Every bin is exclusive of its left edge. Only + the rightmost bin is inclusive of its right edge. + + If :attr:`bins` is a sequence of N ints, it specifies the number of equal-width bins + in each dimension. By default, the leftmost and rightmost bin edges in each dimension + are determined by the minimum and maximum elements of the input tensor in the + corresponding dimension. The :attr:`range` argument can be provided to manually + specify the leftmost and rightmost bin edges in each dimension. + + If :attr:`bins` is an int, it specifies the number of equal-width bins for all dimensions. + + .. note:: + See also :func:`torch.histogram`, which specifically computes 1D histograms. + While :func:`torch.histogramdd` infers the dimensionality of its bins and + binned values from the shape of :attr:`input`, :func:`torch.histogram` + accepts and flattens :attr:`input` of any shape. + + Args: + input (Tensor): the input tensor. + bins: Tensor[], int[], or int. + If Tensor[], defines the sequences of bin edges. + If int[], defines the number of equal-width bins in each dimension. + If int, defines the number of equal-width bins for all dimensions. + Keyword args: + range (sequence of float): Defines the leftmost and rightmost bin edges + in each dimension. + weight (Tensor): By default, each value in the input has weight 1. If a weight + tensor is passed, each N-dimensional coordinate in input + contributes its associated weight towards its bin's result. + The weight tensor should have the same shape as the :attr:`input` + tensor excluding its innermost dimension N. + density (bool): If False (default), the result will contain the count (or total weight) + in each bin. If True, each count (weight) is divided by the total count + (total weight), then divided by the volume of its associated bin. + Returns: + hist (Tensor): N-dimensional Tensor containing the values of the histogram. + bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin edges. + + Example:: + >>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3], + ... weight=torch.tensor([1., 2., 4., 8.])) + torch.return_types.histogramdd( + hist=tensor([[0., 1., 0.], + [2., 0., 0.], + [4., 0., 8.]]), + bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]), + tensor([0.0000, 0.6667, 1.3333, 2.0000]))) + + >>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2], + ... range=[0., 1., 0., 1.], density=True) + torch.return_types.histogramdd( + hist=tensor([[2., 0.], + [0., 2.]]), + bin_edges=(tensor([0.0000, 0.5000, 1.0000]), + tensor([0.0000, 0.5000, 1.0000]))) + """ + ... +def hsmm(input: Tensor, mat2: Tensor) -> Tensor: ... +@overload +def hsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: + r""" + hsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors + horizontally according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + If :attr:`input` is one dimensional this is equivalent to calling + torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is + zero), and if :attr:`input` has two or more dimensions it's equivalent to calling + torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), + except that if :attr:`indices_or_sections` is an integer it must evenly divide + the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.hsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(4,4) + >>> t + tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> torch.hsplit(t, 2) + (tensor([[ 0., 1.], + [ 4., 5.], + [ 8., 9.], + [12., 13.]]), + tensor([[ 2., 3.], + [ 6., 7.], + [10., 11.], + [14., 15.]])) + >>> torch.hsplit(t, [3, 6]) + (tensor([[ 0., 1., 2.], + [ 4., 5., 6.], + [ 8., 9., 10.], + [12., 13., 14.]]), + tensor([[ 3.], + [ 7.], + [11.], + [15.]]), + tensor([], size=(4, 0))) + """ + ... +@overload +def hsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: + r""" + hsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with one or more dimensions, into multiple tensors + horizontally according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + If :attr:`input` is one dimensional this is equivalent to calling + torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is + zero), and if :attr:`input` has two or more dimensions it's equivalent to calling + torch.tensor_split(input, indices_or_sections, dim=1) (the split dimension is 1), + except that if :attr:`indices_or_sections` is an integer it must evenly divide + the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.hsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(4,4) + >>> t + tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> torch.hsplit(t, 2) + (tensor([[ 0., 1.], + [ 4., 5.], + [ 8., 9.], + [12., 13.]]), + tensor([[ 2., 3.], + [ 6., 7.], + [10., 11.], + [14., 15.]])) + >>> torch.hsplit(t, [3, 6]) + (tensor([[ 0., 1., 2.], + [ 4., 5., 6.], + [ 8., 9., 10.], + [12., 13., 14.]]), + tensor([[ 3.], + [ 7.], + [11.], + [15.]]), + tensor([], size=(4, 0))) + """ + ... +def hspmm(mat1: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + hspmm(mat1, mat2, *, out=None) -> Tensor + + Performs a matrix multiplication of a :ref:`sparse COO matrix + ` :attr:`mat1` and a strided matrix :attr:`mat2`. The + result is a (1 + 1)-dimensional :ref:`hybrid COO matrix + `. + + Args: + mat1 (Tensor): the first sparse matrix to be matrix multiplied + mat2 (Tensor): the second strided matrix to be matrix multiplied + + Keyword args: + out (Tensor, optional): the output tensor. + """ + ... +def hstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + hstack(tensors, *, out=None) -> Tensor + + Stack tensors in sequence horizontally (column wise). + + This is equivalent to concatenation along the first axis for 1-D tensors, and along the second axis for all other tensors. + + Args: + tensors (sequence of Tensors): sequence of tensors to concatenate + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([1, 2, 3]) + >>> b = torch.tensor([4, 5, 6]) + >>> torch.hstack((a,b)) + tensor([1, 2, 3, 4, 5, 6]) + >>> a = torch.tensor([[1],[2],[3]]) + >>> b = torch.tensor([[4],[5],[6]]) + >>> torch.hstack((a,b)) + tensor([[1, 4], + [2, 5], + [3, 6]]) + """ + ... +def hypot(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + hypot(input, other, *, out=None) -> Tensor + + Given the legs of a right triangle, return its hypotenuse. + + .. math:: + \text{out}_{i} = \sqrt{\text{input}_{i}^{2} + \text{other}_{i}^{2}} + + The shapes of ``input`` and ``other`` must be + :ref:`broadcastable `. + + Args: + input (Tensor): the first input tensor + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.hypot(torch.tensor([4.0]), torch.tensor([3.0, 4.0, 5.0])) + tensor([5.0000, 5.6569, 6.4031]) + """ + ... +def i0(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + i0(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.i0`. + """ + ... +def i0_(input: Tensor) -> Tensor: ... +def igamma(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + igamma(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.special.gammainc`. + """ + ... +def igammac(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + igammac(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.special.gammaincc`. + """ + ... +def imag(input: Tensor) -> Tensor: + r""" + imag(input) -> Tensor + + Returns a new tensor containing imaginary values of the :attr:`self` tensor. + The returned tensor and :attr:`self` share the same underlying storage. + + .. warning:: + :func:`imag` is only supported for tensors with complex dtypes. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x=torch.randn(4, dtype=torch.cfloat) + >>> x + tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) + >>> x.imag + tensor([ 0.3553, -0.7896, -0.0633, -0.8119]) + """ + ... +@overload +def index_add(input: Tensor, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor + + See :meth:`~Tensor.index_add_` for function description. + """ + ... +@overload +def index_add(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + index_add(input, dim, index, source, *, alpha=1, out=None) -> Tensor + + See :meth:`~Tensor.index_add_` for function description. + """ + ... +@overload +def index_copy(input: Tensor, dim: _int, index: Tensor, source: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + index_copy(input, dim, index, source, *, out=None) -> Tensor + + See :meth:`~Tensor.index_add_` for function description. + """ + ... +@overload +def index_copy(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: + r""" + index_copy(input, dim, index, source, *, out=None) -> Tensor + + See :meth:`~Tensor.index_add_` for function description. + """ + ... +@overload +def index_fill(input: Tensor, dim: _int, index: Tensor, value: Tensor) -> Tensor: ... +@overload +def index_fill(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ... +@overload +def index_fill(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: ... +@overload +def index_fill(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: ... +def index_put(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... +def index_put_(input: Tensor, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: ... +def index_reduce(input: Tensor, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True, out: Optional[Tensor] = None) -> Tensor: + r""" + index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor + + See :meth:`~Tensor.index_reduce_` for function description. + """ + ... +@overload +def index_select(input: Tensor, dim: _int, index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + index_select(input, dim, index, *, out=None) -> Tensor + + Returns a new tensor which indexes the :attr:`input` tensor along dimension + :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. + + The returned tensor has the same number of dimensions as the original tensor + (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length + of :attr:`index`; other dimensions have the same size as in the original tensor. + + .. note:: The returned tensor does **not** use the same storage as the original + tensor. If :attr:`out` has a different shape than expected, we + silently change it to the correct shape, reallocating the underlying + storage if necessary. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension in which we index + index (IntTensor or LongTensor): the 1-D tensor containing the indices to index + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(3, 4) + >>> x + tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], + [-0.4664, 0.2647, -0.1228, -1.1068], + [-1.1734, -0.6571, 0.7230, -0.6004]]) + >>> indices = torch.tensor([0, 2]) + >>> torch.index_select(x, 0, indices) + tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], + [-1.1734, -0.6571, 0.7230, -0.6004]]) + >>> torch.index_select(x, 1, indices) + tensor([[ 0.1427, -0.5414], + [-0.4664, -0.1228], + [-1.1734, 0.7230]]) + """ + ... +@overload +def index_select(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + index_select(input, dim, index, *, out=None) -> Tensor + + Returns a new tensor which indexes the :attr:`input` tensor along dimension + :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. + + The returned tensor has the same number of dimensions as the original tensor + (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length + of :attr:`index`; other dimensions have the same size as in the original tensor. + + .. note:: The returned tensor does **not** use the same storage as the original + tensor. If :attr:`out` has a different shape than expected, we + silently change it to the correct shape, reallocating the underlying + storage if necessary. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension in which we index + index (IntTensor or LongTensor): the 1-D tensor containing the indices to index + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(3, 4) + >>> x + tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], + [-0.4664, 0.2647, -0.1228, -1.1068], + [-1.1734, -0.6571, 0.7230, -0.6004]]) + >>> indices = torch.tensor([0, 2]) + >>> torch.index_select(x, 0, indices) + tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], + [-1.1734, -0.6571, 0.7230, -0.6004]]) + >>> torch.index_select(x, 1, indices) + tensor([[ 0.1427, -0.5414], + [-0.4664, -0.1228], + [-1.1734, 0.7230]]) + """ + ... +def indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.indices`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def init_num_threads() -> None: ... +def inner(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + inner(input, other, *, out=None) -> Tensor + + Computes the dot product for 1D tensors. For higher dimensions, sums the product + of elements from :attr:`input` and :attr:`other` along their last dimension. + + .. note:: + + If either :attr:`input` or :attr:`other` is a scalar, the result is equivalent + to `torch.mul(input, other)`. + + If both :attr:`input` and :attr:`other` are non-scalars, the size of their last + dimension must match and the result is equivalent to `torch.tensordot(input, + other, dims=([-1], [-1]))` + + Args: + input (Tensor): First input tensor + other (Tensor): Second input tensor + + Keyword args: + out (Tensor, optional): Optional output tensor to write result into. The output + shape is `input.shape[:-1] + other.shape[:-1]`. + + Example:: + + # Dot product + >>> torch.inner(torch.tensor([1, 2, 3]), torch.tensor([0, 2, 1])) + tensor(7) + + # Multidimensional input tensors + >>> a = torch.randn(2, 3) + >>> a + tensor([[0.8173, 1.0874, 1.1784], + [0.3279, 0.1234, 2.7894]]) + >>> b = torch.randn(2, 4, 3) + >>> b + tensor([[[-0.4682, -0.7159, 0.1506], + [ 0.4034, -0.3657, 1.0387], + [ 0.9892, -0.6684, 0.1774], + [ 0.9482, 1.3261, 0.3917]], + + [[ 0.4537, 0.7493, 1.1724], + [ 0.2291, 0.5749, -0.2267], + [-0.7920, 0.3607, -0.3701], + [ 1.3666, -0.5850, -1.7242]]]) + >>> torch.inner(a, b) + tensor([[[-0.9837, 1.1560, 0.2907, 2.6785], + [ 2.5671, 0.5452, -0.6912, -1.5509]], + + [[ 0.1782, 2.9843, 0.7366, 1.5672], + [ 3.5115, -0.4864, -1.2476, -4.4337]]]) + + # Scalar input + >>> torch.inner(a, torch.tensor(2)) + tensor([[1.6347, 2.1748, 2.3567], + [0.6558, 0.2469, 5.5787]]) + """ + ... +def instance_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], use_input_stats: _bool, momentum: _float, eps: _float, cudnn_enabled: _bool) -> Tensor: ... +def int_repr(input: Tensor) -> Tensor: ... +def inverse(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + inverse(input, *, out=None) -> Tensor + + Alias for :func:`torch.linalg.inv` + """ + ... +def is_complex(input: Tensor) -> _bool: + r""" + is_complex(input) -> (bool) + + Returns True if the data type of :attr:`input` is a complex data type i.e., + one of ``torch.complex64``, and ``torch.complex128``. + + Args: + input (Tensor): the input tensor. + """ + ... +def is_conj(input: Tensor) -> _bool: + r""" + is_conj(input) -> (bool) + + Returns True if the :attr:`input` is a conjugated tensor, i.e. its conjugate bit is set to `True`. + + Args: + input (Tensor): the input tensor. + """ + ... +def is_distributed(input: Tensor) -> _bool: ... +def is_floating_point(input: Tensor) -> _bool: + r""" + is_floating_point(input) -> (bool) + + Returns True if the data type of :attr:`input` is a floating point data type i.e., + one of ``torch.float64``, ``torch.float32``, ``torch.float16``, and ``torch.bfloat16``. + + Args: + input (Tensor): the input tensor. + """ + ... +def is_grad_enabled() -> _bool: + r""" + is_grad_enabled() -> (bool) + + Returns True if grad mode is currently enabled. + """ + ... +def is_inference(input: Tensor) -> _bool: + r""" + is_inference(input) -> (bool) + + Returns True if :attr:`input` is an inference tensor. + + A non-view tensor is an inference tensor if and only if it was + allocated during inference mode. A view tensor is an inference + tensor if and only if the tensor it is a view of is an inference tensor. + + For details on inference mode please see + `Inference Mode `_. + + Args: + input (Tensor): the input tensor. + """ + ... +def is_inference_mode_enabled() -> _bool: + r""" + is_inference_mode_enabled() -> (bool) + + Returns True if inference mode is currently enabled. + """ + ... +def is_neg(input: Tensor) -> _bool: ... +def is_nonzero(input: Tensor) -> _bool: + r""" + is_nonzero(input) -> (bool) + + Returns True if the :attr:`input` is a single element tensor which is not equal to zero + after type conversions. + i.e. not equal to ``torch.tensor([0.])`` or ``torch.tensor([0])`` or + ``torch.tensor([False])``. + Throws a ``RuntimeError`` if ``torch.numel() != 1`` (even in case + of sparse tensors). + + Args: + input (Tensor): the input tensor. + + Examples:: + + >>> torch.is_nonzero(torch.tensor([0.])) + False + >>> torch.is_nonzero(torch.tensor([1.5])) + True + >>> torch.is_nonzero(torch.tensor([False])) + False + >>> torch.is_nonzero(torch.tensor([3])) + True + >>> torch.is_nonzero(torch.tensor([1, 3, 5])) + Traceback (most recent call last): + ... + RuntimeError: bool value of Tensor with more than one value is ambiguous + >>> torch.is_nonzero(torch.tensor([])) + Traceback (most recent call last): + ... + RuntimeError: bool value of Tensor with no values is ambiguous + """ + ... +def is_same_size(input: Tensor, other: Tensor) -> _bool: ... +def is_signed(input: Tensor) -> _bool: ... +def is_vulkan_available() -> _bool: ... +def isclose(input: Tensor, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> Tensor: + r""" + isclose(input, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor + + Returns a new tensor with boolean elements representing if each element of + :attr:`input` is "close" to the corresponding element of :attr:`other`. + Closeness is defined as: + + .. math:: + \lvert \text{input} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert + + + where :attr:`input` and :attr:`other` are finite. Where :attr:`input` + and/or :attr:`other` are nonfinite they are close if and only if + they are equal, with NaNs being considered equal to each other when + :attr:`equal_nan` is True. + + Args: + input (Tensor): first tensor to compare + other (Tensor): second tensor to compare + atol (float, optional): absolute tolerance. Default: 1e-08 + rtol (float, optional): relative tolerance. Default: 1e-05 + equal_nan (bool, optional): if ``True``, then two ``NaN`` s will be considered equal. Default: ``False`` + + Examples:: + + >>> torch.isclose(torch.tensor((1., 2, 3)), torch.tensor((1 + 1e-10, 3, 4))) + tensor([ True, False, False]) + >>> torch.isclose(torch.tensor((float('inf'), 4)), torch.tensor((float('inf'), 6)), rtol=.5) + tensor([True, True]) + """ + ... +def isfinite(input: Tensor) -> Tensor: + r""" + isfinite(input) -> Tensor + + Returns a new tensor with boolean elements representing if each element is `finite` or not. + + Real values are finite when they are not NaN, negative infinity, or infinity. + Complex values are finite when both their real and imaginary parts are finite. + + Args: + input (Tensor): the input tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is finite and False elsewhere + + Example:: + + >>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) + tensor([True, False, True, False, False]) + """ + ... +@overload +def isin(elements: Tensor, test_elements: Tensor, *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor + + Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns + a boolean tensor of the same shape as :attr:`elements` that is True for elements + in :attr:`test_elements` and False otherwise. + + .. note:: + One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. + + Args: + elements (Tensor or Scalar): Input elements + test_elements (Tensor or Scalar): Values against which to test for each input element + assume_unique (bool, optional): If True, assumes both :attr:`elements` and + :attr:`test_elements` contain unique elements, which can speed up the + calculation. Default: False + invert (bool, optional): If True, inverts the boolean return tensor, resulting in True + values for elements *not* in :attr:`test_elements`. Default: False + + Returns: + A boolean tensor of the same shape as :attr:`elements` that is True for elements in + :attr:`test_elements` and False otherwise + + Example: + >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) + tensor([[False, True], + [ True, False]]) + """ + ... +@overload +def isin(element: Union[Number, _complex], test_elements: Tensor, *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor + + Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns + a boolean tensor of the same shape as :attr:`elements` that is True for elements + in :attr:`test_elements` and False otherwise. + + .. note:: + One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. + + Args: + elements (Tensor or Scalar): Input elements + test_elements (Tensor or Scalar): Values against which to test for each input element + assume_unique (bool, optional): If True, assumes both :attr:`elements` and + :attr:`test_elements` contain unique elements, which can speed up the + calculation. Default: False + invert (bool, optional): If True, inverts the boolean return tensor, resulting in True + values for elements *not* in :attr:`test_elements`. Default: False + + Returns: + A boolean tensor of the same shape as :attr:`elements` that is True for elements in + :attr:`test_elements` and False otherwise + + Example: + >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) + tensor([[False, True], + [ True, False]]) + """ + ... +@overload +def isin(elements: Tensor, test_element: Union[Number, _complex], *, assume_unique: _bool = False, invert: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor + + Tests if each element of :attr:`elements` is in :attr:`test_elements`. Returns + a boolean tensor of the same shape as :attr:`elements` that is True for elements + in :attr:`test_elements` and False otherwise. + + .. note:: + One of :attr:`elements` or :attr:`test_elements` can be a scalar, but not both. + + Args: + elements (Tensor or Scalar): Input elements + test_elements (Tensor or Scalar): Values against which to test for each input element + assume_unique (bool, optional): If True, assumes both :attr:`elements` and + :attr:`test_elements` contain unique elements, which can speed up the + calculation. Default: False + invert (bool, optional): If True, inverts the boolean return tensor, resulting in True + values for elements *not* in :attr:`test_elements`. Default: False + + Returns: + A boolean tensor of the same shape as :attr:`elements` that is True for elements in + :attr:`test_elements` and False otherwise + + Example: + >>> torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) + tensor([[False, True], + [ True, False]]) + """ + ... +def isinf(input: Tensor) -> Tensor: + r""" + isinf(input) -> Tensor + + Tests if each element of :attr:`input` is infinite + (positive or negative infinity) or not. + + .. note:: + Complex values are infinite when their real or imaginary part is + infinite. + + Args: + input (Tensor): the input tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is infinite and False elsewhere + + Example:: + + >>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) + tensor([False, True, False, True, False]) + """ + ... +def isnan(input: Tensor) -> Tensor: + r""" + isnan(input) -> Tensor + + Returns a new tensor with boolean elements representing if each element of :attr:`input` + is NaN or not. Complex values are considered NaN when either their real + and/or imaginary part is NaN. + + Arguments: + input (Tensor): the input tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is NaN and False elsewhere + + Example:: + + >>> torch.isnan(torch.tensor([1, float('nan'), 2])) + tensor([False, True, False]) + """ + ... +def isneginf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + isneginf(input, *, out=None) -> Tensor + Tests if each element of :attr:`input` is negative infinity or not. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) + >>> torch.isneginf(a) + tensor([ True, False, False]) + """ + ... +def isposinf(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + isposinf(input, *, out=None) -> Tensor + Tests if each element of :attr:`input` is positive infinity or not. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([-float('inf'), float('inf'), 1.2]) + >>> torch.isposinf(a) + tensor([False, True, False]) + """ + ... +def isreal(input: Tensor) -> Tensor: + r""" + isreal(input) -> Tensor + + Returns a new tensor with boolean elements representing if each element of :attr:`input` is real-valued or not. + All real-valued types are considered real. Complex values are considered real when their imaginary part is 0. + + Arguments: + input (Tensor): the input tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is real and False elsewhere + + Example:: + + >>> torch.isreal(torch.tensor([1, 1+1j, 2+0j])) + tensor([True, False, True]) + """ + ... +def istft(input: Tensor, n_fft: _int, hop_length: Optional[_int] = None, win_length: Optional[_int] = None, window: Optional[Tensor] = None, center: _bool = True, normalized: _bool = False, onesided: Optional[_bool] = None, length: Optional[_int] = None, return_complex: _bool = False) -> Tensor: ... +@overload +def kaiser_window(window_length: _int, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. + + Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and + ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, + where ``L`` is the :attr:`window_length`. This function computes: + + .. math:: + out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) + + Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling + ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. + The :attr:`periodic` argument is intended as a helpful shorthand + to produce a periodic window as input to functions like :func:`torch.stft`. + + .. note:: + If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. + + + Args: + window_length (int): length of the window. + periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. + If False, returns a symmetric window suitable for use in filter design. + beta (float, optional): shape parameter for the window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + """ + ... +@overload +def kaiser_window(window_length: _int, periodic: _bool, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. + + Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and + ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, + where ``L`` is the :attr:`window_length`. This function computes: + + .. math:: + out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) + + Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling + ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. + The :attr:`periodic` argument is intended as a helpful shorthand + to produce a periodic window as input to functions like :func:`torch.stft`. + + .. note:: + If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. + + + Args: + window_length (int): length of the window. + periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. + If False, returns a symmetric window suitable for use in filter design. + beta (float, optional): shape parameter for the window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + """ + ... +@overload +def kaiser_window(window_length: _int, periodic: _bool, beta: _float, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Computes the Kaiser window with window length :attr:`window_length` and shape parameter :attr:`beta`. + + Let I_0 be the zeroth order modified Bessel function of the first kind (see :func:`torch.i0`) and + ``N = L - 1`` if :attr:`periodic` is False and ``L`` if :attr:`periodic` is True, + where ``L`` is the :attr:`window_length`. This function computes: + + .. math:: + out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta ) + + Calling ``torch.kaiser_window(L, B, periodic=True)`` is equivalent to calling + ``torch.kaiser_window(L + 1, B, periodic=False)[:-1])``. + The :attr:`periodic` argument is intended as a helpful shorthand + to produce a periodic window as input to functions like :func:`torch.stft`. + + .. note:: + If :attr:`window_length` is one, then the returned window is a single element tensor containing a one. + + + Args: + window_length (int): length of the window. + periodic (bool, optional): If True, returns a periodic window suitable for use in spectral analysis. + If False, returns a symmetric window suitable for use in filter design. + beta (float, optional): shape parameter for the window. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only + ``torch.strided`` (dense layout) is supported. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + """ + ... +def kl_div(input: Tensor, target: Tensor, reduction: _int = 1, *, log_target: _bool = False) -> Tensor: ... +def kron(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + kron(input, other, *, out=None) -> Tensor + + Computes the Kronecker product, denoted by :math:`\otimes`, of :attr:`input` and :attr:`other`. + + If :attr:`input` is a :math:`(a_0 \times a_1 \times \dots \times a_n)` tensor and :attr:`other` is a + :math:`(b_0 \times b_1 \times \dots \times b_n)` tensor, the result will be a + :math:`(a_0*b_0 \times a_1*b_1 \times \dots \times a_n*b_n)` tensor with the following entries: + + .. math:: + (\text{input} \otimes \text{other})_{k_0, k_1, \dots, k_n} = + \text{input}_{i_0, i_1, \dots, i_n} * \text{other}_{j_0, j_1, \dots, j_n}, + + where :math:`k_t = i_t * b_t + j_t` for :math:`0 \leq t \leq n`. + If one tensor has fewer dimensions than the other it is unsqueezed until it has the same number of dimensions. + + Supports real-valued and complex-valued inputs. + + .. note:: + This function generalizes the typical definition of the Kronecker product for two matrices to two tensors, + as described above. When :attr:`input` is a :math:`(m \times n)` matrix and :attr:`other` is a + :math:`(p \times q)` matrix, the result will be a :math:`(p*m \times q*n)` block matrix: + + .. math:: + \mathbf{A} \otimes \mathbf{B}=\begin{bmatrix} + a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\ + \vdots & \ddots & \vdots \\ + a_{m 1} \mathbf{B} & \cdots & a_{m n} \mathbf{B} \end{bmatrix} + + where :attr:`input` is :math:`\mathbf{A}` and :attr:`other` is :math:`\mathbf{B}`. + + Arguments: + input (Tensor) + other (Tensor) + + Keyword args: + out (Tensor, optional): The output tensor. Ignored if ``None``. Default: ``None`` + + Examples:: + + >>> mat1 = torch.eye(2) + >>> mat2 = torch.ones(2, 2) + >>> torch.kron(mat1, mat2) + tensor([[1., 1., 0., 0.], + [1., 1., 0., 0.], + [0., 0., 1., 1.], + [0., 0., 1., 1.]]) + + >>> mat1 = torch.eye(2) + >>> mat2 = torch.arange(1, 5).reshape(2, 2) + >>> torch.kron(mat1, mat2) + tensor([[1., 2., 0., 0.], + [3., 4., 0., 0.], + [0., 0., 1., 2.], + [0., 0., 3., 4.]]) + """ + ... +@overload +def kthvalue(input: Tensor, k: _int, dim: _int = -1, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.kthvalue: + r""" + kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor) + + Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th + smallest element of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each element found. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors + are the same size as :attr:`input`, except in the dimension :attr:`dim` where + they are of size 1. Otherwise, :attr:`dim` is squeezed + (see :func:`torch.squeeze`), resulting in both the :attr:`values` and + :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. + + .. note:: + When :attr:`input` is a CUDA tensor and there are multiple valid + :attr:`k` th values, this function may nondeterministically return + :attr:`indices` for any of them. + + Args: + input (Tensor): the input tensor. + k (int): k for the k-th smallest element + dim (int, optional): the dimension to find the kth value along + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the output tuple of (Tensor, LongTensor) + can be optionally given to be used as output buffers + + Example:: + + >>> x = torch.arange(1., 6.) + >>> x + tensor([ 1., 2., 3., 4., 5.]) + >>> torch.kthvalue(x, 4) + torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) + + >>> x=torch.arange(1.,7.).resize_(2,3) + >>> x + tensor([[ 1., 2., 3.], + [ 4., 5., 6.]]) + >>> torch.kthvalue(x, 2, 0, True) + torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]])) + """ + ... +@overload +def kthvalue(input: Tensor, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.kthvalue: + r""" + kthvalue(input, k, dim=None, keepdim=False, *, out=None) -> (Tensor, LongTensor) + + Returns a namedtuple ``(values, indices)`` where ``values`` is the :attr:`k` th + smallest element of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each element found. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors + are the same size as :attr:`input`, except in the dimension :attr:`dim` where + they are of size 1. Otherwise, :attr:`dim` is squeezed + (see :func:`torch.squeeze`), resulting in both the :attr:`values` and + :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. + + .. note:: + When :attr:`input` is a CUDA tensor and there are multiple valid + :attr:`k` th values, this function may nondeterministically return + :attr:`indices` for any of them. + + Args: + input (Tensor): the input tensor. + k (int): k for the k-th smallest element + dim (int, optional): the dimension to find the kth value along + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the output tuple of (Tensor, LongTensor) + can be optionally given to be used as output buffers + + Example:: + + >>> x = torch.arange(1., 6.) + >>> x + tensor([ 1., 2., 3., 4., 5.]) + >>> torch.kthvalue(x, 4) + torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) + + >>> x=torch.arange(1.,7.).resize_(2,3) + >>> x + tensor([[ 1., 2., 3.], + [ 4., 5., 6.]]) + >>> torch.kthvalue(x, 2, 0, True) + torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]])) + """ + ... +def layer_norm(input: Tensor, normalized_shape: Sequence[Union[_int, SymInt]], weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: _float = 1e-05, cudnn_enable: _bool = True) -> Tensor: ... +def lcm(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + lcm(input, other, *, out=None) -> Tensor + + Computes the element-wise least common multiple (LCM) of :attr:`input` and :attr:`other`. + + Both :attr:`input` and :attr:`other` must have integer types. + + .. note:: + This defines :math:`lcm(0, 0) = 0` and :math:`lcm(0, a) = 0`. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([5, 10, 15]) + >>> b = torch.tensor([3, 4, 5]) + >>> torch.lcm(a, b) + tensor([15, 20, 15]) + >>> c = torch.tensor([3]) + >>> torch.lcm(a, c) + tensor([15, 30, 15]) + """ + ... +def lcm_(input: Tensor, other: Tensor) -> Tensor: ... +def ldexp(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ldexp(input, other, *, out=None) -> Tensor + + Multiplies :attr:`input` by 2 ** :attr:`other`. + + .. math:: + \text{{out}}_i = \text{{input}}_i * 2^\text{{other}}_i + + + Typically this function is used to construct floating point numbers by multiplying + mantissas in :attr:`input` with integral powers of two created from the exponents + in :attr:`other`. + + Args: + input (Tensor): the input tensor. + other (Tensor): a tensor of exponents, typically integers. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.ldexp(torch.tensor([1.]), torch.tensor([1])) + tensor([2.]) + >>> torch.ldexp(torch.tensor([1.0]), torch.tensor([1, 2, 3, 4])) + tensor([ 2., 4., 8., 16.]) + """ + ... +def ldexp_(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def le(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + le(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \leq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or Scalar): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is less than or equal to + :attr:`other` and False elsewhere + + Example:: + + >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[True, False], [True, True]]) + """ + ... +@overload +def le(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + le(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \leq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or Scalar): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is less than or equal to + :attr:`other` and False elsewhere + + Example:: + + >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[True, False], [True, True]]) + """ + ... +@overload +def lerp(input: Tensor, end: Tensor, weight: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + lerp(input, end, weight, *, out=None) + + Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based + on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor. + + .. math:: + \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) + + The shapes of :attr:`start` and :attr:`end` must be + :ref:`broadcastable `. If :attr:`weight` is a tensor, then + the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable `. + + Args: + input (Tensor): the tensor with the starting points + end (Tensor): the tensor with the ending points + weight (float or tensor): the weight for the interpolation formula + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> start = torch.arange(1., 5.) + >>> end = torch.empty(4).fill_(10) + >>> start + tensor([ 1., 2., 3., 4.]) + >>> end + tensor([ 10., 10., 10., 10.]) + >>> torch.lerp(start, end, 0.5) + tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) + >>> torch.lerp(start, end, torch.full_like(start, 0.5)) + tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) + """ + ... +@overload +def lerp(input: Tensor, end: Tensor, weight: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + lerp(input, end, weight, *, out=None) + + Does a linear interpolation of two tensors :attr:`start` (given by :attr:`input`) and :attr:`end` based + on a scalar or tensor :attr:`weight` and returns the resulting :attr:`out` tensor. + + .. math:: + \text{out}_i = \text{start}_i + \text{weight}_i \times (\text{end}_i - \text{start}_i) + + The shapes of :attr:`start` and :attr:`end` must be + :ref:`broadcastable `. If :attr:`weight` is a tensor, then + the shapes of :attr:`weight`, :attr:`start`, and :attr:`end` must be :ref:`broadcastable `. + + Args: + input (Tensor): the tensor with the starting points + end (Tensor): the tensor with the ending points + weight (float or tensor): the weight for the interpolation formula + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> start = torch.arange(1., 5.) + >>> end = torch.empty(4).fill_(10) + >>> start + tensor([ 1., 2., 3., 4.]) + >>> end + tensor([ 10., 10., 10., 10.]) + >>> torch.lerp(start, end, 0.5) + tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) + >>> torch.lerp(start, end, torch.full_like(start, 0.5)) + tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) + """ + ... +@overload +def less(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + less(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.lt`. + """ + ... +@overload +def less(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + less(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.lt`. + """ + ... +@overload +def less_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + less_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.le`. + """ + ... +@overload +def less_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + less_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.le`. + """ + ... +def lgamma(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + lgamma(input, *, out=None) -> Tensor + + Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`. + + .. math:: + \text{out}_{i} = \ln |\Gamma(\text{input}_{i})| + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.arange(0.5, 2, 0.5) + >>> torch.lgamma(a) + tensor([ 0.5724, 0.0000, -0.1208]) + """ + ... +@overload +def linspace(start: Number, end: Number, steps: Optional[_int] = None, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: + + .. math:: + (\text{start}, + \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \ldots, + \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \text{end}) + + + From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + + Example:: + + >>> torch.linspace(3, 10, steps=5) + tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) + >>> torch.linspace(-10, 10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=1) + tensor([-10.]) + """ + ... +@overload +def linspace(start: Tensor, end: Tensor, steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: + + .. math:: + (\text{start}, + \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \ldots, + \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \text{end}) + + + From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + + Example:: + + >>> torch.linspace(3, 10, steps=5) + tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) + >>> torch.linspace(-10, 10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=1) + tensor([-10.]) + """ + ... +@overload +def linspace(start: Union[Number, _complex], end: Tensor, steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: + + .. math:: + (\text{start}, + \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \ldots, + \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \text{end}) + + + From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + + Example:: + + >>> torch.linspace(3, 10, steps=5) + tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) + >>> torch.linspace(-10, 10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=1) + tensor([-10.]) + """ + ... +@overload +def linspace(start: Tensor, end: Union[Number, _complex], steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: + + .. math:: + (\text{start}, + \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \ldots, + \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \text{end}) + + + From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + + Example:: + + >>> torch.linspace(3, 10, steps=5) + tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) + >>> torch.linspace(-10, 10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=1) + tensor([-10.]) + """ + ... +@overload +def linspace(start: Union[Number, _complex], end: Union[Number, _complex], steps: _int, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + linspace(start, end, steps, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :attr:`start` to :attr:`end`, inclusive. That is, the value are: + + .. math:: + (\text{start}, + \text{start} + \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \ldots, + \text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{\text{steps} - 1}, + \text{end}) + + + From PyTorch 1.11 linspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + + Example:: + + >>> torch.linspace(3, 10, steps=5) + tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) + >>> torch.linspace(-10, 10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=5) + tensor([-10., -5., 0., 5., 10.]) + >>> torch.linspace(start=-10, end=10, steps=1) + tensor([-10.]) + """ + ... +def log(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + log(input, *, out=None) -> Tensor + + Returns a new tensor with the natural logarithm of the elements + of :attr:`input`. + + .. math:: + y_{i} = \log_{e} (x_{i}) + + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(5) * 5 + >>> a + tensor([4.7767, 4.3234, 1.2156, 0.2411, 4.5739]) + >>> torch.log(a) + tensor([ 1.5637, 1.4640, 0.1952, -1.4226, 1.5204]) + """ + ... +def log10(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + log10(input, *, out=None) -> Tensor + + Returns a new tensor with the logarithm to the base 10 of the elements + of :attr:`input`. + + .. math:: + y_{i} = \log_{10} (x_{i}) + + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(5) + >>> a + tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) + + + >>> torch.log10(a) + tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476]) + """ + ... +def log10_(input: Tensor) -> Tensor: ... +def log1p(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + log1p(input, *, out=None) -> Tensor + + Returns a new tensor with the natural logarithm of (1 + :attr:`input`). + + .. math:: + y_i = \log_{e} (x_i + 1) + + .. note:: This function is more accurate than :func:`torch.log` for small + values of :attr:`input` + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(5) + >>> a + tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) + >>> torch.log1p(a) + tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225]) + """ + ... +def log1p_(input: Tensor) -> Tensor: ... +def log2(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + log2(input, *, out=None) -> Tensor + + Returns a new tensor with the logarithm to the base 2 of the elements + of :attr:`input`. + + .. math:: + y_{i} = \log_{2} (x_{i}) + + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.rand(5) + >>> a + tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490]) + + + >>> torch.log2(a) + tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504]) + """ + ... +def log2_(input: Tensor) -> Tensor: ... +def log_(input: Tensor) -> Tensor: ... +@overload +def log_softmax(input: Tensor, dim: _int, dtype: Optional[_dtype] = None, *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def log_softmax(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ... +def logaddexp(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logaddexp(input, other, *, out=None) -> Tensor + + Logarithm of the sum of exponentiations of the inputs. + + Calculates pointwise :math:`\log\left(e^x + e^y\right)`. This function is useful + in statistics where the calculated probabilities of events may be so small as to + exceed the range of normal floating point numbers. In such cases the logarithm + of the calculated probability is stored. This function allows adding + probabilities stored in such a fashion. + + This op should be disambiguated with :func:`torch.logsumexp` which performs a + reduction on a single tensor. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.logaddexp(torch.tensor([-1.0]), torch.tensor([-1.0, -2, -3])) + tensor([-0.3069, -0.6867, -0.8731]) + >>> torch.logaddexp(torch.tensor([-100.0, -200, -300]), torch.tensor([-1.0, -2, -3])) + tensor([-1., -2., -3.]) + >>> torch.logaddexp(torch.tensor([1.0, 2000, 30000]), torch.tensor([-1.0, -2, -3])) + tensor([1.1269e+00, 2.0000e+03, 3.0000e+04]) + """ + ... +def logaddexp2(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logaddexp2(input, other, *, out=None) -> Tensor + + Logarithm of the sum of exponentiations of the inputs in base-2. + + Calculates pointwise :math:`\log_2\left(2^x + 2^y\right)`. See + :func:`torch.logaddexp` for more details. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword arguments: + out (Tensor, optional): the output tensor. + """ + ... +@overload +def logcumsumexp(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logcumsumexp(input, dim, *, out=None) -> Tensor + Returns the logarithm of the cumulative summation of the exponentiation of + elements of :attr:`input` in the dimension :attr:`dim`. + + For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is + + .. math:: + \text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij}) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(10) + >>> torch.logcumsumexp(a, dim=0) + tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, + 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475])) + """ + ... +@overload +def logcumsumexp(input: Tensor, dim: Union[str, ellipsis, None], *, out: Optional[Tensor] = None) -> Tensor: + r""" + logcumsumexp(input, dim, *, out=None) -> Tensor + Returns the logarithm of the cumulative summation of the exponentiation of + elements of :attr:`input` in the dimension :attr:`dim`. + + For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is + + .. math:: + \text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij}) + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to do the operation over + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(10) + >>> torch.logcumsumexp(a, dim=0) + tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, + 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475])) + """ + ... +def logdet(input: Tensor) -> Tensor: + r""" + logdet(input) -> Tensor + + Calculates log determinant of a square matrix or batches of square matrices. + + It returns ``-inf`` if the input has a determinant of zero, and ``NaN`` if it has + a negative determinant. + + .. note:: + Backward through :meth:`logdet` internally uses SVD results when :attr:`input` + is not invertible. In this case, double backward through :meth:`logdet` will + be unstable in when :attr:`input` doesn't have distinct singular values. See + :func:`torch.linalg.svd` for details. + + .. seealso:: + + :func:`torch.linalg.slogdet` computes the sign (resp. angle) and natural logarithm of the + absolute value of the determinant of real-valued (resp. complex) square matrices. + + Arguments: + input (Tensor): the input tensor of size ``(*, n, n)`` where ``*`` is zero or more + batch dimensions. + + Example:: + + >>> A = torch.randn(3, 3) + >>> torch.det(A) + tensor(0.2611) + >>> torch.logdet(A) + tensor(-1.3430) + >>> A + tensor([[[ 0.9254, -0.6213], + [-0.5787, 1.6843]], + + [[ 0.3242, -0.9665], + [ 0.4539, -0.0887]], + + [[ 1.1336, -0.4025], + [-0.7089, 0.9032]]]) + >>> A.det() + tensor([1.1990, 0.4099, 0.7386]) + >>> A.det().log() + tensor([ 0.1815, -0.8917, -0.3031]) + """ + ... +def logical_and(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logical_and(input, other, *, out=None) -> Tensor + + Computes the element-wise logical AND of the given input tensors. Zeros are treated as ``False`` and nonzeros are + treated as ``True``. + + Args: + input (Tensor): the input tensor. + other (Tensor): the tensor to compute AND with + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False])) + tensor([ True, False, False]) + >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) + >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) + >>> torch.logical_and(a, b) + tensor([False, False, True, False]) + >>> torch.logical_and(a.double(), b.double()) + tensor([False, False, True, False]) + >>> torch.logical_and(a.double(), b) + tensor([False, False, True, False]) + >>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool)) + tensor([False, False, True, False]) + """ + ... +def logical_not(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logical_not(input, *, out=None) -> Tensor + + Computes the element-wise logical NOT of the given input tensor. If not specified, the output tensor will have the bool + dtype. If the input tensor is not a bool tensor, zeros are treated as ``False`` and non-zeros are treated as ``True``. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.logical_not(torch.tensor([True, False])) + tensor([False, True]) + >>> torch.logical_not(torch.tensor([0, 1, -10], dtype=torch.int8)) + tensor([ True, False, False]) + >>> torch.logical_not(torch.tensor([0., 1.5, -10.], dtype=torch.double)) + tensor([ True, False, False]) + >>> torch.logical_not(torch.tensor([0., 1., -10.], dtype=torch.double), out=torch.empty(3, dtype=torch.int16)) + tensor([1, 0, 0], dtype=torch.int16) + """ + ... +def logical_or(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logical_or(input, other, *, out=None) -> Tensor + + Computes the element-wise logical OR of the given input tensors. Zeros are treated as ``False`` and nonzeros are + treated as ``True``. + + Args: + input (Tensor): the input tensor. + other (Tensor): the tensor to compute OR with + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.logical_or(torch.tensor([True, False, True]), torch.tensor([True, False, False])) + tensor([ True, False, True]) + >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) + >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) + >>> torch.logical_or(a, b) + tensor([ True, True, True, False]) + >>> torch.logical_or(a.double(), b.double()) + tensor([ True, True, True, False]) + >>> torch.logical_or(a.double(), b) + tensor([ True, True, True, False]) + >>> torch.logical_or(a, b, out=torch.empty(4, dtype=torch.bool)) + tensor([ True, True, True, False]) + """ + ... +def logical_xor(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logical_xor(input, other, *, out=None) -> Tensor + + Computes the element-wise logical XOR of the given input tensors. Zeros are treated as ``False`` and nonzeros are + treated as ``True``. + + Args: + input (Tensor): the input tensor. + other (Tensor): the tensor to compute XOR with + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.logical_xor(torch.tensor([True, False, True]), torch.tensor([True, False, False])) + tensor([False, False, True]) + >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) + >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) + >>> torch.logical_xor(a, b) + tensor([ True, True, False, False]) + >>> torch.logical_xor(a.double(), b.double()) + tensor([ True, True, False, False]) + >>> torch.logical_xor(a.double(), b) + tensor([ True, True, False, False]) + >>> torch.logical_xor(a, b, out=torch.empty(4, dtype=torch.bool)) + tensor([ True, True, False, False]) + """ + ... +def logit(input: Tensor, eps: Optional[_float] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logit(input, eps=None, *, out=None) -> Tensor + + Alias for :func:`torch.special.logit`. + """ + ... +def logit_(input: Tensor, eps: Optional[_float] = None) -> Tensor: ... +@overload +def logspace(start: Number, end: Number, steps: Optional[_int] = None, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to + :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale + with base :attr:`base`. That is, the values are: + + .. math:: + (\text{base}^{\text{start}}, + \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \ldots, + \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \text{base}^{\text{end}}) + + + + From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + base (float, optional): base of the logarithm function. Default: ``10.0``. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.logspace(start=-10, end=10, steps=5) + tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) + >>> torch.logspace(start=0.1, end=1.0, steps=5) + tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) + >>> torch.logspace(start=0.1, end=1.0, steps=1) + tensor([1.2589]) + >>> torch.logspace(start=2, end=2, steps=1, base=2) + tensor([4.0]) + """ + ... +@overload +def logspace(start: Tensor, end: Tensor, steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to + :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale + with base :attr:`base`. That is, the values are: + + .. math:: + (\text{base}^{\text{start}}, + \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \ldots, + \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \text{base}^{\text{end}}) + + + + From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + base (float, optional): base of the logarithm function. Default: ``10.0``. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.logspace(start=-10, end=10, steps=5) + tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) + >>> torch.logspace(start=0.1, end=1.0, steps=5) + tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) + >>> torch.logspace(start=0.1, end=1.0, steps=1) + tensor([1.2589]) + >>> torch.logspace(start=2, end=2, steps=1, base=2) + tensor([4.0]) + """ + ... +@overload +def logspace(start: Union[Number, _complex], end: Tensor, steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to + :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale + with base :attr:`base`. That is, the values are: + + .. math:: + (\text{base}^{\text{start}}, + \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \ldots, + \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \text{base}^{\text{end}}) + + + + From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + base (float, optional): base of the logarithm function. Default: ``10.0``. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.logspace(start=-10, end=10, steps=5) + tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) + >>> torch.logspace(start=0.1, end=1.0, steps=5) + tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) + >>> torch.logspace(start=0.1, end=1.0, steps=1) + tensor([1.2589]) + >>> torch.logspace(start=2, end=2, steps=1, base=2) + tensor([4.0]) + """ + ... +@overload +def logspace(start: Tensor, end: Union[Number, _complex], steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to + :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale + with base :attr:`base`. That is, the values are: + + .. math:: + (\text{base}^{\text{start}}, + \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \ldots, + \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \text{base}^{\text{end}}) + + + + From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + base (float, optional): base of the logarithm function. Default: ``10.0``. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.logspace(start=-10, end=10, steps=5) + tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) + >>> torch.logspace(start=0.1, end=1.0, steps=5) + tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) + >>> torch.logspace(start=0.1, end=1.0, steps=1) + tensor([1.2589]) + >>> torch.logspace(start=2, end=2, steps=1, base=2) + tensor([4.0]) + """ + ... +@overload +def logspace(start: Union[Number, _complex], end: Union[Number, _complex], steps: _int, base: _float = 10.0, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + logspace(start, end, steps, base=10.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + + Creates a one-dimensional tensor of size :attr:`steps` whose values are evenly + spaced from :math:`{{\text{{base}}}}^{{\text{{start}}}}` to + :math:`{{\text{{base}}}}^{{\text{{end}}}}`, inclusive, on a logarithmic scale + with base :attr:`base`. That is, the values are: + + .. math:: + (\text{base}^{\text{start}}, + \text{base}^{(\text{start} + \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \ldots, + \text{base}^{(\text{start} + (\text{steps} - 2) * \frac{\text{end} - \text{start}}{ \text{steps} - 1})}, + \text{base}^{\text{end}}) + + + + From PyTorch 1.11 logspace requires the steps argument. Use steps=100 to restore the previous behavior. + + Args: + start (float or Tensor): the starting value for the set of points. If `Tensor`, it must be 0-dimensional + end (float or Tensor): the ending value for the set of points. If `Tensor`, it must be 0-dimensional + steps (int): size of the constructed tensor + base (float, optional): base of the logarithm function. Default: ``10.0``. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (torch.dtype, optional): the data type to perform the computation in. + Default: if None, uses the global default dtype (see torch.get_default_dtype()) + when both :attr:`start` and :attr:`end` are real, + and corresponding complex dtype when either is complex. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.logspace(start=-10, end=10, steps=5) + tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) + >>> torch.logspace(start=0.1, end=1.0, steps=5) + tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) + >>> torch.logspace(start=0.1, end=1.0, steps=1) + tensor([1.2589]) + >>> torch.logspace(start=2, end=2, steps=1, base=2) + tensor([4.0]) + """ + ... +@overload +def logsumexp(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logsumexp(input, dim, keepdim=False, *, out=None) + + Returns the log of summed exponentials of each row of the :attr:`input` + tensor in the given dimension :attr:`dim`. The computation is numerically + stabilized. + + For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is + + .. math:: + \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(3, 3) + >>> torch.logsumexp(a, 1) + tensor([1.4907, 1.0593, 1.5696]) + >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) + tensor(1.6859e-07) + """ + ... +@overload +def logsumexp(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + logsumexp(input, dim, keepdim=False, *, out=None) + + Returns the log of summed exponentials of each row of the :attr:`input` + tensor in the given dimension :attr:`dim`. The computation is numerically + stabilized. + + For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is + + .. math:: + \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(3, 3) + >>> torch.logsumexp(a, 1) + tensor([1.4907, 1.0593, 1.5696]) + >>> torch.dist(torch.logsumexp(a, 1), torch.log(torch.sum(torch.exp(a), 1))) + tensor(1.6859e-07) + """ + ... +@overload +def lstm(data: Tensor, batch_sizes: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor, Tensor]: ... +@overload +def lstm(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor, Tensor]: ... +def lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]: ... +@overload +def lt(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + lt(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} < \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere + + Example:: + + >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, False], [True, False]]) + """ + ... +@overload +def lt(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + lt(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} < \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is less than :attr:`other` and False elsewhere + + Example:: + + >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, False], [True, False]]) + """ + ... +def lu_solve(input: Tensor, LU_data: Tensor, LU_pivots: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + lu_solve(b, LU_data, LU_pivots, *, out=None) -> Tensor + + Returns the LU solve of the linear system :math:`Ax = b` using the partially pivoted + LU factorization of A from :func:`~linalg.lu_factor`. + + This function supports ``float``, ``double``, ``cfloat`` and ``cdouble`` dtypes for :attr:`input`. + + .. warning:: + + :func:`torch.lu_solve` is deprecated in favor of :func:`torch.linalg.lu_solve`. + :func:`torch.lu_solve` will be removed in a future PyTorch release. + ``X = torch.lu_solve(B, LU, pivots)`` should be replaced with + + .. code:: python + + X = linalg.lu_solve(LU, pivots, B) + + Arguments: + b (Tensor): the RHS tensor of size :math:`(*, m, k)`, where :math:`*` + is zero or more batch dimensions. + LU_data (Tensor): the pivoted LU factorization of A from :meth:`~linalg.lu_factor` of size :math:`(*, m, m)`, + where :math:`*` is zero or more batch dimensions. + LU_pivots (IntTensor): the pivots of the LU factorization from :meth:`~linalg.lu_factor` of size :math:`(*, m)`, + where :math:`*` is zero or more batch dimensions. + The batch dimensions of :attr:`LU_pivots` must be equal to the batch dimensions of + :attr:`LU_data`. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> A = torch.randn(2, 3, 3) + >>> b = torch.randn(2, 3, 1) + >>> LU, pivots = torch.linalg.lu_factor(A) + >>> x = torch.lu_solve(b, LU, pivots) + >>> torch.dist(A @ x, b) + tensor(1.00000e-07 * + 2.8312) + """ + ... +def lu_unpack(LU_data: Tensor, LU_pivots: Tensor, unpack_data: _bool = True, unpack_pivots: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.lu_unpack: + r""" + lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True, *, out=None) -> (Tensor, Tensor, Tensor) + + Unpacks the LU decomposition returned by :func:`~linalg.lu_factor` into the `P, L, U` matrices. + + .. seealso:: + + :func:`~linalg.lu` returns the matrices from the LU decomposition. Its gradient formula is more efficient + than that of doing :func:`~linalg.lu_factor` followed by :func:`~linalg.lu_unpack`. + + Args: + LU_data (Tensor): the packed LU factorization data + LU_pivots (Tensor): the packed LU factorization pivots + unpack_data (bool): flag indicating if the data should be unpacked. + If ``False``, then the returned ``L`` and ``U`` are empty tensors. + Default: ``True`` + unpack_pivots (bool): flag indicating if the pivots should be unpacked into a permutation matrix ``P``. + If ``False``, then the returned ``P`` is an empty tensor. + Default: ``True`` + + Keyword args: + out (tuple, optional): output tuple of three tensors. Ignored if `None`. + + Returns: + A namedtuple ``(P, L, U)`` + + Examples:: + + >>> A = torch.randn(2, 3, 3) + >>> LU, pivots = torch.linalg.lu_factor(A) + >>> P, L, U = torch.lu_unpack(LU, pivots) + >>> # We can recover A from the factorization + >>> A_ = P @ L @ U + >>> torch.allclose(A, A_) + True + + >>> # LU factorization of a rectangular matrix: + >>> A = torch.randn(2, 3, 2) + >>> LU, pivots = torch.linalg.lu_factor(A) + >>> P, L, U = torch.lu_unpack(LU, pivots) + >>> # P, L, U are the same as returned by linalg.lu + >>> P_, L_, U_ = torch.linalg.lu(A) + >>> torch.allclose(P, P_) and torch.allclose(L, L_) and torch.allclose(U, U_) + True + """ + ... +def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: _float = 0.0, reduction: _int = 1) -> Tensor: ... +@overload +def masked_fill(input: Tensor, mask: Tensor, value: Tensor) -> Tensor: ... +@overload +def masked_fill(input: Tensor, mask: Tensor, value: Union[Number, _complex]) -> Tensor: ... +def masked_scatter(input: Tensor, mask: Tensor, source: Tensor) -> Tensor: ... +def masked_select(input: Tensor, mask: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + masked_select(input, mask, *, out=None) -> Tensor + + Returns a new 1-D tensor which indexes the :attr:`input` tensor according to + the boolean mask :attr:`mask` which is a `BoolTensor`. + + The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need + to match, but they must be :ref:`broadcastable `. + + .. note:: The returned tensor does **not** use the same storage + as the original tensor + + Args: + input (Tensor): the input tensor. + mask (BoolTensor): the tensor containing the binary mask to index with + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(3, 4) + >>> x + tensor([[ 0.3552, -2.3825, -0.8297, 0.3477], + [-1.2035, 1.2252, 0.5002, 0.6248], + [ 0.1307, -2.0608, 0.1244, 2.0139]]) + >>> mask = x.ge(0.5) + >>> mask + tensor([[False, False, False, False], + [False, True, True, True], + [False, False, False, True]]) + >>> torch.masked_select(x, mask) + tensor([ 1.2252, 0.5002, 0.6248, 2.0139]) + """ + ... +def matmul(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + matmul(input, other, *, out=None) -> Tensor + + Matrix product of two tensors. + + The behavior depends on the dimensionality of the tensors as follows: + + - If both tensors are 1-dimensional, the dot product (scalar) is returned. + - If both arguments are 2-dimensional, the matrix-matrix product is returned. + - If the first argument is 1-dimensional and the second argument is 2-dimensional, + a 1 is prepended to its dimension for the purpose of the matrix multiply. + After the matrix multiply, the prepended dimension is removed. + - If the first argument is 2-dimensional and the second argument is 1-dimensional, + the matrix-vector product is returned. + - If both arguments are at least 1-dimensional and at least one argument is + N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first + argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the + batched matrix multiply and removed after. If the second argument is 1-dimensional, a + 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. + The non-matrix (i.e. batch) dimensions are :ref:`broadcasted ` (and thus + must be broadcastable). For example, if :attr:`input` is a + :math:`(j \times 1 \times n \times n)` tensor and :attr:`other` is a :math:`(k \times n \times n)` + tensor, :attr:`out` will be a :math:`(j \times k \times n \times n)` tensor. + + Note that the broadcasting logic only looks at the batch dimensions when determining if the inputs + are broadcastable, and not the matrix dimensions. For example, if :attr:`input` is a + :math:`(j \times 1 \times n \times m)` tensor and :attr:`other` is a :math:`(k \times m \times p)` + tensor, these inputs are valid for broadcasting even though the final two dimensions (i.e. the + matrix dimensions) are different. :attr:`out` will be a :math:`(j \times k \times n \times p)` tensor. + + This operation has support for arguments with :ref:`sparse layouts`. In particular the + matrix-matrix (both arguments 2-dimensional) supports sparse arguments with the same restrictions + as :func:`torch.mm` + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + .. note:: + + The 1-dimensional dot product version of this function does not support an :attr:`out` parameter. + + Arguments: + input (Tensor): the first tensor to be multiplied + other (Tensor): the second tensor to be multiplied + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> # vector x vector + >>> tensor1 = torch.randn(3) + >>> tensor2 = torch.randn(3) + >>> torch.matmul(tensor1, tensor2).size() + torch.Size([]) + >>> # matrix x vector + >>> tensor1 = torch.randn(3, 4) + >>> tensor2 = torch.randn(4) + >>> torch.matmul(tensor1, tensor2).size() + torch.Size([3]) + >>> # batched matrix x broadcasted vector + >>> tensor1 = torch.randn(10, 3, 4) + >>> tensor2 = torch.randn(4) + >>> torch.matmul(tensor1, tensor2).size() + torch.Size([10, 3]) + >>> # batched matrix x batched matrix + >>> tensor1 = torch.randn(10, 3, 4) + >>> tensor2 = torch.randn(10, 4, 5) + >>> torch.matmul(tensor1, tensor2).size() + torch.Size([10, 3, 5]) + >>> # batched matrix x broadcasted matrix + >>> tensor1 = torch.randn(10, 3, 4) + >>> tensor2 = torch.randn(4, 5) + >>> torch.matmul(tensor1, tensor2).size() + torch.Size([10, 3, 5]) + """ + ... +def matrix_exp(input: Tensor) -> Tensor: + r""" + matrix_exp(A) -> Tensor + + Alias for :func:`torch.linalg.matrix_exp`. + """ + ... +def matrix_power(input: Tensor, n: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + matrix_power(input, n, *, out=None) -> Tensor + + Alias for :func:`torch.linalg.matrix_power` + """ + ... +@overload +def max(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + max(input) -> Tensor + + Returns the maximum value of all elements in the ``input`` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``max(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6763, 0.7445, -2.2369]]) + >>> torch.max(a) + tensor(0.7445) + + .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each maximum value found + (argmax). + + If ``keepdim`` is ``True``, the output tensors are of the same size + as ``input`` except in the dimension ``dim`` where they are of size 1. + Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than ``input``. + + .. note:: If there are multiple maximal values in a reduced row then + the indices of the first maximal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (max, max_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-1.2360, -0.2942, -0.1222, 0.8475], + [ 1.1949, -1.1127, -2.2379, -0.6702], + [ 1.5717, -0.9207, 0.1297, -1.8768], + [-0.6172, 1.0036, -0.6060, -0.2432]]) + >>> torch.max(a, 1) + torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) + + .. function:: max(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.maximum`. + """ + ... +@overload +def max(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + max(input) -> Tensor + + Returns the maximum value of all elements in the ``input`` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``max(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6763, 0.7445, -2.2369]]) + >>> torch.max(a) + tensor(0.7445) + + .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each maximum value found + (argmax). + + If ``keepdim`` is ``True``, the output tensors are of the same size + as ``input`` except in the dimension ``dim`` where they are of size 1. + Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than ``input``. + + .. note:: If there are multiple maximal values in a reduced row then + the indices of the first maximal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (max, max_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-1.2360, -0.2942, -0.1222, 0.8475], + [ 1.1949, -1.1127, -2.2379, -0.6702], + [ 1.5717, -0.9207, 0.1297, -1.8768], + [-0.6172, 1.0036, -0.6060, -0.2432]]) + >>> torch.max(a, 1) + torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) + + .. function:: max(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.maximum`. + """ + ... +@overload +def max(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.max: + r""" + max(input) -> Tensor + + Returns the maximum value of all elements in the ``input`` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``max(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6763, 0.7445, -2.2369]]) + >>> torch.max(a) + tensor(0.7445) + + .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each maximum value found + (argmax). + + If ``keepdim`` is ``True``, the output tensors are of the same size + as ``input`` except in the dimension ``dim`` where they are of size 1. + Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than ``input``. + + .. note:: If there are multiple maximal values in a reduced row then + the indices of the first maximal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (max, max_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-1.2360, -0.2942, -0.1222, 0.8475], + [ 1.1949, -1.1127, -2.2379, -0.6702], + [ 1.5717, -0.9207, 0.1297, -1.8768], + [-0.6172, 1.0036, -0.6060, -0.2432]]) + >>> torch.max(a, 1) + torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) + + .. function:: max(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.maximum`. + """ + ... +@overload +def max(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.max: + r""" + max(input) -> Tensor + + Returns the maximum value of all elements in the ``input`` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``max(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6763, 0.7445, -2.2369]]) + >>> torch.max(a) + tensor(0.7445) + + .. function:: max(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the maximum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each maximum value found + (argmax). + + If ``keepdim`` is ``True``, the output tensors are of the same size + as ``input`` except in the dimension ``dim`` where they are of size 1. + Otherwise, ``dim`` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than ``input``. + + .. note:: If there are multiple maximal values in a reduced row then + the indices of the first maximal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. Default: ``False``. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (max, max_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-1.2360, -0.2942, -0.1222, 0.8475], + [ 1.1949, -1.1127, -2.2379, -0.6702], + [ 1.5717, -0.9207, 0.1297, -1.8768], + [-0.6172, 1.0036, -0.6060, -0.2432]]) + >>> torch.max(a, 1) + torch.return_types.max(values=tensor([0.8475, 1.1949, 1.5717, 1.0036]), indices=tensor([3, 0, 0, 1])) + + .. function:: max(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.maximum`. + """ + ... +def max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def max_pool1d_with_indices(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tuple[Tensor, Tensor]: ... +def max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def maximum(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + maximum(input, other, *, out=None) -> Tensor + + Computes the element-wise maximum of :attr:`input` and :attr:`other`. + + .. note:: + If one of the elements being compared is a NaN, then that element is returned. + :func:`maximum` is not supported for tensors with complex dtypes. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor((1, 2, -1)) + >>> b = torch.tensor((3, 0, 4)) + >>> torch.maximum(a, b) + tensor([3, 2, 4]) + """ + ... +@overload +def mean(input: Tensor, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + mean(input, *, dtype=None) -> Tensor + + Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. + + Args: + input (Tensor): + the input tensor, either of floating point or complex dtype + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.2294, -0.5481, 1.3288]]) + >>> torch.mean(a) + tensor(0.3367) + + .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor + :noindex: + + Returns the mean value of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + .. seealso:: + + :func:`torch.nanmean` computes the mean value of `non-NaN` elements. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.3841, 0.6320, 0.4254, -0.7384], + [-0.9644, 1.0131, -0.6549, -1.4279], + [-0.2951, -1.3350, -0.7694, 0.5600], + [ 1.0842, -0.9580, 0.3623, 0.2343]]) + >>> torch.mean(a, 1) + tensor([-0.0163, -0.5085, -0.4599, 0.1807]) + >>> torch.mean(a, 1, True) + tensor([[-0.0163], + [-0.5085], + [-0.4599], + [ 0.1807]]) + """ + ... +@overload +def mean(input: Tensor, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + mean(input, *, dtype=None) -> Tensor + + Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. + + Args: + input (Tensor): + the input tensor, either of floating point or complex dtype + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.2294, -0.5481, 1.3288]]) + >>> torch.mean(a) + tensor(0.3367) + + .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor + :noindex: + + Returns the mean value of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + .. seealso:: + + :func:`torch.nanmean` computes the mean value of `non-NaN` elements. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.3841, 0.6320, 0.4254, -0.7384], + [-0.9644, 1.0131, -0.6549, -1.4279], + [-0.2951, -1.3350, -0.7694, 0.5600], + [ 1.0842, -0.9580, 0.3623, 0.2343]]) + >>> torch.mean(a, 1) + tensor([-0.0163, -0.5085, -0.4599, 0.1807]) + >>> torch.mean(a, 1, True) + tensor([[-0.0163], + [-0.5085], + [-0.4599], + [ 0.1807]]) + """ + ... +@overload +def mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + mean(input, *, dtype=None) -> Tensor + + Returns the mean value of all elements in the :attr:`input` tensor. Input must be floating point or complex. + + Args: + input (Tensor): + the input tensor, either of floating point or complex dtype + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.2294, -0.5481, 1.3288]]) + >>> torch.mean(a) + tensor(0.3367) + + .. function:: mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor + :noindex: + + Returns the mean value of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + .. seealso:: + + :func:`torch.nanmean` computes the mean value of `non-NaN` elements. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.3841, 0.6320, 0.4254, -0.7384], + [-0.9644, 1.0131, -0.6549, -1.4279], + [-0.2951, -1.3350, -0.7694, 0.5600], + [ 1.0842, -0.9580, 0.3623, 0.2343]]) + >>> torch.mean(a, 1) + tensor([-0.0163, -0.5085, -0.4599, 0.1807]) + >>> torch.mean(a, 1, True) + tensor([[-0.0163], + [-0.5085], + [-0.4599], + [ 0.1807]]) + """ + ... +@overload +def median(input: Tensor) -> Tensor: + r""" + median(input) -> Tensor + + Returns the median of the values in :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements. In this case the lower of the two medians is returned. To + compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``median(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 1.5219, -1.5212, 0.2202]]) + >>> torch.median(a) + tensor(0.2202) + + .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. + + By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. + + If :attr:`keepdim` is ``True``, the output tensors are of the same size + as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the outputs tensor having 1 fewer dimension than :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements in the dimension :attr:`dim`. In this case the lower of the + two medians is returned. To compute the mean of both medians in + :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + ``indices`` does not necessarily contain the first occurrence of each + median value found, unless it is unique. + The exact implementation details are device-specific. + Do not expect the same result when run on CPU and GPU in general. + For the same reason do not expect the gradients to be deterministic. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.randn(4, 5) + >>> a + tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], + [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], + [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], + [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) + >>> torch.median(a, 1) + torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) + """ + ... +@overload +def median(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.median: + r""" + median(input) -> Tensor + + Returns the median of the values in :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements. In this case the lower of the two medians is returned. To + compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``median(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 1.5219, -1.5212, 0.2202]]) + >>> torch.median(a) + tensor(0.2202) + + .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. + + By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. + + If :attr:`keepdim` is ``True``, the output tensors are of the same size + as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the outputs tensor having 1 fewer dimension than :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements in the dimension :attr:`dim`. In this case the lower of the + two medians is returned. To compute the mean of both medians in + :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + ``indices`` does not necessarily contain the first occurrence of each + median value found, unless it is unique. + The exact implementation details are device-specific. + Do not expect the same result when run on CPU and GPU in general. + For the same reason do not expect the gradients to be deterministic. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.randn(4, 5) + >>> a + tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], + [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], + [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], + [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) + >>> torch.median(a, 1) + torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) + """ + ... +@overload +def median(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.median: + r""" + median(input) -> Tensor + + Returns the median of the values in :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements. In this case the lower of the two medians is returned. To + compute the mean of both medians, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``median(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 1.5219, -1.5212, 0.2202]]) + >>> torch.median(a) + tensor(0.2202) + + .. function:: median(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, and ``indices`` contains the index of the median values found in the dimension :attr:`dim`. + + By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. + + If :attr:`keepdim` is ``True``, the output tensors are of the same size + as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the outputs tensor having 1 fewer dimension than :attr:`input`. + + .. note:: + The median is not unique for :attr:`input` tensors with an even number + of elements in the dimension :attr:`dim`. In this case the lower of the + two medians is returned. To compute the mean of both medians in + :attr:`input`, use :func:`torch.quantile` with ``q=0.5`` instead. + + .. warning:: + ``indices`` does not necessarily contain the first occurrence of each + median value found, unless it is unique. + The exact implementation details are device-specific. + Do not expect the same result when run on CPU and GPU in general. + For the same reason do not expect the gradients to be deterministic. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.randn(4, 5) + >>> a + tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], + [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], + [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], + [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) + >>> torch.median(a, 1) + torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3])) + """ + ... +@overload +def min(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + min(input) -> Tensor + + Returns the minimum value of all elements in the :attr:`input` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``min(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6750, 1.0857, 1.7197]]) + >>> torch.min(a) + tensor(0.6750) + + .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each minimum value found + (argmin). + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: If there are multiple minimal values in a reduced row then + the indices of the first minimal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the tuple of two output tensors (min, min_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.6248, 1.1334, -1.1899, -0.2803], + [-1.4644, -0.2635, -0.3651, 0.6134], + [ 0.2457, 0.0384, 1.0128, 0.7015], + [-0.1153, 2.9849, 2.1458, 0.5788]]) + >>> torch.min(a, 1) + torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) + + .. function:: min(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.minimum`. + """ + ... +@overload +def min(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + min(input) -> Tensor + + Returns the minimum value of all elements in the :attr:`input` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``min(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6750, 1.0857, 1.7197]]) + >>> torch.min(a) + tensor(0.6750) + + .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each minimum value found + (argmin). + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: If there are multiple minimal values in a reduced row then + the indices of the first minimal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the tuple of two output tensors (min, min_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.6248, 1.1334, -1.1899, -0.2803], + [-1.4644, -0.2635, -0.3651, 0.6134], + [ 0.2457, 0.0384, 1.0128, 0.7015], + [-0.1153, 2.9849, 2.1458, 0.5788]]) + >>> torch.min(a, 1) + torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) + + .. function:: min(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.minimum`. + """ + ... +@overload +def min(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.min: + r""" + min(input) -> Tensor + + Returns the minimum value of all elements in the :attr:`input` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``min(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6750, 1.0857, 1.7197]]) + >>> torch.min(a) + tensor(0.6750) + + .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each minimum value found + (argmin). + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: If there are multiple minimal values in a reduced row then + the indices of the first minimal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the tuple of two output tensors (min, min_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.6248, 1.1334, -1.1899, -0.2803], + [-1.4644, -0.2635, -0.3651, 0.6134], + [ 0.2457, 0.0384, 1.0128, 0.7015], + [-0.1153, 2.9849, 2.1458, 0.5788]]) + >>> torch.min(a, 1) + torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) + + .. function:: min(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.minimum`. + """ + ... +@overload +def min(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.min: + r""" + min(input) -> Tensor + + Returns the minimum value of all elements in the :attr:`input` tensor. + + .. warning:: + This function produces deterministic (sub)gradients unlike ``min(dim=0)`` + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.6750, 1.0857, 1.7197]]) + >>> torch.min(a) + tensor(0.6750) + + .. function:: min(input, dim, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` is the minimum + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`. And ``indices`` is the index location of each minimum value found + (argmin). + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: If there are multiple minimal values in a reduced row then + the indices of the first minimal value are returned. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the tuple of two output tensors (min, min_indices) + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[-0.6248, 1.1334, -1.1899, -0.2803], + [-1.4644, -0.2635, -0.3651, 0.6134], + [ 0.2457, 0.0384, 1.0128, 0.7015], + [-0.1153, 2.9849, 2.1458, 0.5788]]) + >>> torch.min(a, 1) + torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0])) + + .. function:: min(input, other, *, out=None) -> Tensor + :noindex: + + See :func:`torch.minimum`. + """ + ... +def minimum(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + minimum(input, other, *, out=None) -> Tensor + + Computes the element-wise minimum of :attr:`input` and :attr:`other`. + + .. note:: + If one of the elements being compared is a NaN, then that element is returned. + :func:`minimum` is not supported for tensors with complex dtypes. + + Args: + input (Tensor): the input tensor. + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor((1, 2, -1)) + >>> b = torch.tensor((3, 0, 4)) + >>> torch.minimum(a, b) + tensor([1, 0, -1]) + """ + ... +def miopen_batch_norm(input: Tensor, weight: Tensor, bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, exponential_average_factor: _float, epsilon: _float) -> Tuple[Tensor, Tensor, Tensor]: ... +def miopen_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... +def miopen_convolution_add_relu(input: Tensor, weight: Tensor, z: Tensor, alpha: Optional[Union[Number, _complex]], bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def miopen_convolution_relu(input: Tensor, weight: Tensor, bias: Optional[Tensor], stride: Sequence[Union[_int, SymInt]], padding: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def miopen_convolution_transpose(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], output_padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... +def miopen_depthwise_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt], benchmark: _bool, deterministic: _bool) -> Tensor: ... +def miopen_rnn(input: Tensor, weight: Union[Tuple[Tensor, ...], List[Tensor]], weight_stride0: _int, hx: Tensor, cx: Optional[Tensor], mode: _int, hidden_size: _int, num_layers: _int, batch_first: _bool, dropout: _float, train: _bool, bidirectional: _bool, batch_sizes: _size, dropout_state: Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: ... +def mkldnn_adaptive_avg_pool2d(input: Tensor, output_size: Union[_int, _size], *, out: Optional[Tensor] = None) -> Tensor: ... +def mkldnn_convolution(input: Tensor, weight: Tensor, bias: Optional[Tensor], padding: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], dilation: Sequence[Union[_int, SymInt]], groups: Union[_int, SymInt]) -> Tensor: ... +def mkldnn_linear_backward_weights(grad_output: Tensor, input: Tensor, weight: Tensor, bias_defined: _bool) -> Tuple[Tensor, Tensor]: ... +def mkldnn_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def mkldnn_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def mkldnn_rnn_layer(input: Tensor, weight0: Tensor, weight1: Tensor, weight2: Tensor, weight3: Tensor, hx_: Tensor, cx_: Tensor, reverse: _bool, batch_sizes: _size, mode: _int, hidden_size: _int, num_layers: _int, has_biases: _bool, bidirectional: _bool, batch_first: _bool, train: _bool) -> Tuple[Tensor, Tensor, Tensor, Tensor]: ... +def mm(input: Tensor, mat2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + mm(input, mat2, *, out=None) -> Tensor + + Performs a matrix multiplication of the matrices :attr:`input` and :attr:`mat2`. + + If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`mat2` is a + :math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor. + + .. note:: This function does not :ref:`broadcast `. + For broadcasting matrix products, see :func:`torch.matmul`. + + Supports strided and sparse 2-D tensors as inputs, autograd with + respect to strided inputs. + + This operation has support for arguments with :ref:`sparse layouts`. + If :attr:`out` is provided its layout will be used. Otherwise, the result + layout will be deduced from that of :attr:`input`. + + + .. warning:: + Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, + or may not have autograd support. If you notice missing functionality please + open a feature request. + + This operator supports :ref:`TensorFloat32`. + + On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision` for backward. + + Args: + input (Tensor): the first matrix to be matrix multiplied + mat2 (Tensor): the second matrix to be matrix multiplied + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> mat1 = torch.randn(2, 3) + >>> mat2 = torch.randn(3, 3) + >>> torch.mm(mat1, mat2) + tensor([[ 0.4851, 0.5037, -0.3633], + [-0.0760, -3.6705, 2.4784]]) + """ + ... +@overload +def mode(input: Tensor, dim: _int = -1, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.mode: + r""" + mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + + Returns a namedtuple ``(values, indices)`` where ``values`` is the mode + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`, i.e. a value which appears most often + in that row, and ``indices`` is the index location of each mode value found. + + By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> b = torch.tensor([[0, 0, 0, 2, 0, 0, 2], + ... [0, 3, 0, 0, 2, 0, 1], + ... [2, 2, 2, 0, 0, 0, 3], + ... [2, 2, 3, 0, 1, 1, 0], + ... [1, 1, 0, 0, 2, 0, 2]]) + >>> torch.mode(b, 0) + torch.return_types.mode( + values=tensor([0, 2, 0, 0, 0, 0, 2]), + indices=tensor([1, 3, 4, 4, 2, 4, 4])) + """ + ... +@overload +def mode(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.mode: + r""" + mode(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + + Returns a namedtuple ``(values, indices)`` where ``values`` is the mode + value of each row of the :attr:`input` tensor in the given dimension + :attr:`dim`, i.e. a value which appears most often + in that row, and ``indices`` is the index location of each mode value found. + + By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. + + If :attr:`keepdim` is ``True``, the output tensors are of the same size as + :attr:`input` except in the dimension :attr:`dim` where they are of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting + in the output tensors having 1 fewer dimension than :attr:`input`. + + .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out (tuple, optional): the result tuple of two output tensors (values, indices) + + Example:: + + >>> b = torch.tensor([[0, 0, 0, 2, 0, 0, 2], + ... [0, 3, 0, 0, 2, 0, 1], + ... [2, 2, 2, 0, 0, 0, 3], + ... [2, 2, 3, 0, 1, 1, 0], + ... [1, 1, 0, 0, 2, 0, 2]]) + >>> torch.mode(b, 0) + torch.return_types.mode( + values=tensor([0, 2, 0, 0, 0, 0, 2]), + indices=tensor([1, 3, 4, 4, 2, 4, 4])) + """ + ... +@overload +def moveaxis(input: Tensor, source: _int, destination: _int) -> Tensor: + r""" + moveaxis(input, source, destination) -> Tensor + + Alias for :func:`torch.movedim`. + + This function is equivalent to NumPy's moveaxis function. + + Examples:: + + >>> t = torch.randn(3,2,1) + >>> t + tensor([[[-0.3362], + [-0.8437]], + + [[-0.9627], + [ 0.1727]], + + [[ 0.5173], + [-0.1398]]]) + >>> torch.moveaxis(t, 1, 0).shape + torch.Size([2, 3, 1]) + >>> torch.moveaxis(t, 1, 0) + tensor([[[-0.3362], + [-0.9627], + [ 0.5173]], + + [[-0.8437], + [ 0.1727], + [-0.1398]]]) + >>> torch.moveaxis(t, (1, 2), (0, 1)).shape + torch.Size([2, 1, 3]) + >>> torch.moveaxis(t, (1, 2), (0, 1)) + tensor([[[-0.3362, -0.9627, 0.5173]], + + [[-0.8437, 0.1727, -0.1398]]]) + """ + ... +@overload +def moveaxis(input: Tensor, source: _size, destination: _size) -> Tensor: + r""" + moveaxis(input, source, destination) -> Tensor + + Alias for :func:`torch.movedim`. + + This function is equivalent to NumPy's moveaxis function. + + Examples:: + + >>> t = torch.randn(3,2,1) + >>> t + tensor([[[-0.3362], + [-0.8437]], + + [[-0.9627], + [ 0.1727]], + + [[ 0.5173], + [-0.1398]]]) + >>> torch.moveaxis(t, 1, 0).shape + torch.Size([2, 3, 1]) + >>> torch.moveaxis(t, 1, 0) + tensor([[[-0.3362], + [-0.9627], + [ 0.5173]], + + [[-0.8437], + [ 0.1727], + [-0.1398]]]) + >>> torch.moveaxis(t, (1, 2), (0, 1)).shape + torch.Size([2, 1, 3]) + >>> torch.moveaxis(t, (1, 2), (0, 1)) + tensor([[[-0.3362, -0.9627, 0.5173]], + + [[-0.8437, 0.1727, -0.1398]]]) + """ + ... +@overload +def movedim(input: Tensor, source: _int, destination: _int) -> Tensor: + r""" + movedim(input, source, destination) -> Tensor + + Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source` + to the position(s) in :attr:`destination`. + + Other dimensions of :attr:`input` that are not explicitly moved remain in + their original order and appear at the positions not specified in :attr:`destination`. + + Args: + input (Tensor): the input tensor. + source (int or tuple of ints): Original positions of the dims to move. These must be unique. + destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique. + + Examples:: + + >>> t = torch.randn(3,2,1) + >>> t + tensor([[[-0.3362], + [-0.8437]], + + [[-0.9627], + [ 0.1727]], + + [[ 0.5173], + [-0.1398]]]) + >>> torch.movedim(t, 1, 0).shape + torch.Size([2, 3, 1]) + >>> torch.movedim(t, 1, 0) + tensor([[[-0.3362], + [-0.9627], + [ 0.5173]], + + [[-0.8437], + [ 0.1727], + [-0.1398]]]) + >>> torch.movedim(t, (1, 2), (0, 1)).shape + torch.Size([2, 1, 3]) + >>> torch.movedim(t, (1, 2), (0, 1)) + tensor([[[-0.3362, -0.9627, 0.5173]], + + [[-0.8437, 0.1727, -0.1398]]]) + """ + ... +@overload +def movedim(input: Tensor, source: _size, destination: _size) -> Tensor: + r""" + movedim(input, source, destination) -> Tensor + + Moves the dimension(s) of :attr:`input` at the position(s) in :attr:`source` + to the position(s) in :attr:`destination`. + + Other dimensions of :attr:`input` that are not explicitly moved remain in + their original order and appear at the positions not specified in :attr:`destination`. + + Args: + input (Tensor): the input tensor. + source (int or tuple of ints): Original positions of the dims to move. These must be unique. + destination (int or tuple of ints): Destination positions for each of the original dims. These must also be unique. + + Examples:: + + >>> t = torch.randn(3,2,1) + >>> t + tensor([[[-0.3362], + [-0.8437]], + + [[-0.9627], + [ 0.1727]], + + [[ 0.5173], + [-0.1398]]]) + >>> torch.movedim(t, 1, 0).shape + torch.Size([2, 3, 1]) + >>> torch.movedim(t, 1, 0) + tensor([[[-0.3362], + [-0.9627], + [ 0.5173]], + + [[-0.8437], + [ 0.1727], + [-0.1398]]]) + >>> torch.movedim(t, (1, 2), (0, 1)).shape + torch.Size([2, 1, 3]) + >>> torch.movedim(t, (1, 2), (0, 1)) + tensor([[[-0.3362, -0.9627, 0.5173]], + + [[-0.8437, 0.1727, -0.1398]]]) + """ + ... +def msort(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + msort(input, *, out=None) -> Tensor + + Sorts the elements of the :attr:`input` tensor along its first dimension + in ascending order by value. + + .. note:: `torch.msort(t)` is equivalent to `torch.sort(t, dim=0)[0]`. + See also :func:`torch.sort`. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.randn(3, 4) + >>> t + tensor([[-0.1321, 0.4370, -1.2631, -1.1289], + [-2.0527, -1.1250, 0.2275, 0.3077], + [-0.0881, -0.1259, -0.5495, 1.0284]]) + >>> torch.msort(t) + tensor([[-2.0527, -1.1250, -1.2631, -1.1289], + [-0.1321, -0.1259, -0.5495, 0.3077], + [-0.0881, 0.4370, 0.2275, 1.0284]]) + """ + ... +def mul(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + mul(input, other, *, out=None) -> Tensor + + Multiplies :attr:`input` by :attr:`other`. + + + .. math:: + \text{out}_i = \text{input}_i \times \text{other}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number) - the tensor or number to multiply input by. + + Keyword args: + out (Tensor, optional): the output tensor. + + Examples:: + + >>> a = torch.randn(3) + >>> a + tensor([ 0.2015, -0.4255, 2.6087]) + >>> torch.mul(a, 100) + tensor([ 20.1494, -42.5491, 260.8663]) + + >>> b = torch.randn(4, 1) + >>> b + tensor([[ 1.1207], + [-0.3137], + [ 0.0700], + [ 0.8378]]) + >>> c = torch.randn(1, 4) + >>> c + tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) + >>> torch.mul(b, c) + tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], + [-0.1614, -0.0382, 0.1645, -0.7021], + [ 0.0360, 0.0085, -0.0367, 0.1567], + [ 0.4312, 0.1019, -0.4394, 1.8753]]) + """ + ... +def multinomial(input: Tensor, num_samples: _int, replacement: _bool = False, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor + + Returns a tensor where each row contains :attr:`num_samples` indices sampled + from the multinomial (a stricter definition would be multivariate, + refer to :class:`torch.distributions.multinomial.Multinomial` for more details) + probability distribution located in the corresponding row + of tensor :attr:`input`. + + .. note:: + The rows of :attr:`input` do not need to sum to one (in which case we use + the values as weights), but must be non-negative, finite and have + a non-zero sum. + + Indices are ordered from left to right according to when each was sampled + (first samples are placed in first column). + + If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`. + + If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape + :math:`(m \times \text{num\_samples})`. + + If replacement is ``True``, samples are drawn with replacement. + + If not, they are drawn without replacement, which means that when a + sample index is drawn for a row, it cannot be drawn again for that row. + + .. note:: + When drawn without replacement, :attr:`num_samples` must be lower than + number of non-zero elements in :attr:`input` (or the min number of non-zero + elements in each row of :attr:`input` if it is a matrix). + + Args: + input (Tensor): the input tensor containing probabilities + num_samples (int): number of samples to draw + replacement (bool, optional): whether to draw with replacement or not + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights + >>> torch.multinomial(weights, 2) + tensor([1, 2]) + >>> torch.multinomial(weights, 5) # ERROR! + RuntimeError: cannot sample n_sample > prob_dist.size(-1) samples without replacement + >>> torch.multinomial(weights, 4, replacement=True) + tensor([ 2, 1, 1, 1]) + """ + ... +@overload +def multiply(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + multiply(input, other, *, out=None) + + Alias for :func:`torch.mul`. + """ + ... +@overload +def multiply(input: Tensor, other: Union[Number, _complex]) -> Tensor: + r""" + multiply(input, other, *, out=None) + + Alias for :func:`torch.mul`. + """ + ... +def mv(input: Tensor, vec: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + mv(input, vec, *, out=None) -> Tensor + + Performs a matrix-vector product of the matrix :attr:`input` and the vector + :attr:`vec`. + + If :attr:`input` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of + size :math:`m`, :attr:`out` will be 1-D of size :math:`n`. + + .. note:: This function does not :ref:`broadcast `. + + Args: + input (Tensor): matrix to be multiplied + vec (Tensor): vector to be multiplied + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> mat = torch.randn(2, 3) + >>> vec = torch.randn(3) + >>> torch.mv(mat, vec) + tensor([ 1.0404, -0.6361]) + """ + ... +def mvlgamma(input: Tensor, p: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + mvlgamma(input, p, *, out=None) -> Tensor + + Alias for :func:`torch.special.multigammaln`. + """ + ... +def nan_to_num(input: Tensor, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None) -> Tensor + + Replaces :literal:`NaN`, positive infinity, and negative infinity values in :attr:`input` + with the values specified by :attr:`nan`, :attr:`posinf`, and :attr:`neginf`, respectively. + By default, :literal:`NaN`\ s are replaced with zero, positive infinity is replaced with the + greatest finite value representable by :attr:`input`'s dtype, and negative infinity + is replaced with the least finite value representable by :attr:`input`'s dtype. + + Args: + input (Tensor): the input tensor. + nan (Number, optional): the value to replace :literal:`NaN`\s with. Default is zero. + posinf (Number, optional): if a Number, the value to replace positive infinity values with. + If None, positive infinity values are replaced with the greatest finite value representable by :attr:`input`'s dtype. + Default is None. + neginf (Number, optional): if a Number, the value to replace negative infinity values with. + If None, negative infinity values are replaced with the lowest finite value representable by :attr:`input`'s dtype. + Default is None. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.tensor([float('nan'), float('inf'), -float('inf'), 3.14]) + >>> torch.nan_to_num(x) + tensor([ 0.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) + >>> torch.nan_to_num(x, nan=2.0) + tensor([ 2.0000e+00, 3.4028e+38, -3.4028e+38, 3.1400e+00]) + >>> torch.nan_to_num(x, nan=2.0, posinf=1.0) + tensor([ 2.0000e+00, 1.0000e+00, -3.4028e+38, 3.1400e+00]) + """ + ... +def nan_to_num_(input: Tensor, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: ... +def nanmean(input: Tensor, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor + + Computes the mean of all `non-NaN` elements along the specified dimensions. + Input must be floating point or complex. + + This function is identical to :func:`torch.mean` when there are no `NaN` values + in the :attr:`input` tensor. In the presence of `NaN`, :func:`torch.mean` will + propagate the `NaN` to the output whereas :func:`torch.nanmean` will ignore the + `NaN` values (`torch.nanmean(a)` is equivalent to `torch.mean(a[~a.isnan()])`). + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor, either of floating point or complex dtype + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + out (Tensor, optional): the output tensor. + + .. seealso:: + + :func:`torch.mean` computes the mean value, propagating `NaN`. + + Example:: + + >>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) + >>> x.mean() + tensor(nan) + >>> x.nanmean() + tensor(1.8000) + >>> x.mean(dim=0) + tensor([ nan, 1.5000, 2.5000]) + >>> x.nanmean(dim=0) + tensor([1.0000, 1.5000, 2.5000]) + + # If all elements in the reduced dimensions are NaN then the result is NaN + >>> torch.tensor([torch.nan]).nanmean() + tensor(nan) + """ + ... +@overload +def nanmedian(input: Tensor) -> Tensor: + r""" + nanmedian(input) -> Tensor + + Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. + When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, + while this function will return the median of the non-``NaN`` elements in :attr:`input`. + If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.tensor([1, float('nan'), 3, 2]) + >>> a.median() + tensor(nan) + >>> a.nanmedian() + tensor(2.) + + .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values + found in the dimension :attr:`dim`. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has + one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the + median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) + >>> a + tensor([[2., 3., 1.], + [nan, 1., nan]]) + >>> a.median(0) + torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) + >>> a.nanmedian(0) + torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) + """ + ... +@overload +def nanmedian(input: Tensor, dim: _int, keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.nanmedian: + r""" + nanmedian(input) -> Tensor + + Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. + When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, + while this function will return the median of the non-``NaN`` elements in :attr:`input`. + If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.tensor([1, float('nan'), 3, 2]) + >>> a.median() + tensor(nan) + >>> a.nanmedian() + tensor(2.) + + .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values + found in the dimension :attr:`dim`. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has + one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the + median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) + >>> a + tensor([[2., 3., 1.], + [nan, 1., nan]]) + >>> a.median(0) + torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) + >>> a.nanmedian(0) + torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) + """ + ... +@overload +def nanmedian(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.nanmedian: + r""" + nanmedian(input) -> Tensor + + Returns the median of the values in :attr:`input`, ignoring ``NaN`` values. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in :attr:`input`. + When :attr:`input` has one or more ``NaN`` values, :func:`torch.median` will always return ``NaN``, + while this function will return the median of the non-``NaN`` elements in :attr:`input`. + If all the elements in :attr:`input` are ``NaN`` it will also return ``NaN``. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.tensor([1, float('nan'), 3, 2]) + >>> a.median() + tensor(nan) + >>> a.nanmedian() + tensor(2.) + + .. function:: nanmedian(input, dim=-1, keepdim=False, *, out=None) -> (Tensor, LongTensor) + :noindex: + + Returns a namedtuple ``(values, indices)`` where ``values`` contains the median of each row of :attr:`input` + in the dimension :attr:`dim`, ignoring ``NaN`` values, and ``indices`` contains the index of the median values + found in the dimension :attr:`dim`. + + This function is identical to :func:`torch.median` when there are no ``NaN`` values in a reduced row. When a reduced row has + one or more ``NaN`` values, :func:`torch.median` will always reduce it to ``NaN``, while this function will reduce it to the + median of the non-``NaN`` elements. If all the elements in a reduced row are ``NaN`` then it will be reduced to ``NaN``, too. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + out ((Tensor, Tensor), optional): The first tensor will be populated with the median values and the second + tensor, which must have dtype long, with their indices in the dimension + :attr:`dim` of :attr:`input`. + + Example:: + + >>> a = torch.tensor([[2, 3, 1], [float('nan'), 1, float('nan')]]) + >>> a + tensor([[2., 3., 1.], + [nan, 1., nan]]) + >>> a.median(0) + torch.return_types.median(values=tensor([nan, 1., nan]), indices=tensor([1, 1, 1])) + >>> a.nanmedian(0) + torch.return_types.nanmedian(values=tensor([2., 1., 1.]), indices=tensor([0, 1, 0])) + """ + ... +@overload +def nanquantile(input: Tensor, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: + r""" + nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor + + This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values, + computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did + not exist. If all values in a reduced row are ``NaN`` then the quantiles for + that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`. + + Args: + input (Tensor): the input tensor. + q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1] + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword arguments: + interpolation (str): interpolation method to use when the desired quantile lies between two data points. + Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. + Default is ``linear``. + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.tensor([float('nan'), 1, 2]) + >>> t.quantile(0.5) + tensor(nan) + >>> t.nanquantile(0.5) + tensor(1.5000) + >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) + >>> t + tensor([[nan, nan], + [1., 2.]]) + >>> t.nanquantile(0.5, dim=0) + tensor([1., 2.]) + >>> t.nanquantile(0.5, dim=1) + tensor([ nan, 1.5000]) + """ + ... +@overload +def nanquantile(input: Tensor, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: + r""" + nanquantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor + + This is a variant of :func:`torch.quantile` that "ignores" ``NaN`` values, + computing the quantiles :attr:`q` as if ``NaN`` values in :attr:`input` did + not exist. If all values in a reduced row are ``NaN`` then the quantiles for + that reduction will be ``NaN``. See the documentation for :func:`torch.quantile`. + + Args: + input (Tensor): the input tensor. + q (float or Tensor): a scalar or 1D tensor of quantile values in the range [0, 1] + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword arguments: + interpolation (str): interpolation method to use when the desired quantile lies between two data points. + Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. + Default is ``linear``. + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.tensor([float('nan'), 1, 2]) + >>> t.quantile(0.5) + tensor(nan) + >>> t.nanquantile(0.5) + tensor(1.5000) + >>> t = torch.tensor([[float('nan'), float('nan')], [1, 2]]) + >>> t + tensor([[nan, nan], + [1., 2.]]) + >>> t.nanquantile(0.5, dim=0) + tensor([1., 2.]) + >>> t.nanquantile(0.5, dim=1) + tensor([ nan, 1.5000]) + """ + ... +def nansum(input: Tensor, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + nansum(input, *, dtype=None) -> Tensor + + Returns the sum of all elements, treating Not a Numbers (NaNs) as zero. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.tensor([1., 2., float('nan'), 4.]) + >>> torch.nansum(a) + tensor(7.) + + .. function:: nansum(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the sum of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`, treating Not a Numbers (NaNs) as zero. + If :attr:`dim` is a list of dimensions, reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> torch.nansum(torch.tensor([1., float("nan")])) + 1.0 + >>> a = torch.tensor([[1, 2], [3., float("nan")]]) + >>> torch.nansum(a) + tensor(6.) + >>> torch.nansum(a, dim=0) + tensor([4., 2.]) + >>> torch.nansum(a, dim=1) + tensor([3., 3.]) + """ + ... +@overload +def narrow(input: Tensor, dim: _int, start: Tensor, length: Union[_int, SymInt]) -> Tensor: + r""" + narrow(input, dim, start, length) -> Tensor + + Returns a new tensor that is a narrowed version of :attr:`input` tensor. The + dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The + returned tensor and :attr:`input` tensor share the same underlying storage. + + Args: + input (Tensor): the tensor to narrow + dim (int): the dimension along which to narrow + start (int or Tensor): index of the element to start the narrowed dimension + from. Can be negative, which means indexing from the end of `dim`. If + `Tensor`, it must be an 0-dim integral `Tensor` (bools not allowed) + length (int): length of the narrowed dimension, must be weakly positive + + Example:: + + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + >>> torch.narrow(x, 0, 0, 2) + tensor([[ 1, 2, 3], + [ 4, 5, 6]]) + >>> torch.narrow(x, 1, 1, 2) + tensor([[ 2, 3], + [ 5, 6], + [ 8, 9]]) + >>> torch.narrow(x, -1, torch.tensor(-1), 1) + tensor([[3], + [6], + [9]]) + """ + ... +@overload +def narrow(input: Tensor, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: + r""" + narrow(input, dim, start, length) -> Tensor + + Returns a new tensor that is a narrowed version of :attr:`input` tensor. The + dimension :attr:`dim` is input from :attr:`start` to ``start + length``. The + returned tensor and :attr:`input` tensor share the same underlying storage. + + Args: + input (Tensor): the tensor to narrow + dim (int): the dimension along which to narrow + start (int or Tensor): index of the element to start the narrowed dimension + from. Can be negative, which means indexing from the end of `dim`. If + `Tensor`, it must be an 0-dim integral `Tensor` (bools not allowed) + length (int): length of the narrowed dimension, must be weakly positive + + Example:: + + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + >>> torch.narrow(x, 0, 0, 2) + tensor([[ 1, 2, 3], + [ 4, 5, 6]]) + >>> torch.narrow(x, 1, 1, 2) + tensor([[ 2, 3], + [ 5, 6], + [ 8, 9]]) + >>> torch.narrow(x, -1, torch.tensor(-1), 1) + tensor([[3], + [6], + [9]]) + """ + ... +def narrow_copy(input: Tensor, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: + r""" + narrow_copy(input, dim, start, length, *, out=None) -> Tensor + + Same as :meth:`Tensor.narrow` except this returns a copy rather + than shared storage. This is primarily for sparse tensors, which + do not have a shared-storage narrow method. + + Args: + input (Tensor): the tensor to narrow + dim (int): the dimension along which to narrow + start (int): index of the element to start the narrowed dimension from. Can + be negative, which means indexing from the end of `dim` + length (int): length of the narrowed dimension, must be weakly positive + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) + >>> torch.narrow_copy(x, 0, 0, 2) + tensor([[ 1, 2, 3], + [ 4, 5, 6]]) + >>> torch.narrow_copy(x, 1, 1, 2) + tensor([[ 2, 3], + [ 5, 6], + [ 8, 9]]) + >>> s = torch.arange(16).reshape(2, 2, 2, 2).to_sparse(2) + >>> torch.narrow_copy(s, 0, 0, 1) + tensor(indices=tensor([[0, 0], + [0, 1]]), + values=tensor([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]), + size=(1, 2, 2, 2), nnz=2, layout=torch.sparse_coo) + + .. seealso:: + + :func:`torch.narrow` for a non copy variant + """ + ... +def native_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], running_mean: Optional[Tensor], running_var: Optional[Tensor], training: _bool, momentum: _float, eps: _float, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> Tuple[Tensor, Tensor, Tensor]: ... +def native_channel_shuffle(input: Tensor, groups: Union[_int, SymInt]) -> Tensor: ... +def native_dropout(input: Tensor, p: _float, train: Optional[_bool]) -> Tuple[Tensor, Tensor]: ... +def native_group_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], N: Union[_int, SymInt], C: Union[_int, SymInt], HxW: Union[_int, SymInt], group: _int, eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... +def native_layer_norm(input: Tensor, normalized_shape: Sequence[Union[_int, SymInt]], weight: Optional[Tensor], bias: Optional[Tensor], eps: _float) -> Tuple[Tensor, Tensor, Tensor]: ... +@overload +def native_norm(input: Tensor, p: Optional[Union[Number, _complex]], dim: Union[_int, _size], keepdim: _bool, dtype: Optional[_dtype]) -> Tensor: ... +@overload +def native_norm(input: Tensor, p: Union[Number, _complex] = 2) -> Tensor: ... +@overload +def ne(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ne(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \neq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, True], [True, False]]) + """ + ... +@overload +def ne(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + ne(input, other, *, out=None) -> Tensor + + Computes :math:`\text{input} \neq \text{other}` element-wise. + + + The second argument can be a number or a tensor whose shape is + :ref:`broadcastable ` with the first argument. + + Args: + input (Tensor): the tensor to compare + other (Tensor or float): the tensor or value to compare + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + A boolean tensor that is True where :attr:`input` is not equal to :attr:`other` and False elsewhere + + Example:: + + >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) + tensor([[False, True], [True, False]]) + """ + ... +def neg(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + neg(input, *, out=None) -> Tensor + + Returns a new tensor with the negative of the elements of :attr:`input`. + + .. math:: + \text{out} = -1 \times \text{input} + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(5) + >>> a + tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) + >>> torch.neg(a) + tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940]) + """ + ... +def neg_(input: Tensor) -> Tensor: ... +def negative(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + negative(input, *, out=None) -> Tensor + + Alias for :func:`torch.neg` + """ + ... +def negative_(input: Tensor) -> Tensor: ... +def nextafter(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + nextafter(input, other, *, out=None) -> Tensor + + Return the next floating-point value after :attr:`input` towards :attr:`other`, elementwise. + + The shapes of ``input`` and ``other`` must be + :ref:`broadcastable `. + + Args: + input (Tensor): the first input tensor + other (Tensor): the second input tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> eps = torch.finfo(torch.float32).eps + >>> torch.nextafter(torch.tensor([1.0, 2.0]), torch.tensor([2.0, 1.0])) == torch.tensor([eps + 1, 2 - eps]) + tensor([True, True]) + """ + ... +@overload +def nonzero(input: Tensor, *, as_tuple: Literal[False] = False, out: Optional[Tensor] = None) -> Tensor: + r""" + nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors + + .. note:: + :func:`torch.nonzero(..., as_tuple=False) ` (default) returns a + 2-D tensor where each row is the index for a nonzero value. + + :func:`torch.nonzero(..., as_tuple=True) ` returns a tuple of 1-D + index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]`` + gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor + contains nonzero indices for a certain dimension. + + See below for more details on the two behaviors. + + When :attr:`input` is on CUDA, :func:`torch.nonzero() ` causes + host-device synchronization. + + **When** :attr:`as_tuple` **is** ``False`` **(default)**: + + Returns a tensor containing the indices of all non-zero elements of + :attr:`input`. Each row in the result contains the indices of a non-zero + element in :attr:`input`. The result is sorted lexicographically, with + the last index changing the fastest (C-style). + + If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor + :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of + non-zero elements in the :attr:`input` tensor. + + **When** :attr:`as_tuple` **is** ``True``: + + Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`, + each containing the indices (in that dimension) of all non-zero elements of + :attr:`input` . + + If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n` + tensors of size :math:`z`, where :math:`z` is the total number of + non-zero elements in the :attr:`input` tensor. + + As a special case, when :attr:`input` has zero dimensions and a nonzero scalar + value, it is treated as a one-dimensional tensor with one element. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (LongTensor, optional): the output tensor containing indices + + Returns: + LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output + tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for + each dimension, containing the indices of each nonzero element along that + dimension. + + Example:: + + >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) + tensor([[ 0], + [ 1], + [ 2], + [ 4]]) + >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], + ... [0.0, 0.4, 0.0, 0.0], + ... [0.0, 0.0, 1.2, 0.0], + ... [0.0, 0.0, 0.0,-0.4]])) + tensor([[ 0, 0], + [ 1, 1], + [ 2, 2], + [ 3, 3]]) + >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) + (tensor([0, 1, 2, 4]),) + >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], + ... [0.0, 0.4, 0.0, 0.0], + ... [0.0, 0.0, 1.2, 0.0], + ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) + (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) + >>> torch.nonzero(torch.tensor(5), as_tuple=True) + (tensor([0]),) + """ + ... +@overload +def nonzero(input: Tensor, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: + r""" + nonzero(input, *, out=None, as_tuple=False) -> LongTensor or tuple of LongTensors + + .. note:: + :func:`torch.nonzero(..., as_tuple=False) ` (default) returns a + 2-D tensor where each row is the index for a nonzero value. + + :func:`torch.nonzero(..., as_tuple=True) ` returns a tuple of 1-D + index tensors, allowing for advanced indexing, so ``x[x.nonzero(as_tuple=True)]`` + gives all nonzero values of tensor ``x``. Of the returned tuple, each index tensor + contains nonzero indices for a certain dimension. + + See below for more details on the two behaviors. + + When :attr:`input` is on CUDA, :func:`torch.nonzero() ` causes + host-device synchronization. + + **When** :attr:`as_tuple` **is** ``False`` **(default)**: + + Returns a tensor containing the indices of all non-zero elements of + :attr:`input`. Each row in the result contains the indices of a non-zero + element in :attr:`input`. The result is sorted lexicographically, with + the last index changing the fastest (C-style). + + If :attr:`input` has :math:`n` dimensions, then the resulting indices tensor + :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of + non-zero elements in the :attr:`input` tensor. + + **When** :attr:`as_tuple` **is** ``True``: + + Returns a tuple of 1-D tensors, one for each dimension in :attr:`input`, + each containing the indices (in that dimension) of all non-zero elements of + :attr:`input` . + + If :attr:`input` has :math:`n` dimensions, then the resulting tuple contains :math:`n` + tensors of size :math:`z`, where :math:`z` is the total number of + non-zero elements in the :attr:`input` tensor. + + As a special case, when :attr:`input` has zero dimensions and a nonzero scalar + value, it is treated as a one-dimensional tensor with one element. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (LongTensor, optional): the output tensor containing indices + + Returns: + LongTensor or tuple of LongTensor: If :attr:`as_tuple` is ``False``, the output + tensor containing indices. If :attr:`as_tuple` is ``True``, one 1-D tensor for + each dimension, containing the indices of each nonzero element along that + dimension. + + Example:: + + >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) + tensor([[ 0], + [ 1], + [ 2], + [ 4]]) + >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], + ... [0.0, 0.4, 0.0, 0.0], + ... [0.0, 0.0, 1.2, 0.0], + ... [0.0, 0.0, 0.0,-0.4]])) + tensor([[ 0, 0], + [ 1, 1], + [ 2, 2], + [ 3, 3]]) + >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) + (tensor([0, 1, 2, 4]),) + >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], + ... [0.0, 0.4, 0.0, 0.0], + ... [0.0, 0.0, 1.2, 0.0], + ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) + (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) + >>> torch.nonzero(torch.tensor(5), as_tuple=True) + (tensor([0]),) + """ + ... +def nonzero_static(input: Tensor, *, size: _int, fill_value: _int = -1, out: Optional[Tensor] = None) -> Tensor: ... +def norm_except_dim(v: Tensor, pow: _int = 2, dim: _int = 0) -> Tensor: ... +@overload +def normal(mean: Tensor, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + normal(mean, std, *, generator=None, out=None) -> Tensor + + Returns a tensor of random numbers drawn from separate normal distributions + whose mean and standard deviation are given. + + The :attr:`mean` is a tensor with the mean of + each output element's normal distribution + + The :attr:`std` is a tensor with the standard deviation of + each output element's normal distribution + + The shapes of :attr:`mean` and :attr:`std` don't need to match, but the + total number of elements in each tensor need to be the same. + + .. note:: When the shapes do not match, the shape of :attr:`mean` + is used as the shape for the returned output tensor + + .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes + its device with the CPU. + + Args: + mean (Tensor): the tensor of per-element means + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) + tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, + 8.0505, 8.1408, 9.0563, 10.0566]) + + .. function:: normal(mean=0.0, std, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means are shared among all drawn + elements. + + Args: + mean (float, optional): the mean for all distributions + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) + tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) + + .. function:: normal(mean, std=1.0, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the standard deviations are shared among + all drawn elements. + + Args: + mean (Tensor): the tensor of per-element means + std (float, optional): the standard deviation for all distributions + + Keyword args: + out (Tensor, optional): the output tensor + + Example:: + + >>> torch.normal(mean=torch.arange(1., 6.)) + tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) + + .. function:: normal(mean, std, size, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means and standard deviations are shared + among all drawn elements. The resulting tensor has size given by :attr:`size`. + + Args: + mean (float): the mean for all distributions + std (float): the standard deviation for all distributions + size (int...): a sequence of integers defining the shape of the output tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(2, 3, size=(1, 4)) + tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) + """ + ... +@overload +def normal(mean: Tensor, std: _float = 1, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + normal(mean, std, *, generator=None, out=None) -> Tensor + + Returns a tensor of random numbers drawn from separate normal distributions + whose mean and standard deviation are given. + + The :attr:`mean` is a tensor with the mean of + each output element's normal distribution + + The :attr:`std` is a tensor with the standard deviation of + each output element's normal distribution + + The shapes of :attr:`mean` and :attr:`std` don't need to match, but the + total number of elements in each tensor need to be the same. + + .. note:: When the shapes do not match, the shape of :attr:`mean` + is used as the shape for the returned output tensor + + .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes + its device with the CPU. + + Args: + mean (Tensor): the tensor of per-element means + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) + tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, + 8.0505, 8.1408, 9.0563, 10.0566]) + + .. function:: normal(mean=0.0, std, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means are shared among all drawn + elements. + + Args: + mean (float, optional): the mean for all distributions + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) + tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) + + .. function:: normal(mean, std=1.0, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the standard deviations are shared among + all drawn elements. + + Args: + mean (Tensor): the tensor of per-element means + std (float, optional): the standard deviation for all distributions + + Keyword args: + out (Tensor, optional): the output tensor + + Example:: + + >>> torch.normal(mean=torch.arange(1., 6.)) + tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) + + .. function:: normal(mean, std, size, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means and standard deviations are shared + among all drawn elements. The resulting tensor has size given by :attr:`size`. + + Args: + mean (float): the mean for all distributions + std (float): the standard deviation for all distributions + size (int...): a sequence of integers defining the shape of the output tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(2, 3, size=(1, 4)) + tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) + """ + ... +@overload +def normal(mean: _float, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + normal(mean, std, *, generator=None, out=None) -> Tensor + + Returns a tensor of random numbers drawn from separate normal distributions + whose mean and standard deviation are given. + + The :attr:`mean` is a tensor with the mean of + each output element's normal distribution + + The :attr:`std` is a tensor with the standard deviation of + each output element's normal distribution + + The shapes of :attr:`mean` and :attr:`std` don't need to match, but the + total number of elements in each tensor need to be the same. + + .. note:: When the shapes do not match, the shape of :attr:`mean` + is used as the shape for the returned output tensor + + .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes + its device with the CPU. + + Args: + mean (Tensor): the tensor of per-element means + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) + tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, + 8.0505, 8.1408, 9.0563, 10.0566]) + + .. function:: normal(mean=0.0, std, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means are shared among all drawn + elements. + + Args: + mean (float, optional): the mean for all distributions + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) + tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) + + .. function:: normal(mean, std=1.0, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the standard deviations are shared among + all drawn elements. + + Args: + mean (Tensor): the tensor of per-element means + std (float, optional): the standard deviation for all distributions + + Keyword args: + out (Tensor, optional): the output tensor + + Example:: + + >>> torch.normal(mean=torch.arange(1., 6.)) + tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) + + .. function:: normal(mean, std, size, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means and standard deviations are shared + among all drawn elements. The resulting tensor has size given by :attr:`size`. + + Args: + mean (float): the mean for all distributions + std (float): the standard deviation for all distributions + size (int...): a sequence of integers defining the shape of the output tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(2, 3, size=(1, 4)) + tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) + """ + ... +@overload +def normal(mean: _float, std: _float, size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + normal(mean, std, *, generator=None, out=None) -> Tensor + + Returns a tensor of random numbers drawn from separate normal distributions + whose mean and standard deviation are given. + + The :attr:`mean` is a tensor with the mean of + each output element's normal distribution + + The :attr:`std` is a tensor with the standard deviation of + each output element's normal distribution + + The shapes of :attr:`mean` and :attr:`std` don't need to match, but the + total number of elements in each tensor need to be the same. + + .. note:: When the shapes do not match, the shape of :attr:`mean` + is used as the shape for the returned output tensor + + .. note:: When :attr:`std` is a CUDA tensor, this function synchronizes + its device with the CPU. + + Args: + mean (Tensor): the tensor of per-element means + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) + tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, + 8.0505, 8.1408, 9.0563, 10.0566]) + + .. function:: normal(mean=0.0, std, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means are shared among all drawn + elements. + + Args: + mean (float, optional): the mean for all distributions + std (Tensor): the tensor of per-element standard deviations + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) + tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) + + .. function:: normal(mean, std=1.0, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the standard deviations are shared among + all drawn elements. + + Args: + mean (Tensor): the tensor of per-element means + std (float, optional): the standard deviation for all distributions + + Keyword args: + out (Tensor, optional): the output tensor + + Example:: + + >>> torch.normal(mean=torch.arange(1., 6.)) + tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) + + .. function:: normal(mean, std, size, *, out=None) -> Tensor + :noindex: + + Similar to the function above, but the means and standard deviations are shared + among all drawn elements. The resulting tensor has size given by :attr:`size`. + + Args: + mean (float): the mean for all distributions + std (float): the standard deviation for all distributions + size (int...): a sequence of integers defining the shape of the output tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.normal(2, 3, size=(1, 4)) + tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) + """ + ... +@overload +def not_equal(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + not_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.ne`. + """ + ... +@overload +def not_equal(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + not_equal(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.ne`. + """ + ... +@overload +def nuclear_norm(input: Tensor, dim: Union[_int, _size], keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... +@overload +def nuclear_norm(input: Tensor, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: ... +def numel(self: Tensor) -> _int: + r""" + numel(input) -> int + + Returns the total number of elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> a = torch.randn(1, 2, 3, 4, 5) + >>> torch.numel(a) + 120 + >>> a = torch.zeros(4,4) + >>> torch.numel(a) + 16 + """ + ... +@overload +def ones(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `1`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.ones(2, 3) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.]]) + + >>> torch.ones(5) + tensor([ 1., 1., 1., 1., 1.]) + """ + ... +@overload +def ones(*size: Union[_int, SymInt], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `1`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.ones(2, 3) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.]]) + + >>> torch.ones(5) + tensor([ 1., 1., 1., 1., 1.]) + """ + ... +@overload +def ones(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `1`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.ones(2, 3) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.]]) + + >>> torch.ones(5) + tensor([ 1., 1., 1., 1., 1.]) + """ + ... +@overload +def ones(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + ones(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `1`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword arguments: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.ones(2, 3) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.]]) + + >>> torch.ones(5) + tensor([ 1., 1., 1., 1., 1.]) + """ + ... +def ones_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor filled with the scalar value `1`, with the same size as + :attr:`input`. ``torch.ones_like(input)`` is equivalent to + ``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. + + .. warning:: + As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, + the old ``torch.ones_like(input, out=output)`` is equivalent to + ``torch.ones(input.size(), out=output)``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + + Keyword arguments: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + Example:: + + >>> input = torch.empty(2, 3) + >>> torch.ones_like(input) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.]]) + """ + ... +def orgqr(input: Tensor, input2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + orgqr(input, tau) -> Tensor + + Alias for :func:`torch.linalg.householder_product`. + """ + ... +def ormqr(input: Tensor, input2: Tensor, input3: Tensor, left: _bool = True, transpose: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + ormqr(input, tau, other, left=True, transpose=False, *, out=None) -> Tensor + + Computes the matrix-matrix multiplication of a product of Householder matrices with a general matrix. + + Multiplies a :math:`m \times n` matrix `C` (given by :attr:`other`) with a matrix `Q`, + where `Q` is represented using Householder reflectors `(input, tau)`. + See `Representation of Orthogonal or Unitary Matrices`_ for further details. + + If :attr:`left` is `True` then `op(Q)` times `C` is computed, otherwise the result is `C` times `op(Q)`. + When :attr:`left` is `True`, the implicit matrix `Q` has size :math:`m \times m`. + It has size :math:`n \times n` otherwise. + If :attr:`transpose` is `True` then `op` is the conjugate transpose operation, otherwise it's a no-op. + + Supports inputs of float, double, cfloat and cdouble dtypes. + Also supports batched inputs, and, if the input is batched, the output is batched with the same dimensions. + + .. seealso:: + :func:`torch.geqrf` can be used to form the Householder representation `(input, tau)` of matrix `Q` + from the QR decomposition. + + .. note:: + This function supports backward but it is only fast when ``(input, tau)`` do not require gradients + and/or ``tau.size(-1)`` is very small. + `` + + Args: + input (Tensor): tensor of shape `(*, mn, k)` where `*` is zero or more batch dimensions + and `mn` equals to `m` or `n` depending on the :attr:`left`. + tau (Tensor): tensor of shape `(*, min(mn, k))` where `*` is zero or more batch dimensions. + other (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions. + left (bool): controls the order of multiplication. + transpose (bool): controls whether the matrix `Q` is conjugate transposed or not. + + Keyword args: + out (Tensor, optional): the output Tensor. Ignored if `None`. Default: `None`. + + .. _Representation of Orthogonal or Unitary Matrices: + https://www.netlib.org/lapack/lug/node128.html + """ + ... +def outer(input: Tensor, vec2: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + outer(input, vec2, *, out=None) -> Tensor + + Outer product of :attr:`input` and :attr:`vec2`. + If :attr:`input` is a vector of size :math:`n` and :attr:`vec2` is a vector of + size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`. + + .. note:: This function does not :ref:`broadcast `. + + Args: + input (Tensor): 1-D input vector + vec2 (Tensor): 1-D input vector + + Keyword args: + out (Tensor, optional): optional output matrix + + Example:: + + >>> v1 = torch.arange(1., 5.) + >>> v2 = torch.arange(1., 4.) + >>> torch.outer(v1, v2) + tensor([[ 1., 2., 3.], + [ 2., 4., 6.], + [ 3., 6., 9.], + [ 4., 8., 12.]]) + """ + ... +def pairwise_distance(x1: Tensor, x2: Tensor, p: _float = 2, eps: _float = 1e-06, keepdim: _bool = False) -> Tensor: ... +def pdist(input: Tensor, p: _float = 2) -> Tensor: ... +def permute(input: Tensor, dims: _size) -> Tensor: + r""" + permute(input, dims) -> Tensor + + Returns a view of the original tensor :attr:`input` with its dimensions permuted. + + Args: + input (Tensor): the input tensor. + dims (tuple of int): The desired ordering of dimensions + + Example: + >>> x = torch.randn(2, 3, 5) + >>> x.size() + torch.Size([2, 3, 5]) + >>> torch.permute(x, (2, 0, 1)).size() + torch.Size([5, 2, 3]) + """ + ... +def permute_copy(input: Tensor, dims: _size, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.permute`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def pinverse(input: Tensor, rcond: _float = 1e-15) -> Tensor: + r""" + pinverse(input, rcond=1e-15) -> Tensor + + Alias for :func:`torch.linalg.pinv` + """ + ... +def pixel_shuffle(input: Tensor, upscale_factor: _int) -> Tensor: ... +def pixel_unshuffle(input: Tensor, downscale_factor: _int) -> Tensor: ... +def poisson(input: Tensor, generator: Optional[Generator] = None) -> Tensor: + r""" + poisson(input, generator=None) -> Tensor + + Returns a tensor of the same size as :attr:`input` with each element + sampled from a Poisson distribution with rate parameter given by the corresponding + element in :attr:`input` i.e., + + .. math:: + \text{out}_i \sim \text{Poisson}(\text{input}_i) + + :attr:`input` must be non-negative. + + Args: + input (Tensor): the input tensor containing the rates of the Poisson distribution + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + + Example:: + + >>> rates = torch.rand(4, 4) * 5 # rate parameter between 0 and 5 + >>> torch.poisson(rates) + tensor([[9., 1., 3., 5.], + [8., 6., 6., 0.], + [0., 4., 5., 3.], + [2., 1., 4., 2.]]) + """ + ... +def poisson_nll_loss(input: Tensor, target: Tensor, log_input: _bool, full: _bool, eps: _float, reduction: _int) -> Tensor: ... +def polar(abs: Tensor, angle: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + polar(abs, angle, *, out=None) -> Tensor + + Constructs a complex tensor whose elements are Cartesian coordinates + corresponding to the polar coordinates with absolute value :attr:`abs` and angle + :attr:`angle`. + + .. math:: + \text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs} \cdot \sin(\text{angle}) \cdot j + + .. note:: + `torch.polar` is similar to + `std::polar `_ + and does not compute the polar decomposition + of a complex tensor like Python's `cmath.polar` and SciPy's `linalg.polar` do. + The behavior of this function is undefined if `abs` is negative or NaN, or if `angle` is + infinite. + + + Args: + abs (Tensor): The absolute value the complex tensor. Must be float or double. + angle (Tensor): The angle of the complex tensor. Must be same dtype as + :attr:`abs`. + + Keyword args: + out (Tensor): If the inputs are ``torch.float32``, must be + ``torch.complex64``. If the inputs are ``torch.float64``, must be + ``torch.complex128``. + + Example:: + + >>> import numpy as np + >>> abs = torch.tensor([1, 2], dtype=torch.float64) + >>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64) + >>> z = torch.polar(abs, angle) + >>> z + tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128) + """ + ... +def polygamma(n: _int, input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + polygamma(n, input, *, out=None) -> Tensor + + Alias for :func:`torch.special.polygamma`. + """ + ... +def positive(input: Tensor) -> Tensor: + r""" + positive(input) -> Tensor + + Returns :attr:`input`. + Throws a runtime error if :attr:`input` is a bool tensor. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> t = torch.randn(5) + >>> t + tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) + >>> torch.positive(t) + tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) + """ + ... +@overload +def pow(input: Tensor, exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + pow(input, exponent, *, out=None) -> Tensor + + Takes the power of each element in :attr:`input` with :attr:`exponent` and + returns a tensor with the result. + + :attr:`exponent` can be either a single ``float`` number or a `Tensor` + with the same number of elements as :attr:`input`. + + When :attr:`exponent` is a scalar value, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ \text{exponent} + + When :attr:`exponent` is a tensor, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ {\text{exponent}_i} + + When :attr:`exponent` is a tensor, the shapes of :attr:`input` + and :attr:`exponent` must be :ref:`broadcastable `. + + Args: + input (Tensor): the input tensor. + exponent (float or tensor): the exponent value + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) + >>> torch.pow(a, 2) + tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) + >>> exp = torch.arange(1., 5.) + + >>> a = torch.arange(1., 5.) + >>> a + tensor([ 1., 2., 3., 4.]) + >>> exp + tensor([ 1., 2., 3., 4.]) + >>> torch.pow(a, exp) + tensor([ 1., 4., 27., 256.]) + + .. function:: pow(self, exponent, *, out=None) -> Tensor + :noindex: + + :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. + The returned tensor :attr:`out` is of the same shape as :attr:`exponent` + + The operation applied is: + + .. math:: + \text{out}_i = \text{self} ^ {\text{exponent}_i} + + Args: + self (float): the scalar base value for the power operation + exponent (Tensor): the exponent tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> exp = torch.arange(1., 5.) + >>> base = 2 + >>> torch.pow(base, exp) + tensor([ 2., 4., 8., 16.]) + """ + ... +@overload +def pow(self: Union[Number, _complex], exponent: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + pow(input, exponent, *, out=None) -> Tensor + + Takes the power of each element in :attr:`input` with :attr:`exponent` and + returns a tensor with the result. + + :attr:`exponent` can be either a single ``float`` number or a `Tensor` + with the same number of elements as :attr:`input`. + + When :attr:`exponent` is a scalar value, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ \text{exponent} + + When :attr:`exponent` is a tensor, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ {\text{exponent}_i} + + When :attr:`exponent` is a tensor, the shapes of :attr:`input` + and :attr:`exponent` must be :ref:`broadcastable `. + + Args: + input (Tensor): the input tensor. + exponent (float or tensor): the exponent value + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) + >>> torch.pow(a, 2) + tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) + >>> exp = torch.arange(1., 5.) + + >>> a = torch.arange(1., 5.) + >>> a + tensor([ 1., 2., 3., 4.]) + >>> exp + tensor([ 1., 2., 3., 4.]) + >>> torch.pow(a, exp) + tensor([ 1., 4., 27., 256.]) + + .. function:: pow(self, exponent, *, out=None) -> Tensor + :noindex: + + :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. + The returned tensor :attr:`out` is of the same shape as :attr:`exponent` + + The operation applied is: + + .. math:: + \text{out}_i = \text{self} ^ {\text{exponent}_i} + + Args: + self (float): the scalar base value for the power operation + exponent (Tensor): the exponent tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> exp = torch.arange(1., 5.) + >>> base = 2 + >>> torch.pow(base, exp) + tensor([ 2., 4., 8., 16.]) + """ + ... +@overload +def pow(input: Tensor, exponent: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + pow(input, exponent, *, out=None) -> Tensor + + Takes the power of each element in :attr:`input` with :attr:`exponent` and + returns a tensor with the result. + + :attr:`exponent` can be either a single ``float`` number or a `Tensor` + with the same number of elements as :attr:`input`. + + When :attr:`exponent` is a scalar value, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ \text{exponent} + + When :attr:`exponent` is a tensor, the operation applied is: + + .. math:: + \text{out}_i = x_i ^ {\text{exponent}_i} + + When :attr:`exponent` is a tensor, the shapes of :attr:`input` + and :attr:`exponent` must be :ref:`broadcastable `. + + Args: + input (Tensor): the input tensor. + exponent (float or tensor): the exponent value + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) + >>> torch.pow(a, 2) + tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) + >>> exp = torch.arange(1., 5.) + + >>> a = torch.arange(1., 5.) + >>> a + tensor([ 1., 2., 3., 4.]) + >>> exp + tensor([ 1., 2., 3., 4.]) + >>> torch.pow(a, exp) + tensor([ 1., 4., 27., 256.]) + + .. function:: pow(self, exponent, *, out=None) -> Tensor + :noindex: + + :attr:`self` is a scalar ``float`` value, and :attr:`exponent` is a tensor. + The returned tensor :attr:`out` is of the same shape as :attr:`exponent` + + The operation applied is: + + .. math:: + \text{out}_i = \text{self} ^ {\text{exponent}_i} + + Args: + self (float): the scalar base value for the power operation + exponent (Tensor): the exponent tensor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> exp = torch.arange(1., 5.) + >>> base = 2 + >>> torch.pow(base, exp) + tensor([ 2., 4., 8., 16.]) + """ + ... +def prelu(input: Tensor, weight: Tensor) -> Tensor: ... +@overload +def prod(input: Tensor, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + prod(input, *, dtype=None) -> Tensor + + Returns the product of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[-0.8020, 0.5428, -1.5854]]) + >>> torch.prod(a) + tensor(0.6902) + + .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the product of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensor having 1 fewer dimension than :attr:`input`. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 2) + >>> a + tensor([[ 0.5261, -0.3837], + [ 1.1857, -0.2498], + [-1.1646, 0.0705], + [ 1.1131, -1.0629]]) + >>> torch.prod(a, 1) + tensor([-0.2018, -0.2962, -0.0821, -1.1831]) + """ + ... +@overload +def prod(input: Tensor, dim: _int, keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + prod(input, *, dtype=None) -> Tensor + + Returns the product of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[-0.8020, 0.5428, -1.5854]]) + >>> torch.prod(a) + tensor(0.6902) + + .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the product of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensor having 1 fewer dimension than :attr:`input`. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 2) + >>> a + tensor([[ 0.5261, -0.3837], + [ 1.1857, -0.2498], + [-1.1646, 0.0705], + [ 1.1131, -1.0629]]) + >>> torch.prod(a, 1) + tensor([-0.2018, -0.2962, -0.0821, -1.1831]) + """ + ... +@overload +def prod(input: Tensor, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + prod(input, *, dtype=None) -> Tensor + + Returns the product of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[-0.8020, 0.5428, -1.5854]]) + >>> torch.prod(a) + tensor(0.6902) + + .. function:: prod(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the product of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in + the output tensor having 1 fewer dimension than :attr:`input`. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 2) + >>> a + tensor([[ 0.5261, -0.3837], + [ 1.1857, -0.2498], + [-1.1646, 0.0705], + [ 1.1131, -1.0629]]) + >>> torch.prod(a, 1) + tensor([-0.2018, -0.2962, -0.0821, -1.1831]) + """ + ... +def promote_types(type1: _dtype, type2: _dtype) -> _dtype: + r""" + promote_types(type1, type2) -> dtype + + Returns the :class:`torch.dtype` with the smallest size and scalar kind that is + not smaller nor of lower kind than either `type1` or `type2`. See type promotion + :ref:`documentation ` for more information on the type + promotion logic. + + Args: + type1 (:class:`torch.dtype`) + type2 (:class:`torch.dtype`) + + Example:: + + >>> torch.promote_types(torch.int32, torch.float32) + torch.float32 + >>> torch.promote_types(torch.uint8, torch.long) + torch.long + """ + ... +def put(input: Tensor, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: ... +def q_per_channel_axis(input: Tensor) -> _int: ... +def q_per_channel_scales(input: Tensor) -> Tensor: ... +def q_per_channel_zero_points(input: Tensor) -> Tensor: ... +def q_scale(input: Tensor) -> _float: ... +def q_zero_point(input: Tensor) -> _int: ... +def qr(input: Tensor, some: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.qr: + r""" + qr(input, some=True, *, out=None) -> (Tensor, Tensor) + + Computes the QR decomposition of a matrix or a batch of matrices :attr:`input`, + and returns a namedtuple (Q, R) of tensors such that :math:`\text{input} = Q R` + with :math:`Q` being an orthogonal matrix or batch of orthogonal matrices and + :math:`R` being an upper triangular matrix or batch of upper triangular matrices. + + If :attr:`some` is ``True``, then this function returns the thin (reduced) QR factorization. + Otherwise, if :attr:`some` is ``False``, this function returns the complete QR factorization. + + .. warning:: + + :func:`torch.qr` is deprecated in favor of :func:`torch.linalg.qr` + and will be removed in a future PyTorch release. The boolean parameter :attr:`some` has been + replaced with a string parameter :attr:`mode`. + + ``Q, R = torch.qr(A)`` should be replaced with + + .. code:: python + + Q, R = torch.linalg.qr(A) + + ``Q, R = torch.qr(A, some=False)`` should be replaced with + + .. code:: python + + Q, R = torch.linalg.qr(A, mode="complete") + + .. warning:: + If you plan to backpropagate through QR, note that the current backward implementation + is only well-defined when the first :math:`\min(input.size(-1), input.size(-2))` + columns of :attr:`input` are linearly independent. + This behavior will probably change once QR supports pivoting. + + .. note:: This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, + and may produce different (valid) decompositions on different device types + or different platforms. + + Args: + input (Tensor): the input tensor of size :math:`(*, m, n)` where `*` is zero or more + batch dimensions consisting of matrices of dimension :math:`m \times n`. + some (bool, optional): Set to ``True`` for reduced QR decomposition and ``False`` for + complete QR decomposition. If `k = min(m, n)` then: + + * ``some=True`` : returns `(Q, R)` with dimensions (m, k), (k, n) (default) + + * ``'some=False'``: returns `(Q, R)` with dimensions (m, m), (m, n) + + Keyword args: + out (tuple, optional): tuple of `Q` and `R` tensors. + The dimensions of `Q` and `R` are detailed in the description of :attr:`some` above. + + Example:: + + >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) + >>> q, r = torch.qr(a) + >>> q + tensor([[-0.8571, 0.3943, 0.3314], + [-0.4286, -0.9029, -0.0343], + [ 0.2857, -0.1714, 0.9429]]) + >>> r + tensor([[ -14.0000, -21.0000, 14.0000], + [ 0.0000, -175.0000, 70.0000], + [ 0.0000, 0.0000, -35.0000]]) + >>> torch.mm(q, r).round() + tensor([[ 12., -51., 4.], + [ 6., 167., -68.], + [ -4., 24., -41.]]) + >>> torch.mm(q.t(), q).round() + tensor([[ 1., 0., 0.], + [ 0., 1., -0.], + [ 0., -0., 1.]]) + >>> a = torch.randn(3, 4, 5) + >>> q, r = torch.qr(a, some=False) + >>> torch.allclose(torch.matmul(q, r), a) + True + >>> torch.allclose(torch.matmul(q.mT, q), torch.eye(5)) + True + """ + ... +@overload +def quantile(input: Tensor, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: + r""" + quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor + + Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`. + + To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location + of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with + indices ``i`` and ``j`` in the sorted order, result is computed according to the given + :attr:`interpolation` method as follows: + + - ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index. + - ``lower``: ``a``. + - ``higher``: ``b``. + - ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions). + - ``midpoint``: ``(a + b) / 2``. + + If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size + equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction. + + .. note:: + By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation. + + Args: + input (Tensor): the input tensor. + q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1]. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword arguments: + interpolation (str): interpolation method to use when the desired quantile lies between two data points. + Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. + Default is ``linear``. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(2, 3) + >>> a + tensor([[ 0.0795, -1.2117, 0.9765], + [ 1.1707, 0.6706, 0.4884]]) + >>> q = torch.tensor([0.25, 0.5, 0.75]) + >>> torch.quantile(a, q, dim=1, keepdim=True) + tensor([[[-0.5661], + [ 0.5795]], + + [[ 0.0795], + [ 0.6706]], + + [[ 0.5280], + [ 0.9206]]]) + >>> torch.quantile(a, q, dim=1, keepdim=True).shape + torch.Size([3, 2, 1]) + >>> a = torch.arange(4.) + >>> a + tensor([0., 1., 2., 3.]) + >>> torch.quantile(a, 0.6, interpolation='linear') + tensor(1.8000) + >>> torch.quantile(a, 0.6, interpolation='lower') + tensor(1.) + >>> torch.quantile(a, 0.6, interpolation='higher') + tensor(2.) + >>> torch.quantile(a, 0.6, interpolation='midpoint') + tensor(1.5000) + >>> torch.quantile(a, 0.6, interpolation='nearest') + tensor(2.) + >>> torch.quantile(a, 0.4, interpolation='nearest') + tensor(1.) + """ + ... +@overload +def quantile(input: Tensor, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear", out: Optional[Tensor] = None) -> Tensor: + r""" + quantile(input, q, dim=None, keepdim=False, *, interpolation='linear', out=None) -> Tensor + + Computes the q-th quantiles of each row of the :attr:`input` tensor along the dimension :attr:`dim`. + + To compute the quantile, we map q in [0, 1] to the range of indices [0, n] to find the location + of the quantile in the sorted input. If the quantile lies between two data points ``a < b`` with + indices ``i`` and ``j`` in the sorted order, result is computed according to the given + :attr:`interpolation` method as follows: + + - ``linear``: ``a + (b - a) * fraction``, where ``fraction`` is the fractional part of the computed quantile index. + - ``lower``: ``a``. + - ``higher``: ``b``. + - ``nearest``: ``a`` or ``b``, whichever's index is closer to the computed quantile index (rounding down for .5 fractions). + - ``midpoint``: ``(a + b) / 2``. + + If :attr:`q` is a 1D tensor, the first dimension of the output represents the quantiles and has size + equal to the size of :attr:`q`, the remaining dimensions are what remains from the reduction. + + .. note:: + By default :attr:`dim` is ``None`` resulting in the :attr:`input` tensor being flattened before computation. + + Args: + input (Tensor): the input tensor. + q (float or Tensor): a scalar or 1D tensor of values in the range [0, 1]. + dim (int): the dimension to reduce. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword arguments: + interpolation (str): interpolation method to use when the desired quantile lies between two data points. + Can be ``linear``, ``lower``, ``higher``, ``midpoint`` and ``nearest``. + Default is ``linear``. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(2, 3) + >>> a + tensor([[ 0.0795, -1.2117, 0.9765], + [ 1.1707, 0.6706, 0.4884]]) + >>> q = torch.tensor([0.25, 0.5, 0.75]) + >>> torch.quantile(a, q, dim=1, keepdim=True) + tensor([[[-0.5661], + [ 0.5795]], + + [[ 0.0795], + [ 0.6706]], + + [[ 0.5280], + [ 0.9206]]]) + >>> torch.quantile(a, q, dim=1, keepdim=True).shape + torch.Size([3, 2, 1]) + >>> a = torch.arange(4.) + >>> a + tensor([0., 1., 2., 3.]) + >>> torch.quantile(a, 0.6, interpolation='linear') + tensor(1.8000) + >>> torch.quantile(a, 0.6, interpolation='lower') + tensor(1.) + >>> torch.quantile(a, 0.6, interpolation='higher') + tensor(2.) + >>> torch.quantile(a, 0.6, interpolation='midpoint') + tensor(1.5000) + >>> torch.quantile(a, 0.6, interpolation='nearest') + tensor(2.) + >>> torch.quantile(a, 0.4, interpolation='nearest') + tensor(1.) + """ + ... +def quantize_per_channel(input: Tensor, scales: Tensor, zero_points: Tensor, axis: _int, dtype: _dtype) -> Tensor: + r""" + quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor + + Converts a float tensor to a per-channel quantized tensor with given scales and zero points. + + Arguments: + input (Tensor): float tensor to quantize + scales (Tensor): float 1D tensor of scales to use, size should match ``input.size(axis)`` + zero_points (int): integer 1D tensor of offset to use, size should match ``input.size(axis)`` + axis (int): dimension on which apply per-channel quantization + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` + + Returns: + Tensor: A newly quantized tensor + + Example:: + + >>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]]) + >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8) + tensor([[-1., 0.], + [ 1., 2.]], size=(2, 2), dtype=torch.quint8, + quantization_scheme=torch.per_channel_affine, + scale=tensor([0.1000, 0.0100], dtype=torch.float64), + zero_point=tensor([10, 0]), axis=0) + >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr() + tensor([[ 0, 10], + [100, 200]], dtype=torch.uint8) + """ + ... +@overload +def quantize_per_tensor(input: Tensor, scale: Tensor, zero_point: Tensor, dtype: _dtype) -> Tensor: + r""" + quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor + + Converts a float tensor to a quantized tensor with given scale and zero point. + + Arguments: + input (Tensor): float tensor or list of tensors to quantize + scale (float or Tensor): scale to apply in quantization formula + zero_point (int or Tensor): offset in integer value that maps to float zero + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` + + Returns: + Tensor: A newly quantized tensor or list of quantized tensors. + + Example:: + + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() + tensor([ 0, 10, 20, 30], dtype=torch.uint8) + >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], + >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) + (tensor([-1., 0.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), + tensor([-2., 2.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) + """ + ... +@overload +def quantize_per_tensor(input: Tensor, scale: _float, zero_point: _int, dtype: _dtype) -> Tensor: + r""" + quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor + + Converts a float tensor to a quantized tensor with given scale and zero point. + + Arguments: + input (Tensor): float tensor or list of tensors to quantize + scale (float or Tensor): scale to apply in quantization formula + zero_point (int or Tensor): offset in integer value that maps to float zero + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` + + Returns: + Tensor: A newly quantized tensor or list of quantized tensors. + + Example:: + + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() + tensor([ 0, 10, 20, 30], dtype=torch.uint8) + >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], + >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) + (tensor([-1., 0.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), + tensor([-2., 2.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) + """ + ... +@overload +def quantize_per_tensor(tensors: Union[Tuple[Tensor, ...], List[Tensor]], scales: Tensor, zero_points: Tensor, dtype: _dtype) -> Tuple[Tensor, ...]: + r""" + quantize_per_tensor(input, scale, zero_point, dtype) -> Tensor + + Converts a float tensor to a quantized tensor with given scale and zero point. + + Arguments: + input (Tensor): float tensor or list of tensors to quantize + scale (float or Tensor): scale to apply in quantization formula + zero_point (int or Tensor): offset in integer value that maps to float zero + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8``, ``torch.qint32`` + + Returns: + Tensor: A newly quantized tensor or list of quantized tensors. + + Example:: + + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), 0.1, 10, torch.quint8).int_repr() + tensor([ 0, 10, 20, 30], dtype=torch.uint8) + >>> torch.quantize_per_tensor([torch.tensor([-1.0, 0.0]), torch.tensor([-2.0, 2.0])], + >>> torch.tensor([0.1, 0.2]), torch.tensor([10, 20]), torch.quint8) + (tensor([-1., 0.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.1, zero_point=10), + tensor([-2., 2.], size=(2,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=20)) + >>> torch.quantize_per_tensor(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.tensor(0.1), torch.tensor(10), torch.quint8) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.10, zero_point=10) + """ + ... +def quantize_per_tensor_dynamic(input: Tensor, dtype: _dtype, reduce_range: _bool) -> Tensor: + r""" + quantize_per_tensor_dynamic(input, dtype, reduce_range) -> Tensor + + Converts a float tensor to a quantized tensor with scale and zero_point calculated + dynamically based on the input. + + Arguments: + input (Tensor): float tensor or list of tensors to quantize + dtype (:class:`torch.dtype`): the desired data type of returned tensor. + Has to be one of the quantized dtypes: ``torch.quint8``, ``torch.qint8`` + reduce_range (bool): a flag to indicate whether to reduce the range of quantized + data by 1 bit, it's required to avoid instruction overflow for some hardwares + + Returns: + Tensor: A newly (dynamically) quantized tensor + + Example:: + + >>> t = torch.quantize_per_tensor_dynamic(torch.tensor([-1.0, 0.0, 1.0, 2.0]), torch.quint8, False) + >>> print(t) + tensor([-1., 0., 1., 2.], size=(4,), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.011764705882352941, + zero_point=85) + >>> t.int_repr() + tensor([ 0, 85, 170, 255], dtype=torch.uint8) + """ + ... +def quantized_batch_norm(input: Tensor, weight: Optional[Tensor], bias: Optional[Tensor], mean: Tensor, var: Tensor, eps: _float, output_scale: _float, output_zero_point: _int) -> Tensor: + r""" + quantized_batch_norm(input, weight=None, bias=None, mean, var, eps, output_scale, output_zero_point) -> Tensor + + Applies batch normalization on a 4D (NCHW) quantized tensor. + + .. math:: + + y = \frac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta + + Arguments: + input (Tensor): quantized tensor + weight (Tensor): float tensor that corresponds to the gamma, size C + bias (Tensor): float tensor that corresponds to the beta, size C + mean (Tensor): float mean value in batch normalization, size C + var (Tensor): float tensor for variance, size C + eps (float): a value added to the denominator for numerical stability. + output_scale (float): output quantized tensor scale + output_zero_point (int): output quantized tensor zero_point + + Returns: + Tensor: A quantized tensor with batch normalization applied. + + Example:: + + >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) + >>> torch.quantized_batch_norm(qx, torch.ones(2), torch.zeros(2), torch.rand(2), torch.rand(2), 0.00001, 0.2, 2) + tensor([[[[-0.2000, -0.2000], + [ 1.6000, -0.2000]], + + [[-0.4000, -0.4000], + [-0.4000, 0.6000]]], + + + [[[-0.2000, -0.2000], + [-0.2000, -0.2000]], + + [[ 0.6000, -0.4000], + [ 0.6000, -0.4000]]]], size=(2, 2, 2, 2), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=0.2, zero_point=2) + """ + ... +def quantized_gru_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... +def quantized_lstm_cell(input: Tensor, hx: Union[Tuple[Tensor, ...], List[Tensor]], w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tuple[Tensor, Tensor]: ... +def quantized_max_pool1d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: + r""" + quantized_max_pool1d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor + + Applies a 1D max pooling over an input quantized tensor composed of several input planes. + + Arguments: + input (Tensor): quantized tensor + kernel_size (list of int): the size of the sliding window + stride (``list of int``, optional): the stride of the sliding window + padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 + dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 + ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. + Defaults to False. + + + Returns: + Tensor: A quantized tensor with max_pool1d applied. + + Example:: + + >>> qx = torch.quantize_per_tensor(torch.rand(2, 2), 1.5, 3, torch.quint8) + >>> torch.quantized_max_pool1d(qx, [2]) + tensor([[0.0000], + [1.5000]], size=(2, 1), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) + """ + ... +def quantized_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: + r""" + quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor + + Applies a 2D max pooling over an input quantized tensor composed of several input planes. + + Arguments: + input (Tensor): quantized tensor + kernel_size (``list of int``): the size of the sliding window + stride (``list of int``, optional): the stride of the sliding window + padding (``list of int``, optional): padding to be added on both sides, must be >= 0 and <= kernel_size / 2 + dilation (``list of int``, optional): The stride between elements within a sliding window, must be > 0. Default 1 + ceil_mode (bool, optional): If True, will use ceil instead of floor to compute the output shape. + Defaults to False. + + + Returns: + Tensor: A quantized tensor with max_pool2d applied. + + Example:: + + >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) + >>> torch.quantized_max_pool2d(qx, [2,2]) + tensor([[[[1.5000]], + + [[1.5000]]], + + + [[[0.0000]], + + [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8, + quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3) + """ + ... +def quantized_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Union[_int, _size] = (), padding: Union[_int, _size] = 0, dilation: Union[_int, _size] = 1, ceil_mode: _bool = False) -> Tensor: ... +def quantized_rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... +def quantized_rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Tensor, b_hh: Tensor, packed_ih: Tensor, packed_hh: Tensor, col_offsets_ih: Tensor, col_offsets_hh: Tensor, scale_ih: Union[Number, _complex], scale_hh: Union[Number, _complex], zero_point_ih: Union[Number, _complex], zero_point_hh: Union[Number, _complex]) -> Tensor: ... +def rad2deg(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + rad2deg(input, *, out=None) -> Tensor + + Returns a new tensor with each of the elements of :attr:`input` + converted from angles in radians to degrees. + + Args: + input (Tensor): the input tensor. + + Keyword arguments: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([[3.142, -3.142], [6.283, -6.283], [1.570, -1.570]]) + >>> torch.rad2deg(a) + tensor([[ 180.0233, -180.0233], + [ 359.9894, -359.9894], + [ 89.9544, -89.9544]]) + """ + ... +def rad2deg_(input: Tensor) -> Tensor: ... +@overload +def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(*size: Union[_int, SymInt], generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(*size: Union[_int, SymInt], generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(*size: Union[_int, SymInt], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +@overload +def rand(*size: Union[_int, SymInt], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a tensor filled with random numbers from a uniform distribution + on the interval :math:`[0, 1)` + + The shape of the tensor is defined by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.rand(4) + tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) + >>> torch.rand(2, 3) + tensor([[ 0.8237, 0.5781, 0.6879], + [ 0.3816, 0.7249, 0.0998]]) + """ + ... +def rand_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor with the same size as :attr:`input` that is filled with + random numbers from a uniform distribution on the interval :math:`[0, 1)`. + ``torch.rand_like(input)`` is equivalent to + ``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... +@overload +def randint(low: _int, high: _int, size: _size, *, generator: Optional[Generator] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint(high: _int, size: _size, *, generator: Optional[Generator] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint(high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint(low: Union[_int, SymInt], high: Union[_int, SymInt], size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint(low=0, high, size, \*, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with random integers generated uniformly + between :attr:`low` (inclusive) and :attr:`high` (exclusive). + + The shape of the tensor is defined by the variable argument :attr:`size`. + + .. note:: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + size (tuple): a tuple defining the shape of the output tensor. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (`torch.dtype`, optional) - the desired data type of returned tensor. Default: if ``None``, + this function returns a tensor with dtype ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.randint(3, 5, (3,)) + tensor([4, 3, 4]) + + + >>> torch.randint(10, (2, 2)) + tensor([[0, 2], + [5, 5]]) + + + >>> torch.randint(3, 10, (2, 2)) + tensor([[4, 5], + [6, 7]]) + """ + ... +@overload +def randint_like(input: Tensor, high: Union[_int, SymInt], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint_like(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor with the same shape as Tensor :attr:`input` filled with + random integers generated uniformly between :attr:`low` (inclusive) and + :attr:`high` (exclusive). + + .. note: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... +@overload +def randint_like(input: Tensor, low: Union[_int, SymInt], high: Union[_int, SymInt], *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randint_like(input, low=0, high, \*, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor with the same shape as Tensor :attr:`input` filled with + random integers generated uniformly between :attr:`low` (inclusive) and + :attr:`high` (exclusive). + + .. note: + With the global dtype default (``torch.float32``), this function returns + a tensor with dtype ``torch.int64``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. + high (int): One above the highest integer to be drawn from the distribution. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... +@overload +def randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(*size: Union[_int, SymInt], generator: Optional[Generator], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(*size: Union[_int, SymInt], generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(*size: Union[_int, SymInt], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(size: Sequence[Union[_int, SymInt]], *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +@overload +def randn(*size: Union[_int, SymInt], names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn(*size, *, generator=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + + Returns a tensor filled with random numbers from a normal distribution + with mean `0` and variance `1` (also called the standard normal + distribution). + + .. math:: + \text{out}_{i} \sim \mathcal{N}(0, 1) + + For complex dtypes, the tensor is i.i.d. sampled from a `complex normal distribution`_ with zero mean and + unit variance as + + .. math:: + \text{out}_{i} \sim \mathcal{CN}(0, 1) + + This is equivalent to separately sampling the real :math:`(\operatorname{Re})` and imaginary + :math:`(\operatorname{Im})` part of :math:`\text{out}_i` as + + .. math:: + \operatorname{Re}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}),\quad + \operatorname{Im}(\text{out}_{i}) \sim \mathcal{N}(0, \frac{1}{2}) + + The shape of the tensor is defined by the variable argument :attr:`size`. + + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randn(4) + tensor([-2.1436, 0.9966, 2.3426, -0.6366]) + >>> torch.randn(2, 3) + tensor([[ 1.5954, 2.8929, -1.0923], + [ 1.1719, -0.4709, -0.1996]]) + + .. _complex normal distribution: https://en.wikipedia.org/wiki/Complex_normal_distribution + """ + ... +def randn_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randn_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor with the same size as :attr:`input` that is filled with + random numbers from a normal distribution with mean 0 and variance 1. Please refer to :func:`torch.randn` for the + sampling process of complex dtypes. ``torch.randn_like(input)`` is equivalent to + ``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... +@overload +def randperm(n: Union[_int, SymInt], *, generator: Optional[Generator], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a random permutation of integers from ``0`` to ``n - 1``. + + Args: + n (int): the upper bound (exclusive) + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randperm(4) + tensor([2, 1, 0, 3]) + """ + ... +@overload +def randperm(n: Union[_int, SymInt], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + randperm(n, *, generator=None, out=None, dtype=torch.int64,layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Returns a random permutation of integers from ``0`` to ``n - 1``. + + Args: + n (int): the upper bound (exclusive) + + Keyword args: + generator (:class:`torch.Generator`, optional): a pseudorandom number generator for sampling + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: ``torch.int64``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> torch.randperm(4) + tensor([2, 1, 0, 3]) + """ + ... +def range(start: Number, end: Number, step: Number = 1, *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1` + with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is + the gap between two values in the tensor. + + .. math:: + \text{out}_{i+1} = \text{out}_i + \text{step}. + + .. warning:: + This function is deprecated and will be removed in a future release because its behavior is inconsistent with + Python's range builtin. Instead, use :func:`torch.arange`, which produces values in [start, end). + + Args: + start (float): the starting value for the set of points. Default: ``0``. + end (float): the ending value for the set of points + step (float): the gap between each pair of adjacent points. Default: ``1``. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). If `dtype` is not given, infer the data type from the other input + arguments. If any of `start`, `end`, or `step` are floating-point, the + `dtype` is inferred to be the default dtype, see + :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to + be `torch.int64`. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.range(1, 4) + tensor([ 1., 2., 3., 4.]) + >>> torch.range(1, 4, 0.5) + tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000]) + """ + ... +def ravel(input: Tensor) -> Tensor: + r""" + ravel(input) -> Tensor + + Return a contiguous flattened tensor. A copy is made only if needed. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> t = torch.tensor([[[1, 2], + ... [3, 4]], + ... [[5, 6], + ... [7, 8]]]) + >>> torch.ravel(t) + tensor([1, 2, 3, 4, 5, 6, 7, 8]) + """ + ... +def real(input: Tensor) -> Tensor: + r""" + real(input) -> Tensor + + Returns a new tensor containing real values of the :attr:`self` tensor. + The returned tensor and :attr:`self` share the same underlying storage. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x=torch.randn(4, dtype=torch.cfloat) + >>> x + tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) + >>> x.real + tensor([ 0.3100, -0.5445, -1.6492, -0.0638]) + """ + ... +def reciprocal(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + reciprocal(input, *, out=None) -> Tensor + + Returns a new tensor with the reciprocal of the elements of :attr:`input` + + .. math:: + \text{out}_{i} = \frac{1}{\text{input}_{i}} + + .. note:: + Unlike NumPy's reciprocal, torch.reciprocal supports integral inputs. Integral + inputs to reciprocal are automatically :ref:`promoted ` to + the default scalar type. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.4595, -2.1219, -1.4314, 0.7298]) + >>> torch.reciprocal(a) + tensor([-2.1763, -0.4713, -0.6986, 1.3702]) + """ + ... +def reciprocal_(input: Tensor) -> Tensor: ... +def relu(input: Tensor) -> Tensor: ... +def relu_(input: Tensor) -> Tensor: ... +@overload +def remainder(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + remainder(input, other, *, out=None) -> Tensor + + Computes + `Python's modulus operation `_ + entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value + is less than that of :attr:`other`. + + It may also be defined in terms of :func:`torch.div` as + + .. code:: python + + torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and float inputs. + + .. note:: + Complex inputs are not supported. In some cases, it is not mathematically + possible to satisfy the definition of a modulo operation with complex numbers. + See :func:`torch.fmod` for how division by zero is handled. + + .. seealso:: + + :func:`torch.fmod` which implements C++'s `std::fmod `_. + This one is defined in terms of division rounding towards zero. + + Args: + input (Tensor or Scalar): the dividend + other (Tensor or Scalar): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) + tensor([ 1., 0., 1., 1., 0., 1.]) + >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) + tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) + """ + ... +@overload +def remainder(self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + remainder(input, other, *, out=None) -> Tensor + + Computes + `Python's modulus operation `_ + entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value + is less than that of :attr:`other`. + + It may also be defined in terms of :func:`torch.div` as + + .. code:: python + + torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and float inputs. + + .. note:: + Complex inputs are not supported. In some cases, it is not mathematically + possible to satisfy the definition of a modulo operation with complex numbers. + See :func:`torch.fmod` for how division by zero is handled. + + .. seealso:: + + :func:`torch.fmod` which implements C++'s `std::fmod `_. + This one is defined in terms of division rounding towards zero. + + Args: + input (Tensor or Scalar): the dividend + other (Tensor or Scalar): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) + tensor([ 1., 0., 1., 1., 0., 1.]) + >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) + tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) + """ + ... +@overload +def remainder(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + remainder(input, other, *, out=None) -> Tensor + + Computes + `Python's modulus operation `_ + entrywise. The result has the same sign as the divisor :attr:`other` and its absolute value + is less than that of :attr:`other`. + + It may also be defined in terms of :func:`torch.div` as + + .. code:: python + + torch.remainder(a, b) == a - a.div(b, rounding_mode="floor") * b + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer and float inputs. + + .. note:: + Complex inputs are not supported. In some cases, it is not mathematically + possible to satisfy the definition of a modulo operation with complex numbers. + See :func:`torch.fmod` for how division by zero is handled. + + .. seealso:: + + :func:`torch.fmod` which implements C++'s `std::fmod `_. + This one is defined in terms of division rounding towards zero. + + Args: + input (Tensor or Scalar): the dividend + other (Tensor or Scalar): the divisor + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) + tensor([ 1., 0., 1., 1., 0., 1.]) + >>> torch.remainder(torch.tensor([1, 2, 3, 4, 5]), -1.5) + tensor([ -0.5000, -1.0000, 0.0000, -0.5000, -1.0000 ]) + """ + ... +def renorm(input: Tensor, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + renorm(input, p, dim, maxnorm, *, out=None) -> Tensor + + Returns a tensor where each sub-tensor of :attr:`input` along dimension + :attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower + than the value :attr:`maxnorm` + + .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged + + Args: + input (Tensor): the input tensor. + p (float): the power for the norm computation + dim (int): the dimension to slice over to get the sub-tensors + maxnorm (float): the maximum norm to keep each sub-tensor under + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.ones(3, 3) + >>> x[1].fill_(2) + tensor([ 2., 2., 2.]) + >>> x[2].fill_(3) + tensor([ 3., 3., 3.]) + >>> x + tensor([[ 1., 1., 1.], + [ 2., 2., 2.], + [ 3., 3., 3.]]) + >>> torch.renorm(x, 1, 0, 5) + tensor([[ 1.0000, 1.0000, 1.0000], + [ 1.6667, 1.6667, 1.6667], + [ 1.6667, 1.6667, 1.6667]]) + """ + ... +@overload +def repeat_interleave(input: Tensor, repeats: Tensor, dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor + + Repeat elements of a tensor. + + .. warning:: + + This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. + + Args: + input (Tensor): the input tensor. + repeats (Tensor or int): The number of repetitions for each element. + repeats is broadcasted to fit the shape of the given axis. + dim (int, optional): The dimension along which to repeat values. + By default, use the flattened input array, and return a flat output + array. + + Keyword args: + output_size (int, optional): Total output size for the given axis + ( e.g. sum of repeats). If given, it will avoid stream synchronization + needed to calculate output shape of the tensor. + + Returns: + Tensor: Repeated tensor which has the same shape as input, except along the given axis. + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat_interleave(2) + tensor([1, 1, 2, 2, 3, 3]) + >>> y = torch.tensor([[1, 2], [3, 4]]) + >>> torch.repeat_interleave(y, 2) + tensor([1, 1, 2, 2, 3, 3, 4, 4]) + >>> torch.repeat_interleave(y, 3, dim=1) + tensor([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 4, 4, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) + tensor([[1, 2], + [3, 4], + [3, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) + tensor([[1, 2], + [3, 4], + [3, 4]]) + + If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be + `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, + `1` appears `n2` times, `2` appears `n3` times, etc. + + .. function:: repeat_interleave(repeats, *) -> Tensor + :noindex: + + Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. + + Args: + repeats (Tensor): The number of repetitions for each element. + + Returns: + Tensor: Repeated tensor of size `sum(repeats)`. + + Example:: + + >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) + tensor([0, 1, 1, 2, 2, 2]) + """ + ... +@overload +def repeat_interleave(repeats: Tensor, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor + + Repeat elements of a tensor. + + .. warning:: + + This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. + + Args: + input (Tensor): the input tensor. + repeats (Tensor or int): The number of repetitions for each element. + repeats is broadcasted to fit the shape of the given axis. + dim (int, optional): The dimension along which to repeat values. + By default, use the flattened input array, and return a flat output + array. + + Keyword args: + output_size (int, optional): Total output size for the given axis + ( e.g. sum of repeats). If given, it will avoid stream synchronization + needed to calculate output shape of the tensor. + + Returns: + Tensor: Repeated tensor which has the same shape as input, except along the given axis. + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat_interleave(2) + tensor([1, 1, 2, 2, 3, 3]) + >>> y = torch.tensor([[1, 2], [3, 4]]) + >>> torch.repeat_interleave(y, 2) + tensor([1, 1, 2, 2, 3, 3, 4, 4]) + >>> torch.repeat_interleave(y, 3, dim=1) + tensor([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 4, 4, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) + tensor([[1, 2], + [3, 4], + [3, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) + tensor([[1, 2], + [3, 4], + [3, 4]]) + + If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be + `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, + `1` appears `n2` times, `2` appears `n3` times, etc. + + .. function:: repeat_interleave(repeats, *) -> Tensor + :noindex: + + Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. + + Args: + repeats (Tensor): The number of repetitions for each element. + + Returns: + Tensor: Repeated tensor of size `sum(repeats)`. + + Example:: + + >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) + tensor([0, 1, 1, 2, 2, 2]) + """ + ... +@overload +def repeat_interleave(input: Tensor, repeats: Union[_int, SymInt], dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + repeat_interleave(input, repeats, dim=None, *, output_size=None) -> Tensor + + Repeat elements of a tensor. + + .. warning:: + + This is different from :meth:`torch.Tensor.repeat` but similar to ``numpy.repeat``. + + Args: + input (Tensor): the input tensor. + repeats (Tensor or int): The number of repetitions for each element. + repeats is broadcasted to fit the shape of the given axis. + dim (int, optional): The dimension along which to repeat values. + By default, use the flattened input array, and return a flat output + array. + + Keyword args: + output_size (int, optional): Total output size for the given axis + ( e.g. sum of repeats). If given, it will avoid stream synchronization + needed to calculate output shape of the tensor. + + Returns: + Tensor: Repeated tensor which has the same shape as input, except along the given axis. + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat_interleave(2) + tensor([1, 1, 2, 2, 3, 3]) + >>> y = torch.tensor([[1, 2], [3, 4]]) + >>> torch.repeat_interleave(y, 2) + tensor([1, 1, 2, 2, 3, 3, 4, 4]) + >>> torch.repeat_interleave(y, 3, dim=1) + tensor([[1, 1, 1, 2, 2, 2], + [3, 3, 3, 4, 4, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0) + tensor([[1, 2], + [3, 4], + [3, 4]]) + >>> torch.repeat_interleave(y, torch.tensor([1, 2]), dim=0, output_size=3) + tensor([[1, 2], + [3, 4], + [3, 4]]) + + If the `repeats` is `tensor([n1, n2, n3, ...])`, then the output will be + `tensor([0, 0, ..., 1, 1, ..., 2, 2, ..., ...])` where `0` appears `n1` times, + `1` appears `n2` times, `2` appears `n3` times, etc. + + .. function:: repeat_interleave(repeats, *) -> Tensor + :noindex: + + Repeats 0 repeats[0] times, 1 repeats[1] times, 2 repeats[2] times, etc. + + Args: + repeats (Tensor): The number of repetitions for each element. + + Returns: + Tensor: Repeated tensor of size `sum(repeats)`. + + Example:: + + >>> torch.repeat_interleave(torch.tensor([1, 2, 3])) + tensor([0, 1, 1, 2, 2, 2]) + """ + ... +def reshape(input: Tensor, shape: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + reshape(input, shape) -> Tensor + + Returns a tensor with the same data and number of elements as :attr:`input`, + but with the specified shape. When possible, the returned tensor will be a view + of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs + with compatible strides can be reshaped without copying, but you should not + depend on the copying vs. viewing behavior. + + See :meth:`torch.Tensor.view` on when it is possible to return a view. + + A single dimension may be -1, in which case it's inferred from the remaining + dimensions and the number of elements in :attr:`input`. + + Args: + input (Tensor): the tensor to be reshaped + shape (tuple of int): the new shape + + Example:: + + >>> a = torch.arange(4.) + >>> torch.reshape(a, (2, 2)) + tensor([[ 0., 1.], + [ 2., 3.]]) + >>> b = torch.tensor([[0, 1], [2, 3]]) + >>> torch.reshape(b, (-1,)) + tensor([ 0, 1, 2, 3]) + """ + ... +def resize_as_(input: Tensor, the_template: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: ... +def resize_as_sparse_(input: Tensor, the_template: Tensor) -> Tensor: ... +def resolve_conj(input: Tensor) -> Tensor: + r""" + resolve_conj(input) -> Tensor + + Returns a new tensor with materialized conjugation if :attr:`input`'s conjugate bit is set to `True`, + else returns :attr:`input`. The output tensor will always have its conjugate bit set to `False`. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) + >>> y = x.conj() + >>> y.is_conj() + True + >>> z = y.resolve_conj() + >>> z + tensor([-1 - 1j, -2 - 2j, 3 + 3j]) + >>> z.is_conj() + False + """ + ... +def resolve_neg(input: Tensor) -> Tensor: + r""" + resolve_neg(input) -> Tensor + + Returns a new tensor with materialized negation if :attr:`input`'s negative bit is set to `True`, + else returns :attr:`input`. The output tensor will always have its negative bit set to `False`. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x = torch.tensor([-1 + 1j, -2 + 2j, 3 - 3j]) + >>> y = x.conj() + >>> z = y.imag + >>> z.is_neg() + True + >>> out = z.resolve_neg() + >>> out + tensor([-1., -2., 3.]) + >>> out.is_neg() + False + """ + ... +@overload +def result_type(tensor: Tensor, other: Tensor) -> _dtype: + r""" + result_type(tensor1, tensor2) -> dtype + + Returns the :class:`torch.dtype` that would result from performing an arithmetic + operation on the provided input tensors. See type promotion :ref:`documentation ` + for more information on the type promotion logic. + + Args: + tensor1 (Tensor or Number): an input tensor or number + tensor2 (Tensor or Number): an input tensor or number + + Example:: + + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) + torch.float32 + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) + torch.uint8 + """ + ... +@overload +def result_type(scalar: Union[Number, _complex], tensor: Tensor) -> _dtype: + r""" + result_type(tensor1, tensor2) -> dtype + + Returns the :class:`torch.dtype` that would result from performing an arithmetic + operation on the provided input tensors. See type promotion :ref:`documentation ` + for more information on the type promotion logic. + + Args: + tensor1 (Tensor or Number): an input tensor or number + tensor2 (Tensor or Number): an input tensor or number + + Example:: + + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) + torch.float32 + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) + torch.uint8 + """ + ... +@overload +def result_type(tensor: Tensor, other: Union[Number, _complex]) -> _dtype: + r""" + result_type(tensor1, tensor2) -> dtype + + Returns the :class:`torch.dtype` that would result from performing an arithmetic + operation on the provided input tensors. See type promotion :ref:`documentation ` + for more information on the type promotion logic. + + Args: + tensor1 (Tensor or Number): an input tensor or number + tensor2 (Tensor or Number): an input tensor or number + + Example:: + + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) + torch.float32 + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) + torch.uint8 + """ + ... +@overload +def result_type(scalar1: Union[Number, _complex], scalar2: Union[Number, _complex]) -> _dtype: + r""" + result_type(tensor1, tensor2) -> dtype + + Returns the :class:`torch.dtype` that would result from performing an arithmetic + operation on the provided input tensors. See type promotion :ref:`documentation ` + for more information on the type promotion logic. + + Args: + tensor1 (Tensor or Number): an input tensor or number + tensor2 (Tensor or Number): an input tensor or number + + Example:: + + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.int), 1.0) + torch.float32 + >>> torch.result_type(torch.tensor([1, 2], dtype=torch.uint8), torch.tensor(1)) + torch.uint8 + """ + ... +def rms_norm(input: Tensor, normalized_shape: _size, weight: Optional[Tensor] = None, eps: Optional[_float] = None) -> Tensor: ... +@overload +def rnn_relu(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... +@overload +def rnn_relu(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... +def rnn_relu_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... +@overload +def rnn_tanh(data: Tensor, batch_sizes: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool) -> Tuple[Tensor, Tensor]: ... +@overload +def rnn_tanh(input: Tensor, hx: Tensor, params: Union[Tuple[Tensor, ...], List[Tensor]], has_biases: _bool, num_layers: _int, dropout: _float, train: _bool, bidirectional: _bool, batch_first: _bool) -> Tuple[Tensor, Tensor]: ... +def rnn_tanh_cell(input: Tensor, hx: Tensor, w_ih: Tensor, w_hh: Tensor, b_ih: Optional[Tensor] = None, b_hh: Optional[Tensor] = None) -> Tensor: ... +def roll(input: Tensor, shifts: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], dims: Union[_int, _size] = ()) -> Tensor: + r""" + roll(input, shifts, dims=None) -> Tensor + + Roll the tensor :attr:`input` along the given dimension(s). Elements that are + shifted beyond the last position are re-introduced at the first position. If + :attr:`dims` is `None`, the tensor will be flattened before rolling and then + restored to the original shape. + + Args: + input (Tensor): the input tensor. + shifts (int or tuple of ints): The number of places by which the elements + of the tensor are shifted. If shifts is a tuple, dims must be a tuple of + the same size, and each dimension will be rolled by the corresponding + value + dims (int or tuple of ints): Axis along which to roll + + Example:: + + >>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) + >>> x + tensor([[1, 2], + [3, 4], + [5, 6], + [7, 8]]) + >>> torch.roll(x, 1) + tensor([[8, 1], + [2, 3], + [4, 5], + [6, 7]]) + >>> torch.roll(x, 1, 0) + tensor([[7, 8], + [1, 2], + [3, 4], + [5, 6]]) + >>> torch.roll(x, -1, 0) + tensor([[3, 4], + [5, 6], + [7, 8], + [1, 2]]) + >>> torch.roll(x, shifts=(2, 1), dims=(0, 1)) + tensor([[6, 5], + [8, 7], + [2, 1], + [4, 3]]) + """ + ... +def rot90(input: Tensor, k: _int = 1, dims: _size = (0, 1)) -> Tensor: + r""" + rot90(input, k=1, dims=(0, 1)) -> Tensor + + Rotate an n-D tensor by 90 degrees in the plane specified by dims axis. + Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0. + + Args: + input (Tensor): the input tensor. + k (int): number of times to rotate. Default value is 1 + dims (a list or tuple): axis to rotate. Default value is [0, 1] + + Example:: + + >>> x = torch.arange(4).view(2, 2) + >>> x + tensor([[0, 1], + [2, 3]]) + >>> torch.rot90(x, 1, [0, 1]) + tensor([[1, 3], + [0, 2]]) + + >>> x = torch.arange(8).view(2, 2, 2) + >>> x + tensor([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]) + >>> torch.rot90(x, 1, [1, 2]) + tensor([[[1, 3], + [0, 2]], + + [[5, 7], + [4, 6]]]) + """ + ... +@overload +def round(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + round(input, *, decimals=0, out=None) -> Tensor + + Rounds elements of :attr:`input` to the nearest integer. + + For integer inputs, follows the array-api convention of returning a + copy of the input tensor. + The return type of output is same as that of input's dtype. + + .. note:: + This function implements the "round half to even" to + break ties when a number is equidistant from two + integers (e.g. `round(2.5)` is 2). + + When the :attr:\`decimals\` argument is specified the + algorithm used is similar to NumPy's `around`. This + algorithm is fast but inexact and it can easily + overflow for low precision dtypes. + Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`. + + .. seealso:: + :func:`torch.ceil`, which rounds up. + :func:`torch.floor`, which rounds down. + :func:`torch.trunc`, which rounds towards zero. + + Args: + input (Tensor): the input tensor. + decimals (int): Number of decimal places to round to (default: 0). + If decimals is negative, it specifies the number of positions + to the left of the decimal point. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) + tensor([ 5., -2., 9., -8.]) + + >>> # Values equidistant from two integers are rounded towards the + >>> # the nearest even value (zero is treated as even) + >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) + tensor([-0., 0., 2., 2.]) + + >>> # A positive decimals argument rounds to the to that decimal place + >>> torch.round(torch.tensor([0.1234567]), decimals=3) + tensor([0.1230]) + + >>> # A negative decimals argument rounds to the left of the decimal + >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) + tensor([1000.]) + """ + ... +@overload +def round(input: Tensor, *, decimals: _int, out: Optional[Tensor] = None) -> Tensor: + r""" + round(input, *, decimals=0, out=None) -> Tensor + + Rounds elements of :attr:`input` to the nearest integer. + + For integer inputs, follows the array-api convention of returning a + copy of the input tensor. + The return type of output is same as that of input's dtype. + + .. note:: + This function implements the "round half to even" to + break ties when a number is equidistant from two + integers (e.g. `round(2.5)` is 2). + + When the :attr:\`decimals\` argument is specified the + algorithm used is similar to NumPy's `around`. This + algorithm is fast but inexact and it can easily + overflow for low precision dtypes. + Eg. `round(tensor([10000], dtype=torch.float16), decimals=3)` is `inf`. + + .. seealso:: + :func:`torch.ceil`, which rounds up. + :func:`torch.floor`, which rounds down. + :func:`torch.trunc`, which rounds towards zero. + + Args: + input (Tensor): the input tensor. + decimals (int): Number of decimal places to round to (default: 0). + If decimals is negative, it specifies the number of positions + to the left of the decimal point. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> torch.round(torch.tensor((4.7, -2.3, 9.1, -7.7))) + tensor([ 5., -2., 9., -8.]) + + >>> # Values equidistant from two integers are rounded towards the + >>> # the nearest even value (zero is treated as even) + >>> torch.round(torch.tensor([-0.5, 0.5, 1.5, 2.5])) + tensor([-0., 0., 2., 2.]) + + >>> # A positive decimals argument rounds to the to that decimal place + >>> torch.round(torch.tensor([0.1234567]), decimals=3) + tensor([0.1230]) + + >>> # A negative decimals argument rounds to the left of the decimal + >>> torch.round(torch.tensor([1200.1234567]), decimals=-3) + tensor([1000.]) + """ + ... +@overload +def round_(input: Tensor) -> Tensor: ... +@overload +def round_(input: Tensor, *, decimals: _int) -> Tensor: ... +def row_indices_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def row_stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + row_stack(tensors, *, out=None) -> Tensor + + Alias of :func:`torch.vstack`. + """ + ... +def rrelu(input: Tensor, lower: Union[Number, _complex] = 0.125, upper: Union[Number, _complex] = 0.3333333333333333, training: _bool = False, generator: Optional[Generator] = None) -> Tensor: ... +def rrelu_(input: Tensor, lower: Union[Number, _complex] = 0.125, upper: Union[Number, _complex] = 0.3333333333333333, training: _bool = False, generator: Optional[Generator] = None) -> Tensor: ... +def rsqrt(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + rsqrt(input, *, out=None) -> Tensor + + Returns a new tensor with the reciprocal of the square-root of each of + the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.0370, 0.2970, 1.5420, -0.9105]) + >>> torch.rsqrt(a) + tensor([ nan, 1.8351, 0.8053, nan]) + """ + ... +def rsqrt_(input: Tensor) -> Tensor: ... +@overload +def rsub(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: ... +@overload +def rsub(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: ... +def saddmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Number = 1, alpha: Number = 1, out: Optional[Tensor] = None) -> Tensor: ... +def scalar_tensor(s: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ... +@overload +def scatter(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, reduce: str, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter(input: Tensor, dim: _int, index: Tensor, value: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + scatter(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... +@overload +def scatter_add(input: Tensor, dim: _int, index: Tensor, src: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter_add(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_add_` + """ + ... +@overload +def scatter_add(input: Tensor, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: + r""" + scatter_add(input, dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_add_` + """ + ... +def scatter_reduce(input: Tensor, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True, out: Optional[Tensor] = None) -> Tensor: + r""" + scatter_reduce(input, dim, index, src, reduce, *, include_self=True) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` + """ + ... +@overload +def searchsorted(sorted_sequence: Tensor, input: Tensor, *, out_int32: _bool = False, right: _bool = False, side: Optional[str] = None, sorter: Optional[Tensor] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) -> Tensor + + Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the + corresponding values in :attr:`values` were inserted before the indices, when sorted, the order + of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved. + Return a new tensor with the same size as :attr:`values`. More formally, + the returned index satisfies the following rules: + + .. list-table:: + :widths: 12 10 78 + :header-rows: 1 + + * - :attr:`sorted_sequence` + - :attr:`right` + - *returned index satisfies* + * - 1-D + - False + - ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]`` + * - 1-D + - True + - ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]`` + * - N-D + - False + - ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]`` + * - N-D + - True + - ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]`` + + Args: + sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost* + dimension unless :attr:`sorter` is provided, in which case the sequence does not + need to be sorted + values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). + + Keyword args: + out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. + Default value is False, i.e. default output data type is torch.int64. + right (bool, optional): if False, return the first suitable location that is found. If True, return the + last such index. If no suitable index found, return 0 for non-numerical value + (eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence` + (one pass the last index of the *innermost* dimension). In other words, if False, + gets the lower bound index for each value in :attr:`values` on the corresponding + *innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper + bound index instead. Default value is False. :attr:`side` does the same and is + preferred. It will error if :attr:`side` is set to "left" while this is True. + side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right` + and "right" corresponds to True for :attr:`right`. It will error if this is set to + "left" while :attr:`right` is True. Default value is None. + out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided. + sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted + :attr:`sorted_sequence` containing a sequence of indices that sort it in the + ascending order on the innermost dimension + + + Example:: + + >>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) + >>> sorted_sequence + tensor([[ 1, 3, 5, 7, 9], + [ 2, 4, 6, 8, 10]]) + >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) + >>> values + tensor([[3, 6, 9], + [3, 6, 9]]) + >>> torch.searchsorted(sorted_sequence, values) + tensor([[1, 3, 4], + [1, 2, 4]]) + >>> torch.searchsorted(sorted_sequence, values, side='right') + tensor([[2, 3, 5], + [1, 3, 4]]) + + >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) + >>> sorted_sequence_1d + tensor([1, 3, 5, 7, 9]) + >>> torch.searchsorted(sorted_sequence_1d, values) + tensor([[1, 3, 4], + [1, 3, 4]]) + """ + ... +@overload +def searchsorted(sorted_sequence: Tensor, self: Union[Number, _complex], *, out_int32: _bool = False, right: _bool = False, side: Optional[str] = None, sorter: Optional[Tensor] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + searchsorted(sorted_sequence, values, *, out_int32=False, right=False, side=None, out=None, sorter=None) -> Tensor + + Find the indices from the *innermost* dimension of :attr:`sorted_sequence` such that, if the + corresponding values in :attr:`values` were inserted before the indices, when sorted, the order + of the corresponding *innermost* dimension within :attr:`sorted_sequence` would be preserved. + Return a new tensor with the same size as :attr:`values`. More formally, + the returned index satisfies the following rules: + + .. list-table:: + :widths: 12 10 78 + :header-rows: 1 + + * - :attr:`sorted_sequence` + - :attr:`right` + - *returned index satisfies* + * - 1-D + - False + - ``sorted_sequence[i-1] < values[m][n]...[l][x] <= sorted_sequence[i]`` + * - 1-D + - True + - ``sorted_sequence[i-1] <= values[m][n]...[l][x] < sorted_sequence[i]`` + * - N-D + - False + - ``sorted_sequence[m][n]...[l][i-1] < values[m][n]...[l][x] <= sorted_sequence[m][n]...[l][i]`` + * - N-D + - True + - ``sorted_sequence[m][n]...[l][i-1] <= values[m][n]...[l][x] < sorted_sequence[m][n]...[l][i]`` + + Args: + sorted_sequence (Tensor): N-D or 1-D tensor, containing monotonically increasing sequence on the *innermost* + dimension unless :attr:`sorter` is provided, in which case the sequence does not + need to be sorted + values (Tensor or Scalar): N-D tensor or a Scalar containing the search value(s). + + Keyword args: + out_int32 (bool, optional): indicate the output data type. torch.int32 if True, torch.int64 otherwise. + Default value is False, i.e. default output data type is torch.int64. + right (bool, optional): if False, return the first suitable location that is found. If True, return the + last such index. If no suitable index found, return 0 for non-numerical value + (eg. nan, inf) or the size of *innermost* dimension within :attr:`sorted_sequence` + (one pass the last index of the *innermost* dimension). In other words, if False, + gets the lower bound index for each value in :attr:`values` on the corresponding + *innermost* dimension of the :attr:`sorted_sequence`. If True, gets the upper + bound index instead. Default value is False. :attr:`side` does the same and is + preferred. It will error if :attr:`side` is set to "left" while this is True. + side (str, optional): the same as :attr:`right` but preferred. "left" corresponds to False for :attr:`right` + and "right" corresponds to True for :attr:`right`. It will error if this is set to + "left" while :attr:`right` is True. Default value is None. + out (Tensor, optional): the output tensor, must be the same size as :attr:`values` if provided. + sorter (LongTensor, optional): if provided, a tensor matching the shape of the unsorted + :attr:`sorted_sequence` containing a sequence of indices that sort it in the + ascending order on the innermost dimension + + + Example:: + + >>> sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) + >>> sorted_sequence + tensor([[ 1, 3, 5, 7, 9], + [ 2, 4, 6, 8, 10]]) + >>> values = torch.tensor([[3, 6, 9], [3, 6, 9]]) + >>> values + tensor([[3, 6, 9], + [3, 6, 9]]) + >>> torch.searchsorted(sorted_sequence, values) + tensor([[1, 3, 4], + [1, 2, 4]]) + >>> torch.searchsorted(sorted_sequence, values, side='right') + tensor([[2, 3, 5], + [1, 3, 4]]) + + >>> sorted_sequence_1d = torch.tensor([1, 3, 5, 7, 9]) + >>> sorted_sequence_1d + tensor([1, 3, 5, 7, 9]) + >>> torch.searchsorted(sorted_sequence_1d, values) + tensor([[1, 3, 4], + [1, 3, 4]]) + """ + ... +def segment_reduce(data: Tensor, reduce: str, *, lengths: Optional[Tensor] = None, indices: Optional[Tensor] = None, offsets: Optional[Tensor] = None, axis: _int = 0, unsafe: _bool = False, initial: Optional[Union[Number, _complex]] = None) -> Tensor: ... +@overload +def select(input: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: + r""" + select(input, dim, index) -> Tensor + + Slices the :attr:`input` tensor along the selected dimension at the given index. + This function returns a view of the original tensor with the given dimension removed. + + .. note:: If :attr:`input` is a sparse tensor and returning a view of + the tensor is not possible, a RuntimeError exception is + raised. In this is the case, consider using + :func:`torch.select_copy` function. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to slice + index (int): the index to select with + + .. note:: + + :meth:`select` is equivalent to slicing. For example, + ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and + ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. + """ + ... +@overload +def select(input: Tensor, dim: Union[str, ellipsis, None], index: _int) -> Tensor: + r""" + select(input, dim, index) -> Tensor + + Slices the :attr:`input` tensor along the selected dimension at the given index. + This function returns a view of the original tensor with the given dimension removed. + + .. note:: If :attr:`input` is a sparse tensor and returning a view of + the tensor is not possible, a RuntimeError exception is + raised. In this is the case, consider using + :func:`torch.select_copy` function. + + Args: + input (Tensor): the input tensor. + dim (int): the dimension to slice + index (int): the index to select with + + .. note:: + + :meth:`select` is equivalent to slicing. For example, + ``tensor.select(0, index)`` is equivalent to ``tensor[index]`` and + ``tensor.select(2, index)`` is equivalent to ``tensor[:,:,index]``. + """ + ... +def select_copy(input: Tensor, dim: _int, index: Union[_int, SymInt], *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.select`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def select_scatter(input: Tensor, src: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: + r""" + select_scatter(input, src, dim, index) -> Tensor + + Embeds the values of the :attr:`src` tensor into :attr:`input` at the given index. + This function returns a tensor with fresh storage; it does not create a view. + + + Args: + input (Tensor): the input tensor. + src (Tensor): The tensor to embed into :attr:`input` + dim (int): the dimension to insert the slice into. + index (int): the index to select with + + .. note:: + + :attr:`src` must be of the proper size in order to be embedded + into :attr:`input`. Specifically, it should have the same shape as + ``torch.select(input, dim, index)`` + + Example:: + + >>> a = torch.zeros(2, 2) + >>> b = torch.ones(2) + >>> a.select_scatter(b, 0, 0) + tensor([[1., 1.], + [0., 0.]]) + """ + ... +def selu(input: Tensor) -> Tensor: ... +def selu_(input: Tensor) -> Tensor: ... +def set_flush_denormal(mode: _bool) -> _bool: + r""" + set_flush_denormal(mode) -> bool + + Disables denormal floating numbers on CPU. + + Returns ``True`` if your system supports flushing denormal numbers and it + successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal` + is supported on x86 architectures supporting SSE3 and AArch64 architecture. + + Args: + mode (bool): Controls whether to enable flush denormal mode or not + + Example:: + + >>> torch.set_flush_denormal(True) + True + >>> torch.tensor([1e-323], dtype=torch.float64) + tensor([ 0.], dtype=torch.float64) + >>> torch.set_flush_denormal(False) + True + >>> torch.tensor([1e-323], dtype=torch.float64) + tensor(9.88131e-324 * + [ 1.0000], dtype=torch.float64) + """ + ... +def set_num_interop_threads(num: _int) -> None: + r""" + set_num_interop_threads(int) + + Sets the number of threads used for interop parallelism + (e.g. in JIT interpreter) on CPU. + + .. warning:: + Can only be called once and before any inter-op parallel work + is started (e.g. JIT execution). + """ + ... +def set_num_threads(num: _int) -> None: + r""" + set_num_threads(int) + + Sets the number of threads used for intraop parallelism on CPU. + + .. warning:: + To ensure that the correct number of threads is used, set_num_threads + must be called before running eager, JIT or autograd code. + """ + ... +def sgn(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sgn(input, *, out=None) -> Tensor + + This function is an extension of torch.sign() to complex tensors. + It computes a new tensor whose elements have + the same angles as the corresponding elements of :attr:`input` and + absolute values (i.e. magnitudes) of one for complex tensors and + is equivalent to torch.sign() for non-complex tensors. + + .. math:: + \text{out}_{i} = \begin{cases} + 0 & |\text{{input}}_i| == 0 \\ + \frac{{\text{{input}}_i}}{|{\text{{input}}_i}|} & \text{otherwise} + \end{cases} + + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.tensor([3+4j, 7-24j, 0, 1+2j]) + >>> t.sgn() + tensor([0.6000+0.8000j, 0.2800-0.9600j, 0.0000+0.0000j, 0.4472+0.8944j]) + """ + ... +def sigmoid(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sigmoid(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.expit`. + """ + ... +def sigmoid_(input: Tensor) -> Tensor: ... +def sign(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sign(input, *, out=None) -> Tensor + + Returns a new tensor with the signs of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \operatorname{sgn}(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) + >>> a + tensor([ 0.7000, -1.2000, 0.0000, 2.3000]) + >>> torch.sign(a) + tensor([ 1., -1., 0., 1.]) + """ + ... +def signbit(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + signbit(input, *, out=None) -> Tensor + + Tests if each element of :attr:`input` has its sign bit set or not. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([0.7, -1.2, 0., 2.3]) + >>> torch.signbit(a) + tensor([ False, True, False, False]) + >>> a = torch.tensor([-0.0, 0.0]) + >>> torch.signbit(a) + tensor([ True, False]) + + .. note:: + signbit handles signed zeros, so negative zero (-0) returns True. + """ + ... +def sin(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sin(input, *, out=None) -> Tensor + + Returns a new tensor with the sine of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \sin(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-0.5461, 0.1347, -2.7266, -0.2746]) + >>> torch.sin(a) + tensor([-0.5194, 0.1343, -0.4032, -0.2711]) + """ + ... +def sin_(input: Tensor) -> Tensor: ... +def sinc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sinc(input, *, out=None) -> Tensor + + Alias for :func:`torch.special.sinc`. + """ + ... +def sinc_(input: Tensor) -> Tensor: ... +def sinh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sinh(input, *, out=None) -> Tensor + + Returns a new tensor with the hyperbolic sine of the elements of + :attr:`input`. + + .. math:: + \text{out}_{i} = \sinh(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.5380, -0.8632, -0.1265, 0.9399]) + >>> torch.sinh(a) + tensor([ 0.5644, -0.9744, -0.1268, 1.0845]) + + .. note:: + When :attr:`input` is on the CPU, the implementation of torch.sinh may use + the Sleef library, which rounds very large results to infinity or negative + infinity. See `here `_ for details. + """ + ... +def sinh_(input: Tensor) -> Tensor: ... +def slice_copy(input: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.slice`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def slice_inverse(input: Tensor, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1) -> Tensor: ... +def slice_scatter(input: Tensor, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1, *, out: Optional[Tensor] = None) -> Tensor: + r""" + slice_scatter(input, src, dim=0, start=None, end=None, step=1) -> Tensor + + Embeds the values of the :attr:`src` tensor into :attr:`input` at the given + dimension. + This function returns a tensor with fresh storage; it does not create a view. + + + Args: + input (Tensor): the input tensor. + src (Tensor): The tensor to embed into :attr:`input` + dim (int): the dimension to insert the slice into + start (Optional[int]): the start index of where to insert the slice + end (Optional[int]): the end index of where to insert the slice + step (int): the how many elements to skip in + + Example:: + + >>> a = torch.zeros(8, 8) + >>> b = torch.ones(2, 8) + >>> a.slice_scatter(b, start=6) + tensor([[0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0.], + [0., 0., 0., 0., 0., 0., 0., 0.], + [1., 1., 1., 1., 1., 1., 1., 1.], + [1., 1., 1., 1., 1., 1., 1., 1.]]) + + >>> b = torch.ones(8, 2) + >>> a.slice_scatter(b, dim=1, start=2, end=6, step=2) + tensor([[0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.], + [0., 0., 1., 0., 1., 0., 0., 0.]]) + """ + ... +def slogdet(input: Tensor, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.slogdet: + r""" + slogdet(input) -> (Tensor, Tensor) + + Alias for :func:`torch.linalg.slogdet` + """ + ... +def smm(input: Tensor, mat2: Tensor) -> Tensor: + r""" + smm(input, mat) -> Tensor + + Performs a matrix multiplication of the sparse matrix :attr:`input` + with the dense matrix :attr:`mat`. + + Args: + input (Tensor): a sparse matrix to be matrix multiplied + mat (Tensor): a dense matrix to be matrix multiplied + """ + ... +@overload +def softmax(input: Tensor, dim: _int, dtype: Optional[_dtype] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + softmax(input, dim, *, dtype=None) -> Tensor + + Alias for :func:`torch.nn.functional.softmax`. + """ + ... +@overload +def softmax(input: Tensor, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + softmax(input, dim, *, dtype=None) -> Tensor + + Alias for :func:`torch.nn.functional.softmax`. + """ + ... +@overload +def sort(input: Tensor, *, stable: Optional[_bool], dim: _int = -1, descending: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: + r""" + sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) + + Sorts the elements of the :attr:`input` tensor along a given dimension + in ascending order by value. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`descending` is ``True`` then the elements are sorted in descending + order by value. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. + + A namedtuple of (values, indices) is returned, where the `values` are the + sorted values and `indices` are the indices of the elements in the original + `input` tensor. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): makes the sorting routine stable, which guarantees that the order + of equivalent elements is preserved. + + Keyword args: + out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can + be optionally given to be used as output buffers + + Example:: + + >>> x = torch.randn(3, 4) + >>> sorted, indices = torch.sort(x) + >>> sorted + tensor([[-0.2162, 0.0608, 0.6719, 2.3332], + [-0.5793, 0.0061, 0.6058, 0.9497], + [-0.5071, 0.3343, 0.9553, 1.0960]]) + >>> indices + tensor([[ 1, 0, 2, 3], + [ 3, 1, 0, 2], + [ 0, 3, 1, 2]]) + + >>> sorted, indices = torch.sort(x, 0) + >>> sorted + tensor([[-0.5071, -0.2162, 0.6719, -0.5793], + [ 0.0608, 0.0061, 0.9497, 0.3343], + [ 0.6058, 0.9553, 1.0960, 2.3332]]) + >>> indices + tensor([[ 2, 0, 0, 1], + [ 0, 1, 1, 2], + [ 1, 2, 2, 0]]) + >>> x = torch.tensor([0, 1] * 9) + >>> x.sort() + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) + >>> x.sort(stable=True) + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) + """ + ... +@overload +def sort(input: Tensor, dim: _int = -1, descending: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: + r""" + sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) + + Sorts the elements of the :attr:`input` tensor along a given dimension + in ascending order by value. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`descending` is ``True`` then the elements are sorted in descending + order by value. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. + + A namedtuple of (values, indices) is returned, where the `values` are the + sorted values and `indices` are the indices of the elements in the original + `input` tensor. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): makes the sorting routine stable, which guarantees that the order + of equivalent elements is preserved. + + Keyword args: + out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can + be optionally given to be used as output buffers + + Example:: + + >>> x = torch.randn(3, 4) + >>> sorted, indices = torch.sort(x) + >>> sorted + tensor([[-0.2162, 0.0608, 0.6719, 2.3332], + [-0.5793, 0.0061, 0.6058, 0.9497], + [-0.5071, 0.3343, 0.9553, 1.0960]]) + >>> indices + tensor([[ 1, 0, 2, 3], + [ 3, 1, 0, 2], + [ 0, 3, 1, 2]]) + + >>> sorted, indices = torch.sort(x, 0) + >>> sorted + tensor([[-0.5071, -0.2162, 0.6719, -0.5793], + [ 0.0608, 0.0061, 0.9497, 0.3343], + [ 0.6058, 0.9553, 1.0960, 2.3332]]) + >>> indices + tensor([[ 2, 0, 0, 1], + [ 0, 1, 1, 2], + [ 1, 2, 2, 0]]) + >>> x = torch.tensor([0, 1] * 9) + >>> x.sort() + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) + >>> x.sort(stable=True) + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) + """ + ... +@overload +def sort(input: Tensor, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool = False, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: + r""" + sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) + + Sorts the elements of the :attr:`input` tensor along a given dimension + in ascending order by value. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`descending` is ``True`` then the elements are sorted in descending + order by value. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. + + A namedtuple of (values, indices) is returned, where the `values` are the + sorted values and `indices` are the indices of the elements in the original + `input` tensor. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): makes the sorting routine stable, which guarantees that the order + of equivalent elements is preserved. + + Keyword args: + out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can + be optionally given to be used as output buffers + + Example:: + + >>> x = torch.randn(3, 4) + >>> sorted, indices = torch.sort(x) + >>> sorted + tensor([[-0.2162, 0.0608, 0.6719, 2.3332], + [-0.5793, 0.0061, 0.6058, 0.9497], + [-0.5071, 0.3343, 0.9553, 1.0960]]) + >>> indices + tensor([[ 1, 0, 2, 3], + [ 3, 1, 0, 2], + [ 0, 3, 1, 2]]) + + >>> sorted, indices = torch.sort(x, 0) + >>> sorted + tensor([[-0.5071, -0.2162, 0.6719, -0.5793], + [ 0.0608, 0.0061, 0.9497, 0.3343], + [ 0.6058, 0.9553, 1.0960, 2.3332]]) + >>> indices + tensor([[ 2, 0, 0, 1], + [ 0, 1, 1, 2], + [ 1, 2, 2, 0]]) + >>> x = torch.tensor([0, 1] * 9) + >>> x.sort() + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) + >>> x.sort(stable=True) + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) + """ + ... +@overload +def sort(input: Tensor, dim: Union[str, ellipsis, None], descending: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.sort: + r""" + sort(input, dim=-1, descending=False, stable=False, *, out=None) -> (Tensor, LongTensor) + + Sorts the elements of the :attr:`input` tensor along a given dimension + in ascending order by value. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`descending` is ``True`` then the elements are sorted in descending + order by value. + + If :attr:`stable` is ``True`` then the sorting routine becomes stable, preserving + the order of equivalent elements. + + A namedtuple of (values, indices) is returned, where the `values` are the + sorted values and `indices` are the indices of the elements in the original + `input` tensor. + + Args: + input (Tensor): the input tensor. + dim (int, optional): the dimension to sort along + descending (bool, optional): controls the sorting order (ascending or descending) + stable (bool, optional): makes the sorting routine stable, which guarantees that the order + of equivalent elements is preserved. + + Keyword args: + out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can + be optionally given to be used as output buffers + + Example:: + + >>> x = torch.randn(3, 4) + >>> sorted, indices = torch.sort(x) + >>> sorted + tensor([[-0.2162, 0.0608, 0.6719, 2.3332], + [-0.5793, 0.0061, 0.6058, 0.9497], + [-0.5071, 0.3343, 0.9553, 1.0960]]) + >>> indices + tensor([[ 1, 0, 2, 3], + [ 3, 1, 0, 2], + [ 0, 3, 1, 2]]) + + >>> sorted, indices = torch.sort(x, 0) + >>> sorted + tensor([[-0.5071, -0.2162, 0.6719, -0.5793], + [ 0.0608, 0.0061, 0.9497, 0.3343], + [ 0.6058, 0.9553, 1.0960, 2.3332]]) + >>> indices + tensor([[ 2, 0, 0, 1], + [ 0, 1, 1, 2], + [ 1, 2, 2, 0]]) + >>> x = torch.tensor([0, 1] * 9) + >>> x.sort() + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 2, 16, 4, 6, 14, 8, 0, 10, 12, 9, 17, 15, 13, 11, 7, 5, 3, 1])) + >>> x.sort(stable=True) + torch.return_types.sort( + values=tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]), + indices=tensor([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 1, 3, 5, 7, 9, 11, 13, 15, 17])) + """ + ... +def sparse_bsc_tensor(ccol_indices: Union[Tensor, List], row_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: + r""" + sparse_bsc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor + + Constructs a :ref:`sparse tensor in BSC (Block Compressed Sparse + Column)) ` with specified 2-dimensional blocks at the + given :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix + multiplication operations in BSC format are typically faster than that + for sparse tensors in COO format. Make you have a look at :ref:`the + note on the data type of the indices `. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + ccol_indices (array_like): (B+1)-dimensional array of size + ``(*batchsize, ncolblocks + 1)``. The last element of each + batch is the number of non-zeros. This tensor encodes the + index in values and row_indices depending on where the given + column starts. Each successive number in the tensor subtracted + by the number before it denotes the number of elements in a + given column. + row_indices (array_like): Row block co-ordinates of each block in + values. (B+1)-dimensional tensor with the same length + as values. + values (array_list): Initial blocks for the tensor. Can be a list, + tuple, NumPy ``ndarray``, and other types that + represents a (1 + 2 + K)-dimensional tensor where ``K`` is the + number of dense dimensions. + size (list, tuple, :class:`torch.Size`, optional): Size of the + sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * + blocksize[1], *densesize)`` If not provided, the size will be + inferred as the minimum size big enough to hold all non-zero + blocks. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of + returned tensor. Default: if None, infers data type from + :attr:`values`. + device (:class:`torch.device`, optional): the desired device of + returned tensor. Default: if None, uses the current device + for the default tensor type (see + :func:`torch.set_default_device`). :attr:`device` will be + the CPU for CPU tensor types and the current CUDA device for + CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + + Example:: + >>> ccol_indices = [0, 1, 2] + >>> row_indices = [0, 1] + >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] + >>> torch.sparse_bsc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), + ... torch.tensor(row_indices, dtype=torch.int64), + ... torch.tensor(values), dtype=torch.double) + tensor(ccol_indices=tensor([0, 1, 2]), + row_indices=tensor([0, 1]), + values=tensor([[[1., 2.], + [3., 4.]], + [[5., 6.], + [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, + layout=torch.sparse_bsc) + """ + ... +def sparse_bsr_tensor(crow_indices: Union[Tensor, List], col_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: + r""" + sparse_bsr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor + + Constructs a :ref:`sparse tensor in BSR (Block Compressed Sparse Row)) + ` with specified 2-dimensional blocks at the given + :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix + multiplication operations in BSR format are typically faster than that + for sparse tensors in COO format. Make you have a look at :ref:`the + note on the data type of the indices `. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + crow_indices (array_like): (B+1)-dimensional array of size + ``(*batchsize, nrowblocks + 1)``. The last element of each + batch is the number of non-zeros. This tensor encodes the + block index in values and col_indices depending on where the + given row block starts. Each successive number in the tensor + subtracted by the number before it denotes the number of + blocks in a given row. + col_indices (array_like): Column block co-ordinates of each block + in values. (B+1)-dimensional tensor with the same length as + values. + values (array_list): Initial values for the tensor. Can be a list, + tuple, NumPy ``ndarray``, scalar, and other types that + represents a (1 + 2 + K)-dimensional tensor where ``K`` is the + number of dense dimensions. + size (list, tuple, :class:`torch.Size`, optional): Size of the + sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * + blocksize[1], *densesize)`` where ``blocksize == + values.shape[1:3]``. If not provided, the size will be + inferred as the minimum size big enough to hold all non-zero + blocks. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of + returned tensor. Default: if None, infers data type from + :attr:`values`. + device (:class:`torch.device`, optional): the desired device of + returned tensor. Default: if None, uses the current device + for the default tensor type (see + :func:`torch.set_default_device`). :attr:`device` will be + the CPU for CPU tensor types and the current CUDA device for + CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + + Example:: + >>> crow_indices = [0, 1, 2] + >>> col_indices = [0, 1] + >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] + >>> torch.sparse_bsr_tensor(torch.tensor(crow_indices, dtype=torch.int64), + ... torch.tensor(col_indices, dtype=torch.int64), + ... torch.tensor(values), dtype=torch.double) + tensor(crow_indices=tensor([0, 1, 2]), + col_indices=tensor([0, 1]), + values=tensor([[[1., 2.], + [3., 4.]], + [[5., 6.], + [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, + layout=torch.sparse_bsr) + """ + ... +def sparse_compressed_tensor(compressed_indices: Union[Tensor, List], plain_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: + r""" + sparse_compressed_tensor(compressed_indices, plain_indices, values, size=None, *, dtype=None, layout=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor + + Constructs a :ref:`sparse tensor in Compressed Sparse format - CSR, + CSC, BSR, or BSC - ` with specified values at + the given :attr:`compressed_indices` and :attr:`plain_indices`. Sparse + matrix multiplication operations in Compressed Sparse format are + typically faster than that for sparse tensors in COO format. Make you + have a look at :ref:`the note on the data type of the indices + `. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + compressed_indices (array_like): (B+1)-dimensional array of size + ``(*batchsize, compressed_dim_size + 1)``. The last element of + each batch is the number of non-zero elements or blocks. This + tensor encodes the index in ``values`` and ``plain_indices`` + depending on where the given compressed dimension (row or + column) starts. Each successive number in the tensor + subtracted by the number before it denotes the number of + elements or blocks in a given compressed dimension. + plain_indices (array_like): Plain dimension (column or row) + co-ordinates of each element or block in values. (B+1)-dimensional + tensor with the same length as values. + + values (array_list): Initial values for the tensor. Can be a list, + tuple, NumPy ``ndarray``, scalar, and other types. that + represents a (1+K)-dimensional (for CSR and CSC layouts) or + (1+2+K)-dimensional tensor (for BSR and BSC layouts) where + ``K`` is the number of dense dimensions. + size (list, tuple, :class:`torch.Size`, optional): Size of the + sparse tensor: ``(*batchsize, nrows * blocksize[0], ncols * + blocksize[1], *densesize)`` where ``blocksize[0] == + blocksize[1] == 1`` for CSR and CSC formats. If not provided, + the size will be inferred as the minimum size big enough to + hold all non-zero elements or blocks. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of + returned tensor. Default: if None, infers data type from + :attr:`values`. + layout (:class:`torch.layout`, required): the desired layout of + returned tensor: :attr:`torch.sparse_csr`, + :attr:`torch.sparse_csc`, :attr:`torch.sparse_bsr`, or + :attr:`torch.sparse_bsc`. + device (:class:`torch.device`, optional): the desired device of + returned tensor. Default: if None, uses the current device + for the default tensor type (see + :func:`torch.set_default_device`). :attr:`device` will be + the CPU for CPU tensor types and the current CUDA device for + CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + + Example:: + >>> compressed_indices = [0, 2, 4] + >>> plain_indices = [0, 1, 0, 1] + >>> values = [1, 2, 3, 4] + >>> torch.sparse_compressed_tensor(torch.tensor(compressed_indices, dtype=torch.int64), + ... torch.tensor(plain_indices, dtype=torch.int64), + ... torch.tensor(values), dtype=torch.double, layout=torch.sparse_csr) + tensor(crow_indices=tensor([0, 2, 4]), + col_indices=tensor([0, 1, 0, 1]), + values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, + dtype=torch.float64, layout=torch.sparse_csr) + """ + ... +def sparse_coo_tensor(indices: Tensor, values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None, is_coalesced: Optional[_bool] = None) -> Tensor: + r""" + sparse_coo_tensor(indices, values, size=None, *, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None, is_coalesced=None) -> Tensor + + Constructs a :ref:`sparse tensor in COO(rdinate) format + ` with specified values at the given + :attr:`indices`. + + .. note:: + + This function returns an :ref:`uncoalesced tensor + ` when :attr:`is_coalesced` is + unspecified or ``None``. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + indices (array_like): Initial data for the tensor. Can be a list, tuple, + NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor` + internally. The indices are the coordinates of the non-zero values in the matrix, and thus + should be two-dimensional where the first dimension is the number of tensor dimensions and + the second dimension is the number of non-zero values. + values (array_like): Initial values for the tensor. Can be a list, tuple, + NumPy ``ndarray``, scalar, and other types. + size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not + provided the size will be inferred as the minimum size big enough to hold all non-zero + elements. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if None, infers data type from :attr:`values`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + is_coalesced (bool, optional): When``True``, the caller is + responsible for providing tensor indices that correspond to a + coalesced tensor. If the :attr:`check_invariants` flag is + False, no error will be raised if the prerequisites are not + met and this will lead to silently incorrect results. To force + coalescion please use :meth:`coalesce` on the resulting + Tensor. + Default: None: except for trivial cases (e.g. nnz < 2) the + resulting Tensor has is_coalesced set to ``False```. + + Example:: + + >>> i = torch.tensor([[0, 1, 1], + ... [2, 0, 2]]) + >>> v = torch.tensor([3, 4, 5], dtype=torch.float32) + >>> torch.sparse_coo_tensor(i, v, [2, 4]) + tensor(indices=tensor([[0, 1, 1], + [2, 0, 2]]), + values=tensor([3., 4., 5.]), + size=(2, 4), nnz=3, layout=torch.sparse_coo) + + >>> torch.sparse_coo_tensor(i, v) # Shape inference + tensor(indices=tensor([[0, 1, 1], + [2, 0, 2]]), + values=tensor([3., 4., 5.]), + size=(2, 3), nnz=3, layout=torch.sparse_coo) + + >>> torch.sparse_coo_tensor(i, v, [2, 4], + ... dtype=torch.float64, + ... device=torch.device('cuda:0')) + tensor(indices=tensor([[0, 1, 1], + [2, 0, 2]]), + values=tensor([3., 4., 5.]), + device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64, + layout=torch.sparse_coo) + + # Create an empty sparse tensor with the following invariants: + # 1. sparse_dim + dense_dim = len(SparseTensor.shape) + # 2. SparseTensor._indices().shape = (sparse_dim, nnz) + # 3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:]) + # + # For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and + # sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0)) + >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1]) + tensor(indices=tensor([], size=(1, 0)), + values=tensor([], size=(0,)), + size=(1,), nnz=0, layout=torch.sparse_coo) + + # and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and + # sparse_dim = 1 + >>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2]) + tensor(indices=tensor([], size=(1, 0)), + values=tensor([], size=(0, 2)), + size=(1, 2), nnz=0, layout=torch.sparse_coo) + + .. _torch.sparse: https://pytorch.org/docs/stable/sparse.html + """ + ... +def sparse_csc_tensor(ccol_indices: Union[Tensor, List], row_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: + r""" + sparse_csc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor + + Constructs a :ref:`sparse tensor in CSC (Compressed Sparse Column) + ` with specified values at the given + :attr:`ccol_indices` and :attr:`row_indices`. Sparse matrix + multiplication operations in CSC format are typically faster than that + for sparse tensors in COO format. Make you have a look at :ref:`the + note on the data type of the indices `. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + ccol_indices (array_like): (B+1)-dimensional array of size + ``(*batchsize, ncols + 1)``. The last element of each batch + is the number of non-zeros. This tensor encodes the index in + values and row_indices depending on where the given column + starts. Each successive number in the tensor subtracted by the + number before it denotes the number of elements in a given + column. + row_indices (array_like): Row co-ordinates of each element in + values. (B+1)-dimensional tensor with the same length as + values. + values (array_list): Initial values for the tensor. Can be a list, + tuple, NumPy ``ndarray``, scalar, and other types that + represents a (1+K)-dimensional tensor where ``K`` is the number + of dense dimensions. + size (list, tuple, :class:`torch.Size`, optional): Size of the + sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If + not provided, the size will be inferred as the minimum size + big enough to hold all non-zero elements. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of + returned tensor. Default: if None, infers data type from + :attr:`values`. + device (:class:`torch.device`, optional): the desired device of + returned tensor. Default: if None, uses the current device + for the default tensor type (see + :func:`torch.set_default_device`). :attr:`device` will be + the CPU for CPU tensor types and the current CUDA device for + CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + + Example:: + >>> ccol_indices = [0, 2, 4] + >>> row_indices = [0, 1, 0, 1] + >>> values = [1, 2, 3, 4] + >>> torch.sparse_csc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), + ... torch.tensor(row_indices, dtype=torch.int64), + ... torch.tensor(values), dtype=torch.double) + tensor(ccol_indices=tensor([0, 2, 4]), + row_indices=tensor([0, 1, 0, 1]), + values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, + dtype=torch.float64, layout=torch.sparse_csc) + """ + ... +def sparse_csr_tensor(crow_indices: Union[Tensor, List], col_indices: Union[Tensor, List], values: Union[Tensor, List], size: Optional[_size] = None, *, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, check_invariants: Optional[_bool] = None) -> Tensor: + r""" + sparse_csr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, pin_memory=False, requires_grad=False, check_invariants=None) -> Tensor + + Constructs a :ref:`sparse tensor in CSR (Compressed Sparse Row) ` with specified + values at the given :attr:`crow_indices` and :attr:`col_indices`. Sparse matrix multiplication operations + in CSR format are typically faster than that for sparse tensors in COO format. Make you have a look + at :ref:`the note on the data type of the indices `. + + .. note:: + + If the ``device`` argument is not specified the device of the given + :attr:`values` and indices tensor(s) must match. If, however, the + argument is specified the input Tensors will be converted to the + given device and in turn determine the device of the constructed + sparse tensor. + + Args: + crow_indices (array_like): (B+1)-dimensional array of size + ``(*batchsize, nrows + 1)``. The last element of each batch + is the number of non-zeros. This tensor encodes the index in + values and col_indices depending on where the given row + starts. Each successive number in the tensor subtracted by the + number before it denotes the number of elements in a given + row. + col_indices (array_like): Column co-ordinates of each element in + values. (B+1)-dimensional tensor with the same length + as values. + values (array_list): Initial values for the tensor. Can be a list, + tuple, NumPy ``ndarray``, scalar, and other types that + represents a (1+K)-dimensional tensor where ``K`` is the number + of dense dimensions. + size (list, tuple, :class:`torch.Size`, optional): Size of the + sparse tensor: ``(*batchsize, nrows, ncols, *densesize)``. If + not provided, the size will be inferred as the minimum size + big enough to hold all non-zero elements. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of + returned tensor. Default: if None, infers data type from + :attr:`values`. + device (:class:`torch.device`, optional): the desired device of + returned tensor. Default: if None, uses the current device + for the default tensor type (see + :func:`torch.set_default_device`). :attr:`device` will be + the CPU for CPU tensor types and the current CUDA device for + CUDA tensor types. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + check_invariants (bool, optional): If sparse tensor invariants are checked. + Default: as returned by :func:`torch.sparse.check_sparse_tensor_invariants.is_enabled`, + initially False. + + Example:: + >>> crow_indices = [0, 2, 4] + >>> col_indices = [0, 1, 0, 1] + >>> values = [1, 2, 3, 4] + >>> torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64), + ... torch.tensor(col_indices, dtype=torch.int64), + ... torch.tensor(values), dtype=torch.double) + tensor(crow_indices=tensor([0, 2, 4]), + col_indices=tensor([0, 1, 0, 1]), + values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, + dtype=torch.float64, layout=torch.sparse_csr) + """ + ... +def split_copy(input: Tensor, split_size: Union[_int, SymInt], dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: + r""" + Performs the same operation as :func:`torch.split`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def split_with_sizes(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... +def split_with_sizes_copy(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: + r""" + Performs the same operation as :func:`torch.split_with_sizes`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def spmm(input: Tensor, mat2: Tensor) -> Tensor: ... +def sqrt(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + sqrt(input, *, out=None) -> Tensor + + Returns a new tensor with the square-root of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \sqrt{\text{input}_{i}} + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-2.0755, 1.0226, 0.0831, 0.4806]) + >>> torch.sqrt(a) + tensor([ nan, 1.0112, 0.2883, 0.6933]) + """ + ... +def sqrt_(input: Tensor) -> Tensor: ... +def square(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + square(input, *, out=None) -> Tensor + + Returns a new tensor with the square of the elements of :attr:`input`. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-2.0755, 1.0226, 0.0831, 0.4806]) + >>> torch.square(a) + tensor([ 4.3077, 1.0457, 0.0069, 0.2310]) + """ + ... +def square_(input: Tensor) -> Tensor: ... +@overload +def squeeze(input: Tensor) -> Tensor: + r""" + squeeze(input, dim=None) -> Tensor + + Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. + + For example, if `input` is of shape: + :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` + will be of shape: :math:`(A \times B \times C \times D)`. + + When :attr:`dim` is given, a squeeze operation is done only in the given + dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, + ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` + will squeeze the tensor to the shape :math:`(A \times B)`. + + .. note:: The returned tensor shares the storage with the input tensor, + so changing the contents of one will change the contents of the other. + + .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` + will also remove the batch dimension, which can lead to unexpected + errors. Consider specifying only the dims you wish to be squeezed. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): if given, the input will be squeezed + only in the specified dimensions. + + .. versionchanged:: 2.0 + :attr:`dim` now accepts tuples of dimensions. + + Example:: + + >>> x = torch.zeros(2, 1, 2, 1, 2) + >>> x.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x) + >>> y.size() + torch.Size([2, 2, 2]) + >>> y = torch.squeeze(x, 0) + >>> y.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x, 1) + >>> y.size() + torch.Size([2, 2, 1, 2]) + >>> y = torch.squeeze(x, (1, 2, 3)) + torch.Size([2, 2, 2]) + """ + ... +@overload +def squeeze(input: Tensor, dim: _int) -> Tensor: + r""" + squeeze(input, dim=None) -> Tensor + + Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. + + For example, if `input` is of shape: + :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` + will be of shape: :math:`(A \times B \times C \times D)`. + + When :attr:`dim` is given, a squeeze operation is done only in the given + dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, + ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` + will squeeze the tensor to the shape :math:`(A \times B)`. + + .. note:: The returned tensor shares the storage with the input tensor, + so changing the contents of one will change the contents of the other. + + .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` + will also remove the batch dimension, which can lead to unexpected + errors. Consider specifying only the dims you wish to be squeezed. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): if given, the input will be squeezed + only in the specified dimensions. + + .. versionchanged:: 2.0 + :attr:`dim` now accepts tuples of dimensions. + + Example:: + + >>> x = torch.zeros(2, 1, 2, 1, 2) + >>> x.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x) + >>> y.size() + torch.Size([2, 2, 2]) + >>> y = torch.squeeze(x, 0) + >>> y.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x, 1) + >>> y.size() + torch.Size([2, 2, 1, 2]) + >>> y = torch.squeeze(x, (1, 2, 3)) + torch.Size([2, 2, 2]) + """ + ... +@overload +def squeeze(input: Tensor, dim: _size) -> Tensor: + r""" + squeeze(input, dim=None) -> Tensor + + Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. + + For example, if `input` is of shape: + :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` + will be of shape: :math:`(A \times B \times C \times D)`. + + When :attr:`dim` is given, a squeeze operation is done only in the given + dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, + ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` + will squeeze the tensor to the shape :math:`(A \times B)`. + + .. note:: The returned tensor shares the storage with the input tensor, + so changing the contents of one will change the contents of the other. + + .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` + will also remove the batch dimension, which can lead to unexpected + errors. Consider specifying only the dims you wish to be squeezed. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): if given, the input will be squeezed + only in the specified dimensions. + + .. versionchanged:: 2.0 + :attr:`dim` now accepts tuples of dimensions. + + Example:: + + >>> x = torch.zeros(2, 1, 2, 1, 2) + >>> x.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x) + >>> y.size() + torch.Size([2, 2, 2]) + >>> y = torch.squeeze(x, 0) + >>> y.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x, 1) + >>> y.size() + torch.Size([2, 2, 1, 2]) + >>> y = torch.squeeze(x, (1, 2, 3)) + torch.Size([2, 2, 2]) + """ + ... +@overload +def squeeze(input: Tensor, dim: Union[str, ellipsis, None]) -> Tensor: + r""" + squeeze(input, dim=None) -> Tensor + + Returns a tensor with all specified dimensions of :attr:`input` of size `1` removed. + + For example, if `input` is of shape: + :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `input.squeeze()` + will be of shape: :math:`(A \times B \times C \times D)`. + + When :attr:`dim` is given, a squeeze operation is done only in the given + dimension(s). If `input` is of shape: :math:`(A \times 1 \times B)`, + ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` + will squeeze the tensor to the shape :math:`(A \times B)`. + + .. note:: The returned tensor shares the storage with the input tensor, + so changing the contents of one will change the contents of the other. + + .. warning:: If the tensor has a batch dimension of size 1, then `squeeze(input)` + will also remove the batch dimension, which can lead to unexpected + errors. Consider specifying only the dims you wish to be squeezed. + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints, optional): if given, the input will be squeezed + only in the specified dimensions. + + .. versionchanged:: 2.0 + :attr:`dim` now accepts tuples of dimensions. + + Example:: + + >>> x = torch.zeros(2, 1, 2, 1, 2) + >>> x.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x) + >>> y.size() + torch.Size([2, 2, 2]) + >>> y = torch.squeeze(x, 0) + >>> y.size() + torch.Size([2, 1, 2, 1, 2]) + >>> y = torch.squeeze(x, 1) + >>> y.size() + torch.Size([2, 2, 1, 2]) + >>> y = torch.squeeze(x, (1, 2, 3)) + torch.Size([2, 2, 2]) + """ + ... +@overload +def squeeze_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.squeeze`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def squeeze_copy(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.squeeze`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def squeeze_copy(input: Tensor, dim: _size, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.squeeze`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def sspaddmm(beta: Union[Number, _complex], self: Tensor, alpha: Union[Number, _complex], mat1: Tensor, mat2: Tensor) -> Tensor: + r""" + sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor + :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. + + Note: This function is equivalent to :func:`torch.addmm`, except + :attr:`input` and :attr:`mat1` are sparse. + + Args: + input (Tensor): a sparse matrix to be added + mat1 (Tensor): a sparse matrix to be matrix multiplied + mat2 (Tensor): a dense matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + """ + ... +@overload +def sspaddmm(input: Tensor, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor + :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. + + Note: This function is equivalent to :func:`torch.addmm`, except + :attr:`input` and :attr:`mat1` are sparse. + + Args: + input (Tensor): a sparse matrix to be added + mat1 (Tensor): a sparse matrix to be matrix multiplied + mat2 (Tensor): a dense matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + """ + ... +@overload +def sspaddmm(beta: Union[Number, _complex], self: Tensor, mat1: Tensor, mat2: Tensor) -> Tensor: + r""" + sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor + + Matrix multiplies a sparse tensor :attr:`mat1` with a dense tensor + :attr:`mat2`, then adds the sparse tensor :attr:`input` to the result. + + Note: This function is equivalent to :func:`torch.addmm`, except + :attr:`input` and :attr:`mat1` are sparse. + + Args: + input (Tensor): a sparse matrix to be added + mat1 (Tensor): a sparse matrix to be matrix multiplied + mat2 (Tensor): a dense matrix to be matrix multiplied + + Keyword args: + beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) + alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) + out (Tensor, optional): the output tensor. + """ + ... +def stack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], dim: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + stack(tensors, dim=0, *, out=None) -> Tensor + + Concatenates a sequence of tensors along a new dimension. + + All tensors need to be of the same size. + + .. seealso:: + + :func:`torch.cat` concatenates the given sequence along an existing dimension. + + Arguments: + tensors (sequence of Tensors): sequence of tensors to concatenate + dim (int, optional): dimension to insert. Has to be between 0 and the number + of dimensions of concatenated tensors (inclusive). Default: 0 + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 0.3367, 0.1288, 0.2345], + [ 0.2303, -1.1229, -0.1863]]) + >>> torch.stack((x, x)) # same as torch.stack((x, x), dim=0) + tensor([[[ 0.3367, 0.1288, 0.2345], + [ 0.2303, -1.1229, -0.1863]], + + [[ 0.3367, 0.1288, 0.2345], + [ 0.2303, -1.1229, -0.1863]]]) + >>> torch.stack((x, x)).size() + torch.Size([2, 2, 3]) + >>> torch.stack((x, x), dim=1) + tensor([[[ 0.3367, 0.1288, 0.2345], + [ 0.3367, 0.1288, 0.2345]], + + [[ 0.2303, -1.1229, -0.1863], + [ 0.2303, -1.1229, -0.1863]]]) + >>> torch.stack((x, x), dim=2) + tensor([[[ 0.3367, 0.3367], + [ 0.1288, 0.1288], + [ 0.2345, 0.2345]], + + [[ 0.2303, 0.2303], + [-1.1229, -1.1229], + [-0.1863, -0.1863]]]) + >>> torch.stack((x, x), dim=-1) + tensor([[[ 0.3367, 0.3367], + [ 0.1288, 0.1288], + [ 0.2345, 0.2345]], + + [[ 0.2303, 0.2303], + [-1.1229, -1.1229], + [-0.1863, -0.1863]]]) + """ + ... +@overload +def std(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the standard deviation over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std(a, dim=1, keepdim=True) + tensor([[1.0311], + [0.7477], + [1.2204], + [0.9087]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the standard deviation over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std(a, dim=1, keepdim=True) + tensor([[1.0311], + [0.7477], + [1.2204], + [0.9087]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std(input: Tensor, unbiased: _bool = True) -> Tensor: + r""" + std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the standard deviation over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std(a, dim=1, keepdim=True) + tensor([[1.0311], + [0.7477], + [1.2204], + [0.9087]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the standard deviation over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std(a, dim=1, keepdim=True) + tensor([[1.0311], + [0.7477], + [1.2204], + [0.9087]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the standard deviation over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + dim (int or tuple of ints): the dimension or dimensions to reduce. + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std(a, dim=1, keepdim=True) + tensor([[1.0311], + [0.7477], + [1.2204], + [0.9087]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std_mean(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the standard deviation and mean over the dimensions specified by + :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or + ``None`` to reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (std, mean) containing the standard deviation and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std_mean(a, dim=0, keepdim=True) + (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std_mean(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the standard deviation and mean over the dimensions specified by + :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or + ``None`` to reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (std, mean) containing the standard deviation and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std_mean(a, dim=0, keepdim=True) + (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std_mean(input: Tensor, unbiased: _bool = True) -> Tuple[Tensor, Tensor]: + r""" + std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the standard deviation and mean over the dimensions specified by + :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or + ``None`` to reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (std, mean) containing the standard deviation and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std_mean(a, dim=0, keepdim=True) + (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the standard deviation and mean over the dimensions specified by + :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or + ``None`` to reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (std, mean) containing the standard deviation and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std_mean(a, dim=0, keepdim=True) + (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def std_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + std_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the standard deviation and mean over the dimensions specified by + :attr:`dim`. :attr:`dim` can be a single dimension, list of dimensions, or + ``None`` to reduce over all dimensions. + + The standard deviation (:math:`\sigma`) is calculated as + + .. math:: \sigma = \sqrt{\frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (std, mean) containing the standard deviation and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.std_mean(a, dim=0, keepdim=True) + (tensor([[1.2620, 1.0028, 1.0957, 0.6038]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def sub(input: Union[Tensor, Number, _complex], other: Union[Tensor, Number, _complex], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + sub(input, other, *, alpha=1, out=None) -> Tensor + + Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to subtract from :attr:`input`. + + Keyword args: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor((1, 2)) + >>> b = torch.tensor((0, 1)) + >>> torch.sub(a, b, alpha=2) + tensor([1, 0]) + """ + ... +@overload +def sub(self: Tensor, alpha: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + sub(input, other, *, alpha=1, out=None) -> Tensor + + Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to subtract from :attr:`input`. + + Keyword args: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor((1, 2)) + >>> b = torch.tensor((0, 1)) + >>> torch.sub(a, b, alpha=2) + tensor([1, 0]) + """ + ... +@overload +def sub(self: Tensor, alpha: Union[Number, _complex], other: Tensor, *, out: Tensor) -> Tensor: + r""" + sub(input, other, *, alpha=1, out=None) -> Tensor + + Subtracts :attr:`other`, scaled by :attr:`alpha`, from :attr:`input`. + + .. math:: + \text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times \text{{other}}_i + + + Supports :ref:`broadcasting to a common shape `, + :ref:`type promotion `, and integer, float, and complex inputs. + + Args: + input (Tensor): the input tensor. + other (Tensor or Number): the tensor or number to subtract from :attr:`input`. + + Keyword args: + alpha (Number): the multiplier for :attr:`other`. + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor((1, 2)) + >>> b = torch.tensor((0, 1)) + >>> torch.sub(a, b, alpha=2) + tensor([1, 0]) + """ + ... +@overload +def subtract(input: Tensor, other: Tensor, *, alpha: Union[Number, _complex] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + subtract(input, other, *, alpha=1, out=None) -> Tensor + + Alias for :func:`torch.sub`. + """ + ... +@overload +def subtract(input: Tensor, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + subtract(input, other, *, alpha=1, out=None) -> Tensor + + Alias for :func:`torch.sub`. + """ + ... +@overload +def sum(input: Tensor, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + sum(input, *, dtype=None) -> Tensor + + Returns the sum of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.1133, -0.9567, 0.2958]]) + >>> torch.sum(a) + tensor(-0.5475) + + .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the sum of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], + [-0.2993, 0.9138, 0.9337, -1.6864], + [ 0.1132, 0.7892, -0.1003, 0.5688], + [ 0.3637, -0.9906, -0.4752, -1.5197]]) + >>> torch.sum(a, 1) + tensor([-0.4598, -0.1381, 1.3708, -2.6217]) + >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) + >>> torch.sum(b, (2, 1)) + tensor([ 435., 1335., 2235., 3135.]) + """ + ... +@overload +def sum(input: Tensor, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + sum(input, *, dtype=None) -> Tensor + + Returns the sum of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.1133, -0.9567, 0.2958]]) + >>> torch.sum(a) + tensor(-0.5475) + + .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the sum of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], + [-0.2993, 0.9138, 0.9337, -1.6864], + [ 0.1132, 0.7892, -0.1003, 0.5688], + [ 0.3637, -0.9906, -0.4752, -1.5197]]) + >>> torch.sum(a, 1) + tensor([-0.4598, -0.1381, 1.3708, -2.6217]) + >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) + >>> torch.sum(b, (2, 1)) + tensor([ 435., 1335., 2235., 3135.]) + """ + ... +@overload +def sum(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None, out: Optional[Tensor] = None) -> Tensor: + r""" + sum(input, *, dtype=None) -> Tensor + + Returns the sum of all elements in the :attr:`input` tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(1, 3) + >>> a + tensor([[ 0.1133, -0.9567, 0.2958]]) + >>> torch.sum(a) + tensor(-0.5475) + + .. function:: sum(input, dim, keepdim=False, *, dtype=None) -> Tensor + :noindex: + + Returns the sum of each row of the :attr:`input` tensor in the given + dimension :attr:`dim`. If :attr:`dim` is a list of dimensions, + reduce over all of them. + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + If specified, the input tensor is casted to :attr:`dtype` before the operation + is performed. This is useful for preventing data type overflows. Default: None. + + Example:: + + >>> a = torch.randn(4, 4) + >>> a + tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], + [-0.2993, 0.9138, 0.9337, -1.6864], + [ 0.1132, 0.7892, -0.1003, 0.5688], + [ 0.3637, -0.9906, -0.4752, -1.5197]]) + >>> torch.sum(a, 1) + tensor([-0.4598, -0.1381, 1.3708, -2.6217]) + >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) + >>> torch.sum(b, (2, 1)) + tensor([ 435., 1335., 2235., 3135.]) + """ + ... +def svd(input: Tensor, some: _bool = True, compute_uv: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.svd: + r""" + svd(input, some=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor) + + Computes the singular value decomposition of either a matrix or batch of + matrices :attr:`input`. The singular value decomposition is represented as a + namedtuple `(U, S, V)`, such that :attr:`input` :math:`= U \text{diag}(S) V^{\text{H}}`. + where :math:`V^{\text{H}}` is the transpose of `V` for real inputs, + and the conjugate transpose of `V` for complex inputs. + If :attr:`input` is a batch of matrices, then `U`, `S`, and `V` are also + batched with the same batch dimensions as :attr:`input`. + + If :attr:`some` is `True` (default), the method returns the reduced singular + value decomposition. In this case, if the last two dimensions of :attr:`input` are + `m` and `n`, then the returned `U` and `V` matrices will contain only + `min(n, m)` orthonormal columns. + + If :attr:`compute_uv` is `False`, the returned `U` and `V` will be + zero-filled matrices of shape `(m, m)` and `(n, n)` + respectively, and the same device as :attr:`input`. The argument :attr:`some` + has no effect when :attr:`compute_uv` is `False`. + + Supports :attr:`input` of float, double, cfloat and cdouble data types. + The dtypes of `U` and `V` are the same as :attr:`input`'s. `S` will + always be real-valued, even if :attr:`input` is complex. + + .. warning:: + + :func:`torch.svd` is deprecated in favor of :func:`torch.linalg.svd` + and will be removed in a future PyTorch release. + + ``U, S, V = torch.svd(A, some=some, compute_uv=True)`` (default) should be replaced with + + .. code:: python + + U, S, Vh = torch.linalg.svd(A, full_matrices=not some) + V = Vh.mH + + ``_, S, _ = torch.svd(A, some=some, compute_uv=False)`` should be replaced with + + .. code:: python + + S = torch.linalg.svdvals(A) + + .. note:: Differences with :func:`torch.linalg.svd`: + + * :attr:`some` is the opposite of + :func:`torch.linalg.svd`'s :attr:`full_matrices`. Note that + default value for both is `True`, so the default behavior is + effectively the opposite. + * :func:`torch.svd` returns `V`, whereas :func:`torch.linalg.svd` returns + `Vh`, that is, :math:`V^{\text{H}}`. + * If :attr:`compute_uv` is `False`, :func:`torch.svd` returns zero-filled + tensors for `U` and `Vh`, whereas :func:`torch.linalg.svd` returns + empty tensors. + + .. note:: The singular values are returned in descending order. If :attr:`input` is a batch of matrices, + then the singular values of each matrix in the batch are returned in descending order. + + .. note:: The `S` tensor can only be used to compute gradients if :attr:`compute_uv` is `True`. + + .. note:: When :attr:`some` is `False`, the gradients on `U[..., :, min(m, n):]` + and `V[..., :, min(m, n):]` will be ignored in the backward pass, as those vectors + can be arbitrary bases of the corresponding subspaces. + + .. note:: The implementation of :func:`torch.linalg.svd` on CPU uses LAPACK's routine `?gesdd` + (a divide-and-conquer algorithm) instead of `?gesvd` for speed. Analogously, + on GPU, it uses cuSOLVER's routines `gesvdj` and `gesvdjBatched` on CUDA 10.1.243 + and later, and MAGMA's routine `gesdd` on earlier versions of CUDA. + + .. note:: The returned `U` will not be contiguous. The matrix (or batch of matrices) will + be represented as a column-major matrix (i.e. Fortran-contiguous). + + .. warning:: The gradients with respect to `U` and `V` will only be finite when the input does not + have zero nor repeated singular values. + + .. warning:: If the distance between any two singular values is close to zero, the gradients with respect to + `U` and `V` will be numerically unstable, as they depends on + :math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`. The same happens when the matrix + has small singular values, as these gradients also depend on `S^{-1}`. + + .. warning:: For complex-valued :attr:`input` the singular value decomposition is not unique, + as `U` and `V` may be multiplied by an arbitrary phase factor :math:`e^{i \phi}` on every column. + The same happens when :attr:`input` has repeated singular values, where one may multiply + the columns of the spanning subspace in `U` and `V` by a rotation matrix + and `the resulting vectors will span the same subspace`_. + Different platforms, like NumPy, or inputs on different device types, + may produce different `U` and `V` tensors. + + Args: + input (Tensor): the input tensor of size `(*, m, n)` where `*` is zero or more + batch dimensions consisting of `(m, n)` matrices. + some (bool, optional): controls whether to compute the reduced or full decomposition, and + consequently, the shape of returned `U` and `V`. Default: `True`. + compute_uv (bool, optional): controls whether to compute `U` and `V`. Default: `True`. + + Keyword args: + out (tuple, optional): the output tuple of tensors + + Example:: + + >>> a = torch.randn(5, 3) + >>> a + tensor([[ 0.2364, -0.7752, 0.6372], + [ 1.7201, 0.7394, -0.0504], + [-0.3371, -1.0584, 0.5296], + [ 0.3550, -0.4022, 1.5569], + [ 0.2445, -0.0158, 1.1414]]) + >>> u, s, v = torch.svd(a) + >>> u + tensor([[ 0.4027, 0.0287, 0.5434], + [-0.1946, 0.8833, 0.3679], + [ 0.4296, -0.2890, 0.5261], + [ 0.6604, 0.2717, -0.2618], + [ 0.4234, 0.2481, -0.4733]]) + >>> s + tensor([2.3289, 2.0315, 0.7806]) + >>> v + tensor([[-0.0199, 0.8766, 0.4809], + [-0.5080, 0.4054, -0.7600], + [ 0.8611, 0.2594, -0.4373]]) + >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) + tensor(8.6531e-07) + >>> a_big = torch.randn(7, 5, 3) + >>> u, s, v = torch.svd(a_big) + >>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.mT)) + tensor(2.6503e-06) + + .. _the resulting vectors will span the same subspace: + (https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD) + """ + ... +def swapaxes(input: Tensor, axis0: _int, axis1: _int) -> Tensor: + r""" + swapaxes(input, axis0, axis1) -> Tensor + + Alias for :func:`torch.transpose`. + + This function is equivalent to NumPy's swapaxes function. + + Examples:: + + >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) + >>> x + tensor([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]) + >>> torch.swapaxes(x, 0, 1) + tensor([[[0, 1], + [4, 5]], + + [[2, 3], + [6, 7]]]) + >>> torch.swapaxes(x, 0, 2) + tensor([[[0, 4], + [2, 6]], + + [[1, 5], + [3, 7]]]) + """ + ... +def swapdims(input: Tensor, dim0: _int, dim1: _int) -> Tensor: + r""" + swapdims(input, dim0, dim1) -> Tensor + + Alias for :func:`torch.transpose`. + + This function is equivalent to NumPy's swapaxes function. + + Examples:: + + >>> x = torch.tensor([[[0,1],[2,3]],[[4,5],[6,7]]]) + >>> x + tensor([[[0, 1], + [2, 3]], + + [[4, 5], + [6, 7]]]) + >>> torch.swapdims(x, 0, 1) + tensor([[[0, 1], + [4, 5]], + + [[2, 3], + [6, 7]]]) + >>> torch.swapdims(x, 0, 2) + tensor([[[0, 4], + [2, 6]], + + [[1, 5], + [3, 7]]]) + """ + ... +def sym_constrain_range(size: Union[Number, _complex], *, min: Optional[_int] = None, max: Optional[_int] = None) -> None: ... +def sym_constrain_range_for_size(size: Union[Number, _complex], *, min: Optional[_int] = None, max: Optional[_int] = None) -> None: ... +def t(input: Tensor) -> Tensor: + r""" + t(input) -> Tensor + + Expects :attr:`input` to be <= 2-D tensor and transposes dimensions 0 + and 1. + + 0-D and 1-D tensors are returned as is. When input is a 2-D tensor this + is equivalent to ``transpose(input, 0, 1)``. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x = torch.randn(()) + >>> x + tensor(0.1995) + >>> torch.t(x) + tensor(0.1995) + >>> x = torch.randn(3) + >>> x + tensor([ 2.4320, -0.4608, 0.7702]) + >>> torch.t(x) + tensor([ 2.4320, -0.4608, 0.7702]) + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 0.4875, 0.9158, -0.5872], + [ 0.3938, -0.6929, 0.6932]]) + >>> torch.t(x) + tensor([[ 0.4875, 0.3938], + [ 0.9158, -0.6929], + [-0.5872, 0.6932]]) + + See also :func:`torch.transpose`. + """ + ... +def t_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.t`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def take(input: Tensor, index: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + take(input, index) -> Tensor + + Returns a new tensor with the elements of :attr:`input` at the given indices. + The input tensor is treated as if it were viewed as a 1-D tensor. The result + takes the same shape as the indices. + + Args: + input (Tensor): the input tensor. + index (LongTensor): the indices into tensor + + Example:: + + >>> src = torch.tensor([[4, 3, 5], + ... [6, 7, 8]]) + >>> torch.take(src, torch.tensor([0, 2, 5])) + tensor([ 4, 5, 8]) + """ + ... +def take_along_dim(input: Tensor, indices: Tensor, dim: Optional[_int] = None, *, out: Optional[Tensor] = None) -> Tensor: + r""" + take_along_dim(input, indices, dim=None, *, out=None) -> Tensor + + Selects values from :attr:`input` at the 1-dimensional indices from :attr:`indices` along the given :attr:`dim`. + + If :attr:`dim` is None, the input array is treated as if it has been flattened to 1d. + + Functions that return indices along a dimension, like :func:`torch.argmax` and :func:`torch.argsort`, + are designed to work with this function. See the examples below. + + .. note:: + This function is similar to NumPy's `take_along_axis`. + See also :func:`torch.gather`. + + Args: + input (Tensor): the input tensor. + indices (tensor): the indices into :attr:`input`. Must have long dtype. + dim (int, optional): dimension to select along. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> t = torch.tensor([[10, 30, 20], [60, 40, 50]]) + >>> max_idx = torch.argmax(t) + >>> torch.take_along_dim(t, max_idx) + tensor([60]) + >>> sorted_idx = torch.argsort(t, dim=1) + >>> torch.take_along_dim(t, sorted_idx, dim=1) + tensor([[10, 20, 30], + [40, 50, 60]]) + """ + ... +def tan(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + tan(input, *, out=None) -> Tensor + + Returns a new tensor with the tangent of the elements of :attr:`input`. + + .. math:: + \text{out}_{i} = \tan(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([-1.2027, -1.7687, 0.4412, -1.3856]) + >>> torch.tan(a) + tensor([-2.5930, 4.9859, 0.4722, -5.3366]) + """ + ... +def tan_(input: Tensor) -> Tensor: ... +def tanh(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + tanh(input, *, out=None) -> Tensor + + Returns a new tensor with the hyperbolic tangent of the elements + of :attr:`input`. + + .. math:: + \text{out}_{i} = \tanh(\text{input}_{i}) + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 0.8986, -0.7279, 1.1745, 0.2611]) + >>> torch.tanh(a) + tensor([ 0.7156, -0.6218, 0.8257, 0.2553]) + """ + ... +def tanh_(input: Tensor) -> Tensor: ... +def tensor(data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + tensor(data, *, dtype=None, device=None, requires_grad=False, pin_memory=False) -> Tensor + + Constructs a tensor with no autograd history (also known as a "leaf tensor", see :doc:`/notes/autograd`) by copying :attr:`data`. + + .. warning:: + + When working with tensors prefer using :func:`torch.Tensor.clone`, + :func:`torch.Tensor.detach`, and :func:`torch.Tensor.requires_grad_` for + readability. Letting `t` be a tensor, ``torch.tensor(t)`` is equivalent to + ``t.clone().detach()``, and ``torch.tensor(t, requires_grad=True)`` + is equivalent to ``t.clone().detach().requires_grad_(True)``. + + .. seealso:: + + :func:`torch.as_tensor` preserves autograd history and avoids copies where possible. + :func:`torch.from_numpy` creates a tensor that shares storage with a NumPy array. + + Args: + data (array_like): Initial data for the tensor. Can be a list, tuple, + NumPy ``ndarray``, scalar, and other types. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, infers data type from :attr:`data`. + device (:class:`torch.device`, optional): the device of the constructed tensor. If None and data is a tensor + then the device of data is used. If None and data is not a tensor then + the result tensor is constructed on the current device. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + + Example:: + + >>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) + tensor([[ 0.1000, 1.2000], + [ 2.2000, 3.1000], + [ 4.9000, 5.2000]]) + + >>> torch.tensor([0, 1]) # Type inference on data + tensor([ 0, 1]) + + >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], + ... dtype=torch.float64, + ... device=torch.device('cuda:0')) # creates a double tensor on a CUDA device + tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') + + >>> torch.tensor(3.14159) # Create a zero-dimensional (scalar) tensor + tensor(3.1416) + + >>> torch.tensor([]) # Create an empty tensor (of size (0,)) + tensor([]) + """ + ... +@overload +def tensor_split(input: Tensor, tensor_indices_or_sections: Tensor, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(input, indices_or_sections, dim=0) -> List of Tensors + + Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, + along dimension :attr:`dim` according to the indices or number of sections specified + by :attr:`indices_or_sections`. This function is based on NumPy's + :func:`numpy.array_split`. + + Args: + input (Tensor): the tensor to split + indices_or_sections (Tensor, int or list or tuple of ints): + If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor + with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. + If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each + section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` + is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` + sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will + have size :code:`int(input.size(dim) / n)`. + + If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long + tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices + in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` + would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. + + If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional + long tensor on the CPU. + + dim (int, optional): dimension along which to split the tensor. Default: ``0`` + + Example:: + + >>> x = torch.arange(8) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) + + >>> x = torch.arange(7) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) + >>> torch.tensor_split(x, (1, 6)) + (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) + + >>> x = torch.arange(14).reshape(2, 7) + >>> x + tensor([[ 0, 1, 2, 3, 4, 5, 6], + [ 7, 8, 9, 10, 11, 12, 13]]) + >>> torch.tensor_split(x, 3, dim=1) + (tensor([[0, 1, 2], + [7, 8, 9]]), + tensor([[ 3, 4], + [10, 11]]), + tensor([[ 5, 6], + [12, 13]])) + >>> torch.tensor_split(x, (1, 6), dim=1) + (tensor([[0], + [7]]), + tensor([[ 1, 2, 3, 4, 5], + [ 8, 9, 10, 11, 12]]), + tensor([[ 6], + [13]])) + """ + ... +@overload +def tensor_split(input: Tensor, sections: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(input, indices_or_sections, dim=0) -> List of Tensors + + Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, + along dimension :attr:`dim` according to the indices or number of sections specified + by :attr:`indices_or_sections`. This function is based on NumPy's + :func:`numpy.array_split`. + + Args: + input (Tensor): the tensor to split + indices_or_sections (Tensor, int or list or tuple of ints): + If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor + with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. + If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each + section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` + is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` + sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will + have size :code:`int(input.size(dim) / n)`. + + If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long + tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices + in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` + would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. + + If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional + long tensor on the CPU. + + dim (int, optional): dimension along which to split the tensor. Default: ``0`` + + Example:: + + >>> x = torch.arange(8) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) + + >>> x = torch.arange(7) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) + >>> torch.tensor_split(x, (1, 6)) + (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) + + >>> x = torch.arange(14).reshape(2, 7) + >>> x + tensor([[ 0, 1, 2, 3, 4, 5, 6], + [ 7, 8, 9, 10, 11, 12, 13]]) + >>> torch.tensor_split(x, 3, dim=1) + (tensor([[0, 1, 2], + [7, 8, 9]]), + tensor([[ 3, 4], + [10, 11]]), + tensor([[ 5, 6], + [12, 13]])) + >>> torch.tensor_split(x, (1, 6), dim=1) + (tensor([[0], + [7]]), + tensor([[ 1, 2, 3, 4, 5], + [ 8, 9, 10, 11, 12]]), + tensor([[ 6], + [13]])) + """ + ... +@overload +def tensor_split(input: Tensor, indices: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(input, indices_or_sections, dim=0) -> List of Tensors + + Splits a tensor into multiple sub-tensors, all of which are views of :attr:`input`, + along dimension :attr:`dim` according to the indices or number of sections specified + by :attr:`indices_or_sections`. This function is based on NumPy's + :func:`numpy.array_split`. + + Args: + input (Tensor): the tensor to split + indices_or_sections (Tensor, int or list or tuple of ints): + If :attr:`indices_or_sections` is an integer ``n`` or a zero dimensional long tensor + with value ``n``, :attr:`input` is split into ``n`` sections along dimension :attr:`dim`. + If :attr:`input` is divisible by ``n`` along dimension :attr:`dim`, each + section will be of equal size, :code:`input.size(dim) / n`. If :attr:`input` + is not divisible by ``n``, the sizes of the first :code:`int(input.size(dim) % n)` + sections will have size :code:`int(input.size(dim) / n) + 1`, and the rest will + have size :code:`int(input.size(dim) / n)`. + + If :attr:`indices_or_sections` is a list or tuple of ints, or a one-dimensional long + tensor, then :attr:`input` is split along dimension :attr:`dim` at each of the indices + in the list, tuple or tensor. For instance, :code:`indices_or_sections=[2, 3]` and :code:`dim=0` + would result in the tensors :code:`input[:2]`, :code:`input[2:3]`, and :code:`input[3:]`. + + If :attr:`indices_or_sections` is a tensor, it must be a zero-dimensional or one-dimensional + long tensor on the CPU. + + dim (int, optional): dimension along which to split the tensor. Default: ``0`` + + Example:: + + >>> x = torch.arange(8) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) + + >>> x = torch.arange(7) + >>> torch.tensor_split(x, 3) + (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) + >>> torch.tensor_split(x, (1, 6)) + (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6])) + + >>> x = torch.arange(14).reshape(2, 7) + >>> x + tensor([[ 0, 1, 2, 3, 4, 5, 6], + [ 7, 8, 9, 10, 11, 12, 13]]) + >>> torch.tensor_split(x, 3, dim=1) + (tensor([[0, 1, 2], + [7, 8, 9]]), + tensor([[ 3, 4], + [10, 11]]), + tensor([[ 5, 6], + [12, 13]])) + >>> torch.tensor_split(x, (1, 6), dim=1) + (tensor([[0], + [7]]), + tensor([[ 1, 2, 3, 4, 5], + [ 8, 9, 10, 11, 12]]), + tensor([[ 6], + [13]])) + """ + ... +def threshold(input: Tensor, threshold: Union[Number, _complex], value: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: ... +def threshold_(input: Tensor, threshold: Union[Number, _complex], value: Union[Number, _complex]) -> Tensor: ... +def tile(input: Tensor, dims: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + tile(input, dims) -> Tensor + + Constructs a tensor by repeating the elements of :attr:`input`. + The :attr:`dims` argument specifies the number of repetitions + in each dimension. + + If :attr:`dims` specifies fewer dimensions than :attr:`input` has, then + ones are prepended to :attr:`dims` until all dimensions are specified. + For example, if :attr:`input` has shape (8, 6, 4, 2) and :attr:`dims` + is (2, 2), then :attr:`dims` is treated as (1, 1, 2, 2). + + Analogously, if :attr:`input` has fewer dimensions than :attr:`dims` + specifies, then :attr:`input` is treated as if it were unsqueezed at + dimension zero until it has as many dimensions as :attr:`dims` specifies. + For example, if :attr:`input` has shape (4, 2) and :attr:`dims` + is (3, 3, 2, 2), then :attr:`input` is treated as if it had the + shape (1, 1, 4, 2). + + .. note:: + + This function is similar to NumPy's tile function. + + Args: + input (Tensor): the tensor whose elements to repeat. + dims (tuple): the number of repetitions per dimension. + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.tile((2,)) + tensor([1, 2, 3, 1, 2, 3]) + >>> y = torch.tensor([[1, 2], [3, 4]]) + >>> torch.tile(y, (2, 2)) + tensor([[1, 2, 1, 2], + [3, 4, 3, 4], + [1, 2, 1, 2], + [3, 4, 3, 4]]) + """ + ... +def topk(input: Tensor, k: Union[_int, SymInt], dim: _int = -1, largest: _bool = True, sorted: _bool = True, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.topk: + r""" + topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor) + + Returns the :attr:`k` largest elements of the given :attr:`input` tensor along + a given dimension. + + If :attr:`dim` is not given, the last dimension of the `input` is chosen. + + If :attr:`largest` is ``False`` then the `k` smallest elements are returned. + + A namedtuple of `(values, indices)` is returned with the `values` and + `indices` of the largest `k` elements of each row of the `input` tensor in the + given dimension `dim`. + + The boolean option :attr:`sorted` if ``True``, will make sure that the returned + `k` elements are themselves sorted + + Args: + input (Tensor): the input tensor. + k (int): the k in "top-k" + dim (int, optional): the dimension to sort along + largest (bool, optional): controls whether to return largest or + smallest elements + sorted (bool, optional): controls whether to return the elements + in sorted order + + Keyword args: + out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be + optionally given to be used as output buffers + + Example:: + + >>> x = torch.arange(1., 6.) + >>> x + tensor([ 1., 2., 3., 4., 5.]) + >>> torch.topk(x, 3) + torch.return_types.topk(values=tensor([5., 4., 3.]), indices=tensor([4, 3, 2])) + """ + ... +def trace(input: Tensor) -> Tensor: + r""" + trace(input) -> Tensor + + Returns the sum of the elements of the diagonal of the input 2-D matrix. + + Example:: + + >>> x = torch.arange(1., 10.).view(3, 3) + >>> x + tensor([[ 1., 2., 3.], + [ 4., 5., 6.], + [ 7., 8., 9.]]) + >>> torch.trace(x) + tensor(15.) + """ + ... +@overload +def transpose(input: Tensor, dim0: _int, dim1: _int) -> Tensor: + r""" + transpose(input, dim0, dim1) -> Tensor + + Returns a tensor that is a transposed version of :attr:`input`. + The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. + + If :attr:`input` is a strided tensor then the resulting :attr:`out` + tensor shares its underlying storage with the :attr:`input` tensor, so + changing the content of one would change the content of the other. + + If :attr:`input` is a :ref:`sparse tensor ` then the + resulting :attr:`out` tensor *does not* share the underlying storage + with the :attr:`input` tensor. + + If :attr:`input` is a :ref:`sparse tensor ` with compressed + layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments + :attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must + both be sparse dimensions. The batch dimensions of a sparse tensor are the + dimensions preceding the sparse dimensions. + + .. note:: + Transpositions which interchange the sparse dimensions of a `SparseCSR` + or `SparseCSC` layout tensor will result in the layout changing between + the two options. Transposition of the sparse dimensions of a ` SparseBSR` + or `SparseBSC` layout tensor will likewise generate a result with the + opposite layout. + + + Args: + input (Tensor): the input tensor. + dim0 (int): the first dimension to be transposed + dim1 (int): the second dimension to be transposed + + Example:: + + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 1.0028, -0.9893, 0.5809], + [-0.1669, 0.7299, 0.4942]]) + >>> torch.transpose(x, 0, 1) + tensor([[ 1.0028, -0.1669], + [-0.9893, 0.7299], + [ 0.5809, 0.4942]]) + + See also :func:`torch.t`. + """ + ... +@overload +def transpose(input: Tensor, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: + r""" + transpose(input, dim0, dim1) -> Tensor + + Returns a tensor that is a transposed version of :attr:`input`. + The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. + + If :attr:`input` is a strided tensor then the resulting :attr:`out` + tensor shares its underlying storage with the :attr:`input` tensor, so + changing the content of one would change the content of the other. + + If :attr:`input` is a :ref:`sparse tensor ` then the + resulting :attr:`out` tensor *does not* share the underlying storage + with the :attr:`input` tensor. + + If :attr:`input` is a :ref:`sparse tensor ` with compressed + layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments + :attr:`dim0` and :attr:`dim1` must be both batch dimensions, or must + both be sparse dimensions. The batch dimensions of a sparse tensor are the + dimensions preceding the sparse dimensions. + + .. note:: + Transpositions which interchange the sparse dimensions of a `SparseCSR` + or `SparseCSC` layout tensor will result in the layout changing between + the two options. Transposition of the sparse dimensions of a ` SparseBSR` + or `SparseBSC` layout tensor will likewise generate a result with the + opposite layout. + + + Args: + input (Tensor): the input tensor. + dim0 (int): the first dimension to be transposed + dim1 (int): the second dimension to be transposed + + Example:: + + >>> x = torch.randn(2, 3) + >>> x + tensor([[ 1.0028, -0.9893, 0.5809], + [-0.1669, 0.7299, 0.4942]]) + >>> torch.transpose(x, 0, 1) + tensor([[ 1.0028, -0.1669], + [-0.9893, 0.7299], + [ 0.5809, 0.4942]]) + + See also :func:`torch.t`. + """ + ... +def transpose_copy(input: Tensor, dim0: _int, dim1: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.transpose`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def trapezoid(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: + r""" + trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor + + Computes the `trapezoidal rule `_ along + :attr:`dim`. By default the spacing between elements is assumed to be 1, but + :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be + used to specify arbitrary spacing along :attr:`dim`. + + + Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`, + the default computation is + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) + \end{aligned} + + When :attr:`dx` is specified the computation becomes + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) + \end{aligned} + + effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified, + assuming :attr:`x` is also a one-dimensional tensor with + elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) + \end{aligned} + + When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed. + The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x` + and :attr:`y`, the function computes the difference between consecutive elements along + dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have + the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1. + After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. + See the examples below for details. + + .. note:: + The trapezoidal rule is a technique for approximating the definite integral of a function + by averaging its left and right Riemann sums. The approximation becomes more accurate as + the resolution of the partition increases. + + Arguments: + y (Tensor): Values to use when computing the trapezoidal rule. + x (Tensor): If specified, defines spacing between values as specified above. + + Keyword arguments: + dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` + are specified then this defaults to 1. Effectively multiplies the result by its value. + dim (int): The dimension along which to compute the trapezoidal rule. + The last (inner-most) dimension by default. + + Examples:: + + >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 + >>> y = torch.tensor([1, 5, 10]) + >>> torch.trapezoid(y) + tensor(10.5) + + >>> # Computes the same trapezoidal rule directly to verify + >>> (1 + 10 + 10) / 2 + 10.5 + + >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 + >>> # NOTE: the result is the same as before, but multiplied by 2 + >>> torch.trapezoid(y, dx=2) + 21.0 + + >>> # Computes the trapezoidal rule in 1D with arbitrary spacing + >>> x = torch.tensor([1, 3, 6]) + >>> torch.trapezoid(y, x) + 28.5 + + >>> # Computes the same trapezoidal rule directly to verify + >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 + 28.5 + + >>> # Computes the trapezoidal rule for each row of a 3x3 matrix + >>> y = torch.arange(9).reshape(3, 3) + tensor([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> torch.trapezoid(y) + tensor([ 2., 8., 14.]) + + >>> # Computes the trapezoidal rule for each column of the matrix + >>> torch.trapezoid(y, dim=0) + tensor([ 6., 8., 10.]) + + >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with the same arbitrary spacing + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([1, 3, 6]) + >>> torch.trapezoid(y, x) + array([5., 5., 5.]) + + >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with different arbitrary spacing per row + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) + >>> torch.trapezoid(y, x) + array([2., 4., 6.]) + """ + ... +@overload +def trapezoid(y: Tensor, *, dx: Union[Number, _complex] = 1, dim: _int = -1) -> Tensor: + r""" + trapezoid(y, x=None, *, dx=None, dim=-1) -> Tensor + + Computes the `trapezoidal rule `_ along + :attr:`dim`. By default the spacing between elements is assumed to be 1, but + :attr:`dx` can be used to specify a different constant spacing, and :attr:`x` can be + used to specify arbitrary spacing along :attr:`dim`. + + + Assuming :attr:`y` is a one-dimensional tensor with elements :math:`{y_0, y_1, ..., y_n}`, + the default computation is + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{1}{2} (y_i + y_{i-1}) + \end{aligned} + + When :attr:`dx` is specified the computation becomes + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{\Delta x}{2} (y_i + y_{i-1}) + \end{aligned} + + effectively multiplying the result by :attr:`dx`. When :attr:`x` is specified, + assuming :attr:`x` is also a one-dimensional tensor with + elements :math:`{x_0, x_1, ..., x_n}`, the computation becomes + + .. math:: + \begin{aligned} + \sum_{i = 1}^{n-1} \frac{(x_i - x_{i-1})}{2} (y_i + y_{i-1}) + \end{aligned} + + When :attr:`x` and :attr:`y` have the same size, the computation is as described above and no broadcasting is needed. + The broadcasting behavior of this function is as follows when their sizes are different. For both :attr:`x` + and :attr:`y`, the function computes the difference between consecutive elements along + dimension :attr:`dim`. This effectively creates two tensors, `x_diff` and `y_diff`, that have + the same shape as the original tensors except their lengths along the dimension :attr:`dim` is reduced by 1. + After that, those two tensors are broadcast together to compute final output as part of the trapezoidal rule. + See the examples below for details. + + .. note:: + The trapezoidal rule is a technique for approximating the definite integral of a function + by averaging its left and right Riemann sums. The approximation becomes more accurate as + the resolution of the partition increases. + + Arguments: + y (Tensor): Values to use when computing the trapezoidal rule. + x (Tensor): If specified, defines spacing between values as specified above. + + Keyword arguments: + dx (float): constant spacing between values. If neither :attr:`x` or :attr:`dx` + are specified then this defaults to 1. Effectively multiplies the result by its value. + dim (int): The dimension along which to compute the trapezoidal rule. + The last (inner-most) dimension by default. + + Examples:: + + >>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 + >>> y = torch.tensor([1, 5, 10]) + >>> torch.trapezoid(y) + tensor(10.5) + + >>> # Computes the same trapezoidal rule directly to verify + >>> (1 + 10 + 10) / 2 + 10.5 + + >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 + >>> # NOTE: the result is the same as before, but multiplied by 2 + >>> torch.trapezoid(y, dx=2) + 21.0 + + >>> # Computes the trapezoidal rule in 1D with arbitrary spacing + >>> x = torch.tensor([1, 3, 6]) + >>> torch.trapezoid(y, x) + 28.5 + + >>> # Computes the same trapezoidal rule directly to verify + >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 + 28.5 + + >>> # Computes the trapezoidal rule for each row of a 3x3 matrix + >>> y = torch.arange(9).reshape(3, 3) + tensor([[0, 1, 2], + [3, 4, 5], + [6, 7, 8]]) + >>> torch.trapezoid(y) + tensor([ 2., 8., 14.]) + + >>> # Computes the trapezoidal rule for each column of the matrix + >>> torch.trapezoid(y, dim=0) + tensor([ 6., 8., 10.]) + + >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with the same arbitrary spacing + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([1, 3, 6]) + >>> torch.trapezoid(y, x) + array([5., 5., 5.]) + + >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix + >>> # with different arbitrary spacing per row + >>> y = torch.ones(3, 3) + >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) + >>> torch.trapezoid(y, x) + array([2., 4., 6.]) + """ + ... +@overload +def trapz(y: Tensor, *, dx: _float = 1, dim: _int = -1) -> Tensor: + r""" + trapz(y, x, *, dim=-1) -> Tensor + + Alias for :func:`torch.trapezoid`. + """ + ... +@overload +def trapz(y: Tensor, x: Tensor, *, dim: _int = -1) -> Tensor: + r""" + trapz(y, x, *, dim=-1) -> Tensor + + Alias for :func:`torch.trapezoid`. + """ + ... +def triangular_solve(input: Tensor, A: Tensor, upper: _bool = True, transpose: _bool = False, unitriangular: _bool = False, *, out: Union[Tensor, Tuple[Tensor, ...], List[Tensor], None] = None) -> torch.return_types.triangular_solve: + r""" + triangular_solve(b, A, upper=True, transpose=False, unitriangular=False, *, out=None) -> (Tensor, Tensor) + + Solves a system of equations with a square upper or lower triangular invertible matrix :math:`A` + and multiple right-hand sides :math:`b`. + + In symbols, it solves :math:`AX = b` and assumes :math:`A` is square upper-triangular + (or lower-triangular if :attr:`upper`\ `= False`) and does not have zeros on the diagonal. + + `torch.triangular_solve(b, A)` can take in 2D inputs `b, A` or inputs that are + batches of 2D matrices. If the inputs are batches, then returns + batched outputs `X` + + If the diagonal of :attr:`A` contains zeros or elements that are very close to zero and + :attr:`unitriangular`\ `= False` (default) or if the input matrix is badly conditioned, + the result may contain `NaN` s. + + Supports input of float, double, cfloat and cdouble data types. + + .. warning:: + + :func:`torch.triangular_solve` is deprecated in favor of :func:`torch.linalg.solve_triangular` + and will be removed in a future PyTorch release. + :func:`torch.linalg.solve_triangular` has its arguments reversed and does not return a + copy of one of the inputs. + + ``X = torch.triangular_solve(B, A).solution`` should be replaced with + + .. code:: python + + X = torch.linalg.solve_triangular(A, B) + + Args: + b (Tensor): multiple right-hand sides of size :math:`(*, m, k)` where + :math:`*` is zero of more batch dimensions + A (Tensor): the input triangular coefficient matrix of size :math:`(*, m, m)` + where :math:`*` is zero or more batch dimensions + upper (bool, optional): whether :math:`A` is upper or lower triangular. Default: ``True``. + transpose (bool, optional): solves `op(A)X = b` where `op(A) = A^T` if this flag is ``True``, + and `op(A) = A` if it is ``False``. Default: ``False``. + unitriangular (bool, optional): whether :math:`A` is unit triangular. + If True, the diagonal elements of :math:`A` are assumed to be + 1 and not referenced from :math:`A`. Default: ``False``. + + Keyword args: + out ((Tensor, Tensor), optional): tuple of two tensors to write + the output to. Ignored if `None`. Default: `None`. + + Returns: + A namedtuple `(solution, cloned_coefficient)` where `cloned_coefficient` + is a clone of :math:`A` and `solution` is the solution :math:`X` to :math:`AX = b` + (or whatever variant of the system of equations, depending on the keyword arguments.) + + Examples:: + + >>> A = torch.randn(2, 2).triu() + >>> A + tensor([[ 1.1527, -1.0753], + [ 0.0000, 0.7986]]) + >>> b = torch.randn(2, 3) + >>> b + tensor([[-0.0210, 2.3513, -1.5492], + [ 1.5429, 0.7403, -1.0243]]) + >>> torch.triangular_solve(b, A) + torch.return_types.triangular_solve( + solution=tensor([[ 1.7841, 2.9046, -2.5405], + [ 1.9320, 0.9270, -1.2826]]), + cloned_coefficient=tensor([[ 1.1527, -1.0753], + [ 0.0000, 0.7986]])) + """ + ... +def tril(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + tril(input, diagonal=0, *, out=None) -> Tensor + + Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices + :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. + + The lower triangular part of the matrix is defined as the elements on and + below the diagonal. + + The argument :attr:`diagonal` controls which diagonal to consider. If + :attr:`diagonal` = 0, all elements on and below the main diagonal are + retained. A positive value includes just as many diagonals above the main + diagonal, and similarly a negative value excludes just as many diagonals below + the main diagonal. The main diagonal are the set of indices + :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where + :math:`d_{1}, d_{2}` are the dimensions of the matrix. + + Args: + input (Tensor): the input tensor. + diagonal (int, optional): the diagonal to consider + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(3, 3) + >>> a + tensor([[-1.0813, -0.8619, 0.7105], + [ 0.0935, 0.1380, 2.2112], + [-0.3409, -0.9828, 0.0289]]) + >>> torch.tril(a) + tensor([[-1.0813, 0.0000, 0.0000], + [ 0.0935, 0.1380, 0.0000], + [-0.3409, -0.9828, 0.0289]]) + + >>> b = torch.randn(4, 6) + >>> b + tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], + [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], + [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], + [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) + >>> torch.tril(b, diagonal=1) + tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], + [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], + [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000], + [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) + >>> torch.tril(b, diagonal=-1) + tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], + [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], + [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], + [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]]) + """ + ... +def tril_indices(row: _int, col: _int, offset: _int = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + tril_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor + + Returns the indices of the lower triangular part of a :attr:`row`-by- + :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row + coordinates of all indices and the second row contains column coordinates. + Indices are ordered based on rows and then columns. + + The lower triangular part of the matrix is defined as the elements on and + below the diagonal. + + The argument :attr:`offset` controls which diagonal to consider. If + :attr:`offset` = 0, all elements on and below the main diagonal are + retained. A positive value includes just as many diagonals above the main + diagonal, and similarly a negative value excludes just as many diagonals below + the main diagonal. The main diagonal are the set of indices + :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` + where :math:`d_{1}, d_{2}` are the dimensions of the matrix. + + .. note:: + When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to + prevent overflow during calculation. + + Args: + row (``int``): number of rows in the 2-D matrix. + col (``int``): number of columns in the 2-D matrix. + offset (``int``): diagonal offset from the main diagonal. + Default: if not provided, 0. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, ``torch.long``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. + + Example:: + + >>> a = torch.tril_indices(3, 3) + >>> a + tensor([[0, 1, 1, 2, 2, 2], + [0, 0, 1, 0, 1, 2]]) + + >>> a = torch.tril_indices(4, 3, -1) + >>> a + tensor([[1, 2, 2, 3, 3, 3], + [0, 0, 1, 0, 1, 2]]) + + >>> a = torch.tril_indices(4, 3, 1) + >>> a + tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3], + [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]]) + """ + ... +def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: _float = 1.0, p: _float = 2, eps: _float = 1e-06, swap: _bool = False, reduction: _int = 1) -> Tensor: ... +def triu(input: Tensor, diagonal: _int = 0, *, out: Optional[Tensor] = None) -> Tensor: + r""" + triu(input, diagonal=0, *, out=None) -> Tensor + + Returns the upper triangular part of a matrix (2-D tensor) or batch of matrices + :attr:`input`, the other elements of the result tensor :attr:`out` are set to 0. + + The upper triangular part of the matrix is defined as the elements on and + above the diagonal. + + The argument :attr:`diagonal` controls which diagonal to consider. If + :attr:`diagonal` = 0, all elements on and above the main diagonal are + retained. A positive value excludes just as many diagonals above the main + diagonal, and similarly a negative value includes just as many diagonals below + the main diagonal. The main diagonal are the set of indices + :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where + :math:`d_{1}, d_{2}` are the dimensions of the matrix. + + Args: + input (Tensor): the input tensor. + diagonal (int, optional): the diagonal to consider + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(3, 3) + >>> a + tensor([[ 0.2309, 0.5207, 2.0049], + [ 0.2072, -1.0680, 0.6602], + [ 0.3480, -0.5211, -0.4573]]) + >>> torch.triu(a) + tensor([[ 0.2309, 0.5207, 2.0049], + [ 0.0000, -1.0680, 0.6602], + [ 0.0000, 0.0000, -0.4573]]) + >>> torch.triu(a, diagonal=1) + tensor([[ 0.0000, 0.5207, 2.0049], + [ 0.0000, 0.0000, 0.6602], + [ 0.0000, 0.0000, 0.0000]]) + >>> torch.triu(a, diagonal=-1) + tensor([[ 0.2309, 0.5207, 2.0049], + [ 0.2072, -1.0680, 0.6602], + [ 0.0000, -0.5211, -0.4573]]) + + >>> b = torch.randn(4, 6) + >>> b + tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], + [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], + [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], + [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) + >>> torch.triu(b, diagonal=1) + tensor([[ 0.0000, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], + [ 0.0000, 0.0000, -1.2919, 1.3378, -0.1768, -1.0857], + [ 0.0000, 0.0000, 0.0000, -1.0432, 0.9348, -0.4410], + [ 0.0000, 0.0000, 0.0000, 0.0000, 0.4798, 0.2830]]) + >>> torch.triu(b, diagonal=-1) + tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], + [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], + [ 0.0000, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], + [ 0.0000, 0.0000, -1.3337, -1.6556, 0.4798, 0.2830]]) + """ + ... +def triu_indices(row: _int, col: _int, offset: _int = 0, *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + triu_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor + + Returns the indices of the upper triangular part of a :attr:`row` by + :attr:`col` matrix in a 2-by-N Tensor, where the first row contains row + coordinates of all indices and the second row contains column coordinates. + Indices are ordered based on rows and then columns. + + The upper triangular part of the matrix is defined as the elements on and + above the diagonal. + + The argument :attr:`offset` controls which diagonal to consider. If + :attr:`offset` = 0, all elements on and above the main diagonal are + retained. A positive value excludes just as many diagonals above the main + diagonal, and similarly a negative value includes just as many diagonals below + the main diagonal. The main diagonal are the set of indices + :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` + where :math:`d_{1}, d_{2}` are the dimensions of the matrix. + + .. note:: + When running on CUDA, ``row * col`` must be less than :math:`2^{59}` to + prevent overflow during calculation. + + Args: + row (``int``): number of rows in the 2-D matrix. + col (``int``): number of columns in the 2-D matrix. + offset (``int``): diagonal offset from the main diagonal. + Default: if not provided, 0. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, ``torch.long``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + layout (:class:`torch.layout`, optional): currently only support ``torch.strided``. + + Example:: + + >>> a = torch.triu_indices(3, 3) + >>> a + tensor([[0, 0, 0, 1, 1, 2], + [0, 1, 2, 1, 2, 2]]) + + >>> a = torch.triu_indices(4, 3, -1) + >>> a + tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3], + [0, 1, 2, 0, 1, 2, 1, 2, 2]]) + + >>> a = torch.triu_indices(4, 3, 1) + >>> a + tensor([[0, 0, 1], + [1, 2, 2]]) + """ + ... +def true_divide(input: Union[Tensor, Number], other: Union[Tensor, Number], *, out: Optional[Tensor] = None) -> Tensor: + r""" + true_divide(dividend, divisor, *, out) -> Tensor + + Alias for :func:`torch.div` with ``rounding_mode=None``. + """ + ... +def trunc(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + trunc(input, *, out=None) -> Tensor + + Returns a new tensor with the truncated integer values of + the elements of :attr:`input`. + + For integer inputs, follows the array-api convention of returning a + copy of the input tensor. + + Args: + input (Tensor): the input tensor. + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.randn(4) + >>> a + tensor([ 3.4742, 0.5466, -0.8008, -0.9079]) + >>> torch.trunc(a) + tensor([ 3., 0., -0., -0.]) + """ + ... +def trunc_(input: Tensor) -> Tensor: ... +@overload +def unbind(input: Tensor, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unbind(input, dim=0) -> seq + + Removes a tensor dimension. + + Returns a tuple of all slices along a given dimension, already without it. + + Arguments: + input (Tensor): the tensor to unbind + dim (int): dimension to remove + + Example:: + + >>> torch.unbind(torch.tensor([[1, 2, 3], + >>> [4, 5, 6], + >>> [7, 8, 9]])) + (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) + """ + ... +@overload +def unbind(input: Tensor, dim: Union[str, ellipsis, None]) -> Tuple[Tensor, ...]: + r""" + unbind(input, dim=0) -> seq + + Removes a tensor dimension. + + Returns a tuple of all slices along a given dimension, already without it. + + Arguments: + input (Tensor): the tensor to unbind + dim (int): dimension to remove + + Example:: + + >>> torch.unbind(torch.tensor([[1, 2, 3], + >>> [4, 5, 6], + >>> [7, 8, 9]])) + (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) + """ + ... +def unbind_copy(input: Tensor, dim: _int = 0, *, out: Union[Tuple[Tensor, ...], List[Tensor], None] = None) -> None: + r""" + Performs the same operation as :func:`torch.unbind`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def unflatten(input: Tensor, dim: Union[str, ellipsis, None], sizes: Sequence[Union[_int, SymInt]], names: Sequence[Union[str, ellipsis, None]]) -> Tensor: + r""" + unflatten(input, dim, sizes) -> Tensor + + Expands a dimension of the input tensor over multiple dimensions. + + .. seealso:: + + :func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one. + + Args: + input (Tensor): the input tensor. + dim (int): Dimension to be unflattened, specified as an index into + ``input.shape``. + sizes (Tuple[int]): New shape of the unflattened dimension. + One of its elements can be `-1` in which case the corresponding output + dimension is inferred. Otherwise, the product of ``sizes`` *must* + equal ``input.shape[dim]``. + + Returns: + A View of input with the specified dimension unflattened. + + Examples:: + >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape + torch.Size([3, 2, 2, 1]) + >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape + torch.Size([3, 2, 2, 1]) + >>> torch.unflatten(torch.randn(5, 12, 3), -2, (2, 2, 3, 1, 1)).shape + torch.Size([5, 2, 2, 3, 1, 1, 3]) + """ + ... +@overload +def unflatten(input: Tensor, dim: _int, sizes: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + unflatten(input, dim, sizes) -> Tensor + + Expands a dimension of the input tensor over multiple dimensions. + + .. seealso:: + + :func:`torch.flatten` the inverse of this function. It coalesces several dimensions into one. + + Args: + input (Tensor): the input tensor. + dim (int): Dimension to be unflattened, specified as an index into + ``input.shape``. + sizes (Tuple[int]): New shape of the unflattened dimension. + One of its elements can be `-1` in which case the corresponding output + dimension is inferred. Otherwise, the product of ``sizes`` *must* + equal ``input.shape[dim]``. + + Returns: + A View of input with the specified dimension unflattened. + + Examples:: + >>> torch.unflatten(torch.randn(3, 4, 1), 1, (2, 2)).shape + torch.Size([3, 2, 2, 1]) + >>> torch.unflatten(torch.randn(3, 4, 1), 1, (-1, 2)).shape + torch.Size([3, 2, 2, 1]) + >>> torch.unflatten(torch.randn(5, 12, 3), -2, (2, 2, 3, 1, 1)).shape + torch.Size([5, 2, 2, 3, 1, 1, 3]) + """ + ... +def unfold_copy(input: Tensor, dimension: _int, size: _int, step: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.unfold`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def unique_dim(input: Tensor, dim: _int, sorted: _bool = True, return_inverse: _bool = False, return_counts: _bool = False) -> Tuple[Tensor, Tensor, Tensor]: ... +def unsafe_chunk(input: Tensor, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unsafe_chunk(input, chunks, dim=0) -> List of Tensors + + Works like :func:`torch.chunk` but without enforcing the autograd restrictions + on inplace modification of the outputs. + + .. warning:: + This function is safe to use as long as only the input, or only the outputs + are modified inplace after calling this function. It is user's + responsibility to ensure that is the case. If both the input and one or more + of the outputs are modified inplace, gradients computed by autograd will be + silently incorrect. + """ + ... +def unsafe_split(input: Tensor, split_size: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unsafe_split(tensor, split_size_or_sections, dim=0) -> List of Tensors + + Works like :func:`torch.split` but without enforcing the autograd restrictions + on inplace modification of the outputs. + + .. warning:: + This function is safe to use as long as only the input, or only the outputs + are modified inplace after calling this function. It is user's + responsibility to ensure that is the case. If both the input and one or more + of the outputs are modified inplace, gradients computed by autograd will be + silently incorrect. + """ + ... +def unsafe_split_with_sizes(input: Tensor, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... +def unsqueeze(input: Tensor, dim: _int) -> Tensor: + r""" + unsqueeze(input, dim) -> Tensor + + Returns a new tensor with a dimension of size one inserted at the + specified position. + + The returned tensor shares the same underlying data with this tensor. + + A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)`` + can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze` + applied at :attr:`dim` = ``dim + input.dim() + 1``. + + Args: + input (Tensor): the input tensor. + dim (int): the index at which to insert the singleton dimension + + Example:: + + >>> x = torch.tensor([1, 2, 3, 4]) + >>> torch.unsqueeze(x, 0) + tensor([[ 1, 2, 3, 4]]) + >>> torch.unsqueeze(x, 1) + tensor([[ 1], + [ 2], + [ 3], + [ 4]]) + """ + ... +def unsqueeze_copy(input: Tensor, dim: _int, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.unsqueeze`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def values_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.values`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def vander(x: Tensor, N: Optional[_int] = None, increasing: _bool = False) -> Tensor: + r""" + vander(x, N=None, increasing=False) -> Tensor + + Generates a Vandermonde matrix. + + The columns of the output matrix are elementwise powers of the input vector :math:`x^{(N-1)}, x^{(N-2)}, ..., x^0`. + If increasing is True, the order of the columns is reversed :math:`x^0, x^1, ..., x^{(N-1)}`. Such a + matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde. + + Arguments: + x (Tensor): 1-D input tensor. + N (int, optional): Number of columns in the output. If N is not specified, + a square array is returned :math:`(N = len(x))`. + increasing (bool, optional): Order of the powers of the columns. If True, + the powers increase from left to right, if False (the default) they are reversed. + + Returns: + Tensor: Vandermonde matrix. If increasing is False, the first column is :math:`x^{(N-1)}`, + the second :math:`x^{(N-2)}` and so forth. If increasing is True, the columns + are :math:`x^0, x^1, ..., x^{(N-1)}`. + + Example:: + + >>> x = torch.tensor([1, 2, 3, 5]) + >>> torch.vander(x) + tensor([[ 1, 1, 1, 1], + [ 8, 4, 2, 1], + [ 27, 9, 3, 1], + [125, 25, 5, 1]]) + >>> torch.vander(x, N=3) + tensor([[ 1, 1, 1], + [ 4, 2, 1], + [ 9, 3, 1], + [25, 5, 1]]) + >>> torch.vander(x, N=3, increasing=True) + tensor([[ 1, 1, 1], + [ 1, 2, 4], + [ 1, 3, 9], + [ 1, 5, 25]]) + """ + ... +@overload +def var(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` + can be a single dimension, list of dimensions, or ``None`` to reduce over all + dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var(a, dim=1, keepdim=True) + tensor([[1.0631], + [0.5590], + [1.4893], + [0.8258]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` + can be a single dimension, list of dimensions, or ``None`` to reduce over all + dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var(a, dim=1, keepdim=True) + tensor([[1.0631], + [0.5590], + [1.4893], + [0.8258]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var(input: Tensor, unbiased: _bool = True) -> Tensor: + r""" + var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` + can be a single dimension, list of dimensions, or ``None`` to reduce over all + dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var(a, dim=1, keepdim=True) + tensor([[1.0631], + [0.5590], + [1.4893], + [0.8258]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False, out: Optional[Tensor] = None) -> Tensor: + r""" + var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` + can be a single dimension, list of dimensions, or ``None`` to reduce over all + dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var(a, dim=1, keepdim=True) + tensor([[1.0631], + [0.5590], + [1.4893], + [0.8258]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False, *, out: Optional[Tensor] = None) -> Tensor: + r""" + var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor + + Calculates the variance over the dimensions specified by :attr:`dim`. :attr:`dim` + can be a single dimension, list of dimensions, or ``None`` to reduce over all + dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var(a, dim=1, keepdim=True) + tensor([[1.0631], + [0.5590], + [1.4893], + [0.8258]]) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var_mean(input: Tensor, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the variance and mean over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (var, mean) containing the variance and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var_mean(a, dim=0, keepdim=True) + (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var_mean(input: Tensor, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the variance and mean over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (var, mean) containing the variance and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var_mean(a, dim=0, keepdim=True) + (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var_mean(input: Tensor, unbiased: _bool = True) -> Tuple[Tensor, Tensor]: + r""" + var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the variance and mean over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (var, mean) containing the variance and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var_mean(a, dim=0, keepdim=True) + (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the variance and mean over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (var, mean) containing the variance and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var_mean(a, dim=0, keepdim=True) + (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +@overload +def var_mean(input: Tensor, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tuple[Tensor, Tensor]: + r""" + var_mean(input, dim=None, *, correction=1, keepdim=False, out=None) -> (Tensor, Tensor) + + Calculates the variance and mean over the dimensions specified by :attr:`dim`. + :attr:`dim` can be a single dimension, list of dimensions, or ``None`` to + reduce over all dimensions. + + The variance (:math:`\sigma^2`) is calculated as + + .. math:: \sigma^2 = \frac{1}{\max(0,~N - \delta N)}\sum_{i=0}^{N-1}(x_i-\bar{x})^2 + + where :math:`x` is the sample set of elements, :math:`\bar{x}` is the + sample mean, :math:`N` is the number of samples and :math:`\delta N` is + the :attr:`correction`. + + + + If :attr:`keepdim` is ``True``, the output tensor is of the same size + as :attr:`input` except in the dimension(s) :attr:`dim` where it is of size 1. + Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the + output tensor having 1 (or ``len(dim)``) fewer dimension(s). + + + Args: + input (Tensor): the input tensor. + + dim (int or tuple of ints, optional): the dimension or dimensions to reduce. + If ``None``, all dimensions are reduced. + + + Keyword args: + correction (int): difference between the sample size and sample degrees of freedom. + Defaults to `Bessel's correction`_, ``correction=1``. + + .. versionchanged:: 2.0 + Previously this argument was called ``unbiased`` and was a boolean + with ``True`` corresponding to ``correction=1`` and ``False`` being + ``correction=0``. + keepdim (bool): whether the output tensor has :attr:`dim` retained or not. + out (Tensor, optional): the output tensor. + + Returns: + A tuple (var, mean) containing the variance and mean. + + Example: + + >>> a = torch.tensor( + ... [[ 0.2035, 1.2959, 1.8101, -0.4644], + ... [ 1.5027, -0.3270, 0.5905, 0.6538], + ... [-1.5745, 1.3330, -0.5596, -0.6548], + ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) + >>> torch.var_mean(a, dim=0, keepdim=True) + (tensor([[1.5926, 1.0056, 1.2005, 0.3646]]), + tensor([[ 0.0645, 0.4485, 0.8707, -0.0665]])) + + .. _Bessel's correction: https://en.wikipedia.org/wiki/Bessel%27s_correction + """ + ... +def vdot(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + vdot(input, other, *, out=None) -> Tensor + + Computes the dot product of two 1D vectors along a dimension. + + In symbols, this function computes + + .. math:: + + \sum_{i=1}^n \overline{x_i}y_i. + + where :math:`\overline{x_i}` denotes the conjugate for complex + vectors, and it is the identity for real vectors. + + .. note:: + + Unlike NumPy's vdot, torch.vdot intentionally only supports computing the dot product + of two 1D tensors with the same number of elements. + + .. seealso:: + + :func:`torch.linalg.vecdot` computes the dot product of two batches of vectors along a dimension. + + Args: + input (Tensor): first tensor in the dot product, must be 1D. Its conjugate is used if it's complex. + other (Tensor): second tensor in the dot product, must be 1D. + + Keyword args: + + .. note:: out (Tensor, optional): the output tensor. + + + Example:: + + >>> torch.vdot(torch.tensor([2, 3]), torch.tensor([2, 1])) + tensor(7) + >>> a = torch.tensor((1 +2j, 3 - 1j)) + >>> b = torch.tensor((2 +1j, 4 - 0j)) + >>> torch.vdot(a, b) + tensor([16.+1.j]) + >>> torch.vdot(b, a) + tensor([16.-1.j]) + """ + ... +def view_as_complex(input: Tensor) -> Tensor: + r""" + view_as_complex(input) -> Tensor + + Returns a view of :attr:`input` as a complex tensor. For an input complex + tensor of :attr:`size` :math:`m1, m2, \dots, mi, 2`, this function returns a + new complex tensor of :attr:`size` :math:`m1, m2, \dots, mi` where the last + dimension of the input tensor is expected to represent the real and imaginary + components of complex numbers. + + .. warning:: + :func:`view_as_complex` is only supported for tensors with + :class:`torch.dtype` ``torch.float64`` and ``torch.float32``. The input is + expected to have the last dimension of :attr:`size` 2. In addition, the + tensor must have a `stride` of 1 for its last dimension. The strides of all + other dimensions must be even numbers. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x=torch.randn(4, 2) + >>> x + tensor([[ 1.6116, -0.5772], + [-1.4606, -0.9120], + [ 0.0786, -1.7497], + [-0.6561, -1.6623]]) + >>> torch.view_as_complex(x) + tensor([(1.6116-0.5772j), (-1.4606-0.9120j), (0.0786-1.7497j), (-0.6561-1.6623j)]) + """ + ... +def view_as_complex_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.view_as_complex`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +def view_as_real(input: Tensor) -> Tensor: + r""" + view_as_real(input) -> Tensor + + Returns a view of :attr:`input` as a real tensor. For an input complex tensor of + :attr:`size` :math:`m1, m2, \dots, mi`, this function returns a new + real tensor of size :math:`m1, m2, \dots, mi, 2`, where the last dimension of size 2 + represents the real and imaginary components of complex numbers. + + .. warning:: + :func:`view_as_real` is only supported for tensors with ``complex dtypes``. + + Args: + input (Tensor): the input tensor. + + Example:: + + >>> x=torch.randn(4, dtype=torch.cfloat) + >>> x + tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)]) + >>> torch.view_as_real(x) + tensor([[ 0.4737, -0.3839], + [-0.2098, -0.6699], + [ 0.3470, -0.9451], + [-0.5174, -1.3136]]) + """ + ... +def view_as_real_copy(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.view_as_real`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def view_copy(input: Tensor, dtype: _dtype, *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.view`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def view_copy(input: Tensor, size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + Performs the same operation as :func:`torch.view`, but all output tensors + are freshly created instead of aliasing the input. + """ + ... +@overload +def vsplit(input: Tensor, sections: _int) -> Tuple[Tensor, ...]: + r""" + vsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors + vertically according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) + (the split dimension is 0), except that if :attr:`indices_or_sections` is an integer + it must evenly divide the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.vsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(4,4) + >>> t + tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> torch.vsplit(t, 2) + (tensor([[0., 1., 2., 3.], + [4., 5., 6., 7.]]), + tensor([[ 8., 9., 10., 11.], + [12., 13., 14., 15.]])) + >>> torch.vsplit(t, [3, 6]) + (tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]]), + tensor([[12., 13., 14., 15.]]), + tensor([], size=(0, 4))) + """ + ... +@overload +def vsplit(input: Tensor, indices: _size) -> Tuple[Tensor, ...]: + r""" + vsplit(input, indices_or_sections) -> List of Tensors + + Splits :attr:`input`, a tensor with two or more dimensions, into multiple tensors + vertically according to :attr:`indices_or_sections`. Each split is a view of + :attr:`input`. + + This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) + (the split dimension is 0), except that if :attr:`indices_or_sections` is an integer + it must evenly divide the split dimension or a runtime error will be thrown. + + This function is based on NumPy's :func:`numpy.vsplit`. + + Args: + input (Tensor): tensor to split. + indices_or_sections (int or list or tuple of ints): See argument in :func:`torch.tensor_split`. + + Example:: + >>> t = torch.arange(16.0).reshape(4,4) + >>> t + tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.], + [12., 13., 14., 15.]]) + >>> torch.vsplit(t, 2) + (tensor([[0., 1., 2., 3.], + [4., 5., 6., 7.]]), + tensor([[ 8., 9., 10., 11.], + [12., 13., 14., 15.]])) + >>> torch.vsplit(t, [3, 6]) + (tensor([[ 0., 1., 2., 3.], + [ 4., 5., 6., 7.], + [ 8., 9., 10., 11.]]), + tensor([[12., 13., 14., 15.]]), + tensor([], size=(0, 4))) + """ + ... +def vstack(tensors: Union[Tuple[Tensor, ...], List[Tensor]], *, out: Optional[Tensor] = None) -> Tensor: + r""" + vstack(tensors, *, out=None) -> Tensor + + Stack tensors in sequence vertically (row wise). + + This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by :func:`torch.atleast_2d`. + + Args: + tensors (sequence of Tensors): sequence of tensors to concatenate + + Keyword args: + out (Tensor, optional): the output tensor. + + Example:: + + >>> a = torch.tensor([1, 2, 3]) + >>> b = torch.tensor([4, 5, 6]) + >>> torch.vstack((a,b)) + tensor([[1, 2, 3], + [4, 5, 6]]) + >>> a = torch.tensor([[1],[2],[3]]) + >>> b = torch.tensor([[4],[5],[6]]) + >>> torch.vstack((a,b)) + tensor([[1], + [2], + [3], + [4], + [5], + [6]]) + """ + ... +@overload +def where(condition: Tensor) -> Tuple[Tensor, ...]: + r""" + where(condition, input, other, *, out=None) -> Tensor + + Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. + + The operation is defined as: + + .. math:: + \text{out}_i = \begin{cases} + \text{input}_i & \text{if } \text{condition}_i \\ + \text{other}_i & \text{otherwise} \\ + \end{cases} + + .. note:: + The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. + + Arguments: + condition (BoolTensor): When True (nonzero), yield input, otherwise yield other + input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices + where :attr:`condition` is ``True`` + other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices + where :attr:`condition` is ``False`` + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` + + Example:: + + >>> x = torch.randn(3, 2) + >>> y = torch.ones(3, 2) + >>> x + tensor([[-0.4620, 0.3139], + [ 0.3898, -0.7197], + [ 0.0478, -0.1657]]) + >>> torch.where(x > 0, 1.0, 0.0) + tensor([[0., 1.], + [1., 0.], + [1., 0.]]) + >>> torch.where(x > 0, x, y) + tensor([[ 1.0000, 0.3139], + [ 0.3898, 1.0000], + [ 0.0478, 1.0000]]) + >>> x = torch.randn(2, 2, dtype=torch.double) + >>> x + tensor([[ 1.0779, 0.0383], + [-0.8785, -1.1089]], dtype=torch.float64) + >>> torch.where(x > 0, x, 0.) + tensor([[1.0779, 0.0383], + [0.0000, 0.0000]], dtype=torch.float64) + + .. function:: where(condition) -> tuple of LongTensor + :noindex: + + ``torch.where(condition)`` is identical to + ``torch.nonzero(condition, as_tuple=True)``. + + .. note:: + See also :func:`torch.nonzero`. + """ + ... +@overload +def where(condition: Tensor, input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + where(condition, input, other, *, out=None) -> Tensor + + Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. + + The operation is defined as: + + .. math:: + \text{out}_i = \begin{cases} + \text{input}_i & \text{if } \text{condition}_i \\ + \text{other}_i & \text{otherwise} \\ + \end{cases} + + .. note:: + The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. + + Arguments: + condition (BoolTensor): When True (nonzero), yield input, otherwise yield other + input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices + where :attr:`condition` is ``True`` + other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices + where :attr:`condition` is ``False`` + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` + + Example:: + + >>> x = torch.randn(3, 2) + >>> y = torch.ones(3, 2) + >>> x + tensor([[-0.4620, 0.3139], + [ 0.3898, -0.7197], + [ 0.0478, -0.1657]]) + >>> torch.where(x > 0, 1.0, 0.0) + tensor([[0., 1.], + [1., 0.], + [1., 0.]]) + >>> torch.where(x > 0, x, y) + tensor([[ 1.0000, 0.3139], + [ 0.3898, 1.0000], + [ 0.0478, 1.0000]]) + >>> x = torch.randn(2, 2, dtype=torch.double) + >>> x + tensor([[ 1.0779, 0.0383], + [-0.8785, -1.1089]], dtype=torch.float64) + >>> torch.where(x > 0, x, 0.) + tensor([[1.0779, 0.0383], + [0.0000, 0.0000]], dtype=torch.float64) + + .. function:: where(condition) -> tuple of LongTensor + :noindex: + + ``torch.where(condition)`` is identical to + ``torch.nonzero(condition, as_tuple=True)``. + + .. note:: + See also :func:`torch.nonzero`. + """ + ... +@overload +def where(condition: Tensor, self: Union[Number, _complex], other: Tensor) -> Tensor: + r""" + where(condition, input, other, *, out=None) -> Tensor + + Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. + + The operation is defined as: + + .. math:: + \text{out}_i = \begin{cases} + \text{input}_i & \text{if } \text{condition}_i \\ + \text{other}_i & \text{otherwise} \\ + \end{cases} + + .. note:: + The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. + + Arguments: + condition (BoolTensor): When True (nonzero), yield input, otherwise yield other + input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices + where :attr:`condition` is ``True`` + other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices + where :attr:`condition` is ``False`` + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` + + Example:: + + >>> x = torch.randn(3, 2) + >>> y = torch.ones(3, 2) + >>> x + tensor([[-0.4620, 0.3139], + [ 0.3898, -0.7197], + [ 0.0478, -0.1657]]) + >>> torch.where(x > 0, 1.0, 0.0) + tensor([[0., 1.], + [1., 0.], + [1., 0.]]) + >>> torch.where(x > 0, x, y) + tensor([[ 1.0000, 0.3139], + [ 0.3898, 1.0000], + [ 0.0478, 1.0000]]) + >>> x = torch.randn(2, 2, dtype=torch.double) + >>> x + tensor([[ 1.0779, 0.0383], + [-0.8785, -1.1089]], dtype=torch.float64) + >>> torch.where(x > 0, x, 0.) + tensor([[1.0779, 0.0383], + [0.0000, 0.0000]], dtype=torch.float64) + + .. function:: where(condition) -> tuple of LongTensor + :noindex: + + ``torch.where(condition)`` is identical to + ``torch.nonzero(condition, as_tuple=True)``. + + .. note:: + See also :func:`torch.nonzero`. + """ + ... +@overload +def where(condition: Tensor, input: Tensor, other: Union[Number, _complex]) -> Tensor: + r""" + where(condition, input, other, *, out=None) -> Tensor + + Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. + + The operation is defined as: + + .. math:: + \text{out}_i = \begin{cases} + \text{input}_i & \text{if } \text{condition}_i \\ + \text{other}_i & \text{otherwise} \\ + \end{cases} + + .. note:: + The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. + + Arguments: + condition (BoolTensor): When True (nonzero), yield input, otherwise yield other + input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices + where :attr:`condition` is ``True`` + other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices + where :attr:`condition` is ``False`` + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` + + Example:: + + >>> x = torch.randn(3, 2) + >>> y = torch.ones(3, 2) + >>> x + tensor([[-0.4620, 0.3139], + [ 0.3898, -0.7197], + [ 0.0478, -0.1657]]) + >>> torch.where(x > 0, 1.0, 0.0) + tensor([[0., 1.], + [1., 0.], + [1., 0.]]) + >>> torch.where(x > 0, x, y) + tensor([[ 1.0000, 0.3139], + [ 0.3898, 1.0000], + [ 0.0478, 1.0000]]) + >>> x = torch.randn(2, 2, dtype=torch.double) + >>> x + tensor([[ 1.0779, 0.0383], + [-0.8785, -1.1089]], dtype=torch.float64) + >>> torch.where(x > 0, x, 0.) + tensor([[1.0779, 0.0383], + [0.0000, 0.0000]], dtype=torch.float64) + + .. function:: where(condition) -> tuple of LongTensor + :noindex: + + ``torch.where(condition)`` is identical to + ``torch.nonzero(condition, as_tuple=True)``. + + .. note:: + See also :func:`torch.nonzero`. + """ + ... +@overload +def where(condition: Tensor, self: Union[Number, _complex], other: Union[Number, _complex]) -> Tensor: + r""" + where(condition, input, other, *, out=None) -> Tensor + + Return a tensor of elements selected from either :attr:`input` or :attr:`other`, depending on :attr:`condition`. + + The operation is defined as: + + .. math:: + \text{out}_i = \begin{cases} + \text{input}_i & \text{if } \text{condition}_i \\ + \text{other}_i & \text{otherwise} \\ + \end{cases} + + .. note:: + The tensors :attr:`condition`, :attr:`input`, :attr:`other` must be :ref:`broadcastable `. + + Arguments: + condition (BoolTensor): When True (nonzero), yield input, otherwise yield other + input (Tensor or Scalar): value (if :attr:`input` is a scalar) or values selected at indices + where :attr:`condition` is ``True`` + other (Tensor or Scalar): value (if :attr:`other` is a scalar) or values selected at indices + where :attr:`condition` is ``False`` + + Keyword args: + out (Tensor, optional): the output tensor. + + Returns: + Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`input`, :attr:`other` + + Example:: + + >>> x = torch.randn(3, 2) + >>> y = torch.ones(3, 2) + >>> x + tensor([[-0.4620, 0.3139], + [ 0.3898, -0.7197], + [ 0.0478, -0.1657]]) + >>> torch.where(x > 0, 1.0, 0.0) + tensor([[0., 1.], + [1., 0.], + [1., 0.]]) + >>> torch.where(x > 0, x, y) + tensor([[ 1.0000, 0.3139], + [ 0.3898, 1.0000], + [ 0.0478, 1.0000]]) + >>> x = torch.randn(2, 2, dtype=torch.double) + >>> x + tensor([[ 1.0779, 0.0383], + [-0.8785, -1.1089]], dtype=torch.float64) + >>> torch.where(x > 0, x, 0.) + tensor([[1.0779, 0.0383], + [0.0000, 0.0000]], dtype=torch.float64) + + .. function:: where(condition) -> tuple of LongTensor + :noindex: + + ``torch.where(condition)`` is identical to + ``torch.nonzero(condition, as_tuple=True)``. + + .. note:: + See also :func:`torch.nonzero`. + """ + ... +@overload +def xlogy(input: Tensor, other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + xlogy(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.special.xlogy`. + """ + ... +@overload +def xlogy(self: Union[Number, _complex], other: Tensor, *, out: Optional[Tensor] = None) -> Tensor: + r""" + xlogy(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.special.xlogy`. + """ + ... +@overload +def xlogy(input: Tensor, other: Union[Number, _complex], *, out: Optional[Tensor] = None) -> Tensor: + r""" + xlogy(input, other, *, out=None) -> Tensor + + Alias for :func:`torch.special.xlogy`. + """ + ... +@overload +def xlogy_(input: Tensor, other: Tensor) -> Tensor: ... +@overload +def xlogy_(input: Tensor, other: Union[Number, _complex]) -> Tensor: ... +def zero_(input: Tensor) -> Tensor: ... +@overload +def zeros(size: Sequence[Union[_int, SymInt]], *, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `0`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.zeros(2, 3) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]]) + + >>> torch.zeros(5) + tensor([ 0., 0., 0., 0., 0.]) + """ + ... +@overload +def zeros(*size: Union[_int, SymInt], out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `0`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.zeros(2, 3) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]]) + + >>> torch.zeros(5) + tensor([ 0., 0., 0., 0., 0.]) + """ + ... +@overload +def zeros(size: _size, *, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `0`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.zeros(2, 3) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]]) + + >>> torch.zeros(5) + tensor([ 0., 0., 0., 0., 0.]) + """ + ... +@overload +def zeros(*size: _int, names: Optional[Sequence[Union[str, ellipsis, None]]], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + zeros(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor + + Returns a tensor filled with the scalar value `0`, with the shape defined + by the variable argument :attr:`size`. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + Can be a variable number of arguments or a collection like a list or tuple. + + Keyword args: + out (Tensor, optional): the output tensor. + dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. + Default: if ``None``, uses a global default (see :func:`torch.set_default_dtype`). + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, uses the current device for the default tensor type + (see :func:`torch.set_default_device`). :attr:`device` will be the CPU + for CPU tensor types and the current CUDA device for CUDA tensor types. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + + Example:: + + >>> torch.zeros(2, 3) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]]) + + >>> torch.zeros(5) + tensor([ 0., 0., 0., 0., 0.]) + """ + ... +def zeros_like(input: Tensor, *, memory_format: Optional[memory_format] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor + + Returns a tensor filled with the scalar value `0`, with the same size as + :attr:`input`. ``torch.zeros_like(input)`` is equivalent to + ``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. + + .. warning:: + As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, + the old ``torch.zeros_like(input, out=output)`` is equivalent to + ``torch.zeros(input.size(), out=output)``. + + Args: + input (Tensor): the size of :attr:`input` will determine size of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. + Default: if ``None``, defaults to the dtype of :attr:`input`. + layout (:class:`torch.layout`, optional): the desired layout of returned tensor. + Default: if ``None``, defaults to the layout of :attr:`input`. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if ``None``, defaults to the device of :attr:`input`. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + Example:: + + >>> input = torch.empty(2, 3) + >>> torch.zeros_like(input) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]]) + """ + ... + +__all__ = ['__and__', '__lshift__', '__or__', '__rshift__', '__xor__', '_adaptive_avg_pool2d', + '_adaptive_avg_pool3d', '_add_batch_dim', '_add_relu', '_add_relu_', '_addmm_activation', + '_aminmax', '_amp_foreach_non_finite_check_and_unscale_', '_amp_update_scale_', '_assert_async', + '_assert_scalar', '_assert_tensor_metadata', '_batch_norm_impl_index', '_cast_Byte', '_cast_Char', + '_cast_Double', '_cast_Float', '_cast_Half', '_cast_Int', '_cast_Long', '_cast_Short', + '_choose_qparams_per_tensor', '_chunk_cat', '_coalesce', '_compute_linear_combination', '_conj', + '_conj_copy', '_conj_physical', '_convert_indices_from_coo_to_csr', + '_convert_indices_from_csr_to_coo', '_convert_weight_to_int4pack', '_convolution', + '_convolution_mode', '_copy_from', '_copy_from_and_resize', '_cslt_compress', '_cslt_sparse_mm', + '_cslt_sparse_mm_search', '_ctc_loss', '_cudnn_ctc_loss', '_cudnn_init_dropout_state', + '_cudnn_rnn', '_cudnn_rnn_flatten_weight', '_cufft_clear_plan_cache', + '_cufft_get_plan_cache_max_size', '_cufft_get_plan_cache_size', '_cufft_set_plan_cache_max_size', + '_cummax_helper', '_cummin_helper', '_debug_has_internal_overlap', '_dim_arange', + '_dirichlet_grad', '_disable_functionalization', '_efficientzerotensor', '_embedding_bag', + '_embedding_bag_forward_only', '_empty_affine_quantized', '_empty_per_channel_affine_quantized', + '_enable_functionalization', '_euclidean_dist', '_fake_quantize_learnable_per_channel_affine', + '_fake_quantize_learnable_per_tensor_affine', + '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams', + '_fake_quantize_per_tensor_affine_cachemask_tensor_qparams', '_fft_c2c', '_fft_c2r', '_fft_r2c', + '_fill_mem_eff_dropout_mask_', '_foobar', '_foreach_abs', '_foreach_abs_', '_foreach_acos', + '_foreach_acos_', '_foreach_add', '_foreach_add_', '_foreach_addcdiv', '_foreach_addcdiv_', + '_foreach_addcmul', '_foreach_addcmul_', '_foreach_asin', '_foreach_asin_', '_foreach_atan', + '_foreach_atan_', '_foreach_ceil', '_foreach_ceil_', '_foreach_clamp_max', '_foreach_clamp_max_', + '_foreach_clamp_min', '_foreach_clamp_min_', '_foreach_copy_', '_foreach_cos', '_foreach_cos_', + '_foreach_cosh', '_foreach_cosh_', '_foreach_div', '_foreach_div_', '_foreach_erf', + '_foreach_erf_', '_foreach_erfc', '_foreach_erfc_', '_foreach_exp', '_foreach_exp_', + '_foreach_expm1', '_foreach_expm1_', '_foreach_floor', '_foreach_floor_', '_foreach_frac', + '_foreach_frac_', '_foreach_lerp', '_foreach_lerp_', '_foreach_lgamma', '_foreach_lgamma_', + '_foreach_log', '_foreach_log10', '_foreach_log10_', '_foreach_log1p', '_foreach_log1p_', + '_foreach_log2', '_foreach_log2_', '_foreach_log_', '_foreach_max', '_foreach_maximum', + '_foreach_maximum_', '_foreach_minimum', '_foreach_minimum_', '_foreach_mul', '_foreach_mul_', + '_foreach_neg', '_foreach_neg_', '_foreach_norm', '_foreach_pow', '_foreach_pow_', + '_foreach_reciprocal', '_foreach_reciprocal_', '_foreach_round', '_foreach_round_', + '_foreach_sigmoid', '_foreach_sigmoid_', '_foreach_sign', '_foreach_sign_', '_foreach_sin', + '_foreach_sin_', '_foreach_sinh', '_foreach_sinh_', '_foreach_sqrt', '_foreach_sqrt_', + '_foreach_sub', '_foreach_sub_', '_foreach_tan', '_foreach_tan_', '_foreach_tanh', + '_foreach_tanh_', '_foreach_trunc', '_foreach_trunc_', '_foreach_zero_', '_from_functional_tensor', + '_functional_assert_async', '_functional_assert_scalar', '_functional_sym_constrain_range', + '_functional_sym_constrain_range_for_size', '_functionalize_apply_view_metas', + '_functionalize_are_all_mutations_hidden_from_autograd', + '_functionalize_are_all_mutations_under_no_grad_or_inference_mode', '_functionalize_commit_update', + '_functionalize_has_metadata_mutation', '_functionalize_is_symbolic', + '_functionalize_mark_mutation_hidden_from_autograd', '_functionalize_replace', + '_functionalize_set_storage_changed', '_functionalize_sync', '_functionalize_unsafe_set', + '_functionalize_was_inductor_storage_resized', '_functionalize_was_storage_changed', + '_fused_adagrad_', '_fused_adam_', '_fused_adamw_', '_fused_dropout', + '_fused_moving_avg_obs_fq_helper', '_fused_moving_avg_obs_fq_helper', '_fused_sdp_choice', + '_fused_sgd_', '_fw_primal_copy', '_grid_sampler_2d_cpu_fallback', + '_has_compatible_shallow_copy_type', '_histogramdd_bin_edges', '_histogramdd_from_bin_cts', + '_histogramdd_from_bin_tensors', '_index_put_impl_', '_indices_copy', '_int_mm', '_is_all_true', + '_is_any_true', '_is_functional_tensor', '_is_functional_tensor_base', '_is_zerotensor', + '_lazy_clone', '_linalg_check_errors', '_linalg_det', '_linalg_det', '_linalg_eigh', + '_linalg_eigh', '_linalg_slogdet', '_linalg_slogdet', '_linalg_solve_ex', '_linalg_solve_ex', + '_linalg_svd', '_linalg_svd', '_log_softmax', '_log_softmax_backward_data', '_logcumsumexp', + '_lstm_mps', '_lu_with_info', '_lu_with_info', '_make_dep_token', '_make_dual', '_make_dual_copy', + '_make_per_channel_quantized_tensor', '_make_per_tensor_quantized_tensor', '_masked_scale', + '_masked_softmax', '_mixed_dtypes_linear', '_mkldnn_reshape', '_mkldnn_transpose', + '_mkldnn_transpose_', '_mps_convolution', '_mps_convolution_transpose', '_native_batch_norm_legit', + '_native_batch_norm_legit_no_training', '_native_multi_head_attention', '_neg_view', + '_neg_view_copy', '_nested_compute_contiguous_strides_offsets', '_nested_from_padded', + '_nested_from_padded_and_nested_example', '_nested_get_jagged_dummy', '_nested_get_lengths', + '_nested_get_max_seqlen', '_nested_get_min_seqlen', '_nested_get_offsets', + '_nested_get_ragged_idx', '_nested_get_values', '_nested_get_values_copy', + '_nested_tensor_from_mask', '_nested_tensor_from_mask_left_aligned', + '_nested_tensor_from_tensor_list', '_nested_tensor_softmax_with_shape', '_nested_view_from_buffer', + '_nested_view_from_buffer_copy', '_nested_view_from_jagged', '_nested_view_from_jagged_copy', + '_nnpack_available', '_nnpack_spatial_convolution', '_pack_padded_sequence', + '_pad_packed_sequence', '_pin_memory', '_prelu_kernel', '_print', '_propagate_xla_data', + '_remove_batch_dim', '_reshape_alias_copy', '_reshape_from_tensor', '_resize_output_', + '_rowwise_prune', '_safe_softmax', '_sample_dirichlet', '_saturate_weight_to_fp16', + '_scaled_dot_product_attention_math', '_scaled_dot_product_attention_math_for_mps', + '_scaled_dot_product_cudnn_attention', '_scaled_dot_product_cudnn_attention', + '_scaled_dot_product_efficient_attention', '_scaled_dot_product_efficient_attention', + '_scaled_dot_product_flash_attention', '_scaled_dot_product_flash_attention', + '_scaled_dot_product_flash_attention_for_cpu', '_scaled_dot_product_flash_attention_for_cpu', + '_scaled_mm', '_shape_as_tensor', '_sobol_engine_draw', '_sobol_engine_ff_', + '_sobol_engine_initialize_state_', '_sobol_engine_scramble_', '_softmax', '_softmax_backward_data', + '_sparse_broadcast_to', '_sparse_broadcast_to_copy', '_sparse_csr_prod', '_sparse_csr_sum', + '_sparse_log_softmax_backward_data', '_sparse_semi_structured_addmm', + '_sparse_semi_structured_apply', '_sparse_semi_structured_apply_dense', + '_sparse_semi_structured_linear', '_sparse_semi_structured_mm', '_sparse_semi_structured_tile', + '_sparse_softmax_backward_data', '_sparse_sparse_matmul', '_sparse_sum', '_stack', + '_standard_gamma', '_standard_gamma_grad', '_sync', '_test_autograd_multiple_dispatch', + '_test_autograd_multiple_dispatch_view', '_test_autograd_multiple_dispatch_view_copy', + '_test_check_tensor', '_test_functorch_fallback', '_test_parallel_materialize', + '_test_serialization_subcmul', '_to_cpu', '_to_functional_tensor', '_to_sparse_semi_structured', + '_transform_bias_rescale_qkv', '_transformer_encoder_layer_fwd', '_trilinear', + '_triton_multi_head_attention', '_triton_scaled_dot_attention', '_unique', '_unique2', + '_unpack_dual', '_unpack_dual', '_unsafe_index', '_unsafe_index_put', '_unsafe_masked_index', + '_unsafe_masked_index_put_accumulate', '_use_cudnn_ctc_loss', '_use_cudnn_rnn_flatten_weight', + '_validate_compressed_sparse_indices', '_validate_sparse_bsc_tensor_args', + '_validate_sparse_bsr_tensor_args', '_validate_sparse_compressed_tensor_args', + '_validate_sparse_coo_tensor_args', '_validate_sparse_csc_tensor_args', + '_validate_sparse_csr_tensor_args', '_values_copy', '_weight_int4pack_mm', '_weight_int8pack_mm', + '_weight_norm', '_weight_norm_interface', '_wrapped_linear_prepack', + '_wrapped_quantized_linear_prepacked', 'abs', 'abs_', 'absolute', 'acos', 'acos_', 'acosh', + 'acosh_', 'adaptive_avg_pool1d', 'adaptive_max_pool1d', 'add', 'addbmm', 'addcdiv', 'addcmul', + 'addmm', 'addmv', 'addmv_', 'addr', 'adjoint', 'affine_grid_generator', 'alias_copy', 'all', + 'allclose', 'alpha_dropout', 'alpha_dropout_', 'amax', 'amin', 'aminmax', 'aminmax', 'angle', + 'any', 'arange', 'arccos', 'arccos_', 'arccosh', 'arccosh_', 'arcsin', 'arcsin_', 'arcsinh', + 'arcsinh_', 'arctan', 'arctan2', 'arctan_', 'arctanh', 'arctanh_', 'argmax', 'argmin', 'argsort', + 'argwhere', 'as_strided', 'as_strided_', 'as_strided_copy', 'as_strided_scatter', 'as_tensor', + 'asarray', 'asin', 'asin_', 'asinh', 'asinh_', 'atan', 'atan2', 'atan_', 'atanh', 'atanh_', + 'avg_pool1d', 'baddbmm', 'bartlett_window', 'batch_norm', 'batch_norm_backward_elemt', + 'batch_norm_backward_reduce', 'batch_norm_elemt', 'batch_norm_gather_stats', + 'batch_norm_gather_stats_with_counts', 'batch_norm_stats', 'batch_norm_update_stats', 'bernoulli', + 'bilinear', 'binary_cross_entropy_with_logits', 'bincount', 'binomial', 'bitwise_and', + 'bitwise_left_shift', 'bitwise_not', 'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', + 'blackman_window', 'bmm', 'broadcast_to', 'bucketize', 'can_cast', 'cat', 'ccol_indices_copy', + 'ceil', 'ceil_', 'celu', 'celu_', 'channel_shuffle', 'cholesky', 'cholesky_inverse', + 'cholesky_solve', 'choose_qparams_optimized', 'chunk', 'clamp', 'clamp_', 'clamp_max', + 'clamp_max_', 'clamp_min', 'clamp_min_', 'clip', 'clip_', 'clone', 'col_indices_copy', + 'column_stack', 'combinations', 'complex', 'concat', 'concatenate', 'conj', 'conj_physical', + 'conj_physical_', 'constant_pad_nd', 'conv1d', 'conv2d', 'conv3d', 'conv_tbc', 'conv_transpose1d', + 'conv_transpose2d', 'conv_transpose3d', 'convolution', 'copysign', 'corrcoef', 'cos', 'cos_', + 'cosh', 'cosh_', 'cosine_embedding_loss', 'cosine_similarity', 'count_nonzero', 'cov', 'cross', + 'crow_indices_copy', 'ctc_loss', 'cudnn_affine_grid_generator', 'cudnn_batch_norm', + 'cudnn_convolution', 'cudnn_convolution_add_relu', 'cudnn_convolution_relu', + 'cudnn_convolution_transpose', 'cudnn_grid_sampler', 'cudnn_is_acceptable', 'cummax', 'cummax', + 'cummin', 'cummin', 'cumprod', 'cumsum', 'cumulative_trapezoid', 'deg2rad', 'deg2rad_', + 'dequantize', 'det', 'detach', 'detach_', 'detach_copy', 'diag', 'diag_embed', 'diagflat', + 'diagonal', 'diagonal_copy', 'diagonal_scatter', 'diff', 'digamma', 'dist', 'div', 'divide', 'dot', + 'dropout', 'dropout_', 'dsmm', 'dsplit', 'dstack', 'embedding', 'embedding_bag', + 'embedding_renorm_', 'empty', 'empty_like', 'empty_permuted', 'empty_quantized', 'empty_strided', + 'eq', 'equal', 'erf', 'erf_', 'erfc', 'erfc_', 'erfinv', 'exp', 'exp2', 'exp2_', 'exp_', + 'expand_copy', 'expm1', 'expm1_', 'eye', 'fake_quantize_per_channel_affine', + 'fake_quantize_per_tensor_affine', 'fbgemm_linear_fp16_weight', + 'fbgemm_linear_fp16_weight_fp32_activation', 'fbgemm_linear_int8_weight', + 'fbgemm_linear_int8_weight_fp32_activation', 'fbgemm_linear_quantize_weight', + 'fbgemm_pack_gemm_matrix_fp16', 'fbgemm_pack_quantized_matrix', 'feature_alpha_dropout', + 'feature_alpha_dropout_', 'feature_dropout', 'feature_dropout_', 'fill', 'fill_', 'fix', 'fix_', + 'flatten', 'flip', 'fliplr', 'flipud', 'float_power', 'floor', 'floor_', 'floor_divide', 'fmax', + 'fmin', 'fmod', 'frac', 'frac_', 'frexp', 'frexp', 'frobenius_norm', 'from_file', 'from_numpy', + 'frombuffer', 'full', 'full_like', 'fused_moving_avg_obs_fake_quant', 'gather', 'gcd', 'gcd_', + 'ge', 'geqrf', 'geqrf', 'ger', 'get_default_dtype', 'get_num_interop_threads', 'get_num_threads', + 'gradient', 'greater', 'greater_equal', 'grid_sampler', 'grid_sampler_2d', 'grid_sampler_3d', + 'group_norm', 'gru', 'gru_cell', 'gt', 'hamming_window', 'hann_window', 'hardshrink', 'heaviside', + 'hinge_embedding_loss', 'histc', 'histogram', 'histogram', 'histogramdd', 'histogramdd', 'hsmm', + 'hsplit', 'hspmm', 'hstack', 'hypot', 'i0', 'i0_', 'igamma', 'igammac', 'imag', 'index_add', + 'index_copy', 'index_fill', 'index_put', 'index_put_', 'index_reduce', 'index_select', + 'indices_copy', 'init_num_threads', 'inner', 'instance_norm', 'int_repr', 'inverse', 'is_complex', + 'is_conj', 'is_distributed', 'is_floating_point', 'is_grad_enabled', 'is_inference', + 'is_inference_mode_enabled', 'is_neg', 'is_nonzero', 'is_same_size', 'is_signed', + 'is_vulkan_available', 'isclose', 'isfinite', 'isin', 'isinf', 'isnan', 'isneginf', 'isposinf', + 'isreal', 'istft', 'kaiser_window', 'kl_div', 'kron', 'kthvalue', 'kthvalue', 'layer_norm', 'lcm', + 'lcm_', 'ldexp', 'ldexp_', 'le', 'lerp', 'less', 'less_equal', 'lgamma', 'linspace', 'log', + 'log10', 'log10_', 'log1p', 'log1p_', 'log2', 'log2_', 'log_', 'log_softmax', 'logaddexp', + 'logaddexp2', 'logcumsumexp', 'logdet', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', + 'logit', 'logit_', 'logspace', 'logsumexp', 'lstm', 'lstm_cell', 'lt', 'lu_solve', 'lu_unpack', + 'lu_unpack', 'margin_ranking_loss', 'masked_fill', 'masked_scatter', 'masked_select', 'matmul', + 'matrix_exp', 'matrix_power', 'max', 'max', 'max_pool1d', 'max_pool1d_with_indices', 'max_pool2d', + 'max_pool3d', 'maximum', 'mean', 'median', 'median', 'min', 'min', 'minimum', 'miopen_batch_norm', + 'miopen_convolution', 'miopen_convolution_add_relu', 'miopen_convolution_relu', + 'miopen_convolution_transpose', 'miopen_depthwise_convolution', 'miopen_rnn', + 'mkldnn_adaptive_avg_pool2d', 'mkldnn_convolution', 'mkldnn_linear_backward_weights', + 'mkldnn_max_pool2d', 'mkldnn_max_pool3d', 'mkldnn_rnn_layer', 'mm', 'mode', 'mode', 'moveaxis', + 'movedim', 'msort', 'mul', 'multinomial', 'multiply', 'mv', 'mvlgamma', 'nan_to_num', + 'nan_to_num_', 'nanmean', 'nanmedian', 'nanmedian', 'nanquantile', 'nansum', 'narrow', + 'narrow_copy', 'native_batch_norm', 'native_channel_shuffle', 'native_dropout', + 'native_group_norm', 'native_layer_norm', 'native_norm', 'ne', 'neg', 'neg_', 'negative', + 'negative_', 'nextafter', 'nonzero', 'nonzero_static', 'norm_except_dim', 'normal', 'not_equal', + 'nuclear_norm', 'numel', 'ones', 'ones_like', 'orgqr', 'ormqr', 'outer', 'pairwise_distance', + 'pdist', 'permute', 'permute_copy', 'pinverse', 'pixel_shuffle', 'pixel_unshuffle', 'poisson', + 'poisson_nll_loss', 'polar', 'polygamma', 'positive', 'pow', 'prelu', 'prod', 'promote_types', + 'put', 'q_per_channel_axis', 'q_per_channel_scales', 'q_per_channel_zero_points', 'q_scale', + 'q_zero_point', 'qr', 'qr', 'quantile', 'quantize_per_channel', 'quantize_per_tensor', + 'quantize_per_tensor_dynamic', 'quantized_batch_norm', 'quantized_gru_cell', 'quantized_lstm_cell', + 'quantized_max_pool1d', 'quantized_max_pool2d', 'quantized_max_pool3d', 'quantized_rnn_relu_cell', + 'quantized_rnn_tanh_cell', 'rad2deg', 'rad2deg_', 'rand', 'rand_like', 'randint', 'randint_like', + 'randn', 'randn_like', 'randperm', 'range', 'ravel', 'real', 'reciprocal', 'reciprocal_', 'relu', + 'relu_', 'remainder', 'renorm', 'repeat_interleave', 'reshape', 'resize_as_', 'resize_as_sparse_', + 'resolve_conj', 'resolve_neg', 'result_type', 'rms_norm', 'rnn_relu', 'rnn_relu_cell', 'rnn_tanh', + 'rnn_tanh_cell', 'roll', 'rot90', 'round', 'round_', 'row_indices_copy', 'row_stack', 'rrelu', + 'rrelu_', 'rsqrt', 'rsqrt_', 'rsub', 'saddmm', 'scalar_tensor', 'scatter', 'scatter_add', + 'scatter_reduce', 'searchsorted', 'segment_reduce', 'select', 'select_copy', 'select_scatter', + 'selu', 'selu_', 'set_flush_denormal', 'set_num_interop_threads', 'set_num_threads', 'sgn', + 'sigmoid', 'sigmoid_', 'sign', 'signbit', 'sin', 'sin_', 'sinc', 'sinc_', 'sinh', 'sinh_', + 'slice_copy', 'slice_inverse', 'slice_scatter', 'slogdet', 'slogdet', 'smm', 'softmax', 'sort', + 'sort', 'sparse_bsc_tensor', 'sparse_bsr_tensor', 'sparse_compressed_tensor', 'sparse_coo_tensor', + 'sparse_csc_tensor', 'sparse_csr_tensor', 'split_copy', 'split_with_sizes', + 'split_with_sizes_copy', 'spmm', 'sqrt', 'sqrt_', 'square', 'square_', 'squeeze', 'squeeze_copy', + 'sspaddmm', 'stack', 'std', 'std_mean', 'sub', 'subtract', 'sum', 'svd', 'svd', 'swapaxes', + 'swapdims', 'sym_constrain_range', 'sym_constrain_range_for_size', 't', 't_copy', 'take', + 'take_along_dim', 'tan', 'tan_', 'tanh', 'tanh_', 'tensor', 'tensor_split', 'threshold', + 'threshold_', 'tile', 'topk', 'topk', 'trace', 'transpose', 'transpose_copy', 'trapezoid', 'trapz', + 'triangular_solve', 'triangular_solve', 'tril', 'tril_indices', 'triplet_margin_loss', 'triu', + 'triu_indices', 'true_divide', 'trunc', 'trunc_', 'unbind', 'unbind_copy', 'unflatten', + 'unfold_copy', 'unique_dim', 'unsafe_chunk', 'unsafe_split', 'unsafe_split_with_sizes', + 'unsqueeze', 'unsqueeze_copy', 'values_copy', 'vander', 'var', 'var_mean', 'vdot', + 'view_as_complex', 'view_as_complex_copy', 'view_as_real', 'view_as_real_copy', 'view_copy', + 'vsplit', 'vstack', 'where', 'xlogy', 'xlogy_', 'zero_', 'zeros', 'zeros_like'] diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/__init__.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/__init__.pyi new file mode 100644 index 0000000000000000000000000000000000000000..8449d454ce37cac9086952d87fb5caf9208125a1 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/__init__.pyi @@ -0,0 +1,11259 @@ +# @generated by tools/pyi/gen_pyi.py from torch/_C/__init__.pyi.in +# mypy: disable-error-code="type-arg" +# mypy: allow-untyped-defs + +import builtins +from enum import Enum, IntEnum +from pathlib import Path +from typing import ( + Any, + AnyStr, + BinaryIO, + Callable, + ContextManager, + Dict, + Generic, + Iterable, + Iterator, + List, + Literal, + NamedTuple, + Optional, + Protocol, + Sequence, + Set, + SupportsIndex, + Tuple, + Type as _Type, + TypeVar, + Union, + overload, + runtime_checkable, +) +from typing_extensions import ParamSpec, Self + +import numpy + +import torch +from torch import SymInt, Tensor, inf +from torch._prims_common import DeviceLikeType +from torch.autograd.graph import Node as _Node +from torch.fx.node import Node as FxNode +from torch.package import PackageExporter +from torch.storage import TypedStorage, UntypedStorage +from torch.types import ( + Device, + Number, + Storage, + IntLikeType, + _bool, + _bytes, + _complex, + _device, + _dispatchkey, + _dtype, + _float, + _int, + _layout, + _qscheme, + _size, + _str, + _symsize, +) +from torch.utils._python_dispatch import TorchDispatchMode + +from . import ( + _aoti, + _cpu, + _dynamo, + _functorch, + _lazy, + _lazy_ts_backend, + _nn, + _onnx, + _VariableFunctions, + _verbose, +) + +# This module is defined in torch/csrc/Module.cpp + +K = TypeVar("K") +T = TypeVar("T") +S = TypeVar("S", bound="torch.Tensor") +P = ParamSpec("P") +ReturnVal = TypeVar("ReturnVal", covariant=True) # return value (always covariant) +_T_co = TypeVar("_T_co", covariant=True) + + +@runtime_checkable +class _NestedSequence(Protocol[_T_co]): + """A protocol for representing nested sequences. + + References:: + `numpy._typing._NestedSequence` + + """ + + def __len__(self, /) -> builtins.int: ... + def __getitem__(self, index: builtins.int, /) -> _T_co | _NestedSequence[_T_co]: ... + def __contains__(self, x: builtins.object, /) -> builtins.bool: ... + def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ... + def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]: ... + def count(self, value: Any, /) -> builtins.int: ... + def index(self, value: Any, /) -> builtins.int: ... + + +# Defined in torch/csrc/Device.cpp +class device: + type: str # THPDevice_type + index: _int # THPDevice_index + + def __get__(self, instance, owner=None) -> device: ... + + # THPDevice_pynew + @overload + def __init__(self, device: DeviceLikeType) -> None: ... + @overload + def __init__(self, type: str, index: _int) -> None: ... + + # Uncomment if we ever make torch.device a decorator + # def __call__(self, func: T) -> T: ... + + def __enter__(self) -> device: ... + def __exit__(self, exc_type, exc_val, exc_tb) -> None: ... + def __reduce__(self) -> Tuple[Any, ...]: ... # THPDevice_reduce + +# Defined in torch/csrc/Stream.cpp +class Stream: + stream_id: _int # Stream id + device_index: _int + device_type: _int + + device: _device # The device of the stream + + @overload + def __new__(self, device: Optional[DeviceLikeType] = None, *, priority: _int = 0) -> Stream: ... + @overload + def __new__(self, stream_id: _int, device_index: _int, device_type: _int, *, priority: _int = 0) -> Stream: ... + def query(self) -> _bool: ... + def synchronize(self) -> None: ... + def wait_event(self, event: Event) -> None: ... + def wait_stream(self, other: Stream) -> None: ... + def record_event(self, event: Optional[Event] = None) -> Event: ... + def __hash__(self) -> _int: ... + def __repr__(self) -> str: ... + def __eq__(self, other: object) -> _bool: ... + + +# Defined in torch/csrc/Event.cpp +class Event: + + device: _device # The device of the Event + event_id: _int # The raw event created by device backend + + def __new__(self, + device: Optional[DeviceLikeType] = None, + *, + enable_timing: _bool = False, + blocking: _bool = False, + interprocess: _bool = False) -> Event: ... + @classmethod + def from_ipc_handle(self, device: _device, ipc_handle: bytes) -> Event: ... + def record(self, stream: Optional[Stream] = None) -> None: ... + def wait(self, stream: Optional[Stream] = None) -> None: ... + def query(self) -> _bool: ... + def elapsed_time(self, other: Event) -> _float: ... + def synchronize(self) -> None: ... + def ipc_handle(self) -> bytes: ... + def __repr__(self) -> str: ... + + +# Defined in torch/csrc/Size.cpp +class Size(Tuple[_int, ...]): + # TODO: __reduce__ + + @overload # type: ignore[override] + def __getitem__(self: Size, key: _int) -> _int: ... + @overload + def __getitem__(self: Size, key: slice) -> Size: ... + def numel(self: Size) -> _int: ... + +# Defined in torch/csrc/Dtype.cpp +class dtype: + # TODO: __reduce__ + is_floating_point: _bool + is_complex: _bool + is_signed: _bool + itemsize: _int + def to_real(self) -> dtype: ... + def to_complex(self) -> dtype: ... + +# Defined in torch/csrc/TypeInfo.cpp +class iinfo: + bits: _int + min: _int + max: _int + dtype: str + + def __init__(self, dtype: _dtype) -> None: ... + +class finfo: + bits: _int + min: _float + max: _float + eps: _float + tiny: _float + smallest_normal: _float + resolution: _float + dtype: str + + @overload + def __init__(self, dtype: _dtype) -> None: ... + @overload + def __init__(self) -> None: ... + +float32: dtype = ... +float: dtype = ... +float64: dtype = ... +double: dtype = ... +float16: dtype = ... +bfloat16: dtype = ... +float8_e4m3fn: dtype = ... +float8_e4m3fnuz: dtype = ... +float8_e5m2: dtype = ... +float8_e5m2fnuz: dtype = ... +half: dtype = ... +uint8: dtype = ... +uint16: dtype = ... +uint32: dtype = ... +uint64: dtype = ... +int8: dtype = ... +int16: dtype = ... +short: dtype = ... +int32: dtype = ... +int: dtype = ... +int64: dtype = ... +long: dtype = ... +complex32: dtype = ... +complex64: dtype = ... +chalf: dtype = ... +cfloat: dtype = ... +complex128: dtype = ... +cdouble: dtype = ... +quint8: dtype = ... +qint8: dtype = ... +qint32: dtype = ... +bool: dtype = ... +quint4x2: dtype = ... +quint2x4: dtype = ... +bits1x8: dtype = ... +bits2x4: dtype = ... +bits4x2: dtype = ... +bits8: dtype = ... +bits16: dtype = ... + +# Defined in torch/csrc/Layout.cpp +class layout: ... + +# Defined in torch/csrc/utils/disable_torch_function.cpp +def DisableTorchFunction(): ... +def DisableTorchFunctionSubclass(): ... + +# Defined in torch/csrc/utils/tensor_layouts.cpp +strided: layout = ... +sparse_coo: layout = ... +sparse_csr: layout = ... +sparse_csc: layout = ... +sparse_bsr: layout = ... +sparse_bsc: layout = ... +_mkldnn: layout = ... +jagged: layout = ... + +# Defined in torch/csrc/MemoryFormat.cpp +class memory_format: ... + +# Defined in torch/csrc/utils/tensor_memoryformats.cpp +contiguous_format: memory_format = ... +channels_last: memory_format = ... +channels_last_3d: memory_format = ... +preserve_format: memory_format = ... + +# Defined in torch/csrc/QScheme.cpp +class qscheme: ... + +# Defined in torch/csrc/utils/tensor_qschemes.h +per_tensor_affine: qscheme = ... +per_channel_affine: qscheme = ... +per_tensor_symmetric: qscheme = ... +per_channel_symmetric: qscheme = ... +per_channel_affine_float_qparams: qscheme = ... + +# Defined in torch/csrc/autograd/python_function.cpp +class _FunctionBase: + saved_tensors: Tuple[Tensor] + _raw_saved_tensors: Tuple[Any] + next_functions: Tuple[Tuple[Any, _int], ...] + needs_input_grad: Tuple[_bool] + metadata: dict + _materialize_non_diff_grads: _bool + # skip adding type hints for the fields that have wrappers defined + # in torch/autograd/function.py + +# Defined in torch/csrc/autograd/python_legacy_variable.cpp +class _LegacyVariableBase(Tensor): # inherits from Tensor to appease mypy + def __init__( + self, + data: Optional[Tensor] = ..., + requires_grad: Optional[_bool] = ..., + volatile: Optional[_bool] = ..., + _grad_fn: Optional[_FunctionBase] = ..., + ) -> None: ... + +# Defined in torch/csrc/jit/python/init.cpp +class IODescriptor: ... +class JITException: ... + +class Future(Generic[T]): + def __init__(self, devices: List[device]) -> None: ... + def done(self) -> _bool: ... + def value(self) -> T: ... + def wait(self) -> T: ... + def add_done_callback(self, callback: Callable) -> None: ... + def then(self, callback: Callable) -> Future[T]: ... + def set_result(self, result: T) -> None: ... + def _set_unwrap_func(self, callback: Callable) -> None: ... + +class _Await: + def __init__(self) -> None: ... + def fn(self) -> Callable: ... + def args(self) -> Tuple[Any, ...]: ... + def is_nowait(self) -> _bool: ... + +def _jit_set_num_profiled_runs(num: _size) -> _size: ... + +# Defined in torch/csrc/jit/passes/mobile_optimizer_type.h +class _MobileOptimizerType: ... + +CONV_BN_FUSION: _MobileOptimizerType +INSERT_FOLD_PREPACK_OPS: _MobileOptimizerType +REMOVE_DROPOUT: _MobileOptimizerType +FUSE_ADD_RELU: _MobileOptimizerType +HOIST_CONV_PACKED_PARAMS: _MobileOptimizerType +VULKAN_AUTOMATIC_GPU_TRANSFER: _MobileOptimizerType + +def fork(*args: Any, **kwargs: Any) -> Future: ... +def wait(fut: Future) -> Any: ... +def _awaitable(*args: Any, **kwargs: Any) -> _Await: ... +def _awaitable_wait(aw: _Await) -> Any: ... +def _awaitable_nowait(x: Any) -> _Await: ... +def _collect_all(futures: List[Future]) -> Future: ... +def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ... +def unify_type_list(types: List[JitType]) -> JitType: ... +def _freeze_module( + module: ScriptModule, + preserved_attrs: List[str] = [], + freeze_interfaces: _bool = True, + preserveParameters: _bool = True, +) -> ScriptModule: ... +def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ... +def _jit_pass_optimize_for_inference( + module: torch.jit.ScriptModule, + other_methods: List[str] = [], +) -> None: ... +def _jit_pass_fold_frozen_conv_bn(graph: Graph): ... +def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ... +def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ... +def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ... +def _jit_pass_concat_frozen_linear(graph: Graph): ... +def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ... +def _jit_pass_transpose_frozen_linear(graph: Graph): ... +def _jit_pass_remove_dropout(module: torch.jit.ScriptModule): ... +def _is_tracing() -> _bool: ... +def _jit_init() -> _bool: ... +def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ... +def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ... +def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ... +def _get_operation_overload( + op_name: str, + op_overload_name: str, +) -> Tuple[Callable, Callable, List[Any]]: ... +def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ... +def _jit_pass_optimize_for_mobile( + module: torch.jit.ScriptModule, + optimization_blocklist: Set[_MobileOptimizerType], + preserved_methods: List[AnyStr], +) -> torch.jit.ScriptModule: ... +def _clone_module_with_class( + module: torch.jit.ScriptModule, + ignored_methods: List[AnyStr], + ignored_attributes: List[AnyStr], +) -> torch.jit.ScriptModule: ... +def _jit_pass_vulkan_optimize_for_mobile( + module: torch.jit.ScriptModule, + optimization_blocklist: Set[_MobileOptimizerType], + preserved_methods: List[AnyStr], +) -> torch.jit.ScriptModule: ... +def _jit_pass_metal_optimize_for_mobile( + module: torch.jit.ScriptModule, + preserved_methods: List[AnyStr], +) -> torch.jit.ScriptModule: ... +def _jit_pass_inline(Graph) -> None: ... +def _jit_pass_constant_propagation(Graph) -> None: ... +def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ... +def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ... +def _jit_erase_non_input_shape_information(Graph) -> None: ... +def _jit_get_schemas_for_operator(name: str) -> List[FunctionSchema]: ... +def _jit_get_all_schemas() -> List[FunctionSchema]: ... +def _jit_check_alias_annotation( + g: Graph, + args: Tuple[Any, ...], + unqualified_op_name: str, +): ... +def _jit_can_fuse_on_cpu() -> _bool: ... +def _jit_can_fuse_on_gpu() -> _bool: ... +def _jit_can_fuse_on_cpu_legacy() -> _bool: ... +def _debug_get_fusion_group_inlining() -> _bool: ... +def _debug_set_fusion_group_inlining(enable: _bool): ... +def _jit_texpr_fuser_enabled() -> _bool: ... +def _jit_nvfuser_enabled() -> _bool: ... +def _jit_llga_enabled() -> _bool: ... +def _jit_set_llga_enabled(enable: _bool): ... +def _llvm_enabled() -> _bool: ... +def _jit_override_can_fuse_on_cpu(override: _bool): ... +def _jit_override_can_fuse_on_gpu(override: _bool): ... +def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ... +def _jit_set_symbolic_shapes_test_mode(override: _bool): ... +def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ... +def _jit_set_texpr_fuser_enabled(enable: _bool): ... +def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ... +def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ... +def _jit_cat_wo_conditionals(optimize_cat: _bool): ... +def _jit_opt_conditionals(opt_conds: _bool): ... +def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ... +def _jit_pass_erase_shape_information(graph: Graph): ... +def _jit_pass_fold_convbn(module: torch.jit.ScriptModule): ... +def _jit_pass_insert_observers( + module: torch.jit.ScriptModule, + method_name: str, + qconfig_dict: Dict[str, Any], + inplace: _bool, + quant_type: _int, +): ... +def _jit_pass_insert_quant_dequant( + module: torch.jit.ScriptModule, + method_name: str, + inplace: _bool, + debug: _bool, + quant_type: _int, +): ... +def _jit_pass_insert_quant_dequant_for_ondevice_ptq( + module: torch.jit.ScriptModule, + method_name: str, + inplace: _bool, + debug: _bool, + quant_type: _int, +): ... +def _jit_pass_quant_finalize( + module: torch.jit.ScriptModule, + quant_type: _int, + preserved_attrs: Sequence[str], +): ... +def _jit_pass_quant_finalize_for_ondevice_ptq( + module: torch.jit.ScriptModule, + quant_type: _int, + method_name: str, +): ... +def _jit_pass_insert_observer_method_for_ondevice_ptq( + module: torch.jit.ScriptModule, + method_name: str, + qconfig_dict: Dict[str, Any], + inplace: _bool, + quant_type: _int, +): ... +def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ... +def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ... +def _jit_set_fusion_strategy( + strategy: List[Tuple[str, _int]], +) -> List[Tuple[str, _int]]: ... +def _jit_try_infer_type(obj: Any) -> InferredType: ... +def _jit_get_trigger_value(trigger_name: str) -> _int: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +ResolutionCallback = Callable[[str], Callable[..., Any]] + +# Defined in torch/csrc/jit/python/script_init.cpp +# and torch/csrc/jit/python/init.cpp +def _maybe_call_torch_function_for_op_packet( + op_overload_packet: Any, + args: Any, + kwargs: Any, +) -> Any: ... +def _check_schema_allow_fake_script_object( + schema: FunctionSchema, + args: Any, + kwargs: Any, +) -> _bool: ... +def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ... +def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ... +def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ... +def _jit_assert_is_instance(obj: Any, type: JitType): ... +def _jit_clear_class_registry() -> None: ... +def _jit_set_emit_hooks( + ModuleHook: Optional[Callable], + FunctionHook: Optional[Callable], +) -> None: ... +def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ... +def _load_for_lite_interpreter( + filename: Union[str, Path], + map_location: Optional[DeviceLikeType], +): ... +def _load_for_lite_interpreter_from_buffer( + buffer: BinaryIO, + map_location: Optional[DeviceLikeType], +): ... +def _export_operator_list(module: LiteScriptModule): ... +def _quantize_ondevice_ptq_dynamic(module: LiteScriptModule, method_name: str): ... +def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ... +def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ... +def _backport_for_mobile( + filename_input: Union[str, Path], + filename_output: Union[str, Path], + to_version: _int, +) -> None: ... +def _backport_for_mobile_from_buffer( + buffer: BinaryIO, + filename_output: Union[str, Path], + to_version: _int, +) -> None: ... +def _backport_for_mobile_to_buffer( + filename_input: Union[str, Path], + to_version: _int, +) -> bytes: ... +def _backport_for_mobile_from_buffer_to_buffer( + buffer: BinaryIO, + to_version: _int, +) -> bytes: ... +def _get_model_ops_and_info(filename: Union[str, Path]): ... +def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ... +def _get_mobile_model_contained_types(filename: Union[str, Path]): ... +def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ... +def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ... +def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ... +def _set_graph_executor_optimize(optimize: _bool): ... +def _export_opnames(module: ScriptModule) -> List[str]: ... +def _create_function_from_trace( + qualname: str, + func: Callable[..., Any], + input_tuple: Tuple[Any, ...], + var_lookup_fn: Callable[[Tensor], str], + strict: _bool, + force_outplace: _bool, + argument_names: List[str], +) -> Tuple[Graph, Stack]: ... +def _create_function_from_trace_with_dict( + qualname: str, + func: Callable[..., Any], + input_dict: Dict[str, Any], + var_lookup_fn: Callable[[Tensor], str], + strict: _bool, + force_outplace: _bool, + argument_names: List[str], +) -> Tuple[Graph, Stack]: ... +def _jit_is_script_object(obj: Any) -> _bool: ... +def _last_executed_optimized_graph() -> Graph: ... +def parse_type_comment(comment: str) -> Decl: ... +def _get_upgraders_map_size() -> _int: ... +def _get_upgraders_entry_map() -> Dict[str, str]: ... +def _dump_upgraders_map() -> Dict[str, str]: ... +def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ... +def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ... +def merge_type_from_type_comment( + decl: Decl, + type_annotation_decl: Decl, + is_method: _bool, +) -> Decl: ... +def parse_ir(input: str, parse_tensor_constants: _bool = False) -> Graph: ... +def parse_schema(schema: str) -> FunctionSchema: ... +def get_device(input: Tensor) -> _int: ... +def _resolve_type_from_object( + obj: Any, + range: SourceRange, + rcb: ResolutionCallback, +) -> JitType: ... +def _create_module_with_type(ty: JitType) -> ScriptModule: ... +def _create_object_with_type(ty: ClassType) -> ScriptObject: ... +def _run_emit_module_hook(m: ScriptModule): ... +def _replace_overloaded_method_decl( + overload_decl: Decl, + implementation_def: Def, + new_name: str, +) -> Def: ... +def _jit_pass_lower_all_tuples(graph: Graph) -> None: ... +def _jit_pass_onnx_set_dynamic_input_shape( + graph: Graph, + dynamic_axes: Dict[str, Dict[_int, str]], + input_names: List[str], +) -> None: ... +def _jit_pass_onnx_graph_shape_type_inference( + graph: Graph, + params_dict: Dict[str, IValue], + opset_version: _int, +) -> None: ... +def _jit_pass_onnx_assign_output_shape( + graph: Graph, + tensors: List[Tensor], + desc: IODescriptor, + onnx_shape_inference: _bool, + is_script: _bool, + opset_version: _int, +) -> None: ... +def _jit_pass_onnx_remove_inplace_ops_for_onnx( + graph: Graph, + module: Optional[ScriptModule] = None, +) -> None: ... +def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ... +def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ... +def _jit_pass_peephole( + graph: Graph, + disable_shape_peepholes: _bool = False, +) -> None: ... +def _jit_pass_onnx_autograd_function_process(graph: Graph) -> None: ... +def _jit_pass_fuse_addmm(graph: Graph) -> None: ... +def _jit_pass_onnx_preprocess(graph: Graph) -> None: ... +def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ... +def _jit_pass_onnx_remove_print(graph: Graph) -> None: ... +def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ... +def _jit_pass_onnx_unpack_quantized_weights( + graph: Graph, + paramsDict: Dict[str, IValue], +) -> Dict[str, IValue]: ... +def _jit_pass_onnx_quantization_insert_permutes( + graph: Graph, + paramsDict: Dict[str, IValue], +) -> Dict[str, IValue]: ... +def _jit_pass_custom_pattern_based_rewrite_graph( + pattern: str, + fused_node_name: str, + graph: Graph, +) -> None: ... +def _jit_onnx_list_model_parameters( + module: ScriptModule, +) -> Tuple[ScriptModule, List[IValue]]: ... +def _jit_pass_erase_number_types(graph: Graph) -> None: ... +def _jit_pass_onnx_lint(graph: Graph) -> None: ... +def _jit_pass_onnx( + graph: Graph, + _jit_pass_onnx: _onnx.OperatorExportTypes, +) -> Graph: ... +def _jit_pass_onnx_scalar_type_analysis( + graph: Graph, + lowprecision_cast: _bool, + opset_version: _int, +) -> None: ... +def _jit_pass_onnx_peephole( + graph: Graph, + opset_version: _int, + fixed_batch_size: _bool, +) -> None: ... +def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ... +def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ... +def _jit_pass_onnx_function_extraction( + graph: Graph, + module_names: Set[str], + param_names: List[str], +) -> Dict[Node, Dict[str, str]]: ... +def _jit_pass_onnx_clear_scope_records() -> None: ... +def _jit_pass_onnx_track_scope_attributes( + graph: Graph, + onnx_attrs: Dict[str, Any], +) -> None: ... +def _jit_is_onnx_log_enabled() -> _bool: ... +def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ... +def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ... +def _jit_onnx_log(*args: Any) -> None: ... +def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ... +def _jit_pass_inline_fork_wait(graph: Graph) -> None: ... +def _jit_pass_onnx_deduplicate_initializers( + graph: Graph, + params_dict: Dict[str, IValue], + is_train: _bool, +) -> Dict[str, IValue]: ... +def _jit_pass_onnx_eval_peephole( + graph: Graph, + paramsDict: Dict[str, IValue], +) -> Dict[str, IValue]: ... +def _jit_pass_onnx_constant_fold( + graph: Graph, + paramsDict: Dict[str, IValue], + opset_version: _int, +) -> Dict[str, IValue]: ... +def _jit_pass_onnx_eliminate_unused_items( + graph: Graph, + paramsDict: Dict[str, IValue], +) -> Dict[str, IValue]: ... +def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ... +def _jit_pass_filter_non_tensor_arguments( + params: Dict[str, IValue], +) -> Dict[str, Tensor]: ... +def _jit_decay_packed_param_input_types(graph: Graph) -> None: ... +def _jit_pass_onnx_node_shape_type_inference( + n: Node, + paramsDict: Dict[str, IValue], + opset_version: _int, +) -> None: ... +def _jit_onnx_convert_pattern_from_subblock( + block: Block, + n: Node, + env: Dict[Value, Value], + values_in_env: Set[Value], +) -> List[Value]: ... +def _jit_pass_onnx_block( + old_block: Block, + new_block: Block, + operator_export_type: _onnx.OperatorExportTypes, + env: Dict[Value, Value], + values_in_env: Set[Value], + is_sub_block: _bool, +) -> Dict[Value, Value]: ... +def _jit_pass_onnx_assign_scoped_names_for_node_and_value(graph: Graph) -> None: ... +def _jit_pass_fixup_onnx_controlflow_node( + n: Node, + opset_version: _int, +) -> List[Value]: ... +def _jit_onnx_create_full_scope_name(class_name: str, variable_name: str) -> str: ... +def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ... +def _generate_upgraders_graph() -> Dict[str, Graph]: ... +def _calculate_package_version_based_on_upgraders(val: _bool): ... +def _get_version_calculator_flag() -> _bool: ... +def _jit_script_interface_compile( + name: str, + class_def: ClassDef, + rcb: ResolutionCallback, + is_module: _bool, +): ... +def _jit_script_compile_overload( + qualname: str, + overload_decl: Decl, + implementation_def: Def, + rcb: ResolutionCallback, + implementation_defaults: Dict[str, Any], + signature: Any, +): ... +def _jit_script_compile( + qual_name: str, + definition: Def, + rcb: ResolutionCallback, + defaults: Dict[str, Any], +): ... +def _jit_script_class_compile( + qual_name: str, + definition: ClassDef, + defaults: Dict[str, Dict[str, Any]], + rcb: ResolutionCallback, +): ... +def _parse_source_def(src: str) -> Def: ... +def import_ir_module( + cu: CompilationUnit, + filename: Union[str, Path], + map_location: Optional[DeviceLikeType], + extra_files: Dict[str, Any], +) -> ScriptModule: ... +def import_ir_module_from_buffer( + cu: CompilationUnit, + buffer: BinaryIO, + map_location: Optional[DeviceLikeType], + extra_files: Dict[str, Any], +) -> ScriptModule: ... +def _import_ir_module_from_package( + cu: CompilationUnit, + reader: PyTorchFileReader, + storage_context: DeserializationStorageContext, + map_location: Optional[DeviceLikeType], + ts_id: str, +) -> ScriptModule: ... +def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ... +def _check_onnx_proto(proto: str) -> None: ... +def _propagate_and_assign_input_shapes( + graph: Graph, + inputs: Tuple[Tensor, ...], + param_count_list: List[_int], + with_grad: _bool, + propagate: _bool, +) -> Graph: ... + +# Defined in torch/csrc/jit/runtime/graph_executor.h +class GraphExecutorState: ... + +# Defined in torch/torch/csrc/jit/ir/alias_analysis.h +class AliasDb: + def __str__(self) -> str: ... + +class _InsertPoint: + def __enter__(self) -> None: ... + def __exit__(self, *args) -> None: ... + +# Defined in torch/csrc/jit/ir/ir.h +class Use: + @property + def user(self) -> Node: ... + @property + def offset(self) -> _int: ... + def isAfter(self, other: Use) -> _bool: ... + +# Defined in torch/csrc/jit/ir/ir.h +class Value: + def type(self) -> JitType: ... + def setType(self, t: JitType) -> Value: ... + def setTypeAs(self, other: Value) -> Value: ... + def inferTypeFrom(self, t: Tensor) -> None: ... + def debugName(self) -> str: ... + def setDebugName(self, name: str) -> None: ... + def unique(self) -> _int: ... + def offset(self) -> _int: ... + def node(self) -> Node: ... + def uses(self) -> List[Use]: ... + def replaceAllUsesWith(self, val: Value) -> None: ... + def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ... + def requires_grad(self) -> _bool: ... + def requiresGrad(self) -> _bool: ... + def copyMetadata(self, other: Value) -> Value: ... + def isCompleteTensor(self) -> _bool: ... + def toIValue(self) -> IValue: ... + +# Defined in torch/csrc/jit/ir/ir.h +class Block: + def inputs(self) -> Iterator[Value]: ... + def outputs(self) -> Iterator[Value]: ... + def nodes(self) -> Iterator[Node]: ... + def paramNode(self) -> Node: ... + def returnNode(self) -> Node: ... + def owningNode(self) -> Node: ... + def registerOutput(self, n: Value) -> _int: ... + def addNode(self, name: str, inputs: Sequence[Value]) -> Node: ... + +# Defined in torch/csrc/jit/ir/ir.h +class Node: + def __getitem__(self, key: str) -> Any: ... + def schema(self) -> str: ... + def input(self) -> Value: ... + def inputs(self) -> Iterator[Value]: ... + def inputsAt(self, idx: _int) -> Value: ... + def inputsSize(self) -> _int: ... + def output(self) -> Value: ... + def outputs(self) -> Iterator[Value]: ... + def outputsAt(self, idx: _int) -> Value: ... + def outputsSize(self) -> _int: ... + def hasMultipleOutputs(self) -> _bool: ... + def blocks(self) -> List[Block]: ... + def addBlock(self) -> Block: ... + def mustBeNone(self) -> _bool: ... + def matches(self, pattern: str) -> _bool: ... + def kind(self) -> str: ... + def kindOf(self, name: str) -> str: ... + def addInput(self, name: str) -> Value: ... + def replaceInput(self, i: _int, newValue: Value) -> Value: ... + def replaceInputWith(self, from_: Value, to: Value) -> None: ... + def replaceAllUsesWith(self, n: Node) -> None: ... + def insertBefore(self, n: Node) -> Node: ... + def insertAfter(self, n: Node) -> Node: ... + def isBefore(self, n: Node) -> _bool: ... + def isAfter(self, n: Node) -> _bool: ... + def moveBefore(self, n: Node) -> None: ... + def moveAfter(self, n: Node) -> None: ... + def removeInput(self, i: _int) -> None: ... + def removeAllInputs(self, i: _int) -> None: ... + def hasUses(self) -> _bool: ... + def eraseOutput(self, i: _int) -> None: ... + def addOutput(self) -> Value: ... + def scopeName(self) -> str: ... + def isNondeterministic(self) -> _bool: ... + def copyAttributes(self, rhs: Node) -> Node: ... + def copyMetadata(self, rhs: Node) -> Node: ... + def hasAttributes(self) -> _bool: ... + def hasAttribute(self, name: str) -> _bool: ... + def removeAttribute(self, attr: str) -> Node: ... + def namedInput(self, name: str) -> Value: ... + def sourceRange(self) -> SourceRange: ... + def owningBlock(self) -> Block: ... + def findNode(self, kind: str, recurse: _bool = True) -> Node: ... + def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ... + def getModuleHierarchy(self) -> str: ... + def prev(self) -> Node: ... + def destroy(self) -> None: ... + def attributeNames(self) -> List[str]: ... + + # Accessors for attributes as types. + def f(self, name: str) -> _float: ... + def f_(self, name: str, val: _float) -> Node: ... + def fs(self, name: str) -> List[_float]: ... + def fs_(self, name: str, val: List[_float]) -> Node: ... + def c(self, name: str) -> complex: ... + def c_(self, name: str, val: complex) -> Node: ... + def s(self, name: str) -> str: ... + def s_(self, name: str, val: str) -> Node: ... + def ss(self, name: str) -> List[str]: ... + def ss_(self, name: str, val: List[str]) -> Node: ... + def i(self, name: str) -> _int: ... + def i_(self, name: str, val: _int) -> Node: ... + # Cannot define "is" like this because it's a reserved keyword in python. + # def is(self, name: str) -> List[_int]: ... + # def is_(self, name: str, val: List[_int]) -> Node: ... + def g(self, name: str) -> Graph: ... + def g_(self, name: str, val: Graph) -> Node: ... + def gs(self, name: str) -> List[Graph]: ... + def gs_(self, name: str, val: List[Graph]) -> Node: ... + def ival(self, name: str) -> IValue: ... + def ival_(self, name: str, val: IValue) -> Node: ... + def t(self, name: str) -> Tensor: ... + def t_(self, name: str, val: Tensor) -> Node: ... + def ts(self, name: str) -> List[Tensor]: ... + def ts_(self, name: str, val: List[Tensor]) -> Node: ... + def ty(self, name: str) -> JitType: ... + def ty_(self, name: str, val: JitType) -> Node: ... + def tys(self, name: str) -> List[JitType]: ... + def tys_(self, name: str, val: List[JitType]) -> Node: ... + +# Defined in torch/torch/csrc/jit/ir/ir.h +class Graph: + def inputs(self) -> Iterator[Value]: ... + def outputs(self) -> Iterator[Value]: ... + def nodes(self) -> Iterator[Node]: ... + def param_node(self) -> Node: ... + def return_node(self) -> Node: ... + def addInput(self, name: str = "") -> Value: ... + def eraseInput(self, i: _int) -> None: ... + def registerOutput(self, n: Value) -> _int: ... + def eraseOutput(self, i: _int) -> None: ... + def create(self, name: str, args, num_outputs: _int) -> Node: ... + def appendNode(self, n: Node) -> Node: ... + def prependNode(self, n: Node) -> Node: ... + def insertNode(self, n: Node) -> Node: ... + def block(self) -> Block: ... + def lint(self) -> None: ... + def alias_db(self) -> AliasDb: ... + def setInsertPoint(self, n: Union[Block, Node]) -> None: ... + def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ... + def insertPoint(self) -> Node: ... + def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ... + def makeMultiOutputIntoTuple(self) -> None: ... + def copy(self) -> Graph: ... + +# Defined in torch/aten/src/ATen/core/alias_info.h +class AliasInfo: + is_write: _bool + before_set: Set[str] + after_set: Set[str] + +# Defined in torch/aten/src/ATen/core/function_schema.h +class Argument: + name: str + type: JitType + default_value: Optional[Any] + def has_default_value(self) -> _bool: ... + kwarg_only: _bool + is_out: _bool + alias_info: Optional[AliasInfo] + +class FunctionSchema: + arguments: List[Argument] + returns: List[Argument] + name: str + overload_name: str + is_mutable: _bool + +class _UpgraderEntry: + bumped_at_version: _int + upgrader_name: str + old_schema: str + def __init__( + self, + bumped_at_version: _int, + upgrader_name: str, + old_schema: str, + ) -> None: ... + +class _UpgraderRange: + min_version: _int + max_version: _int + +def _get_max_operator_version() -> _int: ... +def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ... +def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ... +def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ... +def _test_only_remove_entry_to_op_version(op_name: str) -> None: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +class ScriptModuleSerializer: + def __init__(self, export_writer: PyTorchFileWriter) -> None: ... + def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ... + def write_files(self) -> None: ... + def storage_context(self) -> SerializationStorageContext: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +class SerializationStorageContext: + def __init__(self) -> None: ... + def has_storage(self, storage: Storage) -> _bool: ... + def get_or_add_storage(self, storage: Storage) -> _int: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +class DeserializationStorageContext: + def __init__(self) -> None: ... + def get_storage(self, name: str, dtype: _dtype) -> Tensor: ... + def has_storage(self, name: str) -> _bool: ... + def add_storage(self, name: str, tensor: Tensor) -> _int: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +class ConcreteModuleTypeBuilder: + def __init__(self, obj: Any) -> None: ... + def set_module_dict(self): ... + def set_module_list(self): ... + def set_parameter_list(self): ... + def set_parameter_dict(self): ... + def add_attribute( + self, + name: str, + ty: JitType, + is_param: _bool, + is_buffer: _bool, + ): ... + def add_module(self, name: str, meta: ConcreteModuleType): ... + def add_constant(self, name: str, value: Any): ... + def add_overload(self, method_name: str, overloaded_method_names: List[str]): ... + def add_builtin_function(self, name: str, symbol_name: str): ... + def add_failed_attribute(self, name: str, failure_reason: str): ... + def add_function_attribute( + self, + name: str, + ty: JitType, + func: Callable[..., Any], + ): ... + def add_ignored_attribute(self, name: str): ... + def add_ignored_attributes(self, names: List[str]): ... + def add_forward_hook(self, hook: Callable[..., Any]): ... + def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ... + +class ConcreteModuleType: + def get_constants(self) -> Dict[str, Any]: ... + def equals(self, other: ConcreteModuleType) -> _bool: ... + @staticmethod + def from_jit_type(ty: JitType) -> ConcreteModuleType: ... + +class CallStack: + def __init__(self, name: str, range: SourceRange): ... + +class ErrorReport: + def __init__(self, range: SourceRange) -> None: ... + def what(self) -> str: ... + @staticmethod + def call_stack() -> str: ... + +class CompilationUnit: + def __init__(self, lang: str = ..., _frames_up: _int = ...) -> None: ... + def find_function(self, name: str) -> ScriptFunction: ... + def __getattr__(self, name: str) -> ScriptFunction: ... + def define( + self, + script: str, + rcb: ResolutionCallback = ..., + _frames_up: _int = ..., + ): ... + def get_interface(self, name: str) -> InterfaceType: ... + def get_functions(self) -> List[ScriptFunction]: ... + def create_function( + self, + name: str, + graph: Graph, + shouldMangle: _bool = ..., + ) -> ScriptFunction: ... + def get_class(self, name: str) -> ClassType: ... + +class ScriptObject: + def setattr(self, name: str, value: Any): ... + +class ScriptModule(ScriptObject): + def _method_names(self) -> List[str]: ... + def _get_method(self, name: str) -> ScriptMethod: ... + +class LiteScriptModule: + def __call__(self, *input): ... + def find_method(self, method_name: str): ... + def forward(self, *input) -> List[str]: ... + def run_method(self, method_name: str, *input): ... + +# NOTE: switch to collections.abc.Callable in python 3.9 +class ScriptFunction(Generic[P, ReturnVal]): + def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ... + def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ... + def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ... + @property + def graph(self) -> Graph: ... + def inlined_graph(self) -> Graph: ... + def schema(self) -> FunctionSchema: ... + def code(self) -> str: ... + def name(self) -> str: ... + @property + def qualified_name(self) -> str: ... + +# NOTE: switch to collections.abc.Callable in python 3.9 +class ScriptMethod(Generic[P, ReturnVal]): + graph: Graph + def __call__(self, *args: P.args, **kwargs: P.kwargs) -> ReturnVal: ... + @property + def owner(self) -> ScriptModule: ... + @property + def name(self) -> str: ... + +class ScriptDict(Generic[K, T]): + def __init__(self, dict: Dict[K, T]) -> None: ... + def __len__(self) -> _int: ... + def __contains__(self, key: K) -> _bool: ... + def __getitem__(self, key: K) -> T: ... + def __setitem__(self, key: K, value: T) -> None: ... + def __delitem__(self, key: K) -> None: ... + def __iter__(self) -> Iterator[K]: ... + def items(self) -> Iterator[tuple[K, T]]: ... + def keys(self) -> Iterator[K]: ... + +class ScriptList(Generic[T]): + def __init__(self, list: List[T]) -> None: ... + def __len__(self) -> _int: ... + def __contains__(self, item: T) -> _bool: ... + @overload + def __getitem__(self, idx: _int) -> T: ... + @overload + def __getitem__(self, idx: slice) -> ScriptList[T]: ... + @overload + def __setitem__(self, idx: _int, value: T) -> None: ... + @overload + def __setitem__(self, idx: slice, value: List[T]) -> None: ... + def __delitem__(self, idx: _int) -> None: ... + def __iter__(self) -> Iterator[T]: ... + def count(self, value: T) -> _int: ... + def remove(self, value: T) -> None: ... + def append(self, value: T) -> None: ... + def clear(self) -> None: ... + @overload + def extend(self, values: List[T]) -> None: ... + @overload + def extend(self, values: Iterable[T]) -> None: ... + @overload + def pop(self) -> T: ... + @overload + def pop(self, idx: _int) -> T: ... + +class ModuleDict: + def __init__(self, mod: ScriptModule) -> None: ... + def items(self) -> List[Tuple[str, Any]]: ... + +class ParameterDict: + def __init__(self, mod: ScriptModule) -> None: ... + +class BufferDict: + def __init__(self, mod: ScriptModule) -> None: ... + +# Defined in torch/csrc/jit/api/module.h +class Module: ... + +# Defined in torch/csrc/Module.cpp +def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension +def _autograd_init() -> _bool: ... # THPAutograd_initExtension +def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr +def _init_names(arg: Sequence[_Type]) -> None: ... # THPModule_initNames +def _has_distributed() -> _bool: ... # THPModule_hasDistributed +def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType +def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype +def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize +def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN +def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN +def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN +def _show_config() -> str: ... # THPModule_showConfig +def _cxx_flags() -> str: ... # THPModule_cxxFlags +def _parallel_info() -> str: ... # THPModule_parallelInfo +def _get_cpu_capability() -> str: ... # THPModule_getCpuCapability +def _set_backcompat_broadcast_warn( + arg: _bool, +) -> None: ... # THPModule_setBackcompatBroadcastWarn +def _get_backcompat_broadcast_warn() -> _bool: ... # THPModule_getBackcompatBroadcastWarn +def _set_backcompat_keepdim_warn( + arg: _bool, +) -> None: ... # THPModule_setBackcompatKeepdimWarn +def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn +def get_num_thread() -> _int: ... # THPModule_getNumThreads +def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads +def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads +def set_num_interop_threads( + nthreads: _int, +) -> None: ... # THPModule_setNumInteropThreads +def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN +def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN +def _get_flash_sdp_enabled() -> _bool: ... # THPModule_userEnabledFusedSDP +def _set_sdp_use_flash(arg: _bool) -> None: ... # THPModule_setSDPUseFlash +def _get_mem_efficient_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP +def _set_sdp_use_mem_efficient( + arg: _bool, +) -> None: ... # THPModule_setSDPUseMemEfficient +def _get_math_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP +def _set_sdp_use_math(arg: _bool) -> None: ... # THPModule_setSDPUseMath +def _get_math_sdp_allow_fp16_bf16_reduction() -> _bool: ... # THPModule_allowFP16BF16ReductionMathSDP +def _set_math_sdp_allow_fp16_bf16_reduction(arg: _bool) -> None: ... # THPModule_setAllowFP16BF16ReductionMathSDP +def _get_overrideable_sdp_enabled() -> _bool: ... # THPModule_userEnabledOverrideableSDP +def _set_sdp_use_overrideable(arg: _bool) -> None: ... # THPModule_setSDPUseOverrideable +def _get_cudnn_sdp_enabled() -> _bool: ... # THPModule_userEnabledMathSDP +def _set_sdp_use_cudnn(arg: _bool) -> None: ... # THPModule_setSDPUseMath +def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn +def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn +def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN +def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN +def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN +def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN +def _get_mkldnn_deterministic() -> _bool: ... # THPModule_deterministicMkldnn +def _set_mkldnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicMkldnn +def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms +def _get_deterministic_algorithms_warn_only() -> _bool: ... # THPModule_deterministicAlgorithmsWarnOnly +def _set_deterministic_algorithms( + mode: _bool, + *, + warn_only: _bool = ..., +) -> None: ... # THPModule_setDeterministicAlgorithms +def _get_deterministic_fill_uninitialized_memory() -> _bool: ... # THPModule_deterministicFillUninitializedMemory +def _set_deterministic_fill_uninitialized_memory(arg: _bool) -> None: ... # THPModule_setDeterministicFillUninitializedMemory +def _get_nnpack_enabled() -> _bool: ... # THPModule_userEnabledNNPACK +def _set_nnpack_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledNNPACK +def _get_warnAlways() -> _bool: ... # THPModule_warnAlways +def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways +def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN +def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN +def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS +def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS +def _get_float32_matmul_precision() -> str: ... # THPModule_float32MatmulPrecision +def _set_float32_matmul_precision( + arg: str, +) -> None: ... # THPModule_setFloat32MatmulPrecision +def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... # THPModule_allowFP16ReductionCuBLAS +def _set_cublas_allow_fp16_reduced_precision_reduction( + arg: _bool, +) -> None: ... # THPModule_setAllowFP16ReductionCuBLAS +def _get_cublas_allow_bf16_reduced_precision_reduction() -> _bool: ... # THPModule_allowBF16ReductionCuBLAS +def _set_cublas_allow_bf16_reduced_precision_reduction( + arg: _bool, +) -> None: ... # THPModule_setAllowBF16ReductionCuBLAS +def _set_conj(x: Tensor, conj: _bool) -> None: ... +def _set_neg(x: Tensor, neg: _bool) -> None: ... +def _set_meta_in_tls_dispatch_include(meta_in_tls: _bool) -> None: ... +def _meta_in_tls_dispatch_include() -> _bool: ... +def _stash_obj_in_tls(key: str, arg: Any) -> None: ... +def _get_obj_in_tls(key: str) -> Any: ... +def _is_key_in_tls(key: str) -> _bool: ... +def _select_batch_norm_backend(*args, **kwargs) -> BatchNormBackend: ... +def _select_conv_backend(*args, **kwargs) -> ConvBackend: ... +def _conv_determine_backend_memory_format( + input: Tensor, + weight: Tensor, + backend: ConvBackend, +) -> memory_format: ... +def _has_storage(x: Tensor) -> _bool: ... +def _construct_storage_from_data_pointer(data_ptr: _int, device: torch.device, size: _int) -> Storage: ... +def _should_allow_numbers_as_tensors(func_name: str) -> _bool: ... +def _group_tensors_by_device_and_dtype(nested_tensorlists: List[List[Optional[Tensor]]], with_indices: _bool = False) -> Dict[Tuple[torch.device, torch.dtype], Tuple[List[List[Optional[Tensor]]], List[_int]]]: ... + +# NB: There is no Capsule type in typing, see +# https://code.activestate.com/lists/python-dev/139675/ +def _to_dlpack(data: Tensor) -> Any: ... # THPModule_toDLPack +def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack +def _get_cpp_backtrace( + frames_to_skip: _int, + maximum_number_of_frames: _int, +) -> str: ... # THPModule_getCppBacktrace +def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal +def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype +def _get_default_device() -> str: ... # THPModule_getDefaultDevice +def _get_qengine() -> _int: ... # THPModule_qEngine +def _set_qengine(qengine: _int) -> None: ... # THPModule_setQEngine +def _supported_qengines() -> List[_int]: ... # THPModule_supportedQEngines +def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK +def _check_sparse_tensor_invariants() -> _bool: ... # THPModule_checkSparseTensorInvariants +def _set_check_sparse_tensor_invariants( + arg: _bool, +) -> None: ... # THPModule_setCheckSparseTensorInvariants +def _set_default_mobile_cpu_allocator() -> None: ... # THPModule_setDefaultMobileCPUAllocator +def _unset_default_mobile_cpu_allocator() -> None: ... # THPModule_unsetDefaultMobileCPUAllocator +def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction +def _is_torch_function_all_disabled() -> _bool: ... # THPModule_isAllDisabledTorchFunction +def _has_torch_function( + args: Iterable[Any], +) -> _bool: ... # THPModule_has_torch_function +def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary +def _has_torch_function_variadic( + *args: Any, +) -> _bool: ... # THPModule_has_torch_function_variadic +def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting +def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting +def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython +def _log_api_usage_metadata(event: str, metadata_map: Dict[str, str]) -> None: ... # LogAPIUsageMetadataFromPython +def _demangle(str) -> str: ... # c10::demangle +def _disabled_torch_function_impl( + func: Callable, + types: Iterable[_Type], + args: Tuple, + kwargs: Dict, +) -> Any: ... # THPModule_disable_torch_function +def _disabled_torch_dispatch_impl( + func: Callable, + types: Iterable[_Type], + args: Tuple, + kwargs: Dict, +) -> Any: ... # THPModule_disable_dispatch_function +def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ... +def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ... + +class _LinalgBackend: + Default: _LinalgBackend + Cusolver: _LinalgBackend + Magma: _LinalgBackend + +class BatchNormBackend(Enum): ... + +def _get_blas_preferred_backend() -> torch._C._BlasBackend: ... +def _set_blas_preferred_backend(arg: torch._C._BlasBackend): ... + +class _BlasBackend: + Cublas: _BlasBackend + Cublaslt: _BlasBackend + +class ConvBackend(Enum): ... + +class Tag(Enum): + core: _int = 0 + data_dependent_output: _int = 1 + dynamic_output_shape: _int = 2 + flexible_layout: _int = 3 + generated: _int = 4 + inplace_view: _int = 5 + needs_fixed_stride_order: _int = 6 + nondeterministic_bitwise: _int = 7 + nondeterministic_seeded: _int = 8 + pointwise: _int = 9 + pt2_compliant_tag: _int = 10 + view_copy: _int = 11 + +# Defined in `valgrind.h` and `callgrind.h` respectively. +def _valgrind_supported_platform() -> _bool: ... # NVALGRIND +def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT +def _valgrind_toggle_and_dump_stats() -> None: ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS + +has_openmp: _bool +has_mkl: _bool +_has_mps: _bool +has_lapack: _bool +_has_cuda: _bool +_has_magma: _bool +_has_xpu: _bool +_has_mkldnn: _bool +_has_cudnn: _bool +_has_cusparselt: _bool +has_spectral: _bool +_GLIBCXX_USE_CXX11_ABI: _bool +default_generator: Generator + +# Defined in torch/csrc/autograd/init.cpp +def _set_grad_enabled(enabled: _bool) -> None: ... +def is_grad_enabled() -> _bool: ... +def _set_fwd_grad_enabled(enabled: _bool) -> None: ... +def _is_fwd_grad_enabled() -> _bool: ... +def is_inference_mode_enabled() -> _bool: ... +@overload +def set_autocast_enabled(device_type: str, enabled: _bool) -> None: ... +@overload +def set_autocast_enabled(enabled: _bool) -> None: ... +@overload +def is_autocast_enabled(device_type: str) -> _bool: ... +@overload +def is_autocast_enabled() -> _bool: ... +def set_autocast_dtype(device_type: str, dtype: _dtype) -> None: ... +def get_autocast_dtype(device_type: str) -> _dtype: ... +def clear_autocast_cache() -> None: ... +def set_autocast_cpu_enabled(enabled: _bool) -> None: ... +def is_autocast_cpu_enabled() -> _bool: ... +def _is_any_autocast_enabled() -> _bool: ... +def _is_autocast_available(device_type: str) -> _bool: ... +def set_autocast_cpu_dtype(dtype: _dtype) -> None: ... +def set_autocast_gpu_dtype(dtype: _dtype) -> None: ... +def get_autocast_cpu_dtype() -> _dtype: ... +def get_autocast_gpu_dtype() -> _dtype: ... +def autocast_increment_nesting() -> _int: ... +def autocast_decrement_nesting() -> _int: ... +def is_autocast_cache_enabled() -> _bool: ... +def set_autocast_cache_enabled(enabled: _bool) -> None: ... +def _increment_version(tensors: Iterable[Tensor]) -> None: ... +def set_anomaly_enabled(enabled: _bool, check_nan: _bool = True) -> None: ... +def is_anomaly_enabled() -> _bool: ... +def is_anomaly_check_nan_enabled() -> _bool: ... +def _is_multithreading_enabled() -> _bool: ... +def _set_multithreading_enabled(enabled: _bool) -> None: ... +def _set_view_replay_enabled(enabled: _bool) -> None: ... +def _is_view_replay_enabled() -> _bool: ... +def _enter_dual_level() -> _int: ... +def _exit_dual_level(level: _int) -> None: ... +def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ... +def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ... +def __set_forward_AD_enabled(enabled: _bool) -> None: ... +def __is_forward_AD_enabled() -> _bool: ... +def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ... +def _reset_default_hooks() -> None: ... +def _is_torch_function_mode_enabled() -> _bool: ... +def _set_torch_function_mode(cls: Any) -> None: ... +def _push_on_torch_function_stack(cls: Any) -> None: ... +def _pop_torch_function_stack() -> Any: ... +def _get_function_stack_at(idx: _int) -> Any: ... +def _len_torch_function_stack() -> _int: ... +def _set_torch_dispatch_mode(cls: Any) -> None: ... +def _push_on_torch_dispatch_stack(cls: TorchDispatchMode) -> None: ... +def _pop_torch_dispatch_stack(mode_key: Optional[torch._C._TorchDispatchModeKey] = None) -> Any: ... +def _get_dispatch_mode(mode_key: Optional[torch._C._TorchDispatchModeKey]) -> Any: ... +def _unset_dispatch_mode(mode: torch._C._TorchDispatchModeKey) -> Optional[TorchDispatchMode]: ... +def _set_dispatch_mode(mode: TorchDispatchMode) -> None: ... +def _get_dispatch_stack_at(idx: _int) -> Any: ... +def _len_torch_dispatch_stack() -> _int: ... +def _activate_gpu_trace() -> None: ... + +class _DisableTorchDispatch: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _EnableTorchFunction: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _EnablePythonDispatcher: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _DisablePythonDispatcher: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _EnablePreDispatch: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _DisableFuncTorch: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _DisableAutocast: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _InferenceMode: + def __init__(self, enabled: _bool): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +def _set_autograd_fallback_mode(mode: str) -> None: ... +def _get_autograd_fallback_mode() -> str: ... + +# Defined in torch/csrc/jit/python/script_init.cpp +class LoggerBase: ... +class NoopLogger(LoggerBase): ... +class LockingLogger(LoggerBase): ... + +class AggregationType(Enum): + SUM = 0 + AVG = 1 + +class FileCheck: + def run(self, test_string: str) -> None: ... + def check(self, test_string: str) -> FileCheck: ... + def check_not(self, test_string: str) -> FileCheck: ... + def check_same(self, test_string: str) -> FileCheck: ... + def check_next(self, test_string: str) -> FileCheck: ... + def check_count( + self, + test_string: str, + count: _int, + exactly: _bool = False, + ) -> FileCheck: ... + def check_dag(self, test_string: str) -> FileCheck: ... + def check_source_highlighted(self, test_string: str) -> FileCheck: ... + def check_regex(self, test_string: str) -> FileCheck: ... + +# Defined in torch/csrc/jit/python/init.cpp +class PyTorchFileReader: + @overload + def __init__(self, name: str) -> None: ... + @overload + def __init__(self, buffer: BinaryIO) -> None: ... + def get_record(self, name: str) -> bytes: ... + def serialization_id(self) -> str: ... + +class PyTorchFileWriter: + @overload + def __init__(self, name: str) -> None: ... + @overload + def __init__(self, buffer: BinaryIO) -> None: ... + def write_record(self, name: str, data: Union[Storage, bytes, _int], size: _int) -> None: ... + def write_end_of_file(self) -> None: ... + def set_min_version(self, version: _int) -> None: ... + def get_all_written_records(self) -> List[str]: ... + def archive_name(self) -> str: ... + def serialization_id(self) -> str: ... + +def _jit_get_inline_everything_mode() -> _bool: ... +def _jit_set_inline_everything_mode(enabled: _bool) -> None: ... +def _jit_get_logging_option() -> str: ... +def _jit_set_logging_option(option: str) -> None: ... +def _jit_set_logging_stream(stream_name: str) -> None: ... +def _jit_pass_cse(Graph) -> _bool: ... +def _jit_pass_dce(Graph) -> None: ... +def _jit_pass_lint(Graph) -> None: ... + +# Defined in torch/csrc/jit/python/python_custom_class.cpp +def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ... + +# Defined in torch/csrc/Module.cpp +def _rename_privateuse1_backend(backend: str) -> None: ... +def _get_privateuse1_backend_name() -> str: ... + +# Defined in torch/csrc/Generator.cpp +class Generator: + device: _device + def __init__(self, device: Optional[DeviceLikeType] = None) -> None: ... + def __reduce__(self) -> Tuple[_Type[Generator], Tuple[_device], Tuple[_int, Optional[_int], Tensor]]: ... + def __setstate__(self, state: Tuple[_int, Optional[_int], Tensor]) -> None: ... + def get_state(self) -> Tensor: ... + def set_state(self, _new_state: Tensor) -> Generator: ... + def clone_state(self) -> Generator: ... + def graphsafe_get_state(self) -> Generator: ... + def graphsafe_set_state(self, _new_state: Generator) -> Generator: ... + def set_offset(self, offset: _int) -> Generator: ... + def get_offset(self) -> _int: ... + def manual_seed(self, seed: _int) -> Generator: ... + def seed(self) -> _int: ... + def initial_seed(self) -> _int: ... + +# Defined in torch/csrc/utils/python_dispatch.cpp + +class _DispatchOperatorHandle: + def schema(self) -> FunctionSchema: ... + def debug(self) -> str: ... + +class _DispatchModule: + def reset(self) -> None: ... + def def_(self, schema: str, alias: str = "") -> _DispatchModule: ... + def def_legacy(self, schema: str) -> _DispatchModule: ... + def def_name_t_t( + self, + name: str, + dispatch: str, + debug: str = "default_def_name_t_t", + ) -> _DispatchModule: ... + def def_schema_t_t( + self, + schema: str, + dispatch: str, + alias: str, + debug: str = "default_def_schema_t_t", + ) -> _DispatchModule: ... + def impl_t_t( + self, + name: str, + dispatch: str, + debug: str = "impl_t_t", + ) -> _DispatchModule: ... + def impl_with_aoti_compile( + self, + ns: str, + op_name_with_overload: str, + dispatch: _dispatchkey + ) -> None: ... + def impl(self, name: str, dispatch: _dispatchkey, func: Callable) -> None: ... + def define(self, schema: str, alias: str = "") -> str: ... + def fallback_fallthrough(self, dispatch: str = "") -> _DispatchModule: ... + def fallback(self, dispatch: _dispatchkey, func: Callable, with_keyset: _bool = False) -> None: ... + +_after_ADInplaceOrView_keyset: DispatchKeySet +_after_autograd_keyset: DispatchKeySet + +def _dispatch_library( + kind: str, + name: str, + dispatch: str, + file: str = "", + linenum: Any = 0, +) -> _DispatchModule: ... +def _dispatch_dump(name: str) -> str: ... +def _dispatch_dump_table(name: str) -> str: ... +def _dispatch_check_invariants(name: str) -> None: ... +def _dispatch_check_all_invariants() -> None: ... +def _dispatch_call_boxed(handle: _DispatchOperatorHandle, *args, **kwargs) -> Any: ... +def _dispatch_find_schema_or_throw(name: str, overload_name: str) -> _DispatchOperatorHandle: ... +def _dispatch_set_report_error_callback(handle: _DispatchOperatorHandle, callback: Callable) -> None: ... +def _dispatch_has_kernel(name: str) -> _bool: ... +def _dispatch_has_kernel_for_dispatch_key( + name: str, + dispatch: _dispatchkey, +) -> _bool: ... +def _dispatch_has_kernel_for_any_dispatch_key( + name: str, + dispatch_key_set: DispatchKeySet, +) -> _bool: ... +def _dispatch_kernel_for_dispatch_key_is_fallthrough( + name: str, + dispatch: _dispatchkey, +) -> _bool: ... +def _dispatch_has_computed_kernel_for_dispatch_key( + name: str, + dispatch: _dispatchkey, +) -> _bool: ... +def _dispatch_find_dangling_impls() -> List[str]: ... +def _dispatch_get_all_op_names() -> List[str]: ... +def _dispatch_tls_set_dispatch_key_excluded( + dispatch: _dispatchkey, + val: _bool, +) -> None: ... +def _dispatch_tls_is_dispatch_key_excluded(dispatch: _dispatchkey) -> _bool: ... +def _dispatch_tls_set_dispatch_key_included( + dispatch: _dispatchkey, + val: _bool, +) -> None: ... +def _dispatch_tls_is_dispatch_key_included(dispatch: _dispatchkey) -> _bool: ... +def _dispatch_isTensorSubclassLike(tensor: Tensor) -> _bool: ... +def _dispatch_key_name(dispatch: _dispatchkey) -> str: ... +def _dispatch_key_for_device(device_type: str) -> str: ... +def _parse_dispatch_key(key: str) -> Optional[DispatchKey]: ... +def _dispatch_key_parse(dispatch: _dispatchkey) -> DispatchKey: ... +def _dispatch_num_backends() -> _int: ... +def _dispatch_pystub(name: str, overload: str) -> Optional[Tuple[str, str]]: ... +def _dispatch_is_alias_key(dispatch: _dispatchkey) -> _bool: ... +def _functionality_to_backend_keys(dispatch: _dispatchkey) -> List[DispatchKey]: ... +def _functionalization_reapply_views_tls() -> _bool: ... +def _only_lift_cpu_tensors() -> _bool: ... +def _set_only_lift_cpu_tensors(value: _bool) -> None: ... +def _set_throw_on_mutable_data_ptr(tensor: Tensor) -> None: ... +def _set_warn_deprecated_on_mutable_data_ptr(tensor: Tensor) -> None: ... + +class DispatchKey(Enum): + Undefined: DispatchKey = ... + FPGA: DispatchKey = ... + MAIA: DispatchKey = ... + Vulkan: DispatchKey = ... + Metal: DispatchKey = ... + MKLDNN: DispatchKey = ... + OpenGL: DispatchKey = ... + OpenCL: DispatchKey = ... + IDEEP: DispatchKey = ... + CustomRNGKeyId: DispatchKey = ... + MkldnnCPU: DispatchKey = ... + Sparse: DispatchKey = ... + SparseCsr: DispatchKey = ... + NestedTensor: DispatchKey = ... + Dense: DispatchKey = ... + PythonTLSSnapshot: DispatchKey = ... + PreDispatch: DispatchKey = ... + PythonDispatcher: DispatchKey = ... + Python: DispatchKey = ... + FuncTorchDynamicLayerBackMode: DispatchKey = ... + ZeroTensor: DispatchKey = ... + Conjugate: DispatchKey = ... + Negative: DispatchKey = ... + BackendSelect: DispatchKey = ... + Named: DispatchKey = ... + AutogradOther: DispatchKey = ... + AutogradFunctionality: DispatchKey = ... + AutogradNestedTensor: DispatchKey = ... + Tracer: DispatchKey = ... + Autocast: DispatchKey = ... + AutocastCPU: DispatchKey = ... + AutocastCUDA: DispatchKey = ... + Batched: DispatchKey = ... + VmapMode: DispatchKey = ... + FuncTorchGradWrapper: DispatchKey = ... + FuncTorchBatched: DispatchKey = ... + BatchedNestedTensor: DispatchKey = ... + FuncTorchVmapMode: DispatchKey = ... + FuncTorchDynamicLayerFrontMode: DispatchKey = ... + Functionalize: DispatchKey = ... + TESTING_ONLY_GenericWrapper: DispatchKey = ... + TESTING_ONLY_GenericMode: DispatchKey = ... + ADInplaceOrView: DispatchKey = ... + Autograd: DispatchKey = ... + CompositeImplicitAutograd: DispatchKey = ... + CompositeImplicitAutogradNestedTensor: DispatchKey = ... + CompositeExplicitAutograd: DispatchKey = ... + CompositeExplicitAutogradNonFunctional: DispatchKey = ... + FuncTorchBatchedDecomposition: DispatchKey = ... + CPU: DispatchKey = ... + CUDA: DispatchKey = ... + HIP: DispatchKey = ... + XLA: DispatchKey = ... + MTIA: DispatchKey = ... + MPS: DispatchKey = ... + IPU: DispatchKey = ... + XPU: DispatchKey = ... + HPU: DispatchKey = ... + VE: DispatchKey = ... + Lazy: DispatchKey = ... + Meta: DispatchKey = ... + PrivateUse1: DispatchKey = ... + PrivateUse2: DispatchKey = ... + PrivateUse3: DispatchKey = ... + QuantizedCPU: DispatchKey = ... + QuantizedCUDA: DispatchKey = ... + QuantizedHIP: DispatchKey = ... + QuantizedXLA: DispatchKey = ... + QuantizedMTIA: DispatchKey = ... + QuantizedMPS: DispatchKey = ... + QuantizedIPU: DispatchKey = ... + QuantizedXPU: DispatchKey = ... + QuantizedHPU: DispatchKey = ... + QuantizedVE: DispatchKey = ... + QuantizedLazy: DispatchKey = ... + QuantizedMeta: DispatchKey = ... + QuantizedPrivateUse1: DispatchKey = ... + QuantizedPrivateUse2: DispatchKey = ... + QuantizedPrivateUse3: DispatchKey = ... + SparseCPU: DispatchKey = ... + SparseCUDA: DispatchKey = ... + SparseHIP: DispatchKey = ... + SparseXLA: DispatchKey = ... + SparseMTIA: DispatchKey = ... + SparseMPS: DispatchKey = ... + SparseIPU: DispatchKey = ... + SparseXPU: DispatchKey = ... + SparseHPU: DispatchKey = ... + SparseVE: DispatchKey = ... + SparseLazy: DispatchKey = ... + SparseMeta: DispatchKey = ... + SparsePrivateUse1: DispatchKey = ... + SparsePrivateUse2: DispatchKey = ... + SparsePrivateUse3: DispatchKey = ... + SparseCsrCPU: DispatchKey = ... + SparseCsrCUDA: DispatchKey = ... + SparseCsrHIP: DispatchKey = ... + SparseCsrXLA: DispatchKey = ... + SparseCsrMTIA: DispatchKey = ... + SparseCsrMPS: DispatchKey = ... + SparseCsrIPU: DispatchKey = ... + SparseCsrXPU: DispatchKey = ... + SparseCsrHPU: DispatchKey = ... + SparseCsrVE: DispatchKey = ... + SparseCsrLazy: DispatchKey = ... + SparseCsrMeta: DispatchKey = ... + SparseCsrPrivateUse1: DispatchKey = ... + SparseCsrPrivateUse2: DispatchKey = ... + SparseCsrPrivateUse3: DispatchKey = ... + NestedTensorCPU: DispatchKey = ... + NestedTensorCUDA: DispatchKey = ... + NestedTensorHIP: DispatchKey = ... + NestedTensorXLA: DispatchKey = ... + NestedTensorMTIA: DispatchKey = ... + NestedTensorMPS: DispatchKey = ... + NestedTensorIPU: DispatchKey = ... + NestedTensorXPU: DispatchKey = ... + NestedTensorHPU: DispatchKey = ... + NestedTensorVE: DispatchKey = ... + NestedTensorLazy: DispatchKey = ... + NestedTensorMeta: DispatchKey = ... + NestedTensorPrivateUse1: DispatchKey = ... + NestedTensorPrivateUse2: DispatchKey = ... + NestedTensorPrivateUse3: DispatchKey = ... + AutogradCPU: DispatchKey = ... + AutogradCUDA: DispatchKey = ... + AutogradHIP: DispatchKey = ... + AutogradXLA: DispatchKey = ... + AutogradMTIA: DispatchKey = ... + AutogradMPS: DispatchKey = ... + AutogradIPU: DispatchKey = ... + AutogradXPU: DispatchKey = ... + AutogradHPU: DispatchKey = ... + AutogradVE: DispatchKey = ... + AutogradLazy: DispatchKey = ... + AutogradMeta: DispatchKey = ... + AutogradPrivateUse1: DispatchKey = ... + AutogradPrivateUse2: DispatchKey = ... + AutogradPrivateUse3: DispatchKey = ... + +class DispatchKeySet: + def __init__(self, key: DispatchKey) -> None: ... + def __or__(self, other: DispatchKeySet) -> DispatchKeySet: ... + def __sub__(self, other: DispatchKeySet) -> DispatchKeySet: ... + def __and__(self, other: DispatchKeySet) -> DispatchKeySet: ... + def raw_repr(self) -> _int: ... + def highestPriorityTypeId(self) -> DispatchKey: ... + def has(self, k: _dispatchkey) -> _bool: ... + def add(self, k: _dispatchkey) -> DispatchKeySet: ... + def remove(self, k: _dispatchkey) -> DispatchKeySet: ... + def __repr__(self) -> str: ... + +_dispatch_autogradother_backends: DispatchKeySet +_additional_keys_to_prop_for_wrapper_tensors: DispatchKeySet + +def _dispatch_has_backend_fallback(dispatch: _dispatchkey) -> _bool: ... +def _dispatch_keyset_full_after(t: _dispatchkey) -> DispatchKeySet: ... +def _dispatch_keyset_full() -> DispatchKeySet: ... +def _dispatch_keyset_to_string(keyset: DispatchKeySet) -> str: ... +def _dispatch_get_backend_keyset_from_autograd( + dispatch: _dispatchkey, +) -> DispatchKeySet: ... +def _dispatch_keys(tensor: Tensor) -> DispatchKeySet: ... +def _dispatch_tls_local_exclude_set() -> DispatchKeySet: ... +def _dispatch_tls_local_include_set() -> DispatchKeySet: ... +def _dispatch_is_included_in_alias( + dispatch_a: _dispatchkey, + dispatch_b: _dispatchkey, +) -> _bool: ... +def _propagate_xla_data(a: Tensor, b: Tensor) -> None: ... +def _replace_(a: Tensor, b: Tensor) -> None: ... +def _commit_update(a: Tensor) -> None: ... + +class _ExcludeDispatchKeyGuard: + def __init__(self, keyset: DispatchKeySet): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _IncludeDispatchKeyGuard: + def __init__(self, k: DispatchKey): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _ForceDispatchKeyGuard: + def __init__(self, include: DispatchKeySet, exclude: DispatchKeySet): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _PreserveDispatchKeyGuard: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _AutoDispatchBelowAutograd: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +class _AutoDispatchBelowADInplaceOrView: + def __init__(self): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +def _dispatch_print_registrations_for_dispatch_key(dispatch_key: str = "") -> None: ... +def _dispatch_get_registrations_for_dispatch_key( + dispatch_key: str = "", +) -> List[str]: ... +def _are_functorch_transforms_active() -> _bool: ... + +# Define in torch/csrc/autograd/init.cpp +def _set_python_dispatcher(dispatcher: object) -> None: ... + +def _get_nested_int(id: _int, coeff: _int) -> SymInt: ... + +def _get_constant_bool_symnode(val: _bool) -> Any: ... + +class _TorchDispatchModeKey(Enum): + FAKE: _TorchDispatchModeKey = ... + PROXY: _TorchDispatchModeKey = ... + FUNCTIONAL: _TorchDispatchModeKey = ... + +class _SetExcludeDispatchKeyGuard: + def __init__(self, k: DispatchKey, enabled: _bool): ... + def __enter__(self): ... + def __exit__(self, exc_type, exc_value, traceback): ... + +# Defined in torch/csrc/utils/schema_info.h + +class _SchemaInfo: + def __init__(self, schema: _int) -> None: ... + + @overload + def is_mutable(self) -> _bool: ... + @overload + def is_mutable(self, name: str) -> _bool: ... + + def has_argument(self, name: str) -> _bool: ... + +# Defined in torch/csrc/utils/init.cpp +class BenchmarkConfig: + num_calling_threads: _int + num_worker_threads: _int + num_warmup_iters: _int + num_iters: _int + profiler_output_path: str + +class BenchmarkExecutionStats: + latency_avg_ms: _float + num_iters: _int + +class ThroughputBenchmark: + def __init__(self, module: Any) -> None: ... + def add_input(self, *args: Any, **kwargs: Any) -> None: ... + def run_once(self, *args: Any, **kwargs: Any) -> Any: ... + def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ... + +# Defined in torch/csrc/Storage.cpp +class StorageBase(object): ... + +# TODO: where +class DoubleTensor(Tensor): ... +class FloatTensor(Tensor): ... +class BFloat16Tensor(Tensor): ... +class LongTensor(Tensor): ... +class IntTensor(Tensor): ... +class ShortTensor(Tensor): ... +class HalfTensor(Tensor): ... +class CharTensor(Tensor): ... +class ByteTensor(Tensor): ... +class BoolTensor(Tensor): ... + +# Defined in torch/csrc/autograd/python_engine.cpp +class _ImperativeEngine: + def queue_callback(self, callback: Callable[[], None]) -> None: ... + def run_backward(self, *args: Any, **kwargs: Any) -> Tuple[Tensor, ...]: ... + def is_checkpoint_valid(self) -> _bool: ... + +# Defined in torch/csrc/autograd/python_variable.cpp +class _TensorMeta(type): ... + +# Defined in torch/csrc/autograd/python_variable.cpp +class TensorBase(metaclass=_TensorMeta): + requires_grad: _bool + retains_grad: _bool + shape: Size + data: Tensor + names: List[str] + device: _device + dtype: _dtype + layout: _layout + real: Tensor + imag: Tensor + T: Tensor + H: Tensor + mT: Tensor + mH: Tensor + ndim: _int + output_nr: _int + _version: _int + _base: Optional[Tensor] + _cdata: _int + grad_fn: Optional[_Node] + _grad_fn: Any + _grad: Optional[Tensor] + grad: Optional[Tensor] + _backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]] + nbytes: _int + itemsize: _int + _has_symbolic_sizes_strides: _bool + + def _view_func_unsafe( + self, + new_base: Tensor, + symint_visitor_fn: Optional[Callable[[_int], _int]] = None, + tensor_visitor_fn: Optional[Callable[[Tensor], Tensor]] = None + ): + ... + + def __abs__(self) -> Tensor: ... + def __add__(self, other: Any) -> Tensor: ... + @overload + def __and__(self, other: Tensor) -> Tensor: ... + @overload + def __and__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __and__(self, other: Any) -> Tensor: ... + def __bool__(self) -> builtins.bool: ... + def __complex__(self) -> builtins.complex: ... + def __contains__(self, other: Any, /) -> _bool: ... + def __div__(self, other: Any) -> Tensor: ... + def __eq__(self, other: Any) -> Tensor: ... # type: ignore[override] + def __float__(self) -> builtins.float: ... + def __floordiv__(self, other: Any) -> Tensor: ... + def __ge__(self, other: Any) -> Tensor: ... + def __getitem__(self, indices: Union[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], tuple[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], ...]]) -> Tensor: ... + def __gt__(self, other: Any) -> Tensor: ... + def __iadd__(self, other: Any) -> Tensor: ... + @overload + def __iand__(self, other: Tensor) -> Tensor: ... + @overload + def __iand__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __iand__(self, other: Any) -> Tensor: ... + def __idiv__(self, other: Any) -> Tensor: ... + def __ifloordiv__(self, other: Any) -> Tensor: ... + @overload + def __ilshift__(self, other: Tensor) -> Tensor: ... + @overload + def __ilshift__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __ilshift__(self, other: Any) -> Tensor: ... + def __imod__(self, other: Any) -> Tensor: ... + def __imul__(self, other: Any) -> Tensor: ... + def __index__(self) -> builtins.int: ... + @overload + def __init__(self, *args: Any, device: Optional[DeviceLikeType] = None) -> None: ... + @overload + def __init__(self, storage: Storage) -> None: ... + @overload + def __init__(self, other: Tensor) -> None: ... + @overload + def __init__(self, size: _size, *, device: Optional[DeviceLikeType] = None) -> None: ... + def __int__(self) -> builtins.int: ... + def __invert__(self) -> Tensor: ... + @overload + def __ior__(self, other: Tensor) -> Tensor: ... + @overload + def __ior__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __ior__(self, other: Any) -> Tensor: ... + @overload + def __irshift__(self, other: Tensor) -> Tensor: ... + @overload + def __irshift__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __irshift__(self, other: Any) -> Tensor: ... + def __isub__(self, other: Any) -> Tensor: ... + @overload + def __ixor__(self, other: Tensor) -> Tensor: ... + @overload + def __ixor__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __ixor__(self, other: Any) -> Tensor: ... + def __le__(self, other: Any) -> Tensor: ... + def __long__(self) -> builtins.int: ... + @overload + def __lshift__(self, other: Tensor) -> Tensor: ... + @overload + def __lshift__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __lshift__(self, other: Any) -> Tensor: ... + def __lt__(self, other: Any) -> Tensor: ... + def __matmul__(self, other: Any) -> Tensor: ... + def __mod__(self, other: Any) -> Tensor: ... + def __mul__(self, other: Any) -> Tensor: ... + def __ne__(self, other: Any) -> Tensor: ... # type: ignore[override] + def __neg__(self) -> Tensor: ... + def __new__(cls, *args, **kwargs) -> Self: ... + def __nonzero__(self) -> builtins.bool: ... + @overload + def __or__(self, other: Tensor) -> Tensor: ... + @overload + def __or__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __or__(self, other: Any) -> Tensor: ... + def __pow__(self, other: Any) -> Tensor: ... + def __radd__(self, other: Any) -> Tensor: ... + def __rand__(self, other: Any) -> Tensor: ... + def __rfloordiv__(self, other: Any) -> Tensor: ... + def __rmul__(self, other: Any) -> Tensor: ... + def __ror__(self, other: Any) -> Tensor: ... + def __rpow__(self, other: Any) -> Tensor: ... + @overload + def __rshift__(self, other: Tensor) -> Tensor: ... + @overload + def __rshift__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __rshift__(self, other: Any) -> Tensor: ... + def __rsub__(self, other: Any) -> Tensor: ... + def __rtruediv__(self, other: Any) -> Tensor: ... + def __rxor__(self, other: Any) -> Tensor: ... + def __setitem__(self, indices: Union[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], tuple[Union[SupportsIndex, Union[None, _bool, _int, slice, ellipsis, Tensor], _NestedSequence[Union[None, _bool, _int, slice, ellipsis, Tensor]]], ...]], val: Union[Tensor, Number]) -> None: ... + def __sub__(self, other: Any) -> Tensor: ... + def __truediv__(self, other: Any) -> Tensor: ... + @overload + def __xor__(self, other: Tensor) -> Tensor: ... + @overload + def __xor__(self, other: Union[Number, _complex]) -> Tensor: ... + @overload + def __xor__(self, other: Any) -> Tensor: ... + def _addmm_activation(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1, use_gelu: _bool = False) -> Tensor: ... + def _autocast_to_full_precision(self, cuda_enabled: _bool, cpu_enabled: _bool) -> Tensor: ... + def _autocast_to_reduced_precision(self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype) -> Tensor: ... + def _coalesced_(self, coalesced: _bool) -> Tensor: ... + def _conj(self) -> Tensor: ... + def _conj_physical(self) -> Tensor: ... + def _dimI(self) -> _int: ... + def _dimV(self) -> _int: ... + def _indices(self) -> Tensor: ... + def _is_all_true(self) -> Tensor: ... + def _is_any_true(self) -> Tensor: ... + def _is_view(self) -> _bool: ... + def _is_zerotensor(self) -> _bool: ... + def _lazy_clone(self) -> Tensor: ... + @staticmethod + def _make_subclass(cls: _Type[S], data: Tensor, require_grad: _bool = False, dispatch_strides: _bool = False, dispatch_device: _bool = False, device_for_backend_keys: Optional[_device] = None) -> S: ... + def _neg_view(self) -> Tensor: ... + def _nested_tensor_size(self) -> Tensor: ... + def _nested_tensor_storage_offsets(self) -> Tensor: ... + def _nested_tensor_strides(self) -> Tensor: ... + def _nnz(self) -> _int: ... + def _sparse_mask_projection(self, mask: Tensor, accumulate_matches: _bool = False) -> Tensor: ... + def _to_dense(self, dtype: Optional[_dtype] = None, masked_grad: Optional[_bool] = None) -> Tensor: ... + @overload + def _to_sparse(self, *, layout: Optional[_layout] = None, blocksize: Optional[Union[_int, _size]] = None, dense_dim: Optional[_int] = None) -> Tensor: ... + @overload + def _to_sparse(self, sparse_dim: _int) -> Tensor: ... + def _to_sparse_bsc(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ... + def _to_sparse_bsr(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: ... + def _to_sparse_csc(self, dense_dim: Optional[_int] = None) -> Tensor: ... + def _to_sparse_csr(self, dense_dim: Optional[_int] = None) -> Tensor: ... + def _values(self) -> Tensor: ... + def abs(self) -> Tensor: + r""" + abs() -> Tensor + + See :func:`torch.abs` + """ + ... + def abs_(self) -> Tensor: + r""" + abs_() -> Tensor + + In-place version of :meth:`~Tensor.abs` + """ + ... + def absolute(self) -> Tensor: + r""" + absolute() -> Tensor + + Alias for :func:`abs` + """ + ... + def absolute_(self) -> Tensor: + r""" + absolute_() -> Tensor + + In-place version of :meth:`~Tensor.absolute` + Alias for :func:`abs_` + """ + ... + def acos(self) -> Tensor: + r""" + acos() -> Tensor + + See :func:`torch.acos` + """ + ... + def acos_(self) -> Tensor: + r""" + acos_() -> Tensor + + In-place version of :meth:`~Tensor.acos` + """ + ... + def acosh(self) -> Tensor: + r""" + acosh() -> Tensor + + See :func:`torch.acosh` + """ + ... + def acosh_(self) -> Tensor: + r""" + acosh_() -> Tensor + + In-place version of :meth:`~Tensor.acosh` + """ + ... + def add(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + add(other, *, alpha=1) -> Tensor + + Add a scalar or tensor to :attr:`self` tensor. If both :attr:`alpha` + and :attr:`other` are specified, each element of :attr:`other` is scaled by + :attr:`alpha` before being used. + + When :attr:`other` is a tensor, the shape of :attr:`other` must be + :ref:`broadcastable ` with the shape of the underlying + tensor + + See :func:`torch.add` + """ + ... + def add_(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat], *, alpha: Optional[Union[Number, _complex]] = 1) -> Tensor: + r""" + add_(other, *, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.add` + """ + ... + def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.addbmm` + """ + ... + def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.addbmm` + """ + ... + def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: + r""" + addcdiv(tensor1, tensor2, *, value=1) -> Tensor + + See :func:`torch.addcdiv` + """ + ... + def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: + r""" + addcdiv_(tensor1, tensor2, *, value=1) -> Tensor + + In-place version of :meth:`~Tensor.addcdiv` + """ + ... + def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: + r""" + addcmul(tensor1, tensor2, *, value=1) -> Tensor + + See :func:`torch.addcmul` + """ + ... + def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Union[Number, _complex] = 1) -> Tensor: + r""" + addcmul_(tensor1, tensor2, *, value=1) -> Tensor + + In-place version of :meth:`~Tensor.addcmul` + """ + ... + def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.addmm` + """ + ... + def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addmm_(mat1, mat2, *, beta=1, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.addmm` + """ + ... + def addmv(self, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addmv(mat, vec, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.addmv` + """ + ... + def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addmv_(mat, vec, *, beta=1, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.addmv` + """ + ... + def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addr(vec1, vec2, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.addr` + """ + ... + def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.addr` + """ + ... + def adjoint(self) -> Tensor: + r""" + adjoint() -> Tensor + + Alias for :func:`adjoint` + """ + ... + def align_as(self, other: Tensor) -> Tensor: + r""" + align_as(other) -> Tensor + + Permutes the dimensions of the :attr:`self` tensor to match the dimension order + in the :attr:`other` tensor, adding size-one dims for any new names. + + This operation is useful for explicit broadcasting by names (see examples). + + All of the dims of :attr:`self` must be named in order to use this method. + The resulting tensor is a view on the original tensor. + + All dimension names of :attr:`self` must be present in ``other.names``. + :attr:`other` may contain named dimensions that are not in ``self.names``; + the output tensor has a size-one dimension for each of those new names. + + To align a tensor to a specific order, use :meth:`~Tensor.align_to`. + + Examples:: + + # Example 1: Applying a mask + >>> mask = torch.randint(2, [127, 128], dtype=torch.bool).refine_names('W', 'H') + >>> imgs = torch.randn(32, 128, 127, 3, names=('N', 'H', 'W', 'C')) + >>> imgs.masked_fill_(mask.align_as(imgs), 0) + + + # Example 2: Applying a per-channel-scale + >>> def scale_channels(input, scale): + >>> scale = scale.refine_names('C') + >>> return input * scale.align_as(input) + + >>> num_channels = 3 + >>> scale = torch.randn(num_channels, names=('C',)) + >>> imgs = torch.rand(32, 128, 128, num_channels, names=('N', 'H', 'W', 'C')) + >>> more_imgs = torch.rand(32, num_channels, 128, 128, names=('N', 'C', 'H', 'W')) + >>> videos = torch.randn(3, num_channels, 128, 128, 128, names=('N', 'C', 'H', 'W', 'D')) + + # scale_channels is agnostic to the dimension order of the input + >>> scale_channels(imgs, scale) + >>> scale_channels(more_imgs, scale) + >>> scale_channels(videos, scale) + + .. warning:: + The named tensor API is experimental and subject to change. + """ + ... + @overload + def align_to(self, order: Sequence[Union[str, ellipsis, None]], ellipsis_idx: _int) -> Tensor: ... + @overload + def align_to(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ... + @overload + def all(self) -> Tensor: + r""" + all(dim=None, keepdim=False) -> Tensor + + See :func:`torch.all` + """ + ... + @overload + def all(self, dim: Optional[_size] = None, keepdim: _bool = False) -> Tensor: + r""" + all(dim=None, keepdim=False) -> Tensor + + See :func:`torch.all` + """ + ... + @overload + def all(self, dim: _int, keepdim: _bool = False) -> Tensor: + r""" + all(dim=None, keepdim=False) -> Tensor + + See :func:`torch.all` + """ + ... + @overload + def all(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> Tensor: + r""" + all(dim=None, keepdim=False) -> Tensor + + See :func:`torch.all` + """ + ... + def allclose(self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> _bool: + r""" + allclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor + + See :func:`torch.allclose` + """ + ... + def amax(self, dim: Union[_int, _size] = (), keepdim: _bool = False) -> Tensor: + r""" + amax(dim=None, keepdim=False) -> Tensor + + See :func:`torch.amax` + """ + ... + def amin(self, dim: Union[_int, _size] = (), keepdim: _bool = False) -> Tensor: + r""" + amin(dim=None, keepdim=False) -> Tensor + + See :func:`torch.amin` + """ + ... + def aminmax(self, *, dim: Optional[_int] = None, keepdim: _bool = False) -> torch.return_types.aminmax: + r""" + aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max) + + See :func:`torch.aminmax` + """ + ... + def angle(self) -> Tensor: + r""" + angle() -> Tensor + + See :func:`torch.angle` + """ + ... + @overload + def any(self) -> Tensor: + r""" + any(dim=None, keepdim=False) -> Tensor + + See :func:`torch.any` + """ + ... + @overload + def any(self, dim: Optional[_size] = None, keepdim: _bool = False) -> Tensor: + r""" + any(dim=None, keepdim=False) -> Tensor + + See :func:`torch.any` + """ + ... + @overload + def any(self, dim: _int, keepdim: _bool = False) -> Tensor: + r""" + any(dim=None, keepdim=False) -> Tensor + + See :func:`torch.any` + """ + ... + @overload + def any(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> Tensor: + r""" + any(dim=None, keepdim=False) -> Tensor + + See :func:`torch.any` + """ + ... + def apply_(self, callable: Callable) -> Tensor: + r""" + apply_(callable) -> Tensor + + Applies the function :attr:`callable` to each element in the tensor, replacing + each element with the value returned by :attr:`callable`. + + .. note:: + + This function only works with CPU tensors and should not be used in code + sections that require high performance. + """ + ... + def arccos(self) -> Tensor: + r""" + arccos() -> Tensor + + See :func:`torch.arccos` + """ + ... + def arccos_(self) -> Tensor: + r""" + arccos_() -> Tensor + + In-place version of :meth:`~Tensor.arccos` + """ + ... + def arccosh(self) -> Tensor: + r""" + acosh() -> Tensor + + See :func:`torch.arccosh` + """ + ... + def arccosh_(self) -> Tensor: + r""" + acosh_() -> Tensor + + In-place version of :meth:`~Tensor.arccosh` + """ + ... + def arcsin(self) -> Tensor: + r""" + arcsin() -> Tensor + + See :func:`torch.arcsin` + """ + ... + def arcsin_(self) -> Tensor: + r""" + arcsin_() -> Tensor + + In-place version of :meth:`~Tensor.arcsin` + """ + ... + def arcsinh(self) -> Tensor: + r""" + arcsinh() -> Tensor + + See :func:`torch.arcsinh` + """ + ... + def arcsinh_(self) -> Tensor: + r""" + arcsinh_() -> Tensor + + In-place version of :meth:`~Tensor.arcsinh` + """ + ... + def arctan(self) -> Tensor: + r""" + arctan() -> Tensor + + See :func:`torch.arctan` + """ + ... + def arctan2(self, other: Tensor) -> Tensor: + r""" + arctan2(other) -> Tensor + + See :func:`torch.arctan2` + """ + ... + def arctan2_(self, other: Tensor) -> Tensor: + r""" + atan2_(other) -> Tensor + + In-place version of :meth:`~Tensor.arctan2` + """ + ... + def arctan_(self) -> Tensor: + r""" + arctan_() -> Tensor + + In-place version of :meth:`~Tensor.arctan` + """ + ... + def arctanh(self) -> Tensor: + r""" + arctanh() -> Tensor + + See :func:`torch.arctanh` + """ + ... + def arctanh_(self) -> Tensor: + r""" + arctanh_(other) -> Tensor + + In-place version of :meth:`~Tensor.arctanh` + """ + ... + def argmax(self, dim: Optional[_int] = None, keepdim: _bool = False) -> Tensor: + r""" + argmax(dim=None, keepdim=False) -> LongTensor + + See :func:`torch.argmax` + """ + ... + def argmin(self, dim: Optional[_int] = None, keepdim: _bool = False) -> Tensor: + r""" + argmin(dim=None, keepdim=False) -> LongTensor + + See :func:`torch.argmin` + """ + ... + @overload + def argsort(self, *, stable: _bool, dim: _int = -1, descending: _bool = False) -> Tensor: + r""" + argsort(dim=-1, descending=False) -> LongTensor + + See :func:`torch.argsort` + """ + ... + @overload + def argsort(self, dim: _int = -1, descending: _bool = False) -> Tensor: + r""" + argsort(dim=-1, descending=False) -> LongTensor + + See :func:`torch.argsort` + """ + ... + @overload + def argsort(self, dim: Union[str, ellipsis, None], descending: _bool = False) -> Tensor: + r""" + argsort(dim=-1, descending=False) -> LongTensor + + See :func:`torch.argsort` + """ + ... + def argwhere(self) -> Tensor: + r""" + argwhere() -> Tensor + + See :func:`torch.argwhere` + """ + ... + def as_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + as_strided(size, stride, storage_offset=None) -> Tensor + + See :func:`torch.as_strided` + """ + ... + def as_strided_(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + as_strided_(size, stride, storage_offset=None) -> Tensor + + In-place version of :meth:`~Tensor.as_strided` + """ + ... + def as_strided_scatter(self, src: Tensor, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], storage_offset: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + as_strided_scatter(src, size, stride, storage_offset=None) -> Tensor + + See :func:`torch.as_strided_scatter` + """ + ... + def as_subclass(self, cls: _Type[S]) -> S: + r""" + as_subclass(cls) -> Tensor + + Makes a ``cls`` instance with the same data pointer as ``self``. Changes + in the output mirror changes in ``self``, and the output stays attached + to the autograd graph. ``cls`` must be a subclass of ``Tensor``. + """ + ... + def asin(self) -> Tensor: + r""" + asin() -> Tensor + + See :func:`torch.asin` + """ + ... + def asin_(self) -> Tensor: + r""" + asin_() -> Tensor + + In-place version of :meth:`~Tensor.asin` + """ + ... + def asinh(self) -> Tensor: + r""" + asinh() -> Tensor + + See :func:`torch.asinh` + """ + ... + def asinh_(self) -> Tensor: + r""" + asinh_() -> Tensor + + In-place version of :meth:`~Tensor.asinh` + """ + ... + def atan(self) -> Tensor: + r""" + atan() -> Tensor + + See :func:`torch.atan` + """ + ... + def atan2(self, other: Tensor) -> Tensor: + r""" + atan2(other) -> Tensor + + See :func:`torch.atan2` + """ + ... + def atan2_(self, other: Tensor) -> Tensor: + r""" + atan2_(other) -> Tensor + + In-place version of :meth:`~Tensor.atan2` + """ + ... + def atan_(self) -> Tensor: + r""" + atan_() -> Tensor + + In-place version of :meth:`~Tensor.atan` + """ + ... + def atanh(self) -> Tensor: + r""" + atanh() -> Tensor + + See :func:`torch.atanh` + """ + ... + def atanh_(self) -> Tensor: + r""" + atanh_(other) -> Tensor + + In-place version of :meth:`~Tensor.atanh` + """ + ... + def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + baddbmm(batch1, batch2, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.baddbmm` + """ + ... + def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + baddbmm_(batch1, batch2, *, beta=1, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.baddbmm` + """ + ... + @overload + def bernoulli(self, *, generator: Optional[Generator] = None) -> Tensor: + r""" + bernoulli(*, generator=None) -> Tensor + + Returns a result tensor where each :math:`\texttt{result[i]}` is independently + sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have + floating point ``dtype``, and the result will have the same ``dtype``. + + See :func:`torch.bernoulli` + """ + ... + @overload + def bernoulli(self, p: _float, *, generator: Optional[Generator] = None) -> Tensor: + r""" + bernoulli(*, generator=None) -> Tensor + + Returns a result tensor where each :math:`\texttt{result[i]}` is independently + sampled from :math:`\text{Bernoulli}(\texttt{self[i]})`. :attr:`self` must have + floating point ``dtype``, and the result will have the same ``dtype``. + + See :func:`torch.bernoulli` + """ + ... + @overload + def bernoulli_(self, p: Tensor, *, generator: Optional[Generator] = None) -> Tensor: + r""" + bernoulli_(p=0.5, *, generator=None) -> Tensor + + Fills each location of :attr:`self` with an independent sample from + :math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral + ``dtype``. + + :attr:`p` should either be a scalar or tensor containing probabilities to be + used for drawing the binary random number. + + If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor + will be set to a value sampled from + :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have + floating point ``dtype``. + + See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` + """ + ... + @overload + def bernoulli_(self, p: _float = 0.5, *, generator: Optional[Generator] = None) -> Tensor: + r""" + bernoulli_(p=0.5, *, generator=None) -> Tensor + + Fills each location of :attr:`self` with an independent sample from + :math:`\text{Bernoulli}(\texttt{p})`. :attr:`self` can have integral + ``dtype``. + + :attr:`p` should either be a scalar or tensor containing probabilities to be + used for drawing the binary random number. + + If it is a tensor, the :math:`\text{i}^{th}` element of :attr:`self` tensor + will be set to a value sampled from + :math:`\text{Bernoulli}(\texttt{p\_tensor[i]})`. In this case `p` must have + floating point ``dtype``. + + See also :meth:`~Tensor.bernoulli` and :func:`torch.bernoulli` + """ + ... + def bfloat16(self) -> Tensor: + r""" + bfloat16(memory_format=torch.preserve_format) -> Tensor + ``self.bfloat16()`` is equivalent to ``self.to(torch.bfloat16)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def bincount(self, weights: Optional[Tensor] = None, minlength: _int = 0) -> Tensor: + r""" + bincount(weights=None, minlength=0) -> Tensor + + See :func:`torch.bincount` + """ + ... + @overload + def bitwise_and(self, other: Tensor) -> Tensor: + r""" + bitwise_and() -> Tensor + + See :func:`torch.bitwise_and` + """ + ... + @overload + def bitwise_and(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_and() -> Tensor + + See :func:`torch.bitwise_and` + """ + ... + @overload + def bitwise_and_(self, other: Tensor) -> Tensor: + r""" + bitwise_and_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_and` + """ + ... + @overload + def bitwise_and_(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_and_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_and` + """ + ... + @overload + def bitwise_left_shift(self, other: Tensor) -> Tensor: + r""" + bitwise_left_shift(other) -> Tensor + + See :func:`torch.bitwise_left_shift` + """ + ... + @overload + def bitwise_left_shift(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_left_shift(other) -> Tensor + + See :func:`torch.bitwise_left_shift` + """ + ... + @overload + def bitwise_left_shift_(self, other: Tensor) -> Tensor: + r""" + bitwise_left_shift_(other) -> Tensor + + In-place version of :meth:`~Tensor.bitwise_left_shift` + """ + ... + @overload + def bitwise_left_shift_(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_left_shift_(other) -> Tensor + + In-place version of :meth:`~Tensor.bitwise_left_shift` + """ + ... + def bitwise_not(self) -> Tensor: + r""" + bitwise_not() -> Tensor + + See :func:`torch.bitwise_not` + """ + ... + def bitwise_not_(self) -> Tensor: + r""" + bitwise_not_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_not` + """ + ... + @overload + def bitwise_or(self, other: Tensor) -> Tensor: + r""" + bitwise_or() -> Tensor + + See :func:`torch.bitwise_or` + """ + ... + @overload + def bitwise_or(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_or() -> Tensor + + See :func:`torch.bitwise_or` + """ + ... + @overload + def bitwise_or_(self, other: Tensor) -> Tensor: + r""" + bitwise_or_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_or` + """ + ... + @overload + def bitwise_or_(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_or_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_or` + """ + ... + @overload + def bitwise_right_shift(self, other: Tensor) -> Tensor: + r""" + bitwise_right_shift(other) -> Tensor + + See :func:`torch.bitwise_right_shift` + """ + ... + @overload + def bitwise_right_shift(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_right_shift(other) -> Tensor + + See :func:`torch.bitwise_right_shift` + """ + ... + @overload + def bitwise_right_shift_(self, other: Tensor) -> Tensor: + r""" + bitwise_right_shift_(other) -> Tensor + + In-place version of :meth:`~Tensor.bitwise_right_shift` + """ + ... + @overload + def bitwise_right_shift_(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_right_shift_(other) -> Tensor + + In-place version of :meth:`~Tensor.bitwise_right_shift` + """ + ... + @overload + def bitwise_xor(self, other: Tensor) -> Tensor: + r""" + bitwise_xor() -> Tensor + + See :func:`torch.bitwise_xor` + """ + ... + @overload + def bitwise_xor(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_xor() -> Tensor + + See :func:`torch.bitwise_xor` + """ + ... + @overload + def bitwise_xor_(self, other: Tensor) -> Tensor: + r""" + bitwise_xor_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_xor` + """ + ... + @overload + def bitwise_xor_(self, other: Union[Number, _complex]) -> Tensor: + r""" + bitwise_xor_() -> Tensor + + In-place version of :meth:`~Tensor.bitwise_xor` + """ + ... + def bmm(self, mat2: Tensor) -> Tensor: + r""" + bmm(batch2) -> Tensor + + See :func:`torch.bmm` + """ + ... + def bool(self) -> Tensor: + r""" + bool(memory_format=torch.preserve_format) -> Tensor + + ``self.bool()`` is equivalent to ``self.to(torch.bool)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + @overload + def broadcast_to(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + broadcast_to(shape) -> Tensor + + See :func:`torch.broadcast_to`. + """ + ... + @overload + def broadcast_to(self, *size: Union[_int, SymInt]) -> Tensor: + r""" + broadcast_to(shape) -> Tensor + + See :func:`torch.broadcast_to`. + """ + ... + def byte(self) -> Tensor: + r""" + byte(memory_format=torch.preserve_format) -> Tensor + + ``self.byte()`` is equivalent to ``self.to(torch.uint8)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def cauchy_(self, median: _float = 0, sigma: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: + r""" + cauchy_(median=0, sigma=1, *, generator=None) -> Tensor + + Fills the tensor with numbers drawn from the Cauchy distribution: + + .. math:: + + f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2} + + .. note:: + Sigma (:math:`\sigma`) is used to denote the scale parameter in Cauchy distribution. + """ + ... + def ccol_indices(self) -> Tensor: ... + def ceil(self) -> Tensor: + r""" + ceil() -> Tensor + + See :func:`torch.ceil` + """ + ... + def ceil_(self) -> Tensor: + r""" + ceil_() -> Tensor + + In-place version of :meth:`~Tensor.ceil` + """ + ... + def chalf(self, *, memory_format: Optional[memory_format] = None) -> Tensor: + r""" + chalf(memory_format=torch.preserve_format) -> Tensor + + ``self.chalf()`` is equivalent to ``self.to(torch.complex32)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def char(self) -> Tensor: + r""" + char(memory_format=torch.preserve_format) -> Tensor + + ``self.char()`` is equivalent to ``self.to(torch.int8)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def cholesky(self, upper: _bool = False) -> Tensor: + r""" + cholesky(upper=False) -> Tensor + + See :func:`torch.cholesky` + """ + ... + def cholesky_inverse(self, upper: _bool = False) -> Tensor: + r""" + cholesky_inverse(upper=False) -> Tensor + + See :func:`torch.cholesky_inverse` + """ + ... + def cholesky_solve(self, input2: Tensor, upper: _bool = False) -> Tensor: + r""" + cholesky_solve(input2, upper=False) -> Tensor + + See :func:`torch.cholesky_solve` + """ + ... + def chunk(self, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + chunk(chunks, dim=0) -> List of Tensors + + See :func:`torch.chunk` + """ + ... + @overload + def clamp(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: + r""" + clamp(min=None, max=None) -> Tensor + + See :func:`torch.clamp` + """ + ... + @overload + def clamp(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: + r""" + clamp(min=None, max=None) -> Tensor + + See :func:`torch.clamp` + """ + ... + @overload + def clamp_(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: + r""" + clamp_(min=None, max=None) -> Tensor + + In-place version of :meth:`~Tensor.clamp` + """ + ... + @overload + def clamp_(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: + r""" + clamp_(min=None, max=None) -> Tensor + + In-place version of :meth:`~Tensor.clamp` + """ + ... + @overload + def clamp_max(self, max: Tensor) -> Tensor: ... + @overload + def clamp_max(self, max: Union[Number, _complex]) -> Tensor: ... + @overload + def clamp_max_(self, max: Tensor) -> Tensor: ... + @overload + def clamp_max_(self, max: Union[Number, _complex]) -> Tensor: ... + @overload + def clamp_min(self, min: Tensor) -> Tensor: ... + @overload + def clamp_min(self, min: Union[Number, _complex]) -> Tensor: ... + @overload + def clamp_min_(self, min: Tensor) -> Tensor: ... + @overload + def clamp_min_(self, min: Union[Number, _complex]) -> Tensor: ... + @overload + def clip(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: + r""" + clip(min=None, max=None) -> Tensor + + Alias for :meth:`~Tensor.clamp`. + """ + ... + @overload + def clip(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: + r""" + clip(min=None, max=None) -> Tensor + + Alias for :meth:`~Tensor.clamp`. + """ + ... + @overload + def clip_(self, min: Optional[Tensor] = None, max: Optional[Tensor] = None) -> Tensor: + r""" + clip_(min=None, max=None) -> Tensor + + Alias for :meth:`~Tensor.clamp_`. + """ + ... + @overload + def clip_(self, min: Optional[Union[Number, _complex]] = None, max: Optional[Union[Number, _complex]] = None) -> Tensor: + r""" + clip_(min=None, max=None) -> Tensor + + Alias for :meth:`~Tensor.clamp_`. + """ + ... + def clone(self, *, memory_format: Optional[memory_format] = None) -> Tensor: + r""" + clone(*, memory_format=torch.preserve_format) -> Tensor + + See :func:`torch.clone` + """ + ... + def coalesce(self) -> Tensor: + r""" + coalesce() -> Tensor + + Returns a coalesced copy of :attr:`self` if :attr:`self` is an + :ref:`uncoalesced tensor `. + + Returns :attr:`self` if :attr:`self` is a coalesced tensor. + + .. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + """ + ... + def col_indices(self) -> Tensor: + r""" + col_indices() -> IntTensor + + Returns the tensor containing the column indices of the :attr:`self` + tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. + The ``col_indices`` tensor is strictly of shape (:attr:`self`.nnz()) + and of type ``int32`` or ``int64``. When using MKL routines such as sparse + matrix multiplication, it is necessary to use ``int32`` indexing in order + to avoid downcasting and potentially losing information. + + Example:: + >>> csr = torch.eye(5,5).to_sparse_csr() + >>> csr.col_indices() + tensor([0, 1, 2, 3, 4], dtype=torch.int32) + """ + ... + def conj(self) -> Tensor: + r""" + conj() -> Tensor + + See :func:`torch.conj` + """ + ... + def conj_physical(self) -> Tensor: + r""" + conj_physical() -> Tensor + + See :func:`torch.conj_physical` + """ + ... + def conj_physical_(self) -> Tensor: + r""" + conj_physical_() -> Tensor + + In-place version of :meth:`~Tensor.conj_physical` + """ + ... + def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: + r""" + contiguous(memory_format=torch.contiguous_format) -> Tensor + + Returns a contiguous in memory tensor containing the same data as :attr:`self` tensor. If + :attr:`self` tensor is already in the specified memory format, this function returns the + :attr:`self` tensor. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.contiguous_format``. + """ + ... + def copy_(self, src: Tensor, non_blocking: _bool = False) -> Tensor: + r""" + copy_(src, non_blocking=False) -> Tensor + + Copies the elements from :attr:`src` into :attr:`self` tensor and returns + :attr:`self`. + + The :attr:`src` tensor must be :ref:`broadcastable ` + with the :attr:`self` tensor. It may be of a different data type or reside on a + different device. + + Args: + src (Tensor): the source tensor to copy from + non_blocking (bool): if ``True`` and this copy is between CPU and GPU, + the copy may occur asynchronously with respect to the host. For other + cases, this argument has no effect. + """ + ... + @overload + def copysign(self, other: Tensor) -> Tensor: + r""" + copysign(other) -> Tensor + + See :func:`torch.copysign` + """ + ... + @overload + def copysign(self, other: Union[Number, _complex]) -> Tensor: + r""" + copysign(other) -> Tensor + + See :func:`torch.copysign` + """ + ... + @overload + def copysign_(self, other: Tensor) -> Tensor: + r""" + copysign_(other) -> Tensor + + In-place version of :meth:`~Tensor.copysign` + """ + ... + @overload + def copysign_(self, other: Union[Number, _complex]) -> Tensor: + r""" + copysign_(other) -> Tensor + + In-place version of :meth:`~Tensor.copysign` + """ + ... + def corrcoef(self) -> Tensor: + r""" + corrcoef() -> Tensor + + See :func:`torch.corrcoef` + """ + ... + def cos(self) -> Tensor: + r""" + cos() -> Tensor + + See :func:`torch.cos` + """ + ... + def cos_(self) -> Tensor: + r""" + cos_() -> Tensor + + In-place version of :meth:`~Tensor.cos` + """ + ... + def cosh(self) -> Tensor: + r""" + cosh() -> Tensor + + See :func:`torch.cosh` + """ + ... + def cosh_(self) -> Tensor: + r""" + cosh_() -> Tensor + + In-place version of :meth:`~Tensor.cosh` + """ + ... + @overload + def count_nonzero(self, dim: Optional[_int] = None) -> Tensor: + r""" + count_nonzero(dim=None) -> Tensor + + See :func:`torch.count_nonzero` + """ + ... + @overload + def count_nonzero(self, dim: _size) -> Tensor: + r""" + count_nonzero(dim=None) -> Tensor + + See :func:`torch.count_nonzero` + """ + ... + @overload + def count_nonzero(self, *dim: _int) -> Tensor: + r""" + count_nonzero(dim=None) -> Tensor + + See :func:`torch.count_nonzero` + """ + ... + def cov(self, *, correction: _int = 1, fweights: Optional[Tensor] = None, aweights: Optional[Tensor] = None) -> Tensor: + r""" + cov(*, correction=1, fweights=None, aweights=None) -> Tensor + + See :func:`torch.cov` + """ + ... + def cpu(self, memory_format: torch.memory_format = torch.preserve_format) -> Tensor: + r""" + cpu(memory_format=torch.preserve_format) -> Tensor + + Returns a copy of this object in CPU memory. + + If this object is already in CPU memory and on the correct device, + then no copy is performed and the original object is returned. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def cross(self, other: Tensor, dim: Optional[_int] = None) -> Tensor: + r""" + cross(other, dim=None) -> Tensor + + See :func:`torch.cross` + """ + ... + def crow_indices(self) -> Tensor: + r""" + crow_indices() -> IntTensor + + Returns the tensor containing the compressed row indices of the :attr:`self` + tensor when :attr:`self` is a sparse CSR tensor of layout ``sparse_csr``. + The ``crow_indices`` tensor is strictly of shape (:attr:`self`.size(0) + 1) + and of type ``int32`` or ``int64``. When using MKL routines such as sparse + matrix multiplication, it is necessary to use ``int32`` indexing in order + to avoid downcasting and potentially losing information. + + Example:: + >>> csr = torch.eye(5,5).to_sparse_csr() + >>> csr.crow_indices() + tensor([0, 1, 2, 3, 4, 5], dtype=torch.int32) + """ + ... + def cuda(self, device: Optional[Union[_device, _int, str]] = None, non_blocking: _bool = False, memory_format: torch.memory_format = torch.preserve_format) -> Tensor: + r""" + cuda(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor + + Returns a copy of this object in CUDA memory. + + If this object is already in CUDA memory and on the correct device, + then no copy is performed and the original object is returned. + + Args: + device (:class:`torch.device`): The destination GPU device. + Defaults to the current CUDA device. + non_blocking (bool): If ``True`` and the source is in pinned memory, + the copy will be asynchronous with respect to the host. + Otherwise, the argument has no effect. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + @overload + def cummax(self, dim: _int) -> torch.return_types.cummax: + r""" + cummax(dim) -> (Tensor, Tensor) + + See :func:`torch.cummax` + """ + ... + @overload + def cummax(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummax: + r""" + cummax(dim) -> (Tensor, Tensor) + + See :func:`torch.cummax` + """ + ... + @overload + def cummin(self, dim: _int) -> torch.return_types.cummin: + r""" + cummin(dim) -> (Tensor, Tensor) + + See :func:`torch.cummin` + """ + ... + @overload + def cummin(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummin: + r""" + cummin(dim) -> (Tensor, Tensor) + + See :func:`torch.cummin` + """ + ... + @overload + def cumprod(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumprod(dim, dtype=None) -> Tensor + + See :func:`torch.cumprod` + """ + ... + @overload + def cumprod(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumprod(dim, dtype=None) -> Tensor + + See :func:`torch.cumprod` + """ + ... + @overload + def cumprod_(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumprod_(dim, dtype=None) -> Tensor + + In-place version of :meth:`~Tensor.cumprod` + """ + ... + @overload + def cumprod_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumprod_(dim, dtype=None) -> Tensor + + In-place version of :meth:`~Tensor.cumprod` + """ + ... + @overload + def cumsum(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumsum(dim, dtype=None) -> Tensor + + See :func:`torch.cumsum` + """ + ... + @overload + def cumsum(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumsum(dim, dtype=None) -> Tensor + + See :func:`torch.cumsum` + """ + ... + @overload + def cumsum_(self, dim: _int, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumsum_(dim, dtype=None) -> Tensor + + In-place version of :meth:`~Tensor.cumsum` + """ + ... + @overload + def cumsum_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + cumsum_(dim, dtype=None) -> Tensor + + In-place version of :meth:`~Tensor.cumsum` + """ + ... + def data_ptr(self) -> _int: + r""" + data_ptr() -> int + + Returns the address of the first element of :attr:`self` tensor. + """ + ... + def deg2rad(self) -> Tensor: + r""" + deg2rad() -> Tensor + + See :func:`torch.deg2rad` + """ + ... + def deg2rad_(self) -> Tensor: + r""" + deg2rad_() -> Tensor + + In-place version of :meth:`~Tensor.deg2rad` + """ + ... + def dense_dim(self) -> _int: + r""" + dense_dim() -> int + + Return the number of dense dimensions in a :ref:`sparse tensor ` :attr:`self`. + + .. note:: + Returns ``len(self.shape)`` if :attr:`self` is not a sparse tensor. + + See also :meth:`Tensor.sparse_dim` and :ref:`hybrid tensors `. + """ + ... + def dequantize(self) -> Tensor: + r""" + dequantize() -> Tensor + + Given a quantized Tensor, dequantize it and return the dequantized float Tensor. + """ + ... + def det(self) -> Tensor: + r""" + det() -> Tensor + + See :func:`torch.det` + """ + ... + def detach(self) -> Tensor: ... + def detach_(self) -> Tensor: ... + def diag(self, diagonal: _int = 0) -> Tensor: + r""" + diag(diagonal=0) -> Tensor + + See :func:`torch.diag` + """ + ... + def diag_embed(self, offset: _int = 0, dim1: _int = -2, dim2: _int = -1) -> Tensor: + r""" + diag_embed(offset=0, dim1=-2, dim2=-1) -> Tensor + + See :func:`torch.diag_embed` + """ + ... + def diagflat(self, offset: _int = 0) -> Tensor: + r""" + diagflat(offset=0) -> Tensor + + See :func:`torch.diagflat` + """ + ... + @overload + def diagonal(self, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int = 0) -> Tensor: + r""" + diagonal(offset=0, dim1=0, dim2=1) -> Tensor + + See :func:`torch.diagonal` + """ + ... + @overload + def diagonal(self, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: + r""" + diagonal(offset=0, dim1=0, dim2=1) -> Tensor + + See :func:`torch.diagonal` + """ + ... + def diagonal_scatter(self, src: Tensor, offset: _int = 0, dim1: _int = 0, dim2: _int = 1) -> Tensor: + r""" + diagonal_scatter(src, offset=0, dim1=0, dim2=1) -> Tensor + + See :func:`torch.diagonal_scatter` + """ + ... + def diff(self, n: _int = 1, dim: _int = -1, prepend: Optional[Tensor] = None, append: Optional[Tensor] = None) -> Tensor: + r""" + diff(n=1, dim=-1, prepend=None, append=None) -> Tensor + + See :func:`torch.diff` + """ + ... + def digamma(self) -> Tensor: + r""" + digamma() -> Tensor + + See :func:`torch.digamma` + """ + ... + def digamma_(self) -> Tensor: + r""" + digamma_() -> Tensor + + In-place version of :meth:`~Tensor.digamma` + """ + ... + def dim(self) -> _int: + r""" + dim() -> int + + Returns the number of dimensions of :attr:`self` tensor. + """ + ... + def dist(self, other: Tensor, p: Union[Number, _complex] = 2) -> Tensor: + r""" + dist(other, p=2) -> Tensor + + See :func:`torch.dist` + """ + ... + def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: + r""" + div(value, *, rounding_mode=None) -> Tensor + + See :func:`torch.div` + """ + ... + def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: + r""" + div_(value, *, rounding_mode=None) -> Tensor + + In-place version of :meth:`~Tensor.div` + """ + ... + @overload + def divide(self, other: Tensor) -> Tensor: + r""" + divide(value, *, rounding_mode=None) -> Tensor + + See :func:`torch.divide` + """ + ... + @overload + def divide(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: + r""" + divide(value, *, rounding_mode=None) -> Tensor + + See :func:`torch.divide` + """ + ... + @overload + def divide(self, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: + r""" + divide(value, *, rounding_mode=None) -> Tensor + + See :func:`torch.divide` + """ + ... + @overload + def divide(self, other: Union[Number, _complex]) -> Tensor: + r""" + divide(value, *, rounding_mode=None) -> Tensor + + See :func:`torch.divide` + """ + ... + @overload + def divide_(self, other: Tensor) -> Tensor: + r""" + divide_(value, *, rounding_mode=None) -> Tensor + + In-place version of :meth:`~Tensor.divide` + """ + ... + @overload + def divide_(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: + r""" + divide_(value, *, rounding_mode=None) -> Tensor + + In-place version of :meth:`~Tensor.divide` + """ + ... + @overload + def divide_(self, other: Union[Number, _complex], *, rounding_mode: Optional[str]) -> Tensor: + r""" + divide_(value, *, rounding_mode=None) -> Tensor + + In-place version of :meth:`~Tensor.divide` + """ + ... + @overload + def divide_(self, other: Union[Number, _complex]) -> Tensor: + r""" + divide_(value, *, rounding_mode=None) -> Tensor + + In-place version of :meth:`~Tensor.divide` + """ + ... + def dot(self, tensor: Tensor) -> Tensor: + r""" + dot(other) -> Tensor + + See :func:`torch.dot` + """ + ... + def double(self) -> Tensor: + r""" + double(memory_format=torch.preserve_format) -> Tensor + + ``self.double()`` is equivalent to ``self.to(torch.float64)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + @overload + def dsplit(self, sections: _int) -> Tuple[Tensor, ...]: + r""" + dsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.dsplit` + """ + ... + @overload + def dsplit(self, indices: _size) -> Tuple[Tensor, ...]: + r""" + dsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.dsplit` + """ + ... + @overload + def dsplit(self, *indices: _int) -> Tuple[Tensor, ...]: + r""" + dsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.dsplit` + """ + ... + def element_size(self) -> _int: + r""" + element_size() -> int + + Returns the size in bytes of an individual element. + + Example:: + + >>> torch.tensor([]).element_size() + 4 + >>> torch.tensor([], dtype=torch.uint8).element_size() + 1 + """ + ... + @overload + def eq(self, other: Tensor) -> Tensor: + r""" + eq(other) -> Tensor + + See :func:`torch.eq` + """ + ... + @overload + def eq(self, other: Union[Number, _complex]) -> Tensor: + r""" + eq(other) -> Tensor + + See :func:`torch.eq` + """ + ... + @overload + def eq_(self, other: Tensor) -> Tensor: + r""" + eq_(other) -> Tensor + + In-place version of :meth:`~Tensor.eq` + """ + ... + @overload + def eq_(self, other: Union[Number, _complex]) -> Tensor: + r""" + eq_(other) -> Tensor + + In-place version of :meth:`~Tensor.eq` + """ + ... + def equal(self, other: Tensor) -> _bool: + r""" + equal(other) -> bool + + See :func:`torch.equal` + """ + ... + def erf(self) -> Tensor: + r""" + erf() -> Tensor + + See :func:`torch.erf` + """ + ... + def erf_(self) -> Tensor: + r""" + erf_() -> Tensor + + In-place version of :meth:`~Tensor.erf` + """ + ... + def erfc(self) -> Tensor: + r""" + erfc() -> Tensor + + See :func:`torch.erfc` + """ + ... + def erfc_(self) -> Tensor: + r""" + erfc_() -> Tensor + + In-place version of :meth:`~Tensor.erfc` + """ + ... + def erfinv(self) -> Tensor: + r""" + erfinv() -> Tensor + + See :func:`torch.erfinv` + """ + ... + def erfinv_(self) -> Tensor: + r""" + erfinv_() -> Tensor + + In-place version of :meth:`~Tensor.erfinv` + """ + ... + def exp(self) -> Tensor: + r""" + exp() -> Tensor + + See :func:`torch.exp` + """ + ... + def exp2(self) -> Tensor: + r""" + exp2() -> Tensor + + See :func:`torch.exp2` + """ + ... + def exp2_(self) -> Tensor: + r""" + exp2_() -> Tensor + + In-place version of :meth:`~Tensor.exp2` + """ + ... + def exp_(self) -> Tensor: + r""" + exp_() -> Tensor + + In-place version of :meth:`~Tensor.exp` + """ + ... + @overload + def expand(self, size: Sequence[Union[_int, SymInt]], *, implicit: _bool = False) -> Tensor: + r""" + expand(*sizes) -> Tensor + + Returns a new view of the :attr:`self` tensor with singleton dimensions expanded + to a larger size. + + Passing -1 as the size for a dimension means not changing the size of + that dimension. + + Tensor can be also expanded to a larger number of dimensions, and the + new ones will be appended at the front. For the new dimensions, the + size cannot be set to -1. + + Expanding a tensor does not allocate new memory, but only creates a + new view on the existing tensor where a dimension of size one is + expanded to a larger size by setting the ``stride`` to 0. Any dimension + of size 1 can be expanded to an arbitrary value without allocating new + memory. + + Args: + *sizes (torch.Size or int...): the desired expanded size + + .. warning:: + + More than one element of an expanded tensor may refer to a single + memory location. As a result, in-place operations (especially ones that + are vectorized) may result in incorrect behavior. If you need to write + to the tensors, please clone them first. + + Example:: + + >>> x = torch.tensor([[1], [2], [3]]) + >>> x.size() + torch.Size([3, 1]) + >>> x.expand(3, 4) + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) + >>> x.expand(-1, 4) # -1 means not changing the size of that dimension + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) + """ + ... + @overload + def expand(self, *size: Union[_int, SymInt], implicit: _bool = False) -> Tensor: + r""" + expand(*sizes) -> Tensor + + Returns a new view of the :attr:`self` tensor with singleton dimensions expanded + to a larger size. + + Passing -1 as the size for a dimension means not changing the size of + that dimension. + + Tensor can be also expanded to a larger number of dimensions, and the + new ones will be appended at the front. For the new dimensions, the + size cannot be set to -1. + + Expanding a tensor does not allocate new memory, but only creates a + new view on the existing tensor where a dimension of size one is + expanded to a larger size by setting the ``stride`` to 0. Any dimension + of size 1 can be expanded to an arbitrary value without allocating new + memory. + + Args: + *sizes (torch.Size or int...): the desired expanded size + + .. warning:: + + More than one element of an expanded tensor may refer to a single + memory location. As a result, in-place operations (especially ones that + are vectorized) may result in incorrect behavior. If you need to write + to the tensors, please clone them first. + + Example:: + + >>> x = torch.tensor([[1], [2], [3]]) + >>> x.size() + torch.Size([3, 1]) + >>> x.expand(3, 4) + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) + >>> x.expand(-1, 4) # -1 means not changing the size of that dimension + tensor([[ 1, 1, 1, 1], + [ 2, 2, 2, 2], + [ 3, 3, 3, 3]]) + """ + ... + def expand_as(self, other: Tensor) -> Tensor: + r""" + expand_as(other) -> Tensor + + Expand this tensor to the same size as :attr:`other`. + ``self.expand_as(other)`` is equivalent to ``self.expand(other.size())``. + + Please see :meth:`~Tensor.expand` for more information about ``expand``. + + Args: + other (:class:`torch.Tensor`): The result tensor has the same size + as :attr:`other`. + """ + ... + def expm1(self) -> Tensor: + r""" + expm1() -> Tensor + + See :func:`torch.expm1` + """ + ... + def expm1_(self) -> Tensor: + r""" + expm1_() -> Tensor + + In-place version of :meth:`~Tensor.expm1` + """ + ... + def exponential_(self, lambd: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: + r""" + exponential_(lambd=1, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with elements drawn from the PDF (probability density function): + + .. math:: + + f(x) = \lambda e^{-\lambda x}, x > 0 + + .. note:: + In probability theory, exponential distribution is supported on interval [0, :math:`\inf`) (i.e., :math:`x >= 0`) + implying that zero can be sampled from the exponential distribution. + However, :func:`torch.Tensor.exponential_` does not sample zero, + which means that its actual support is the interval (0, :math:`\inf`). + + Note that :func:`torch.distributions.exponential.Exponential` is supported on the interval [0, :math:`\inf`) and can sample zero. + """ + ... + @overload + def fill_(self, value: Tensor) -> Tensor: + r""" + fill_(value) -> Tensor + + Fills :attr:`self` tensor with the specified value. + """ + ... + @overload + def fill_(self, value: Union[Number, _complex]) -> Tensor: + r""" + fill_(value) -> Tensor + + Fills :attr:`self` tensor with the specified value. + """ + ... + def fill_diagonal_(self, fill_value: Union[Number, _complex], wrap: _bool = False) -> Tensor: + r""" + fill_diagonal_(fill_value, wrap=False) -> Tensor + + Fill the main diagonal of a tensor that has at least 2-dimensions. + When dims>2, all dimensions of input must be of equal length. + This function modifies the input tensor in-place, and returns the input tensor. + + Arguments: + fill_value (Scalar): the fill value + wrap (bool): the diagonal 'wrapped' after N columns for tall matrices. + + Example:: + + >>> a = torch.zeros(3, 3) + >>> a.fill_diagonal_(5) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.]]) + >>> b = torch.zeros(7, 3) + >>> b.fill_diagonal_(5) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.], + [0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.], + [0., 0., 0.]]) + >>> c = torch.zeros(7, 3) + >>> c.fill_diagonal_(5, wrap=True) + tensor([[5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.], + [0., 0., 0.], + [5., 0., 0.], + [0., 5., 0.], + [0., 0., 5.]]) + """ + ... + def fix(self) -> Tensor: + r""" + fix() -> Tensor + + See :func:`torch.fix`. + """ + ... + def fix_(self) -> Tensor: + r""" + fix_() -> Tensor + + In-place version of :meth:`~Tensor.fix` + """ + ... + @overload + def flatten(self, start_dim: _int = 0, end_dim: _int = -1) -> Tensor: + r""" + flatten(start_dim=0, end_dim=-1) -> Tensor + + See :func:`torch.flatten` + """ + ... + @overload + def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(start_dim=0, end_dim=-1) -> Tensor + + See :func:`torch.flatten` + """ + ... + @overload + def flatten(self, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(start_dim=0, end_dim=-1) -> Tensor + + See :func:`torch.flatten` + """ + ... + @overload + def flatten(self, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: + r""" + flatten(start_dim=0, end_dim=-1) -> Tensor + + See :func:`torch.flatten` + """ + ... + @overload + def flip(self, dims: _size) -> Tensor: + r""" + flip(dims) -> Tensor + + See :func:`torch.flip` + """ + ... + @overload + def flip(self, *dims: _int) -> Tensor: + r""" + flip(dims) -> Tensor + + See :func:`torch.flip` + """ + ... + def fliplr(self) -> Tensor: + r""" + fliplr() -> Tensor + + See :func:`torch.fliplr` + """ + ... + def flipud(self) -> Tensor: + r""" + flipud() -> Tensor + + See :func:`torch.flipud` + """ + ... + def float(self) -> Tensor: + r""" + float(memory_format=torch.preserve_format) -> Tensor + + ``self.float()`` is equivalent to ``self.to(torch.float32)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + @overload + def float_power(self, exponent: Tensor) -> Tensor: + r""" + float_power(exponent) -> Tensor + + See :func:`torch.float_power` + """ + ... + @overload + def float_power(self, exponent: Union[Number, _complex]) -> Tensor: + r""" + float_power(exponent) -> Tensor + + See :func:`torch.float_power` + """ + ... + @overload + def float_power_(self, exponent: Tensor) -> Tensor: + r""" + float_power_(exponent) -> Tensor + + In-place version of :meth:`~Tensor.float_power` + """ + ... + @overload + def float_power_(self, exponent: Union[Number, _complex]) -> Tensor: + r""" + float_power_(exponent) -> Tensor + + In-place version of :meth:`~Tensor.float_power` + """ + ... + def floor(self) -> Tensor: + r""" + floor() -> Tensor + + See :func:`torch.floor` + """ + ... + def floor_(self) -> Tensor: + r""" + floor_() -> Tensor + + In-place version of :meth:`~Tensor.floor` + """ + ... + def floor_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: + r""" + floor_divide(value) -> Tensor + + See :func:`torch.floor_divide` + """ + ... + def floor_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: + r""" + floor_divide_(value) -> Tensor + + In-place version of :meth:`~Tensor.floor_divide` + """ + ... + def fmax(self, other: Tensor) -> Tensor: + r""" + fmax(other) -> Tensor + + See :func:`torch.fmax` + """ + ... + def fmin(self, other: Tensor) -> Tensor: + r""" + fmin(other) -> Tensor + + See :func:`torch.fmin` + """ + ... + @overload + def fmod(self, other: Tensor) -> Tensor: + r""" + fmod(divisor) -> Tensor + + See :func:`torch.fmod` + """ + ... + @overload + def fmod(self, other: Union[Number, _complex]) -> Tensor: + r""" + fmod(divisor) -> Tensor + + See :func:`torch.fmod` + """ + ... + @overload + def fmod_(self, other: Tensor) -> Tensor: + r""" + fmod_(divisor) -> Tensor + + In-place version of :meth:`~Tensor.fmod` + """ + ... + @overload + def fmod_(self, other: Union[Number, _complex]) -> Tensor: + r""" + fmod_(divisor) -> Tensor + + In-place version of :meth:`~Tensor.fmod` + """ + ... + def frac(self) -> Tensor: + r""" + frac() -> Tensor + + See :func:`torch.frac` + """ + ... + def frac_(self) -> Tensor: + r""" + frac_() -> Tensor + + In-place version of :meth:`~Tensor.frac` + """ + ... + def frexp(self) -> torch.return_types.frexp: + r""" + frexp(input) -> (Tensor mantissa, Tensor exponent) + + See :func:`torch.frexp` + """ + ... + @overload + def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool = False) -> Tensor: + r""" + gather(dim, index) -> Tensor + + See :func:`torch.gather` + """ + ... + @overload + def gather(self, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool = False) -> Tensor: + r""" + gather(dim, index) -> Tensor + + See :func:`torch.gather` + """ + ... + def gcd(self, other: Tensor) -> Tensor: + r""" + gcd(other) -> Tensor + + See :func:`torch.gcd` + """ + ... + def gcd_(self, other: Tensor) -> Tensor: + r""" + gcd_(other) -> Tensor + + In-place version of :meth:`~Tensor.gcd` + """ + ... + @overload + def ge(self, other: Tensor) -> Tensor: + r""" + ge(other) -> Tensor + + See :func:`torch.ge`. + """ + ... + @overload + def ge(self, other: Union[Number, _complex]) -> Tensor: + r""" + ge(other) -> Tensor + + See :func:`torch.ge`. + """ + ... + @overload + def ge_(self, other: Tensor) -> Tensor: + r""" + ge_(other) -> Tensor + + In-place version of :meth:`~Tensor.ge`. + """ + ... + @overload + def ge_(self, other: Union[Number, _complex]) -> Tensor: + r""" + ge_(other) -> Tensor + + In-place version of :meth:`~Tensor.ge`. + """ + ... + def geometric_(self, p: _float, *, generator: Optional[Generator] = None) -> Tensor: + r""" + geometric_(p, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with elements drawn from the geometric distribution: + + .. math:: + + P(X=k) = (1 - p)^{k - 1} p, k = 1, 2, ... + + .. note:: + :func:`torch.Tensor.geometric_` `k`-th trial is the first success hence draws samples in :math:`\{1, 2, \ldots\}`, whereas + :func:`torch.distributions.geometric.Geometric` :math:`(k+1)`-th trial is the first success + hence draws samples in :math:`\{0, 1, \ldots\}`. + """ + ... + def geqrf(self) -> torch.return_types.geqrf: + r""" + geqrf() -> (Tensor, Tensor) + + See :func:`torch.geqrf` + """ + ... + def ger(self, vec2: Tensor) -> Tensor: + r""" + ger(vec2) -> Tensor + + See :func:`torch.ger` + """ + ... + def get_device(self) -> _int: + r""" + get_device() -> Device ordinal (Integer) + + For CUDA tensors, this function returns the device ordinal of the GPU on which the tensor resides. + For CPU tensors, this function returns `-1`. + + Example:: + + >>> x = torch.randn(3, 4, 5, device='cuda:0') + >>> x.get_device() + 0 + >>> x.cpu().get_device() + -1 + """ + ... + @overload + def greater(self, other: Tensor) -> Tensor: + r""" + greater(other) -> Tensor + + See :func:`torch.greater`. + """ + ... + @overload + def greater(self, other: Union[Number, _complex]) -> Tensor: + r""" + greater(other) -> Tensor + + See :func:`torch.greater`. + """ + ... + @overload + def greater_(self, other: Tensor) -> Tensor: + r""" + greater_(other) -> Tensor + + In-place version of :meth:`~Tensor.greater`. + """ + ... + @overload + def greater_(self, other: Union[Number, _complex]) -> Tensor: + r""" + greater_(other) -> Tensor + + In-place version of :meth:`~Tensor.greater`. + """ + ... + @overload + def greater_equal(self, other: Tensor) -> Tensor: + r""" + greater_equal(other) -> Tensor + + See :func:`torch.greater_equal`. + """ + ... + @overload + def greater_equal(self, other: Union[Number, _complex]) -> Tensor: + r""" + greater_equal(other) -> Tensor + + See :func:`torch.greater_equal`. + """ + ... + @overload + def greater_equal_(self, other: Tensor) -> Tensor: + r""" + greater_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.greater_equal`. + """ + ... + @overload + def greater_equal_(self, other: Union[Number, _complex]) -> Tensor: + r""" + greater_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.greater_equal`. + """ + ... + @overload + def gt(self, other: Tensor) -> Tensor: + r""" + gt(other) -> Tensor + + See :func:`torch.gt`. + """ + ... + @overload + def gt(self, other: Union[Number, _complex]) -> Tensor: + r""" + gt(other) -> Tensor + + See :func:`torch.gt`. + """ + ... + @overload + def gt_(self, other: Tensor) -> Tensor: + r""" + gt_(other) -> Tensor + + In-place version of :meth:`~Tensor.gt`. + """ + ... + @overload + def gt_(self, other: Union[Number, _complex]) -> Tensor: + r""" + gt_(other) -> Tensor + + In-place version of :meth:`~Tensor.gt`. + """ + ... + def half(self) -> Tensor: + r""" + half(memory_format=torch.preserve_format) -> Tensor + + ``self.half()`` is equivalent to ``self.to(torch.float16)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def hardshrink(self, lambd: Union[Number, _complex] = 0.5) -> Tensor: + r""" + hardshrink(lambd=0.5) -> Tensor + + See :func:`torch.nn.functional.hardshrink` + """ + ... + def has_names(self) -> _bool: + r""" + Is ``True`` if any of this tensor's dimensions are named. Otherwise, is ``False``. + """ + ... + def heaviside(self, values: Tensor) -> Tensor: + r""" + heaviside(values) -> Tensor + + See :func:`torch.heaviside` + """ + ... + def heaviside_(self, values: Tensor) -> Tensor: + r""" + heaviside_(values) -> Tensor + + In-place version of :meth:`~Tensor.heaviside` + """ + ... + def histc(self, bins: _int = 100, min: Union[Number, _complex] = 0, max: Union[Number, _complex] = 0) -> Tensor: + r""" + histc(bins=100, min=0, max=0) -> Tensor + + See :func:`torch.histc` + """ + ... + @overload + def histogram(self, bins: Tensor, *, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogram: + r""" + histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) + + See :func:`torch.histogram` + """ + ... + @overload + def histogram(self, bins: _int = 100, *, range: Optional[Sequence[_float]] = None, weight: Optional[Tensor] = None, density: _bool = False) -> torch.return_types.histogram: + r""" + histogram(input, bins, *, range=None, weight=None, density=False) -> (Tensor, Tensor) + + See :func:`torch.histogram` + """ + ... + @overload + def hsplit(self, sections: _int) -> Tuple[Tensor, ...]: + r""" + hsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.hsplit` + """ + ... + @overload + def hsplit(self, indices: _size) -> Tuple[Tensor, ...]: + r""" + hsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.hsplit` + """ + ... + @overload + def hsplit(self, *indices: _int) -> Tuple[Tensor, ...]: + r""" + hsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.hsplit` + """ + ... + def hypot(self, other: Tensor) -> Tensor: + r""" + hypot(other) -> Tensor + + See :func:`torch.hypot` + """ + ... + def hypot_(self, other: Tensor) -> Tensor: + r""" + hypot_(other) -> Tensor + + In-place version of :meth:`~Tensor.hypot` + """ + ... + def i0(self) -> Tensor: + r""" + i0() -> Tensor + + See :func:`torch.i0` + """ + ... + def i0_(self) -> Tensor: + r""" + i0_() -> Tensor + + In-place version of :meth:`~Tensor.i0` + """ + ... + def igamma(self, other: Tensor) -> Tensor: + r""" + igamma(other) -> Tensor + + See :func:`torch.igamma` + """ + ... + def igamma_(self, other: Tensor) -> Tensor: + r""" + igamma_(other) -> Tensor + + In-place version of :meth:`~Tensor.igamma` + """ + ... + def igammac(self, other: Tensor) -> Tensor: + r""" + igammac(other) -> Tensor + See :func:`torch.igammac` + """ + ... + def igammac_(self, other: Tensor) -> Tensor: + r""" + igammac_(other) -> Tensor + In-place version of :meth:`~Tensor.igammac` + """ + ... + @overload + def index_add(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + index_add(dim, index, source, *, alpha=1) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_add_`. + """ + ... + @overload + def index_add(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + index_add(dim, index, source, *, alpha=1) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_add_`. + """ + ... + def index_add_(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + index_add_(dim, index, source, *, alpha=1) -> Tensor + + Accumulate the elements of :attr:`alpha` times ``source`` into the :attr:`self` + tensor by adding to the indices in the order given in :attr:`index`. For example, + if ``dim == 0``, ``index[i] == j``, and ``alpha=-1``, then the ``i``\ th row of + ``source`` is subtracted from the ``j``\ th row of :attr:`self`. + + The :attr:`dim`\ th dimension of ``source`` must have the same size as the + length of :attr:`index` (which must be a vector), and all other dimensions must + match :attr:`self`, or an error will be raised. + + For a 3-D tensor the output is given as:: + + self[index[i], :, :] += alpha * src[i, :, :] # if dim == 0 + self[:, index[i], :] += alpha * src[:, i, :] # if dim == 1 + self[:, :, index[i]] += alpha * src[:, :, i] # if dim == 2 + + Note: + This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. + + Args: + dim (int): dimension along which to index + index (Tensor): indices of ``source`` to select from, + should have dtype either `torch.int64` or `torch.int32` + source (Tensor): the tensor containing values to add + + Keyword args: + alpha (Number): the scalar multiplier for ``source`` + + Example:: + + >>> x = torch.ones(5, 3) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2]) + >>> x.index_add_(0, index, t) + tensor([[ 2., 3., 4.], + [ 1., 1., 1.], + [ 8., 9., 10.], + [ 1., 1., 1.], + [ 5., 6., 7.]]) + >>> x.index_add_(0, index, t, alpha=-1) + tensor([[ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.], + [ 1., 1., 1.]]) + """ + ... + @overload + def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: + r""" + index_copy(dim, index, tensor2) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_copy_`. + """ + ... + @overload + def index_copy(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: + r""" + index_copy(dim, index, tensor2) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_copy_`. + """ + ... + @overload + def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: + r""" + index_copy_(dim, index, tensor) -> Tensor + + Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting + the indices in the order given in :attr:`index`. For example, if ``dim == 0`` + and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the + ``j``\ th row of :attr:`self`. + + The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the + length of :attr:`index` (which must be a vector), and all other dimensions must + match :attr:`self`, or an error will be raised. + + .. note:: + If :attr:`index` contains duplicate entries, multiple elements from + :attr:`tensor` will be copied to the same index of :attr:`self`. The result + is nondeterministic since it depends on which copy occurs last. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`tensor` to select from + tensor (Tensor): the tensor containing values to copy + + Example:: + + >>> x = torch.zeros(5, 3) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2]) + >>> x.index_copy_(0, index, t) + tensor([[ 1., 2., 3.], + [ 0., 0., 0.], + [ 7., 8., 9.], + [ 0., 0., 0.], + [ 4., 5., 6.]]) + """ + ... + @overload + def index_copy_(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: + r""" + index_copy_(dim, index, tensor) -> Tensor + + Copies the elements of :attr:`tensor` into the :attr:`self` tensor by selecting + the indices in the order given in :attr:`index`. For example, if ``dim == 0`` + and ``index[i] == j``, then the ``i``\ th row of :attr:`tensor` is copied to the + ``j``\ th row of :attr:`self`. + + The :attr:`dim`\ th dimension of :attr:`tensor` must have the same size as the + length of :attr:`index` (which must be a vector), and all other dimensions must + match :attr:`self`, or an error will be raised. + + .. note:: + If :attr:`index` contains duplicate entries, multiple elements from + :attr:`tensor` will be copied to the same index of :attr:`self`. The result + is nondeterministic since it depends on which copy occurs last. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`tensor` to select from + tensor (Tensor): the tensor containing values to copy + + Example:: + + >>> x = torch.zeros(5, 3) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2]) + >>> x.index_copy_(0, index, t) + tensor([[ 1., 2., 3.], + [ 0., 0., 0.], + [ 7., 8., 9.], + [ 0., 0., 0.], + [ 4., 5., 6.]]) + """ + ... + @overload + def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: + r""" + index_fill(dim, index, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_fill_`. + """ + ... + @overload + def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: + r""" + index_fill(dim, index, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_fill_`. + """ + ... + @overload + def index_fill(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + index_fill(dim, index, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_fill_`. + """ + ... + @overload + def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + index_fill(dim, index, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.index_fill_`. + """ + ... + @overload + def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: + r""" + index_fill_(dim, index, value) -> Tensor + + Fills the elements of the :attr:`self` tensor with value :attr:`value` by + selecting the indices in the order given in :attr:`index`. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`self` tensor to fill in + value (float): the value to fill with + + Example:: + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 2]) + >>> x.index_fill_(1, index, -1) + tensor([[-1., 2., -1.], + [-1., 5., -1.], + [-1., 8., -1.]]) + """ + ... + @overload + def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: + r""" + index_fill_(dim, index, value) -> Tensor + + Fills the elements of the :attr:`self` tensor with value :attr:`value` by + selecting the indices in the order given in :attr:`index`. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`self` tensor to fill in + value (float): the value to fill with + + Example:: + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 2]) + >>> x.index_fill_(1, index, -1) + tensor([[-1., 2., -1.], + [-1., 5., -1.], + [-1., 8., -1.]]) + """ + ... + @overload + def index_fill_(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + index_fill_(dim, index, value) -> Tensor + + Fills the elements of the :attr:`self` tensor with value :attr:`value` by + selecting the indices in the order given in :attr:`index`. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`self` tensor to fill in + value (float): the value to fill with + + Example:: + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 2]) + >>> x.index_fill_(1, index, -1) + tensor([[-1., 2., -1.], + [-1., 5., -1.], + [-1., 8., -1.]]) + """ + ... + @overload + def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + index_fill_(dim, index, value) -> Tensor + + Fills the elements of the :attr:`self` tensor with value :attr:`value` by + selecting the indices in the order given in :attr:`index`. + + Args: + dim (int): dimension along which to index + index (LongTensor): indices of :attr:`self` tensor to fill in + value (float): the value to fill with + + Example:: + >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) + >>> index = torch.tensor([0, 2]) + >>> x.index_fill_(1, index, -1) + tensor([[-1., 2., -1.], + [-1., 5., -1.], + [-1., 8., -1.]]) + """ + ... + def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: + r""" + index_put(indices, values, accumulate=False) -> Tensor + + Out-place version of :meth:`~Tensor.index_put_`. + """ + ... + def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool = False) -> Tensor: + r""" + index_put_(indices, values, accumulate=False) -> Tensor + + Puts values from the tensor :attr:`values` into the tensor :attr:`self` using + the indices specified in :attr:`indices` (which is a tuple of Tensors). The + expression ``tensor.index_put_(indices, values)`` is equivalent to + ``tensor[indices] = values``. Returns :attr:`self`. + + If :attr:`accumulate` is ``True``, the elements in :attr:`values` are added to + :attr:`self`. If accumulate is ``False``, the behavior is undefined if indices + contain duplicate elements. + + Args: + indices (tuple of LongTensor): tensors used to index into `self`. + values (Tensor): tensor of same dtype as `self`. + accumulate (bool): whether to accumulate into self + """ + ... + def index_reduce(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: ... + def index_reduce_(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: + r""" + index_reduce_(dim, index, source, reduce, *, include_self=True) -> Tensor + + Accumulate the elements of ``source`` into the :attr:`self` + tensor by accumulating to the indices in the order given in :attr:`index` + using the reduction given by the ``reduce`` argument. For example, if ``dim == 0``, + ``index[i] == j``, ``reduce == prod`` and ``include_self == True`` then the ``i``\ th + row of ``source`` is multiplied by the ``j``\ th row of :attr:`self`. If + :obj:`include_self="True"`, the values in the :attr:`self` tensor are included + in the reduction, otherwise, rows in the :attr:`self` tensor that are accumulated + to are treated as if they were filled with the reduction identites. + + The :attr:`dim`\ th dimension of ``source`` must have the same size as the + length of :attr:`index` (which must be a vector), and all other dimensions must + match :attr:`self`, or an error will be raised. + + For a 3-D tensor with :obj:`reduce="prod"` and :obj:`include_self=True` the + output is given as:: + + self[index[i], :, :] *= src[i, :, :] # if dim == 0 + self[:, index[i], :] *= src[:, i, :] # if dim == 1 + self[:, :, index[i]] *= src[:, :, i] # if dim == 2 + + Note: + This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. + + .. note:: + + This function only supports floating point tensors. + + .. warning:: + + This function is in beta and may change in the near future. + + Args: + dim (int): dimension along which to index + index (Tensor): indices of ``source`` to select from, + should have dtype either `torch.int64` or `torch.int32` + source (FloatTensor): the tensor containing values to accumulate + reduce (str): the reduction operation to apply + (:obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) + + Keyword args: + include_self (bool): whether the elements from the ``self`` tensor are + included in the reduction + + Example:: + + >>> x = torch.empty(5, 3).fill_(2) + >>> t = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=torch.float) + >>> index = torch.tensor([0, 4, 2, 0]) + >>> x.index_reduce_(0, index, t, 'prod') + tensor([[20., 44., 72.], + [ 2., 2., 2.], + [14., 16., 18.], + [ 2., 2., 2.], + [ 8., 10., 12.]]) + >>> x = torch.empty(5, 3).fill_(2) + >>> x.index_reduce_(0, index, t, 'prod', include_self=False) + tensor([[10., 22., 36.], + [ 2., 2., 2.], + [ 7., 8., 9.], + [ 2., 2., 2.], + [ 4., 5., 6.]]) + """ + ... + @overload + def index_select(self, dim: _int, index: Tensor) -> Tensor: + r""" + index_select(dim, index) -> Tensor + + See :func:`torch.index_select` + """ + ... + @overload + def index_select(self, dim: Union[str, ellipsis, None], index: Tensor) -> Tensor: + r""" + index_select(dim, index) -> Tensor + + See :func:`torch.index_select` + """ + ... + def indices(self) -> Tensor: + r""" + indices() -> Tensor + + Return the indices tensor of a :ref:`sparse COO tensor `. + + .. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + + See also :meth:`Tensor.values`. + + .. note:: + This method can only be called on a coalesced sparse tensor. See + :meth:`Tensor.coalesce` for details. + """ + ... + def inner(self, other: Tensor) -> Tensor: + r""" + inner(other) -> Tensor + + See :func:`torch.inner`. + """ + ... + def int(self) -> Tensor: + r""" + int(memory_format=torch.preserve_format) -> Tensor + + ``self.int()`` is equivalent to ``self.to(torch.int32)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def int_repr(self) -> Tensor: + r""" + int_repr() -> Tensor + + Given a quantized Tensor, + ``self.int_repr()`` returns a CPU Tensor with uint8_t as data type that stores the + underlying uint8_t values of the given Tensor. + """ + ... + def inverse(self) -> Tensor: + r""" + inverse() -> Tensor + + See :func:`torch.inverse` + """ + ... + def is_coalesced(self) -> _bool: + r""" + is_coalesced() -> bool + + Returns ``True`` if :attr:`self` is a :ref:`sparse COO tensor + ` that is coalesced, ``False`` otherwise. + + .. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + + See :meth:`coalesce` and :ref:`uncoalesced tensors `. + """ + ... + def is_complex(self) -> _bool: + r""" + is_complex() -> bool + + Returns True if the data type of :attr:`self` is a complex data type. + """ + ... + def is_conj(self) -> _bool: + r""" + is_conj() -> bool + + Returns True if the conjugate bit of :attr:`self` is set to true. + """ + ... + def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: + r""" + is_contiguous(memory_format=torch.contiguous_format) -> bool + + Returns True if :attr:`self` tensor is contiguous in memory in the order specified + by memory format. + + Args: + memory_format (:class:`torch.memory_format`, optional): Specifies memory allocation + order. Default: ``torch.contiguous_format``. + """ + ... + is_cpu: _bool + r"""Is ``True`` if the Tensor is stored on the CPU, ``False`` otherwise.""" + is_cuda: _bool + r"""Is ``True`` if the Tensor is stored on the GPU, ``False`` otherwise.""" + def is_distributed(self) -> _bool: ... + def is_floating_point(self) -> _bool: + r""" + is_floating_point() -> bool + + Returns True if the data type of :attr:`self` is a floating point data type. + """ + ... + def is_inference(self) -> _bool: + r""" + is_inference() -> bool + + See :func:`torch.is_inference` + """ + ... + is_ipu: _bool + r"""Is ``True`` if the Tensor is stored on the IPU, ``False`` otherwise.""" + is_leaf: _bool + r"""All Tensors that have :attr:`requires_grad` which is ``False`` will be leaf Tensors by convention. + + For Tensors that have :attr:`requires_grad` which is ``True``, they will be leaf Tensors if they were + created by the user. This means that they are not the result of an operation and so + :attr:`grad_fn` is None. + + Only leaf Tensors will have their :attr:`grad` populated during a call to :func:`backward`. + To get :attr:`grad` populated for non-leaf Tensors, you can use :func:`retain_grad`. + + Example:: + + >>> a = torch.rand(10, requires_grad=True) + >>> a.is_leaf + True + >>> b = torch.rand(10, requires_grad=True).cuda() + >>> b.is_leaf + False + # b was created by the operation that cast a cpu Tensor into a cuda Tensor + >>> c = torch.rand(10, requires_grad=True) + 2 + >>> c.is_leaf + False + # c was created by the addition operation + >>> d = torch.rand(10).cuda() + >>> d.is_leaf + True + # d does not require gradients and so has no operation creating it (that is tracked by the autograd engine) + >>> e = torch.rand(10).cuda().requires_grad_() + >>> e.is_leaf + True + # e requires gradients and has no operations creating it + >>> f = torch.rand(10, requires_grad=True, device="cuda") + >>> f.is_leaf + True + # f requires grad, has no operation creating it""" + is_maia: _bool + is_meta: _bool + r"""Is ``True`` if the Tensor is a meta tensor, ``False`` otherwise. Meta tensors + are like normal tensors, but they carry no data.""" + is_mkldnn: _bool + is_mps: _bool + r"""Is ``True`` if the Tensor is stored on the MPS device, ``False`` otherwise.""" + is_mtia: _bool + def is_neg(self) -> _bool: + r""" + is_neg() -> bool + + Returns True if the negative bit of :attr:`self` is set to true. + """ + ... + is_nested: _bool + def is_nonzero(self) -> _bool: ... + def is_pinned(self, device: Optional[Optional[DeviceLikeType]] = None) -> _bool: + r""" + Returns true if this tensor resides in pinned memory. + """ + ... + is_quantized: _bool + r"""Is ``True`` if the Tensor is quantized, ``False`` otherwise.""" + def is_same_size(self, other: Tensor) -> _bool: ... + def is_set_to(self, tensor: Tensor) -> _bool: + r""" + is_set_to(tensor) -> bool + + Returns True if both tensors are pointing to the exact same memory (same + storage, offset, size and stride). + """ + ... + def is_signed(self) -> _bool: + r""" + is_signed() -> bool + + Returns True if the data type of :attr:`self` is a signed data type. + """ + ... + is_sparse: _bool + r"""Is ``True`` if the Tensor uses sparse COO storage layout, ``False`` otherwise.""" + is_sparse_csr: _bool + r"""Is ``True`` if the Tensor uses sparse CSR storage layout, ``False`` otherwise.""" + is_vulkan: _bool + def isclose(self, other: Tensor, rtol: _float = 1e-05, atol: _float = 1e-08, equal_nan: _bool = False) -> Tensor: + r""" + isclose(other, rtol=1e-05, atol=1e-08, equal_nan=False) -> Tensor + + See :func:`torch.isclose` + """ + ... + def isfinite(self) -> Tensor: + r""" + isfinite() -> Tensor + + See :func:`torch.isfinite` + """ + ... + def isinf(self) -> Tensor: + r""" + isinf() -> Tensor + + See :func:`torch.isinf` + """ + ... + def isnan(self) -> Tensor: + r""" + isnan() -> Tensor + + See :func:`torch.isnan` + """ + ... + def isneginf(self) -> Tensor: + r""" + isneginf() -> Tensor + + See :func:`torch.isneginf` + """ + ... + def isposinf(self) -> Tensor: + r""" + isposinf() -> Tensor + + See :func:`torch.isposinf` + """ + ... + def isreal(self) -> Tensor: + r""" + isreal() -> Tensor + + See :func:`torch.isreal` + """ + ... + def istft(self, n_fft: _int, hop_length: Optional[_int] = None, win_length: Optional[_int] = None, window: Optional[Tensor] = None, center: _bool = True, normalized: _bool = False, onesided: Optional[_bool] = None, length: Optional[_int] = None, return_complex: _bool = False) -> Tensor: + r""" + istft(n_fft, hop_length=None, win_length=None, window=None, + center=True, normalized=False, onesided=True, length=None) -> Tensor + + See :func:`torch.istft` + """ + ... + def item(self) -> Number: + r""" + item() -> number + + Returns the value of this tensor as a standard Python number. This only works + for tensors with one element. For other cases, see :meth:`~Tensor.tolist`. + + This operation is not differentiable. + + Example:: + + >>> x = torch.tensor([1.0]) + >>> x.item() + 1.0 + """ + ... + def kron(self, other: Tensor) -> Tensor: + r""" + kron(other) -> Tensor + + See :func:`torch.kron` + """ + ... + @overload + def kthvalue(self, k: _int, dim: _int = -1, keepdim: _bool = False) -> torch.return_types.kthvalue: + r""" + kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.kthvalue` + """ + ... + @overload + def kthvalue(self, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.kthvalue: + r""" + kthvalue(k, dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.kthvalue` + """ + ... + def lcm(self, other: Tensor) -> Tensor: + r""" + lcm(other) -> Tensor + + See :func:`torch.lcm` + """ + ... + def lcm_(self, other: Tensor) -> Tensor: + r""" + lcm_(other) -> Tensor + + In-place version of :meth:`~Tensor.lcm` + """ + ... + def ldexp(self, other: Tensor) -> Tensor: + r""" + ldexp(other) -> Tensor + + See :func:`torch.ldexp` + """ + ... + def ldexp_(self, other: Tensor) -> Tensor: + r""" + ldexp_(other) -> Tensor + + In-place version of :meth:`~Tensor.ldexp` + """ + ... + @overload + def le(self, other: Tensor) -> Tensor: + r""" + le(other) -> Tensor + + See :func:`torch.le`. + """ + ... + @overload + def le(self, other: Union[Number, _complex]) -> Tensor: + r""" + le(other) -> Tensor + + See :func:`torch.le`. + """ + ... + @overload + def le_(self, other: Tensor) -> Tensor: + r""" + le_(other) -> Tensor + + In-place version of :meth:`~Tensor.le`. + """ + ... + @overload + def le_(self, other: Union[Number, _complex]) -> Tensor: + r""" + le_(other) -> Tensor + + In-place version of :meth:`~Tensor.le`. + """ + ... + @overload + def lerp(self, end: Tensor, weight: Tensor) -> Tensor: + r""" + lerp(end, weight) -> Tensor + + See :func:`torch.lerp` + """ + ... + @overload + def lerp(self, end: Tensor, weight: Union[Number, _complex]) -> Tensor: + r""" + lerp(end, weight) -> Tensor + + See :func:`torch.lerp` + """ + ... + @overload + def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: + r""" + lerp_(end, weight) -> Tensor + + In-place version of :meth:`~Tensor.lerp` + """ + ... + @overload + def lerp_(self, end: Tensor, weight: Union[Number, _complex]) -> Tensor: + r""" + lerp_(end, weight) -> Tensor + + In-place version of :meth:`~Tensor.lerp` + """ + ... + @overload + def less(self, other: Tensor) -> Tensor: + r""" + lt(other) -> Tensor + + See :func:`torch.less`. + """ + ... + @overload + def less(self, other: Union[Number, _complex]) -> Tensor: + r""" + lt(other) -> Tensor + + See :func:`torch.less`. + """ + ... + @overload + def less_(self, other: Tensor) -> Tensor: + r""" + less_(other) -> Tensor + + In-place version of :meth:`~Tensor.less`. + """ + ... + @overload + def less_(self, other: Union[Number, _complex]) -> Tensor: + r""" + less_(other) -> Tensor + + In-place version of :meth:`~Tensor.less`. + """ + ... + @overload + def less_equal(self, other: Tensor) -> Tensor: + r""" + less_equal(other) -> Tensor + + See :func:`torch.less_equal`. + """ + ... + @overload + def less_equal(self, other: Union[Number, _complex]) -> Tensor: + r""" + less_equal(other) -> Tensor + + See :func:`torch.less_equal`. + """ + ... + @overload + def less_equal_(self, other: Tensor) -> Tensor: + r""" + less_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.less_equal`. + """ + ... + @overload + def less_equal_(self, other: Union[Number, _complex]) -> Tensor: + r""" + less_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.less_equal`. + """ + ... + def lgamma(self) -> Tensor: + r""" + lgamma() -> Tensor + + See :func:`torch.lgamma` + """ + ... + def lgamma_(self) -> Tensor: + r""" + lgamma_() -> Tensor + + In-place version of :meth:`~Tensor.lgamma` + """ + ... + def log(self) -> Tensor: + r""" + log() -> Tensor + + See :func:`torch.log` + """ + ... + def log10(self) -> Tensor: + r""" + log10() -> Tensor + + See :func:`torch.log10` + """ + ... + def log10_(self) -> Tensor: + r""" + log10_() -> Tensor + + In-place version of :meth:`~Tensor.log10` + """ + ... + def log1p(self) -> Tensor: + r""" + log1p() -> Tensor + + See :func:`torch.log1p` + """ + ... + def log1p_(self) -> Tensor: + r""" + log1p_() -> Tensor + + In-place version of :meth:`~Tensor.log1p` + """ + ... + def log2(self) -> Tensor: + r""" + log2() -> Tensor + + See :func:`torch.log2` + """ + ... + def log2_(self) -> Tensor: + r""" + log2_() -> Tensor + + In-place version of :meth:`~Tensor.log2` + """ + ... + def log_(self) -> Tensor: + r""" + log_() -> Tensor + + In-place version of :meth:`~Tensor.log` + """ + ... + def log_normal_(self, mean: _float = 1, std: _float = 2, *, generator: Optional[Generator] = None) -> Tensor: + r""" + log_normal_(mean=1, std=2, *, generator=None) + + Fills :attr:`self` tensor with numbers samples from the log-normal distribution + parameterized by the given mean :math:`\mu` and standard deviation + :math:`\sigma`. Note that :attr:`mean` and :attr:`std` are the mean and + standard deviation of the underlying normal distribution, and not of the + returned distribution: + + .. math:: + + f(x) = \dfrac{1}{x \sigma \sqrt{2\pi}}\ e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}} + """ + ... + @overload + def log_softmax(self, dim: _int, dtype: Optional[_dtype] = None) -> Tensor: ... + @overload + def log_softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: ... + def logaddexp(self, other: Tensor) -> Tensor: + r""" + logaddexp(other) -> Tensor + + See :func:`torch.logaddexp` + """ + ... + def logaddexp2(self, other: Tensor) -> Tensor: + r""" + logaddexp2(other) -> Tensor + + See :func:`torch.logaddexp2` + """ + ... + @overload + def logcumsumexp(self, dim: _int) -> Tensor: + r""" + logcumsumexp(dim) -> Tensor + + See :func:`torch.logcumsumexp` + """ + ... + @overload + def logcumsumexp(self, dim: Union[str, ellipsis, None]) -> Tensor: + r""" + logcumsumexp(dim) -> Tensor + + See :func:`torch.logcumsumexp` + """ + ... + def logdet(self) -> Tensor: + r""" + logdet() -> Tensor + + See :func:`torch.logdet` + """ + ... + def logical_and(self, other: Tensor) -> Tensor: + r""" + logical_and() -> Tensor + + See :func:`torch.logical_and` + """ + ... + def logical_and_(self, other: Tensor) -> Tensor: + r""" + logical_and_() -> Tensor + + In-place version of :meth:`~Tensor.logical_and` + """ + ... + def logical_not(self) -> Tensor: + r""" + logical_not() -> Tensor + + See :func:`torch.logical_not` + """ + ... + def logical_not_(self) -> Tensor: + r""" + logical_not_() -> Tensor + + In-place version of :meth:`~Tensor.logical_not` + """ + ... + def logical_or(self, other: Tensor) -> Tensor: + r""" + logical_or() -> Tensor + + See :func:`torch.logical_or` + """ + ... + def logical_or_(self, other: Tensor) -> Tensor: + r""" + logical_or_() -> Tensor + + In-place version of :meth:`~Tensor.logical_or` + """ + ... + def logical_xor(self, other: Tensor) -> Tensor: + r""" + logical_xor() -> Tensor + + See :func:`torch.logical_xor` + """ + ... + def logical_xor_(self, other: Tensor) -> Tensor: + r""" + logical_xor_() -> Tensor + + In-place version of :meth:`~Tensor.logical_xor` + """ + ... + def logit(self, eps: Optional[_float] = None) -> Tensor: + r""" + logit() -> Tensor + + See :func:`torch.logit` + """ + ... + def logit_(self, eps: Optional[_float] = None) -> Tensor: + r""" + logit_() -> Tensor + + In-place version of :meth:`~Tensor.logit` + """ + ... + @overload + def logsumexp(self, dim: Union[_int, _size], keepdim: _bool = False) -> Tensor: + r""" + logsumexp(dim, keepdim=False) -> Tensor + + See :func:`torch.logsumexp` + """ + ... + @overload + def logsumexp(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False) -> Tensor: + r""" + logsumexp(dim, keepdim=False) -> Tensor + + See :func:`torch.logsumexp` + """ + ... + def long(self) -> Tensor: + r""" + long(memory_format=torch.preserve_format) -> Tensor + + ``self.long()`` is equivalent to ``self.to(torch.int64)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + @overload + def lt(self, other: Tensor) -> Tensor: + r""" + lt(other) -> Tensor + + See :func:`torch.lt`. + """ + ... + @overload + def lt(self, other: Union[Number, _complex]) -> Tensor: + r""" + lt(other) -> Tensor + + See :func:`torch.lt`. + """ + ... + @overload + def lt_(self, other: Tensor) -> Tensor: + r""" + lt_(other) -> Tensor + + In-place version of :meth:`~Tensor.lt`. + """ + ... + @overload + def lt_(self, other: Union[Number, _complex]) -> Tensor: + r""" + lt_(other) -> Tensor + + In-place version of :meth:`~Tensor.lt`. + """ + ... + def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: + r""" + lu_solve(LU_data, LU_pivots) -> Tensor + + See :func:`torch.lu_solve` + """ + ... + def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ... + def map_(self, tensor: Tensor, callable: Callable) -> Tensor: + r""" + map_(tensor, callable) + + Applies :attr:`callable` for each element in :attr:`self` tensor and the given + :attr:`tensor` and stores the results in :attr:`self` tensor. :attr:`self` tensor and + the given :attr:`tensor` must be :ref:`broadcastable `. + + The :attr:`callable` should have the signature:: + + def callable(a, b) -> number + """ + ... + @overload + def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: + r""" + masked_fill(mask, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.masked_fill_` + """ + ... + @overload + def masked_fill(self, mask: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + masked_fill(mask, value) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.masked_fill_` + """ + ... + @overload + def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: + r""" + masked_fill_(mask, value) + + Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is + True. The shape of :attr:`mask` must be + :ref:`broadcastable ` with the shape of the underlying + tensor. + + Args: + mask (BoolTensor): the boolean mask + value (float): the value to fill in with + """ + ... + @overload + def masked_fill_(self, mask: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + masked_fill_(mask, value) + + Fills elements of :attr:`self` tensor with :attr:`value` where :attr:`mask` is + True. The shape of :attr:`mask` must be + :ref:`broadcastable ` with the shape of the underlying + tensor. + + Args: + mask (BoolTensor): the boolean mask + value (float): the value to fill in with + """ + ... + def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: + r""" + masked_scatter(mask, tensor) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.masked_scatter_` + + .. note:: + + The inputs :attr:`self` and :attr:`mask` + :ref:`broadcast `. + + Example: + + >>> self = torch.tensor([0, 0, 0, 0, 0]) + >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]], dtype=torch.bool) + >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + >>> self.masked_scatter(mask, source) + tensor([[0, 0, 0, 0, 1], + [2, 3, 0, 4, 5]]) + """ + ... + def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: + r""" + masked_scatter_(mask, source) + + Copies elements from :attr:`source` into :attr:`self` tensor at positions where + the :attr:`mask` is True. Elements from :attr:`source` are copied into :attr:`self` + starting at position 0 of :attr:`source` and continuing in order one-by-one for each + occurrence of :attr:`mask` being True. + The shape of :attr:`mask` must be :ref:`broadcastable ` + with the shape of the underlying tensor. The :attr:`source` should have at least + as many elements as the number of ones in :attr:`mask`. + + Args: + mask (BoolTensor): the boolean mask + source (Tensor): the tensor to copy from + + .. note:: + + The :attr:`mask` operates on the :attr:`self` tensor, not on the given + :attr:`source` tensor. + + Example: + + >>> self = torch.tensor([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]) + >>> mask = torch.tensor([[0, 0, 0, 1, 1], [1, 1, 0, 1, 1]], dtype=torch.bool) + >>> source = torch.tensor([[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]) + >>> self.masked_scatter_(mask, source) + tensor([[0, 0, 0, 0, 1], + [2, 3, 0, 4, 5]]) + """ + ... + def masked_select(self, mask: Tensor) -> Tensor: + r""" + masked_select(mask) -> Tensor + + See :func:`torch.masked_select` + """ + ... + def matmul(self, other: Tensor) -> Tensor: + r""" + matmul(tensor2) -> Tensor + + See :func:`torch.matmul` + """ + ... + def matrix_exp(self) -> Tensor: + r""" + matrix_exp() -> Tensor + + See :func:`torch.matrix_exp` + """ + ... + def matrix_power(self, n: _int) -> Tensor: + r""" + matrix_power(n) -> Tensor + + .. note:: :meth:`~Tensor.matrix_power` is deprecated, use :func:`torch.linalg.matrix_power` instead. + + Alias for :func:`torch.linalg.matrix_power` + """ + ... + @overload + def max(self) -> Tensor: + r""" + max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.max` + """ + ... + @overload + def max(self, other: Tensor) -> Tensor: + r""" + max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.max` + """ + ... + @overload + def max(self, dim: _int, keepdim: _bool = False) -> torch.return_types.max: + r""" + max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.max` + """ + ... + @overload + def max(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.max: + r""" + max(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.max` + """ + ... + def maximum(self, other: Tensor) -> Tensor: + r""" + maximum(other) -> Tensor + + See :func:`torch.maximum` + """ + ... + @overload + def mean(self, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + mean(dim=None, keepdim=False, *, dtype=None) -> Tensor + + See :func:`torch.mean` + """ + ... + @overload + def mean(self, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + mean(dim=None, keepdim=False, *, dtype=None) -> Tensor + + See :func:`torch.mean` + """ + ... + @overload + def mean(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + mean(dim=None, keepdim=False, *, dtype=None) -> Tensor + + See :func:`torch.mean` + """ + ... + @overload + def median(self) -> Tensor: + r""" + median(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.median` + """ + ... + @overload + def median(self, dim: _int, keepdim: _bool = False) -> torch.return_types.median: + r""" + median(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.median` + """ + ... + @overload + def median(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.median: + r""" + median(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.median` + """ + ... + @overload + def min(self) -> Tensor: + r""" + min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.min` + """ + ... + @overload + def min(self, other: Tensor) -> Tensor: + r""" + min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.min` + """ + ... + @overload + def min(self, dim: _int, keepdim: _bool = False) -> torch.return_types.min: + r""" + min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.min` + """ + ... + @overload + def min(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.min: + r""" + min(dim=None, keepdim=False) -> Tensor or (Tensor, Tensor) + + See :func:`torch.min` + """ + ... + def minimum(self, other: Tensor) -> Tensor: + r""" + minimum(other) -> Tensor + + See :func:`torch.minimum` + """ + ... + def mm(self, mat2: Tensor) -> Tensor: + r""" + mm(mat2) -> Tensor + + See :func:`torch.mm` + """ + ... + @overload + def mode(self, dim: _int = -1, keepdim: _bool = False) -> torch.return_types.mode: + r""" + mode(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.mode` + """ + ... + @overload + def mode(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.mode: + r""" + mode(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.mode` + """ + ... + @overload + def moveaxis(self, source: _int, destination: _int) -> Tensor: + r""" + moveaxis(source, destination) -> Tensor + + See :func:`torch.moveaxis` + """ + ... + @overload + def moveaxis(self, source: _size, destination: _size) -> Tensor: + r""" + moveaxis(source, destination) -> Tensor + + See :func:`torch.moveaxis` + """ + ... + @overload + def movedim(self, source: _int, destination: _int) -> Tensor: + r""" + movedim(source, destination) -> Tensor + + See :func:`torch.movedim` + """ + ... + @overload + def movedim(self, source: _size, destination: _size) -> Tensor: + r""" + movedim(source, destination) -> Tensor + + See :func:`torch.movedim` + """ + ... + def msort(self) -> Tensor: + r""" + msort() -> Tensor + + See :func:`torch.msort` + """ + ... + def mul(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: + r""" + mul(value) -> Tensor + + See :func:`torch.mul`. + """ + ... + def mul_(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat]) -> Tensor: + r""" + mul_(value) -> Tensor + + In-place version of :meth:`~Tensor.mul`. + """ + ... + def multinomial(self, num_samples: _int, replacement: _bool = False, *, generator: Optional[Generator] = None) -> Tensor: + r""" + multinomial(num_samples, replacement=False, *, generator=None) -> Tensor + + See :func:`torch.multinomial` + """ + ... + @overload + def multiply(self, other: Tensor) -> Tensor: + r""" + multiply(value) -> Tensor + + See :func:`torch.multiply`. + """ + ... + @overload + def multiply(self, other: Union[Number, _complex]) -> Tensor: + r""" + multiply(value) -> Tensor + + See :func:`torch.multiply`. + """ + ... + @overload + def multiply_(self, other: Tensor) -> Tensor: + r""" + multiply_(value) -> Tensor + + In-place version of :meth:`~Tensor.multiply`. + """ + ... + @overload + def multiply_(self, other: Union[Number, _complex]) -> Tensor: + r""" + multiply_(value) -> Tensor + + In-place version of :meth:`~Tensor.multiply`. + """ + ... + def mv(self, vec: Tensor) -> Tensor: + r""" + mv(vec) -> Tensor + + See :func:`torch.mv` + """ + ... + def mvlgamma(self, p: _int) -> Tensor: + r""" + mvlgamma(p) -> Tensor + + See :func:`torch.mvlgamma` + """ + ... + def mvlgamma_(self, p: _int) -> Tensor: + r""" + mvlgamma_(p) -> Tensor + + In-place version of :meth:`~Tensor.mvlgamma` + """ + ... + def nan_to_num(self, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: + r""" + nan_to_num(nan=0.0, posinf=None, neginf=None) -> Tensor + + See :func:`torch.nan_to_num`. + """ + ... + def nan_to_num_(self, nan: Optional[_float] = None, posinf: Optional[_float] = None, neginf: Optional[_float] = None) -> Tensor: + r""" + nan_to_num_(nan=0.0, posinf=None, neginf=None) -> Tensor + + In-place version of :meth:`~Tensor.nan_to_num`. + """ + ... + def nanmean(self, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + nanmean(dim=None, keepdim=False, *, dtype=None) -> Tensor + + See :func:`torch.nanmean` + """ + ... + @overload + def nanmedian(self) -> Tensor: + r""" + nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.nanmedian` + """ + ... + @overload + def nanmedian(self, dim: _int, keepdim: _bool = False) -> torch.return_types.nanmedian: + r""" + nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.nanmedian` + """ + ... + @overload + def nanmedian(self, dim: Union[str, ellipsis, None], keepdim: _bool = False) -> torch.return_types.nanmedian: + r""" + nanmedian(dim=None, keepdim=False) -> (Tensor, LongTensor) + + See :func:`torch.nanmedian` + """ + ... + @overload + def nanquantile(self, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: + r""" + nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + + See :func:`torch.nanquantile` + """ + ... + @overload + def nanquantile(self, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: + r""" + nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + + See :func:`torch.nanquantile` + """ + ... + def nansum(self, dim: Optional[Union[_int, _size]] = None, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + nansum(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.nansum` + """ + ... + @overload + def narrow(self, dim: _int, start: Tensor, length: Union[_int, SymInt]) -> Tensor: + r""" + narrow(dimension, start, length) -> Tensor + + See :func:`torch.narrow`. + """ + ... + @overload + def narrow(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: + r""" + narrow(dimension, start, length) -> Tensor + + See :func:`torch.narrow`. + """ + ... + def narrow_copy(self, dim: _int, start: Union[_int, SymInt], length: Union[_int, SymInt]) -> Tensor: + r""" + narrow_copy(dimension, start, length) -> Tensor + + See :func:`torch.narrow_copy`. + """ + ... + def ndimension(self) -> _int: + r""" + ndimension() -> int + + Alias for :meth:`~Tensor.dim()` + """ + ... + @overload + def ne(self, other: Tensor) -> Tensor: + r""" + ne(other) -> Tensor + + See :func:`torch.ne`. + """ + ... + @overload + def ne(self, other: Union[Number, _complex]) -> Tensor: + r""" + ne(other) -> Tensor + + See :func:`torch.ne`. + """ + ... + @overload + def ne_(self, other: Tensor) -> Tensor: + r""" + ne_(other) -> Tensor + + In-place version of :meth:`~Tensor.ne`. + """ + ... + @overload + def ne_(self, other: Union[Number, _complex]) -> Tensor: + r""" + ne_(other) -> Tensor + + In-place version of :meth:`~Tensor.ne`. + """ + ... + def neg(self) -> Tensor: + r""" + neg() -> Tensor + + See :func:`torch.neg` + """ + ... + def neg_(self) -> Tensor: + r""" + neg_() -> Tensor + + In-place version of :meth:`~Tensor.neg` + """ + ... + def negative(self) -> Tensor: + r""" + negative() -> Tensor + + See :func:`torch.negative` + """ + ... + def negative_(self) -> Tensor: + r""" + negative_() -> Tensor + + In-place version of :meth:`~Tensor.negative` + """ + ... + def nelement(self) -> _int: + r""" + nelement() -> int + + Alias for :meth:`~Tensor.numel` + """ + ... + @overload + def new(cls, *args: Any, device: Optional[DeviceLikeType] = None) -> Self: ... + @overload + def new(cls, storage: Storage) -> Self: ... + @overload + def new(cls, other: Tensor) -> Self: ... + @overload + def new(cls, size: _size, *, device: Optional[DeviceLikeType] = None) -> Self: ... + @overload + def new_empty(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with uninitialized data. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.ones(()) + >>> tensor.new_empty((2, 3)) + tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], + [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) + """ + ... + @overload + def new_empty(self, *size: Union[_int, SymInt], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_empty(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with uninitialized data. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.ones(()) + >>> tensor.new_empty((2, 3)) + tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], + [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) + """ + ... + def new_empty_strided(self, size: Sequence[Union[_int, SymInt]], stride: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_empty_strided(size, stride, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` and strides :attr:`stride` filled with + uninitialized data. By default, the returned Tensor has the same + :class:`torch.dtype` and :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.ones(()) + >>> tensor.new_empty_strided((2, 3), (3, 1)) + tensor([[ 5.8182e-18, 4.5765e-41, -1.0545e+30], + [ 3.0949e-41, 4.4842e-44, 0.0000e+00]]) + """ + ... + def new_full(self, size: Sequence[Union[_int, SymInt]], fill_value: Union[Number, _complex], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_full(size, fill_value, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with :attr:`fill_value`. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + fill_value (scalar): the number to fill the output tensor with. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.ones((2,), dtype=torch.float64) + >>> tensor.new_full((3, 4), 3.141592) + tensor([[ 3.1416, 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416, 3.1416], + [ 3.1416, 3.1416, 3.1416, 3.1416]], dtype=torch.float64) + """ + ... + @overload + def new_ones(self, size: _size, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with ``1``. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.tensor((), dtype=torch.int32) + >>> tensor.new_ones((2, 3)) + tensor([[ 1, 1, 1], + [ 1, 1, 1]], dtype=torch.int32) + """ + ... + @overload + def new_ones(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with ``1``. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.tensor((), dtype=torch.int32) + >>> tensor.new_ones((2, 3)) + tensor([[ 1, 1, 1], + [ 1, 1, 1]], dtype=torch.int32) + """ + ... + @overload + def new_ones(self, *size: Union[_int, SymInt], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with ``1``. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.tensor((), dtype=torch.int32) + >>> tensor.new_ones((2, 3)) + tensor([[ 1, 1, 1], + [ 1, 1, 1]], dtype=torch.int32) + """ + ... + def new_tensor(self, data: Any, dtype: Optional[_dtype] = None, device: Optional[DeviceLikeType] = None, requires_grad: _bool = False, pin_memory: _bool = False) -> Tensor: + r""" + new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a new Tensor with :attr:`data` as the tensor data. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + .. warning:: + + :func:`new_tensor` always copies :attr:`data`. If you have a Tensor + ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` + or :func:`torch.Tensor.detach`. + If you have a numpy array and want to avoid a copy, use + :func:`torch.from_numpy`. + + .. warning:: + + When data is a tensor `x`, :func:`new_tensor()` reads out 'the data' from whatever it is passed, + and constructs a leaf variable. Therefore ``tensor.new_tensor(x)`` is equivalent to ``x.clone().detach()`` + and ``tensor.new_tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``. + The equivalents using ``clone()`` and ``detach()`` are recommended. + + Args: + data (array_like): The returned Tensor copies :attr:`data`. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.ones((2,), dtype=torch.int8) + >>> data = [[0, 1], [2, 3]] + >>> tensor.new_tensor(data) + tensor([[ 0, 1], + [ 2, 3]], dtype=torch.int8) + """ + ... + @overload + def new_zeros(self, size: Sequence[Union[_int, SymInt]], *, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with ``0``. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.tensor((), dtype=torch.float64) + >>> tensor.new_zeros((2, 3)) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]], dtype=torch.float64) + """ + ... + @overload + def new_zeros(self, *size: Union[_int, SymInt], dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: + r""" + new_zeros(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor + + + Returns a Tensor of size :attr:`size` filled with ``0``. + By default, the returned Tensor has the same :class:`torch.dtype` and + :class:`torch.device` as this tensor. + + Args: + size (int...): a list, tuple, or :class:`torch.Size` of integers defining the + shape of the output tensor. + + Keyword args: + dtype (:class:`torch.dtype`, optional): the desired type of returned tensor. + Default: if None, same :class:`torch.dtype` as this tensor. + device (:class:`torch.device`, optional): the desired device of returned tensor. + Default: if None, same :class:`torch.device` as this tensor. + requires_grad (bool, optional): If autograd should record operations on the + returned tensor. Default: ``False``. + layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. + Default: ``torch.strided``. + pin_memory (bool, optional): If set, returned tensor would be allocated in + the pinned memory. Works only for CPU tensors. Default: ``False``. + + Example:: + + >>> tensor = torch.tensor((), dtype=torch.float64) + >>> tensor.new_zeros((2, 3)) + tensor([[ 0., 0., 0.], + [ 0., 0., 0.]], dtype=torch.float64) + """ + ... + def nextafter(self, other: Tensor) -> Tensor: + r""" + nextafter(other) -> Tensor + See :func:`torch.nextafter` + """ + ... + def nextafter_(self, other: Tensor) -> Tensor: + r""" + nextafter_(other) -> Tensor + In-place version of :meth:`~Tensor.nextafter` + """ + ... + @overload + def nonzero(self, *, as_tuple: Literal[False] = False) -> Tensor: + r""" + nonzero() -> LongTensor + + See :func:`torch.nonzero` + """ + ... + @overload + def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: + r""" + nonzero() -> LongTensor + + See :func:`torch.nonzero` + """ + ... + def nonzero_static(self, *, size: _int, fill_value: _int = -1) -> Tensor: + r""" + nonzero_static(input, *, size, fill_value=-1) -> Tensor + + Returns a 2-D tensor where each row is the index for a non-zero value. + The returned Tensor has the same `torch.dtype` as `torch.nonzero()`. + + Args: + input (Tensor): the input tensor to count non-zero elements. + + Keyword args: + size (int): the size of non-zero elements expected to be included in the out + tensor. Pad the out tensor with `fill_value` if the `size` is larger + than total number of non-zero elements, truncate out tensor if `size` + is smaller. The size must be a non-negative integer. + fill_value (int): the value to fill the output tensor with when `size` is larger + than the total number of non-zero elements. Default is `-1` to represent + invalid index. + + Example: + + # Example 1: Padding + >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) + >>> static_size = 4 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([[ 0, 0], + [ 1, 0], + [ 1, 1], + [ -1, -1]], dtype=torch.int64) + + # Example 2: Truncating + >>> input_tensor = torch.tensor([[1, 0], [3, 2]]) + >>> static_size = 2 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([[ 0, 0], + [ 1, 0]], dtype=torch.int64) + + # Example 3: 0 size + >>> input_tensor = torch.tensor([10]) + >>> static_size = 0 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([], size=(0, 1), dtype=torch.int64) + + # Example 4: 0 rank input + >>> input_tensor = torch.tensor(10) + >>> static_size = 2 + >>> t = torch.nonzero_static(input_tensor, size = static_size) + tensor([], size=(2, 0), dtype=torch.int64) + """ + ... + def normal_(self, mean: _float = 0, std: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: + r""" + normal_(mean=0, std=1, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with elements samples from the normal distribution + parameterized by :attr:`mean` and :attr:`std`. + """ + ... + @overload + def not_equal(self, other: Tensor) -> Tensor: + r""" + not_equal(other) -> Tensor + + See :func:`torch.not_equal`. + """ + ... + @overload + def not_equal(self, other: Union[Number, _complex]) -> Tensor: + r""" + not_equal(other) -> Tensor + + See :func:`torch.not_equal`. + """ + ... + @overload + def not_equal_(self, other: Tensor) -> Tensor: + r""" + not_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.not_equal`. + """ + ... + @overload + def not_equal_(self, other: Union[Number, _complex]) -> Tensor: + r""" + not_equal_(other) -> Tensor + + In-place version of :meth:`~Tensor.not_equal`. + """ + ... + def numel(self) -> _int: + r""" + numel() -> int + + See :func:`torch.numel` + """ + ... + def numpy(self, *, force: _bool = False) -> numpy.ndarray: + r""" + numpy(*, force=False) -> numpy.ndarray + + Returns the tensor as a NumPy :class:`ndarray`. + + If :attr:`force` is ``False`` (the default), the conversion + is performed only if the tensor is on the CPU, does not require grad, + does not have its conjugate bit set, and is a dtype and layout that + NumPy supports. The returned ndarray and the tensor will share their + storage, so changes to the tensor will be reflected in the ndarray + and vice versa. + + If :attr:`force` is ``True`` this is equivalent to + calling ``t.detach().cpu().resolve_conj().resolve_neg().numpy()``. + If the tensor isn't on the CPU or the conjugate or negative bit is set, + the tensor won't share its storage with the returned ndarray. + Setting :attr:`force` to ``True`` can be a useful shorthand. + + Args: + force (bool): if ``True``, the ndarray may be a copy of the tensor + instead of always sharing memory, defaults to ``False``. + """ + ... + def orgqr(self, input2: Tensor) -> Tensor: + r""" + orgqr(input2) -> Tensor + + See :func:`torch.orgqr` + """ + ... + def ormqr(self, input2: Tensor, input3: Tensor, left: _bool = True, transpose: _bool = False) -> Tensor: + r""" + ormqr(input2, input3, left=True, transpose=False) -> Tensor + + See :func:`torch.ormqr` + """ + ... + def outer(self, vec2: Tensor) -> Tensor: + r""" + outer(vec2) -> Tensor + + See :func:`torch.outer`. + """ + ... + @overload + def permute(self, dims: _size) -> Tensor: + r""" + permute(*dims) -> Tensor + + See :func:`torch.permute` + """ + ... + @overload + def permute(self, *dims: _int) -> Tensor: + r""" + permute(*dims) -> Tensor + + See :func:`torch.permute` + """ + ... + def pin_memory(self, device: Optional[Optional[DeviceLikeType]] = None) -> Tensor: + r""" + pin_memory() -> Tensor + + Copies the tensor to pinned memory, if it's not already pinned. + """ + ... + def pinverse(self, rcond: _float = 1e-15) -> Tensor: + r""" + pinverse() -> Tensor + + See :func:`torch.pinverse` + """ + ... + def polygamma(self, n: _int) -> Tensor: + r""" + polygamma(n) -> Tensor + + See :func:`torch.polygamma` + """ + ... + def polygamma_(self, n: _int) -> Tensor: + r""" + polygamma_(n) -> Tensor + + In-place version of :meth:`~Tensor.polygamma` + """ + ... + def positive(self) -> Tensor: + r""" + positive() -> Tensor + + See :func:`torch.positive` + """ + ... + @overload + def pow(self, exponent: Tensor) -> Tensor: + r""" + pow(exponent) -> Tensor + + See :func:`torch.pow` + """ + ... + @overload + def pow(self, exponent: Union[Number, _complex]) -> Tensor: + r""" + pow(exponent) -> Tensor + + See :func:`torch.pow` + """ + ... + @overload + def pow_(self, exponent: Tensor) -> Tensor: + r""" + pow_(exponent) -> Tensor + + In-place version of :meth:`~Tensor.pow` + """ + ... + @overload + def pow_(self, exponent: Union[Number, _complex]) -> Tensor: + r""" + pow_(exponent) -> Tensor + + In-place version of :meth:`~Tensor.pow` + """ + ... + def prelu(self, weight: Tensor) -> Tensor: ... + @overload + def prod(self, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + prod(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.prod` + """ + ... + @overload + def prod(self, dim: _int, keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + prod(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.prod` + """ + ... + @overload + def prod(self, dim: Union[str, ellipsis, None], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + prod(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.prod` + """ + ... + def put(self, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: + r""" + put(input, index, source, accumulate=False) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.put_`. + `input` corresponds to `self` in :meth:`torch.Tensor.put_`. + """ + ... + def put_(self, index: Tensor, source: Tensor, accumulate: _bool = False) -> Tensor: + r""" + put_(index, source, accumulate=False) -> Tensor + + Copies the elements from :attr:`source` into the positions specified by + :attr:`index`. For the purpose of indexing, the :attr:`self` tensor is treated as if + it were a 1-D tensor. + + :attr:`index` and :attr:`source` need to have the same number of elements, but not necessarily + the same shape. + + If :attr:`accumulate` is ``True``, the elements in :attr:`source` are added to + :attr:`self`. If accumulate is ``False``, the behavior is undefined if :attr:`index` + contain duplicate elements. + + Args: + index (LongTensor): the indices into self + source (Tensor): the tensor containing values to copy from + accumulate (bool): whether to accumulate into self + + Example:: + + >>> src = torch.tensor([[4, 3, 5], + ... [6, 7, 8]]) + >>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10])) + tensor([[ 4, 9, 5], + [ 10, 7, 8]]) + """ + ... + def q_per_channel_axis(self) -> _int: + r""" + q_per_channel_axis() -> int + + Given a Tensor quantized by linear (affine) per-channel quantization, + returns the index of dimension on which per-channel quantization is applied. + """ + ... + def q_per_channel_scales(self) -> Tensor: + r""" + q_per_channel_scales() -> Tensor + + Given a Tensor quantized by linear (affine) per-channel quantization, + returns a Tensor of scales of the underlying quantizer. It has the number of + elements that matches the corresponding dimensions (from q_per_channel_axis) of + the tensor. + """ + ... + def q_per_channel_zero_points(self) -> Tensor: + r""" + q_per_channel_zero_points() -> Tensor + + Given a Tensor quantized by linear (affine) per-channel quantization, + returns a tensor of zero_points of the underlying quantizer. It has the number of + elements that matches the corresponding dimensions (from q_per_channel_axis) of + the tensor. + """ + ... + def q_scale(self) -> _float: + r""" + q_scale() -> float + + Given a Tensor quantized by linear(affine) quantization, + returns the scale of the underlying quantizer(). + """ + ... + def q_zero_point(self) -> _int: + r""" + q_zero_point() -> int + + Given a Tensor quantized by linear(affine) quantization, + returns the zero_point of the underlying quantizer(). + """ + ... + def qr(self, some: _bool = True) -> torch.return_types.qr: + r""" + qr(some=True) -> (Tensor, Tensor) + + See :func:`torch.qr` + """ + ... + def qscheme(self) -> _qscheme: + r""" + qscheme() -> torch.qscheme + + Returns the quantization scheme of a given QTensor. + """ + ... + @overload + def quantile(self, q: Tensor, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: + r""" + quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + + See :func:`torch.quantile` + """ + ... + @overload + def quantile(self, q: _float, dim: Optional[_int] = None, keepdim: _bool = False, *, interpolation: str = "linear") -> Tensor: + r""" + quantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor + + See :func:`torch.quantile` + """ + ... + def rad2deg(self) -> Tensor: + r""" + rad2deg() -> Tensor + + See :func:`torch.rad2deg` + """ + ... + def rad2deg_(self) -> Tensor: + r""" + rad2deg_() -> Tensor + + In-place version of :meth:`~Tensor.rad2deg` + """ + ... + @overload + def random_(self, *, generator: Optional[Generator] = None) -> Tensor: + r""" + random_(from=0, to=None, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with numbers sampled from the discrete uniform + distribution over ``[from, to - 1]``. If not specified, the values are usually + only bounded by :attr:`self` tensor's data type. However, for floating point + types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every + value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` + will be uniform in ``[0, 2^53]``. + """ + ... + @overload + def random_(self, from_: _int, to: Optional[_int], *, generator: Optional[Generator] = None) -> Tensor: + r""" + random_(from=0, to=None, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with numbers sampled from the discrete uniform + distribution over ``[from, to - 1]``. If not specified, the values are usually + only bounded by :attr:`self` tensor's data type. However, for floating point + types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every + value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` + will be uniform in ``[0, 2^53]``. + """ + ... + @overload + def random_(self, to: _int, *, generator: Optional[Generator] = None) -> Tensor: + r""" + random_(from=0, to=None, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with numbers sampled from the discrete uniform + distribution over ``[from, to - 1]``. If not specified, the values are usually + only bounded by :attr:`self` tensor's data type. However, for floating point + types, if unspecified, range will be ``[0, 2^mantissa]`` to ensure that every + value is representable. For example, `torch.tensor(1, dtype=torch.double).random_()` + will be uniform in ``[0, 2^53]``. + """ + ... + def ravel(self) -> Tensor: + r""" + ravel() -> Tensor + + see :func:`torch.ravel` + """ + ... + def reciprocal(self) -> Tensor: + r""" + reciprocal() -> Tensor + + See :func:`torch.reciprocal` + """ + ... + def reciprocal_(self) -> Tensor: + r""" + reciprocal_() -> Tensor + + In-place version of :meth:`~Tensor.reciprocal` + """ + ... + def record_stream(self, s: Stream) -> None: + r""" + record_stream(stream) + + Marks the tensor as having been used by this stream. When the tensor + is deallocated, ensure the tensor memory is not reused for another tensor + until all work queued on :attr:`stream` at the time of deallocation is + complete. + + .. note:: + + The caching allocator is aware of only the stream where a tensor was + allocated. Due to the awareness, it already correctly manages the life + cycle of tensors on only one stream. But if a tensor is used on a stream + different from the stream of origin, the allocator might reuse the memory + unexpectedly. Calling this method lets the allocator know which streams + have used the tensor. + + .. warning:: + + This method is most suitable for use cases where you are providing a + function that created a tensor on a side stream, and want users to be able + to make use of the tensor without having to think carefully about stream + safety when making use of them. These safety guarantees come at some + performance and predictability cost (analogous to the tradeoff between GC + and manual memory management), so if you are in a situation where + you manage the full lifetime of your tensors, you may consider instead + manually managing CUDA events so that calling this method is not necessary. + In particular, when you call this method, on later allocations the + allocator will poll the recorded stream to see if all operations have + completed yet; you can potentially race with side stream computation and + non-deterministically reuse or fail to reuse memory for an allocation. + + You can safely use tensors allocated on side streams without + :meth:`~Tensor.record_stream`; you must manually ensure that + any non-creation stream uses of a tensor are synced back to the creation + stream before you deallocate the tensor. As the CUDA caching allocator + guarantees that the memory will only be reused with the same creation stream, + this is sufficient to ensure that writes to future reallocations of the + memory will be delayed until non-creation stream uses are done. + (Counterintuitively, you may observe that on the CPU side we have already + reallocated the tensor, even though CUDA kernels on the old tensor are + still in progress. This is fine, because CUDA operations on the new + tensor will appropriately wait for the old operations to complete, as they + are all on the same stream.) + + Concretely, this looks like this:: + + with torch.cuda.stream(s0): + x = torch.zeros(N) + + s1.wait_stream(s0) + with torch.cuda.stream(s1): + y = some_comm_op(x) + + ... some compute on s0 ... + + # synchronize creation stream s0 to side stream s1 + # before deallocating x + s0.wait_stream(s1) + del x + + Note that some discretion is required when deciding when to perform + ``s0.wait_stream(s1)``. In particular, if we were to wait immediately + after ``some_comm_op``, there wouldn't be any point in having the side + stream; it would be equivalent to have run ``some_comm_op`` on ``s0``. + Instead, the synchronization must be placed at some appropriate, later + point in time where you expect the side stream ``s1`` to have finished + work. This location is typically identified via profiling, e.g., using + Chrome traces produced + :meth:`torch.autograd.profiler.profile.export_chrome_trace`. If you + place the wait too early, work on s0 will block until ``s1`` has finished, + preventing further overlapping of communication and computation. If you + place the wait too late, you will use more memory than is strictly + necessary (as you are keeping ``x`` live for longer.) For a concrete + example of how this guidance can be applied in practice, see this post: + `FSDP and CUDACachingAllocator + `_. + """ + ... + def refine_names(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ... + def relu(self) -> Tensor: ... + def relu_(self) -> Tensor: ... + @overload + def remainder(self, other: Tensor) -> Tensor: + r""" + remainder(divisor) -> Tensor + + See :func:`torch.remainder` + """ + ... + @overload + def remainder(self, other: Union[Number, _complex]) -> Tensor: + r""" + remainder(divisor) -> Tensor + + See :func:`torch.remainder` + """ + ... + @overload + def remainder_(self, other: Tensor) -> Tensor: + r""" + remainder_(divisor) -> Tensor + + In-place version of :meth:`~Tensor.remainder` + """ + ... + @overload + def remainder_(self, other: Union[Number, _complex]) -> Tensor: + r""" + remainder_(divisor) -> Tensor + + In-place version of :meth:`~Tensor.remainder` + """ + ... + def rename(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ... + def rename_(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ... + def renorm(self, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex]) -> Tensor: + r""" + renorm(p, dim, maxnorm) -> Tensor + + See :func:`torch.renorm` + """ + ... + def renorm_(self, p: Union[Number, _complex], dim: _int, maxnorm: Union[Number, _complex]) -> Tensor: + r""" + renorm_(p, dim, maxnorm) -> Tensor + + In-place version of :meth:`~Tensor.renorm` + """ + ... + @overload + def repeat(self, repeats: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + repeat(*repeats) -> Tensor + + Repeats this tensor along the specified dimensions. + + Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. + + .. warning:: + + :meth:`~Tensor.repeat` behaves differently from + `numpy.repeat `_, + but is more similar to + `numpy.tile `_. + For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. + + Args: + repeat (torch.Size, int..., tuple of int or list of int): The number of times to repeat this tensor along each dimension + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat(4, 2) + tensor([[ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3]]) + >>> x.repeat(4, 2, 1).size() + torch.Size([4, 2, 3]) + """ + ... + @overload + def repeat(self, *repeats: Union[_int, SymInt]) -> Tensor: + r""" + repeat(*repeats) -> Tensor + + Repeats this tensor along the specified dimensions. + + Unlike :meth:`~Tensor.expand`, this function copies the tensor's data. + + .. warning:: + + :meth:`~Tensor.repeat` behaves differently from + `numpy.repeat `_, + but is more similar to + `numpy.tile `_. + For the operator similar to `numpy.repeat`, see :func:`torch.repeat_interleave`. + + Args: + repeat (torch.Size, int..., tuple of int or list of int): The number of times to repeat this tensor along each dimension + + Example:: + + >>> x = torch.tensor([1, 2, 3]) + >>> x.repeat(4, 2) + tensor([[ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3], + [ 1, 2, 3, 1, 2, 3]]) + >>> x.repeat(4, 2, 1).size() + torch.Size([4, 2, 3]) + """ + ... + @overload + def repeat_interleave(self, repeats: Tensor, dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor + + See :func:`torch.repeat_interleave`. + """ + ... + @overload + def repeat_interleave(self, repeats: Union[_int, SymInt], dim: Optional[_int] = None, *, output_size: Optional[Union[_int, SymInt]] = None) -> Tensor: + r""" + repeat_interleave(repeats, dim=None, *, output_size=None) -> Tensor + + See :func:`torch.repeat_interleave`. + """ + ... + def requires_grad_(self, mode: _bool = True) -> Tensor: + r""" + requires_grad_(requires_grad=True) -> Tensor + + Change if autograd should record operations on this tensor: sets this tensor's + :attr:`requires_grad` attribute in-place. Returns this tensor. + + :func:`requires_grad_`'s main use case is to tell autograd to begin recording + operations on a Tensor ``tensor``. If ``tensor`` has ``requires_grad=False`` + (because it was obtained through a DataLoader, or required preprocessing or + initialization), ``tensor.requires_grad_()`` makes it so that autograd will + begin to record operations on ``tensor``. + + Args: + requires_grad (bool): If autograd should record operations on this tensor. + Default: ``True``. + + Example:: + + >>> # Let's say we want to preprocess some saved weights and use + >>> # the result as new weights. + >>> saved_weights = [0.1, 0.2, 0.3, 0.25] + >>> loaded_weights = torch.tensor(saved_weights) + >>> weights = preprocess(loaded_weights) # some function + >>> weights + tensor([-0.5503, 0.4926, -2.1158, -0.8303]) + + >>> # Now, start to record operations done to weights + >>> weights.requires_grad_() + >>> out = weights.pow(2).sum() + >>> out.backward() + >>> weights.grad + tensor([-1.1007, 0.9853, -4.2316, -1.6606]) + """ + ... + @overload + def reshape(self, shape: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + reshape(*shape) -> Tensor + + Returns a tensor with the same data and number of elements as :attr:`self` + but with the specified shape. This method returns a view if :attr:`shape` is + compatible with the current shape. See :meth:`torch.Tensor.view` on when it is + possible to return a view. + + See :func:`torch.reshape` + + Args: + shape (tuple of ints or int...): the desired shape + """ + ... + @overload + def reshape(self, *shape: Union[_int, SymInt]) -> Tensor: + r""" + reshape(*shape) -> Tensor + + Returns a tensor with the same data and number of elements as :attr:`self` + but with the specified shape. This method returns a view if :attr:`shape` is + compatible with the current shape. See :meth:`torch.Tensor.view` on when it is + possible to return a view. + + See :func:`torch.reshape` + + Args: + shape (tuple of ints or int...): the desired shape + """ + ... + def reshape_as(self, other: Tensor) -> Tensor: + r""" + reshape_as(other) -> Tensor + + Returns this tensor as the same shape as :attr:`other`. + ``self.reshape_as(other)`` is equivalent to ``self.reshape(other.sizes())``. + This method returns a view if ``other.sizes()`` is compatible with the current + shape. See :meth:`torch.Tensor.view` on when it is possible to return a view. + + Please see :meth:`reshape` for more information about ``reshape``. + + Args: + other (:class:`torch.Tensor`): The result tensor has the same shape + as :attr:`other`. + """ + ... + @overload + def resize_(self, size: Sequence[Union[_int, SymInt]], *, memory_format: Optional[memory_format] = None) -> Tensor: + r""" + resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor + + Resizes :attr:`self` tensor to the specified size. If the number of elements is + larger than the current storage size, then the underlying storage is resized + to fit the new number of elements. If the number of elements is smaller, the + underlying storage is not changed. Existing elements are preserved but any new + memory is uninitialized. + + .. warning:: + + This is a low-level method. The storage is reinterpreted as C-contiguous, + ignoring the current strides (unless the target size equals the current + size, in which case the tensor is left unchanged). For most purposes, you + will instead want to use :meth:`~Tensor.view()`, which checks for + contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To + change the size in-place with custom strides, see :meth:`~Tensor.set_()`. + + .. note:: + + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, new elements are initialized to prevent nondeterministic behavior + from using the result as an input to an operation. Floating point and + complex values are set to NaN, and integer values are set to the maximum + value. + + Args: + sizes (torch.Size or int...): the desired size + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + Tensor. Default: ``torch.contiguous_format``. Note that memory format of + :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. + + Example:: + + >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) + >>> x.resize_(2, 2) + tensor([[ 1, 2], + [ 3, 4]]) + """ + ... + @overload + def resize_(self, *size: Union[_int, SymInt], memory_format: Optional[memory_format] = None) -> Tensor: + r""" + resize_(*sizes, memory_format=torch.contiguous_format) -> Tensor + + Resizes :attr:`self` tensor to the specified size. If the number of elements is + larger than the current storage size, then the underlying storage is resized + to fit the new number of elements. If the number of elements is smaller, the + underlying storage is not changed. Existing elements are preserved but any new + memory is uninitialized. + + .. warning:: + + This is a low-level method. The storage is reinterpreted as C-contiguous, + ignoring the current strides (unless the target size equals the current + size, in which case the tensor is left unchanged). For most purposes, you + will instead want to use :meth:`~Tensor.view()`, which checks for + contiguity, or :meth:`~Tensor.reshape()`, which copies data if needed. To + change the size in-place with custom strides, see :meth:`~Tensor.set_()`. + + .. note:: + + If :func:`torch.use_deterministic_algorithms()` and + :attr:`torch.utils.deterministic.fill_uninitialized_memory` are both set to + ``True``, new elements are initialized to prevent nondeterministic behavior + from using the result as an input to an operation. Floating point and + complex values are set to NaN, and integer values are set to the maximum + value. + + Args: + sizes (torch.Size or int...): the desired size + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + Tensor. Default: ``torch.contiguous_format``. Note that memory format of + :attr:`self` is going to be unaffected if ``self.size()`` matches ``sizes``. + + Example:: + + >>> x = torch.tensor([[1, 2], [3, 4], [5, 6]]) + >>> x.resize_(2, 2) + tensor([[ 1, 2], + [ 3, 4]]) + """ + ... + def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format] = None) -> Tensor: + r""" + resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor + + Resizes the :attr:`self` tensor to be the same size as the specified + :attr:`tensor`. This is equivalent to ``self.resize_(tensor.size())``. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + Tensor. Default: ``torch.contiguous_format``. Note that memory format of + :attr:`self` is going to be unaffected if ``self.size()`` matches ``tensor.size()``. + """ + ... + def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ... + def resolve_conj(self) -> Tensor: + r""" + resolve_conj() -> Tensor + + See :func:`torch.resolve_conj` + """ + ... + def resolve_neg(self) -> Tensor: + r""" + resolve_neg() -> Tensor + + See :func:`torch.resolve_neg` + """ + ... + def retain_grad(self) -> None: + r""" + retain_grad() -> None + + Enables this Tensor to have their :attr:`grad` populated during + :func:`backward`. This is a no-op for leaf tensors. + """ + ... + def roll(self, shifts: Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], dims: Union[_int, _size] = ()) -> Tensor: + r""" + roll(shifts, dims) -> Tensor + + See :func:`torch.roll` + """ + ... + def rot90(self, k: _int = 1, dims: _size = (0, 1)) -> Tensor: + r""" + rot90(k, dims) -> Tensor + + See :func:`torch.rot90` + """ + ... + @overload + def round(self) -> Tensor: + r""" + round(decimals=0) -> Tensor + + See :func:`torch.round` + """ + ... + @overload + def round(self, *, decimals: _int) -> Tensor: + r""" + round(decimals=0) -> Tensor + + See :func:`torch.round` + """ + ... + @overload + def round_(self) -> Tensor: + r""" + round_(decimals=0) -> Tensor + + In-place version of :meth:`~Tensor.round` + """ + ... + @overload + def round_(self, *, decimals: _int) -> Tensor: + r""" + round_(decimals=0) -> Tensor + + In-place version of :meth:`~Tensor.round` + """ + ... + def row_indices(self) -> Tensor: ... + def rsqrt(self) -> Tensor: + r""" + rsqrt() -> Tensor + + See :func:`torch.rsqrt` + """ + ... + def rsqrt_(self) -> Tensor: + r""" + rsqrt_() -> Tensor + + In-place version of :meth:`~Tensor.rsqrt` + """ + ... + @overload + def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter(self, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + scatter(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_` + """ + ... + @overload + def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: + r""" + scatter_(dim, index, src, *, reduce=None) -> Tensor + + Writes all values from the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index` tensor. For each value in :attr:`src`, its output + index is specified by its index in :attr:`src` for ``dimension != dim`` and by + the corresponding value in :attr:`index` for ``dimension = dim``. + + For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 + + This is the reverse operation of the manner described in :meth:`~Tensor.gather`. + + :attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have + the same number of dimensions. It is also required that + ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that + ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. + Note that ``index`` and ``src`` do not broadcast. + + Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be + between ``0`` and ``self.size(dim) - 1`` inclusive. + + .. warning:: + + When indices are not unique, the behavior is non-deterministic (one of the + values from ``src`` will be picked arbitrarily) and the gradient will be + incorrect (it will be propagated to all locations in the source that + correspond to the same index)! + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + Additionally accepts an optional :attr:`reduce` argument that allows + specification of an optional reduction operation, which is applied to all + values in the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index`. For each value in :attr:`src`, the reduction + operation is applied to an index in :attr:`self` which is specified by + its index in :attr:`src` for ``dimension != dim`` and by the corresponding + value in :attr:`index` for ``dimension = dim``. + + Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` + is updated as:: + + self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 + + Reducing with the addition operation is the same as using + :meth:`~torch.Tensor.scatter_add_`. + + .. warning:: + The reduce argument with Tensor ``src`` is deprecated and will be removed in + a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` + instead for more reduction options. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + src (Tensor): the source element(s) to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> src = torch.arange(1, 11).reshape((2, 5)) + >>> src + tensor([[ 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10]]) + >>> index = torch.tensor([[0, 1, 2, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) + tensor([[1, 0, 0, 4, 0], + [0, 2, 0, 0, 0], + [0, 0, 3, 0, 0]]) + >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) + tensor([[1, 2, 3, 0, 0], + [6, 7, 0, 0, 8], + [0, 0, 0, 0, 0]]) + + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='multiply') + tensor([[2.0000, 2.0000, 2.4600, 2.0000], + [2.0000, 2.0000, 2.0000, 2.4600]]) + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='add') + tensor([[2.0000, 2.0000, 3.2300, 2.0000], + [2.0000, 2.0000, 2.0000, 3.2300]]) + + .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: + :noindex: + + Writes the value from :attr:`value` into :attr:`self` at the indices + specified in the :attr:`index` tensor. This operation is equivalent to the previous version, + with the :attr:`src` tensor filled entirely with :attr:`value`. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + value (Scalar): the value to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> index = torch.tensor([[0, 1]]) + >>> value = 2 + >>> torch.zeros(3, 5).scatter_(0, index, value) + tensor([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + """ + ... + @overload + def scatter_(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: + r""" + scatter_(dim, index, src, *, reduce=None) -> Tensor + + Writes all values from the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index` tensor. For each value in :attr:`src`, its output + index is specified by its index in :attr:`src` for ``dimension != dim`` and by + the corresponding value in :attr:`index` for ``dimension = dim``. + + For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 + + This is the reverse operation of the manner described in :meth:`~Tensor.gather`. + + :attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have + the same number of dimensions. It is also required that + ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that + ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. + Note that ``index`` and ``src`` do not broadcast. + + Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be + between ``0`` and ``self.size(dim) - 1`` inclusive. + + .. warning:: + + When indices are not unique, the behavior is non-deterministic (one of the + values from ``src`` will be picked arbitrarily) and the gradient will be + incorrect (it will be propagated to all locations in the source that + correspond to the same index)! + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + Additionally accepts an optional :attr:`reduce` argument that allows + specification of an optional reduction operation, which is applied to all + values in the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index`. For each value in :attr:`src`, the reduction + operation is applied to an index in :attr:`self` which is specified by + its index in :attr:`src` for ``dimension != dim`` and by the corresponding + value in :attr:`index` for ``dimension = dim``. + + Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` + is updated as:: + + self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 + + Reducing with the addition operation is the same as using + :meth:`~torch.Tensor.scatter_add_`. + + .. warning:: + The reduce argument with Tensor ``src`` is deprecated and will be removed in + a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` + instead for more reduction options. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + src (Tensor): the source element(s) to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> src = torch.arange(1, 11).reshape((2, 5)) + >>> src + tensor([[ 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10]]) + >>> index = torch.tensor([[0, 1, 2, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) + tensor([[1, 0, 0, 4, 0], + [0, 2, 0, 0, 0], + [0, 0, 3, 0, 0]]) + >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) + tensor([[1, 2, 3, 0, 0], + [6, 7, 0, 0, 8], + [0, 0, 0, 0, 0]]) + + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='multiply') + tensor([[2.0000, 2.0000, 2.4600, 2.0000], + [2.0000, 2.0000, 2.0000, 2.4600]]) + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='add') + tensor([[2.0000, 2.0000, 3.2300, 2.0000], + [2.0000, 2.0000, 2.0000, 3.2300]]) + + .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: + :noindex: + + Writes the value from :attr:`value` into :attr:`self` at the indices + specified in the :attr:`index` tensor. This operation is equivalent to the previous version, + with the :attr:`src` tensor filled entirely with :attr:`value`. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + value (Scalar): the value to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> index = torch.tensor([[0, 1]]) + >>> value = 2 + >>> torch.zeros(3, 5).scatter_(0, index, value) + tensor([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + """ + ... + @overload + def scatter_(self, dim: _int, index: Tensor, value: Union[Number, _complex], *, reduce: str) -> Tensor: + r""" + scatter_(dim, index, src, *, reduce=None) -> Tensor + + Writes all values from the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index` tensor. For each value in :attr:`src`, its output + index is specified by its index in :attr:`src` for ``dimension != dim`` and by + the corresponding value in :attr:`index` for ``dimension = dim``. + + For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 + + This is the reverse operation of the manner described in :meth:`~Tensor.gather`. + + :attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have + the same number of dimensions. It is also required that + ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that + ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. + Note that ``index`` and ``src`` do not broadcast. + + Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be + between ``0`` and ``self.size(dim) - 1`` inclusive. + + .. warning:: + + When indices are not unique, the behavior is non-deterministic (one of the + values from ``src`` will be picked arbitrarily) and the gradient will be + incorrect (it will be propagated to all locations in the source that + correspond to the same index)! + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + Additionally accepts an optional :attr:`reduce` argument that allows + specification of an optional reduction operation, which is applied to all + values in the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index`. For each value in :attr:`src`, the reduction + operation is applied to an index in :attr:`self` which is specified by + its index in :attr:`src` for ``dimension != dim`` and by the corresponding + value in :attr:`index` for ``dimension = dim``. + + Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` + is updated as:: + + self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 + + Reducing with the addition operation is the same as using + :meth:`~torch.Tensor.scatter_add_`. + + .. warning:: + The reduce argument with Tensor ``src`` is deprecated and will be removed in + a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` + instead for more reduction options. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + src (Tensor): the source element(s) to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> src = torch.arange(1, 11).reshape((2, 5)) + >>> src + tensor([[ 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10]]) + >>> index = torch.tensor([[0, 1, 2, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) + tensor([[1, 0, 0, 4, 0], + [0, 2, 0, 0, 0], + [0, 0, 3, 0, 0]]) + >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) + tensor([[1, 2, 3, 0, 0], + [6, 7, 0, 0, 8], + [0, 0, 0, 0, 0]]) + + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='multiply') + tensor([[2.0000, 2.0000, 2.4600, 2.0000], + [2.0000, 2.0000, 2.0000, 2.4600]]) + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='add') + tensor([[2.0000, 2.0000, 3.2300, 2.0000], + [2.0000, 2.0000, 2.0000, 3.2300]]) + + .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: + :noindex: + + Writes the value from :attr:`value` into :attr:`self` at the indices + specified in the :attr:`index` tensor. This operation is equivalent to the previous version, + with the :attr:`src` tensor filled entirely with :attr:`value`. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + value (Scalar): the value to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> index = torch.tensor([[0, 1]]) + >>> value = 2 + >>> torch.zeros(3, 5).scatter_(0, index, value) + tensor([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + """ + ... + @overload + def scatter_(self, dim: _int, index: Tensor, value: Union[Number, _complex]) -> Tensor: + r""" + scatter_(dim, index, src, *, reduce=None) -> Tensor + + Writes all values from the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index` tensor. For each value in :attr:`src`, its output + index is specified by its index in :attr:`src` for ``dimension != dim`` and by + the corresponding value in :attr:`index` for ``dimension = dim``. + + For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 + + This is the reverse operation of the manner described in :meth:`~Tensor.gather`. + + :attr:`self`, :attr:`index` and :attr:`src` (if it is a Tensor) should all have + the same number of dimensions. It is also required that + ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that + ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. + Note that ``index`` and ``src`` do not broadcast. + + Moreover, as for :meth:`~Tensor.gather`, the values of :attr:`index` must be + between ``0`` and ``self.size(dim) - 1`` inclusive. + + .. warning:: + + When indices are not unique, the behavior is non-deterministic (one of the + values from ``src`` will be picked arbitrarily) and the gradient will be + incorrect (it will be propagated to all locations in the source that + correspond to the same index)! + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + Additionally accepts an optional :attr:`reduce` argument that allows + specification of an optional reduction operation, which is applied to all + values in the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index`. For each value in :attr:`src`, the reduction + operation is applied to an index in :attr:`self` which is specified by + its index in :attr:`src` for ``dimension != dim`` and by the corresponding + value in :attr:`index` for ``dimension = dim``. + + Given a 3-D tensor and reduction using the multiplication operation, :attr:`self` + is updated as:: + + self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 + + Reducing with the addition operation is the same as using + :meth:`~torch.Tensor.scatter_add_`. + + .. warning:: + The reduce argument with Tensor ``src`` is deprecated and will be removed in + a future PyTorch release. Please use :meth:`~torch.Tensor.scatter_reduce_` + instead for more reduction options. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + src (Tensor): the source element(s) to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> src = torch.arange(1, 11).reshape((2, 5)) + >>> src + tensor([[ 1, 2, 3, 4, 5], + [ 6, 7, 8, 9, 10]]) + >>> index = torch.tensor([[0, 1, 2, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) + tensor([[1, 0, 0, 4, 0], + [0, 2, 0, 0, 0], + [0, 0, 3, 0, 0]]) + >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) + tensor([[1, 2, 3, 0, 0], + [6, 7, 0, 0, 8], + [0, 0, 0, 0, 0]]) + + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='multiply') + tensor([[2.0000, 2.0000, 2.4600, 2.0000], + [2.0000, 2.0000, 2.0000, 2.4600]]) + >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), + ... 1.23, reduce='add') + tensor([[2.0000, 2.0000, 3.2300, 2.0000], + [2.0000, 2.0000, 2.0000, 3.2300]]) + + .. function:: scatter_(dim, index, value, *, reduce=None) -> Tensor: + :noindex: + + Writes the value from :attr:`value` into :attr:`self` at the indices + specified in the :attr:`index` tensor. This operation is equivalent to the previous version, + with the :attr:`src` tensor filled entirely with :attr:`value`. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter, can be either empty + or of the same dimensionality as ``src``. When empty, the operation + returns ``self`` unchanged. + value (Scalar): the value to scatter. + + Keyword args: + reduce (str, optional): reduction operation to apply, can be either + ``'add'`` or ``'multiply'``. + + Example:: + + >>> index = torch.tensor([[0, 1]]) + >>> value = 2 + >>> torch.zeros(3, 5).scatter_(0, index, value) + tensor([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [0., 0., 0., 0., 0.]]) + """ + ... + @overload + def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: + r""" + scatter_add(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_add_` + """ + ... + @overload + def scatter_add(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: + r""" + scatter_add(dim, index, src) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_add_` + """ + ... + def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: + r""" + scatter_add_(dim, index, src) -> Tensor + + Adds all values from the tensor :attr:`src` into :attr:`self` at the indices + specified in the :attr:`index` tensor in a similar fashion as + :meth:`~torch.Tensor.scatter_`. For each value in :attr:`src`, it is added to + an index in :attr:`self` which is specified by its index in :attr:`src` + for ``dimension != dim`` and by the corresponding value in :attr:`index` for + ``dimension = dim``. + + For a 3-D tensor, :attr:`self` is updated as:: + + self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 + + :attr:`self`, :attr:`index` and :attr:`src` should have same number of + dimensions. It is also required that ``index.size(d) <= src.size(d)`` for all + dimensions ``d``, and that ``index.size(d) <= self.size(d)`` for all dimensions + ``d != dim``. Note that ``index`` and ``src`` do not broadcast. + + Note: + This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter and add, can be + either empty or of the same dimensionality as ``src``. When empty, the + operation returns ``self`` unchanged. + src (Tensor): the source elements to scatter and add + + Example:: + + >>> src = torch.ones((2, 5)) + >>> index = torch.tensor([[0, 1, 2, 0, 0]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) + tensor([[1., 0., 0., 1., 1.], + [0., 1., 0., 0., 0.], + [0., 0., 1., 0., 0.]]) + >>> index = torch.tensor([[0, 1, 2, 0, 0], [0, 1, 2, 2, 2]]) + >>> torch.zeros(3, 5, dtype=src.dtype).scatter_add_(0, index, src) + tensor([[2., 0., 0., 1., 1.], + [0., 2., 0., 0., 0.], + [0., 0., 2., 1., 1.]]) + """ + ... + def scatter_reduce(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: + r""" + scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor + + Out-of-place version of :meth:`torch.Tensor.scatter_reduce_` + """ + ... + def scatter_reduce_(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool = True) -> Tensor: + r""" + scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor + + Reduces all values from the :attr:`src` tensor to the indices specified in + the :attr:`index` tensor in the :attr:`self` tensor using the applied reduction + defined via the :attr:`reduce` argument (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, + :obj:`"amax"`, :obj:`"amin"`). For each value in :attr:`src`, it is reduced to an + index in :attr:`self` which is specified by its index in :attr:`src` for + ``dimension != dim`` and by the corresponding value in :attr:`index` for + ``dimension = dim``. If :obj:`include_self="True"`, the values in the :attr:`self` + tensor are included in the reduction. + + :attr:`self`, :attr:`index` and :attr:`src` should all have + the same number of dimensions. It is also required that + ``index.size(d) <= src.size(d)`` for all dimensions ``d``, and that + ``index.size(d) <= self.size(d)`` for all dimensions ``d != dim``. + Note that ``index`` and ``src`` do not broadcast. + + For a 3-D tensor with :obj:`reduce="sum"` and :obj:`include_self=True` the + output is given as:: + + self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 + self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 + self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 + + Note: + This operation may behave nondeterministically when given tensors on a CUDA device. See :doc:`/notes/randomness` for more information. + + .. note:: + + The backward pass is implemented only for ``src.shape == index.shape``. + + .. warning:: + + This function is in beta and may change in the near future. + + Args: + dim (int): the axis along which to index + index (LongTensor): the indices of elements to scatter and reduce. + src (Tensor): the source elements to scatter and reduce + reduce (str): the reduction operation to apply for non-unique indices + (:obj:`"sum"`, :obj:`"prod"`, :obj:`"mean"`, :obj:`"amax"`, :obj:`"amin"`) + include_self (bool): whether elements from the :attr:`self` tensor are + included in the reduction + + Example:: + + >>> src = torch.tensor([1., 2., 3., 4., 5., 6.]) + >>> index = torch.tensor([0, 1, 0, 1, 2, 1]) + >>> input = torch.tensor([1., 2., 3., 4.]) + >>> input.scatter_reduce(0, index, src, reduce="sum") + tensor([5., 14., 8., 4.]) + >>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False) + tensor([4., 12., 5., 4.]) + >>> input2 = torch.tensor([5., 4., 3., 2.]) + >>> input2.scatter_reduce(0, index, src, reduce="amax") + tensor([5., 6., 5., 2.]) + >>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False) + tensor([3., 6., 5., 2.]) + """ + ... + @overload + def select(self, dim: _int, index: Union[_int, SymInt]) -> Tensor: + r""" + select(dim, index) -> Tensor + + See :func:`torch.select` + """ + ... + @overload + def select(self, dim: Union[str, ellipsis, None], index: _int) -> Tensor: + r""" + select(dim, index) -> Tensor + + See :func:`torch.select` + """ + ... + def select_scatter(self, src: Tensor, dim: _int, index: Union[_int, SymInt]) -> Tensor: + r""" + select_scatter(src, dim, index) -> Tensor + + See :func:`torch.select_scatter` + """ + ... + @overload + def set_(self, storage: Union[Storage, TypedStorage, UntypedStorage], offset: IntLikeType, size: _symsize, stride: _symsize) -> Tensor: + r""" + set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor + + Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, + :attr:`self` tensor will share the same storage and have the same size and + strides as :attr:`source`. Changes to elements in one tensor will be reflected + in the other. + + If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying + storage, offset, size, and stride. + + Args: + source (Tensor or Storage): the tensor or storage to use + storage_offset (int, optional): the offset in the storage + size (torch.Size, optional): the desired size. Defaults to the size of the source. + stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. + """ + ... + @overload + def set_(self, storage: Union[Storage, TypedStorage, UntypedStorage]) -> Tensor: + r""" + set_(source=None, storage_offset=0, size=None, stride=None) -> Tensor + + Sets the underlying storage, size, and strides. If :attr:`source` is a tensor, + :attr:`self` tensor will share the same storage and have the same size and + strides as :attr:`source`. Changes to elements in one tensor will be reflected + in the other. + + If :attr:`source` is a :class:`~torch.Storage`, the method sets the underlying + storage, offset, size, and stride. + + Args: + source (Tensor or Storage): the tensor or storage to use + storage_offset (int, optional): the offset in the storage + size (torch.Size, optional): the desired size. Defaults to the size of the source. + stride (tuple, optional): the desired stride. Defaults to C-contiguous strides. + """ + ... + def sgn(self) -> Tensor: + r""" + sgn() -> Tensor + + See :func:`torch.sgn` + """ + ... + def sgn_(self) -> Tensor: + r""" + sgn_() -> Tensor + + In-place version of :meth:`~Tensor.sgn` + """ + ... + def short(self) -> Tensor: + r""" + short(memory_format=torch.preserve_format) -> Tensor + + ``self.short()`` is equivalent to ``self.to(torch.int16)``. See :func:`to`. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def sigmoid(self) -> Tensor: + r""" + sigmoid() -> Tensor + + See :func:`torch.sigmoid` + """ + ... + def sigmoid_(self) -> Tensor: + r""" + sigmoid_() -> Tensor + + In-place version of :meth:`~Tensor.sigmoid` + """ + ... + def sign(self) -> Tensor: + r""" + sign() -> Tensor + + See :func:`torch.sign` + """ + ... + def sign_(self) -> Tensor: + r""" + sign_() -> Tensor + + In-place version of :meth:`~Tensor.sign` + """ + ... + def signbit(self) -> Tensor: + r""" + signbit() -> Tensor + + See :func:`torch.signbit` + """ + ... + def sin(self) -> Tensor: + r""" + sin() -> Tensor + + See :func:`torch.sin` + """ + ... + def sin_(self) -> Tensor: + r""" + sin_() -> Tensor + + In-place version of :meth:`~Tensor.sin` + """ + ... + def sinc(self) -> Tensor: + r""" + sinc() -> Tensor + + See :func:`torch.sinc` + """ + ... + def sinc_(self) -> Tensor: + r""" + sinc_() -> Tensor + + In-place version of :meth:`~Tensor.sinc` + """ + ... + def sinh(self) -> Tensor: + r""" + sinh() -> Tensor + + See :func:`torch.sinh` + """ + ... + def sinh_(self) -> Tensor: + r""" + sinh_() -> Tensor + + In-place version of :meth:`~Tensor.sinh` + """ + ... + @overload + def size(self, dim: None = None) -> Size: + r""" + size(dim=None) -> torch.Size or int + + Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, + the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. + If ``dim`` is specified, returns an int holding the size of that dimension. + + Args: + dim (int, optional): The dimension for which to retrieve the size. + + Example:: + + >>> t = torch.empty(3, 4, 5) + >>> t.size() + torch.Size([3, 4, 5]) + >>> t.size(dim=1) + 4 + """ + ... + @overload + def size(self, dim: _int) -> _int: + r""" + size(dim=None) -> torch.Size or int + + Returns the size of the :attr:`self` tensor. If ``dim`` is not specified, + the returned value is a :class:`torch.Size`, a subclass of :class:`tuple`. + If ``dim`` is specified, returns an int holding the size of that dimension. + + Args: + dim (int, optional): The dimension for which to retrieve the size. + + Example:: + + >>> t = torch.empty(3, 4, 5) + >>> t.size() + torch.Size([3, 4, 5]) + >>> t.size(dim=1) + 4 + """ + ... + def slice_inverse(self, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1) -> Tensor: ... + def slice_scatter(self, src: Tensor, dim: _int = 0, start: Optional[Union[_int, SymInt]] = None, end: Optional[Union[_int, SymInt]] = None, step: Union[_int, SymInt] = 1) -> Tensor: + r""" + slice_scatter(src, dim=0, start=None, end=None, step=1) -> Tensor + + See :func:`torch.slice_scatter` + """ + ... + def slogdet(self) -> torch.return_types.slogdet: + r""" + slogdet() -> (Tensor, Tensor) + + See :func:`torch.slogdet` + """ + ... + def smm(self, mat2: Tensor) -> Tensor: + r""" + smm(mat) -> Tensor + + See :func:`torch.smm` + """ + ... + @overload + def softmax(self, dim: _int, dtype: Optional[_dtype] = None) -> Tensor: + r""" + softmax(dim) -> Tensor + + Alias for :func:`torch.nn.functional.softmax`. + """ + ... + @overload + def softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + softmax(dim) -> Tensor + + Alias for :func:`torch.nn.functional.softmax`. + """ + ... + @overload + def sort(self, *, stable: Optional[_bool], dim: _int = -1, descending: _bool = False) -> torch.return_types.sort: + r""" + sort(dim=-1, descending=False) -> (Tensor, LongTensor) + + See :func:`torch.sort` + """ + ... + @overload + def sort(self, dim: _int = -1, descending: _bool = False) -> torch.return_types.sort: + r""" + sort(dim=-1, descending=False) -> (Tensor, LongTensor) + + See :func:`torch.sort` + """ + ... + @overload + def sort(self, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool = False) -> torch.return_types.sort: + r""" + sort(dim=-1, descending=False) -> (Tensor, LongTensor) + + See :func:`torch.sort` + """ + ... + @overload + def sort(self, dim: Union[str, ellipsis, None], descending: _bool = False) -> torch.return_types.sort: + r""" + sort(dim=-1, descending=False) -> (Tensor, LongTensor) + + See :func:`torch.sort` + """ + ... + def sparse_dim(self) -> _int: + r""" + sparse_dim() -> int + + Return the number of sparse dimensions in a :ref:`sparse tensor ` :attr:`self`. + + .. note:: + Returns ``0`` if :attr:`self` is not a sparse tensor. + + See also :meth:`Tensor.dense_dim` and :ref:`hybrid tensors `. + """ + ... + def sparse_mask(self, mask: Tensor) -> Tensor: + r""" + sparse_mask(mask) -> Tensor + + Returns a new :ref:`sparse tensor ` with values from a + strided tensor :attr:`self` filtered by the indices of the sparse + tensor :attr:`mask`. The values of :attr:`mask` sparse tensor are + ignored. :attr:`self` and :attr:`mask` tensors must have the same + shape. + + .. note:: + + The returned sparse tensor might contain duplicate values if :attr:`mask` + is not coalesced. It is therefore advisable to pass ``mask.coalesce()`` + if such behavior is not desired. + + .. note:: + + The returned sparse tensor has the same indices as the sparse tensor + :attr:`mask`, even when the corresponding values in :attr:`self` are + zeros. + + Args: + mask (Tensor): a sparse tensor whose indices are used as a filter + + Example:: + + >>> nse = 5 + >>> dims = (5, 5, 2, 2) + >>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)), + ... torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse) + >>> V = torch.randn(nse, dims[2], dims[3]) + >>> S = torch.sparse_coo_tensor(I, V, dims).coalesce() + >>> D = torch.randn(dims) + >>> D.sparse_mask(S) + tensor(indices=tensor([[0, 0, 0, 2], + [0, 1, 4, 3]]), + values=tensor([[[ 1.6550, 0.2397], + [-0.1611, -0.0779]], + + [[ 0.2326, -1.0558], + [ 1.4711, 1.9678]], + + [[-0.5138, -0.0411], + [ 1.9417, 0.5158]], + + [[ 0.0793, 0.0036], + [-0.2569, -0.1055]]]), + size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo) + """ + ... + def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: + r""" + sparse_resize_(size, sparse_dim, dense_dim) -> Tensor + + Resizes :attr:`self` :ref:`sparse tensor ` to the desired + size and the number of sparse and dense dimensions. + + .. note:: + If the number of specified elements in :attr:`self` is zero, then + :attr:`size`, :attr:`sparse_dim`, and :attr:`dense_dim` can be any + size and positive integers such that ``len(size) == sparse_dim + + dense_dim``. + + If :attr:`self` specifies one or more elements, however, then each + dimension in :attr:`size` must not be smaller than the corresponding + dimension of :attr:`self`, :attr:`sparse_dim` must equal the number + of sparse dimensions in :attr:`self`, and :attr:`dense_dim` must + equal the number of dense dimensions in :attr:`self`. + + .. warning:: + Throws an error if :attr:`self` is not a sparse tensor. + + Args: + size (torch.Size): the desired size. If :attr:`self` is non-empty + sparse tensor, the desired size cannot be smaller than the + original size. + sparse_dim (int): the number of sparse dimensions + dense_dim (int): the number of dense dimensions + """ + ... + def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: + r""" + sparse_resize_and_clear_(size, sparse_dim, dense_dim) -> Tensor + + Removes all specified elements from a :ref:`sparse tensor + ` :attr:`self` and resizes :attr:`self` to the desired + size and the number of sparse and dense dimensions. + + .. warning: + Throws an error if :attr:`self` is not a sparse tensor. + + Args: + size (torch.Size): the desired size. + sparse_dim (int): the number of sparse dimensions + dense_dim (int): the number of dense dimensions + """ + ... + @overload + def split(self, split_size: _int, dim: _int = 0) -> Sequence[Tensor]: ... + @overload + def split(self, split_size: Tuple[_int, ...], dim: _int = 0) -> Sequence[Tensor]: ... + def split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... + def sqrt(self) -> Tensor: + r""" + sqrt() -> Tensor + + See :func:`torch.sqrt` + """ + ... + def sqrt_(self) -> Tensor: + r""" + sqrt_() -> Tensor + + In-place version of :meth:`~Tensor.sqrt` + """ + ... + def square(self) -> Tensor: + r""" + square() -> Tensor + + See :func:`torch.square` + """ + ... + def square_(self) -> Tensor: + r""" + square_() -> Tensor + + In-place version of :meth:`~Tensor.square` + """ + ... + @overload + def squeeze(self) -> Tensor: + r""" + squeeze(dim=None) -> Tensor + + See :func:`torch.squeeze` + """ + ... + @overload + def squeeze(self, dim: _int) -> Tensor: + r""" + squeeze(dim=None) -> Tensor + + See :func:`torch.squeeze` + """ + ... + @overload + def squeeze(self, dim: _size) -> Tensor: + r""" + squeeze(dim=None) -> Tensor + + See :func:`torch.squeeze` + """ + ... + @overload + def squeeze(self, *dim: _int) -> Tensor: + r""" + squeeze(dim=None) -> Tensor + + See :func:`torch.squeeze` + """ + ... + @overload + def squeeze(self, dim: Union[str, ellipsis, None]) -> Tensor: + r""" + squeeze(dim=None) -> Tensor + + See :func:`torch.squeeze` + """ + ... + @overload + def squeeze_(self) -> Tensor: + r""" + squeeze_(dim=None) -> Tensor + + In-place version of :meth:`~Tensor.squeeze` + """ + ... + @overload + def squeeze_(self, dim: _int) -> Tensor: + r""" + squeeze_(dim=None) -> Tensor + + In-place version of :meth:`~Tensor.squeeze` + """ + ... + @overload + def squeeze_(self, dim: _size) -> Tensor: + r""" + squeeze_(dim=None) -> Tensor + + In-place version of :meth:`~Tensor.squeeze` + """ + ... + @overload + def squeeze_(self, *dim: _int) -> Tensor: + r""" + squeeze_(dim=None) -> Tensor + + In-place version of :meth:`~Tensor.squeeze` + """ + ... + @overload + def squeeze_(self, dim: Union[str, ellipsis, None]) -> Tensor: + r""" + squeeze_(dim=None) -> Tensor + + In-place version of :meth:`~Tensor.squeeze` + """ + ... + def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Union[Number, _complex] = 1, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor + + See :func:`torch.sspaddmm` + """ + ... + @overload + def std(self, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: + r""" + std(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.std` + """ + ... + @overload + def std(self, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: + r""" + std(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.std` + """ + ... + @overload + def std(self, unbiased: _bool = True) -> Tensor: + r""" + std(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.std` + """ + ... + @overload + def std(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: + r""" + std(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.std` + """ + ... + @overload + def std(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: + r""" + std(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.std` + """ + ... + def untyped_storage(self) -> UntypedStorage: ... + def storage_offset(self) -> Union[_int, SymInt]: + r""" + storage_offset() -> int + + Returns :attr:`self` tensor's offset in the underlying storage in terms of + number of storage elements (not bytes). + + Example:: + + >>> x = torch.tensor([1, 2, 3, 4, 5]) + >>> x.storage_offset() + 0 + >>> x[3:].storage_offset() + 3 + """ + ... + def storage_type(self) -> Storage: ... + @overload + def stride(self, dim: None = None) -> Tuple[_int, ...]: + r""" + stride(dim) -> tuple or int + + Returns the stride of :attr:`self` tensor. + + Stride is the jump necessary to go from one element to the next one in the + specified dimension :attr:`dim`. A tuple of all strides is returned when no + argument is passed in. Otherwise, an integer value is returned as the stride in + the particular dimension :attr:`dim`. + + Args: + dim (int, optional): the desired dimension in which stride is required + + Example:: + + >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) + >>> x.stride() + (5, 1) + >>> x.stride(0) + 5 + >>> x.stride(-1) + 1 + """ + ... + @overload + def stride(self, dim: _int) -> _int: + r""" + stride(dim) -> tuple or int + + Returns the stride of :attr:`self` tensor. + + Stride is the jump necessary to go from one element to the next one in the + specified dimension :attr:`dim`. A tuple of all strides is returned when no + argument is passed in. Otherwise, an integer value is returned as the stride in + the particular dimension :attr:`dim`. + + Args: + dim (int, optional): the desired dimension in which stride is required + + Example:: + + >>> x = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) + >>> x.stride() + (5, 1) + >>> x.stride(0) + 5 + >>> x.stride(-1) + 1 + """ + ... + def sub(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat], *, alpha: Optional[Union[Number, _complex]] = 1, out: Optional[Tensor] = None) -> Tensor: + r""" + sub(other, *, alpha=1) -> Tensor + + See :func:`torch.sub`. + """ + ... + def sub_(self, other: Union[Tensor, Number, _complex, torch.SymInt, torch.SymFloat], *, alpha: Optional[Union[Number, _complex]] = 1) -> Tensor: + r""" + sub_(other, *, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.sub` + """ + ... + @overload + def subtract(self, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + subtract(other, *, alpha=1) -> Tensor + + See :func:`torch.subtract`. + """ + ... + @overload + def subtract(self, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + subtract(other, *, alpha=1) -> Tensor + + See :func:`torch.subtract`. + """ + ... + @overload + def subtract_(self, other: Tensor, *, alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + subtract_(other, *, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.subtract`. + """ + ... + @overload + def subtract_(self, other: Union[Number, _complex], alpha: Union[Number, _complex] = 1) -> Tensor: + r""" + subtract_(other, *, alpha=1) -> Tensor + + In-place version of :meth:`~Tensor.subtract`. + """ + ... + @overload + def sum(self, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + sum(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.sum` + """ + ... + @overload + def sum(self, dim: Optional[Union[_int, _size]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + sum(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.sum` + """ + ... + @overload + def sum(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool = False, *, dtype: Optional[_dtype] = None) -> Tensor: + r""" + sum(dim=None, keepdim=False, dtype=None) -> Tensor + + See :func:`torch.sum` + """ + ... + @overload + def sum_to_size(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + sum_to_size(*size) -> Tensor + + Sum ``this`` tensor to :attr:`size`. + :attr:`size` must be broadcastable to ``this`` tensor size. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + """ + ... + @overload + def sum_to_size(self, *size: Union[_int, SymInt]) -> Tensor: + r""" + sum_to_size(*size) -> Tensor + + Sum ``this`` tensor to :attr:`size`. + :attr:`size` must be broadcastable to ``this`` tensor size. + + Args: + size (int...): a sequence of integers defining the shape of the output tensor. + """ + ... + def svd(self, some: _bool = True, compute_uv: _bool = True) -> torch.return_types.svd: + r""" + svd(some=True, compute_uv=True) -> (Tensor, Tensor, Tensor) + + See :func:`torch.svd` + """ + ... + def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: + r""" + swapaxes(axis0, axis1) -> Tensor + + See :func:`torch.swapaxes` + """ + ... + def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: + r""" + swapaxes_(axis0, axis1) -> Tensor + + In-place version of :meth:`~Tensor.swapaxes` + """ + ... + def swapdims(self, dim0: _int, dim1: _int) -> Tensor: + r""" + swapdims(dim0, dim1) -> Tensor + + See :func:`torch.swapdims` + """ + ... + def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: + r""" + swapdims_(dim0, dim1) -> Tensor + + In-place version of :meth:`~Tensor.swapdims` + """ + ... + def t(self) -> Tensor: + r""" + t() -> Tensor + + See :func:`torch.t` + """ + ... + def t_(self) -> Tensor: + r""" + t_() -> Tensor + + In-place version of :meth:`~Tensor.t` + """ + ... + def take(self, index: Tensor) -> Tensor: + r""" + take(indices) -> Tensor + + See :func:`torch.take` + """ + ... + def take_along_dim(self, indices: Tensor, dim: Optional[_int] = None) -> Tensor: + r""" + take_along_dim(indices, dim) -> Tensor + + See :func:`torch.take_along_dim` + """ + ... + def tan(self) -> Tensor: + r""" + tan() -> Tensor + + See :func:`torch.tan` + """ + ... + def tan_(self) -> Tensor: + r""" + tan_() -> Tensor + + In-place version of :meth:`~Tensor.tan` + """ + ... + def tanh(self) -> Tensor: + r""" + tanh() -> Tensor + + See :func:`torch.tanh` + """ + ... + def tanh_(self) -> Tensor: + r""" + tanh_() -> Tensor + + In-place version of :meth:`~Tensor.tanh` + """ + ... + @overload + def tensor_split(self, indices: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(indices_or_sections, dim=0) -> List of Tensors + + See :func:`torch.tensor_split` + """ + ... + @overload + def tensor_split(self, tensor_indices_or_sections: Tensor, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(indices_or_sections, dim=0) -> List of Tensors + + See :func:`torch.tensor_split` + """ + ... + @overload + def tensor_split(self, sections: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + tensor_split(indices_or_sections, dim=0) -> List of Tensors + + See :func:`torch.tensor_split` + """ + ... + @overload + def tile(self, dims: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + tile(dims) -> Tensor + + See :func:`torch.tile` + """ + ... + @overload + def tile(self, *dims: Union[_int, SymInt]) -> Tensor: + r""" + tile(dims) -> Tensor + + See :func:`torch.tile` + """ + ... + @overload + def to(self, dtype: _dtype, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: + r""" + to(*args, **kwargs) -> Tensor + + Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are + inferred from the arguments of ``self.to(*args, **kwargs)``. + + .. note:: + + If the ``self`` Tensor already + has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. + Otherwise, the returned tensor is a copy of ``self`` with the desired + :class:`torch.dtype` and :class:`torch.device`. + + Here are the ways to call ``to``: + + .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`dtype` + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`device` and (optional) + :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. + When :attr:`non_blocking`, tries to convert asynchronously with respect to + the host if possible, e.g., converting a CPU Tensor with pinned memory to a + CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(other, non_blocking=False, copy=False) -> Tensor + :noindex: + + Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as + the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert + asynchronously with respect to the host if possible, e.g., converting a CPU + Tensor with pinned memory to a CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Example:: + + >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu + >>> tensor.to(torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64) + + >>> cuda0 = torch.device('cuda:0') + >>> tensor.to(cuda0) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], device='cuda:0') + + >>> tensor.to(cuda0, dtype=torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + + >>> other = torch.randn((), dtype=torch.float64, device=cuda0) + >>> tensor.to(other, non_blocking=True) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + """ + ... + @overload + def to(self, device: Optional[DeviceLikeType] = None, dtype: Optional[_dtype] = None, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: + r""" + to(*args, **kwargs) -> Tensor + + Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are + inferred from the arguments of ``self.to(*args, **kwargs)``. + + .. note:: + + If the ``self`` Tensor already + has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. + Otherwise, the returned tensor is a copy of ``self`` with the desired + :class:`torch.dtype` and :class:`torch.device`. + + Here are the ways to call ``to``: + + .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`dtype` + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`device` and (optional) + :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. + When :attr:`non_blocking`, tries to convert asynchronously with respect to + the host if possible, e.g., converting a CPU Tensor with pinned memory to a + CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(other, non_blocking=False, copy=False) -> Tensor + :noindex: + + Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as + the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert + asynchronously with respect to the host if possible, e.g., converting a CPU + Tensor with pinned memory to a CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Example:: + + >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu + >>> tensor.to(torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64) + + >>> cuda0 = torch.device('cuda:0') + >>> tensor.to(cuda0) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], device='cuda:0') + + >>> tensor.to(cuda0, dtype=torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + + >>> other = torch.randn((), dtype=torch.float64, device=cuda0) + >>> tensor.to(other, non_blocking=True) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + """ + ... + @overload + def to(self, other: Tensor, non_blocking: _bool = False, copy: _bool = False, *, memory_format: Optional[torch.memory_format] = None) -> Tensor: + r""" + to(*args, **kwargs) -> Tensor + + Performs Tensor dtype and/or device conversion. A :class:`torch.dtype` and :class:`torch.device` are + inferred from the arguments of ``self.to(*args, **kwargs)``. + + .. note:: + + If the ``self`` Tensor already + has the correct :class:`torch.dtype` and :class:`torch.device`, then ``self`` is returned. + Otherwise, the returned tensor is a copy of ``self`` with the desired + :class:`torch.dtype` and :class:`torch.device`. + + Here are the ways to call ``to``: + + .. method:: to(dtype, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`dtype` + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(device=None, dtype=None, non_blocking=False, copy=False, memory_format=torch.preserve_format) -> Tensor + :noindex: + + Returns a Tensor with the specified :attr:`device` and (optional) + :attr:`dtype`. If :attr:`dtype` is ``None`` it is inferred to be ``self.dtype``. + When :attr:`non_blocking`, tries to convert asynchronously with respect to + the host if possible, e.g., converting a CPU Tensor with pinned memory to a + CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Args: + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + + .. method:: to(other, non_blocking=False, copy=False) -> Tensor + :noindex: + + Returns a Tensor with same :class:`torch.dtype` and :class:`torch.device` as + the Tensor :attr:`other`. When :attr:`non_blocking`, tries to convert + asynchronously with respect to the host if possible, e.g., converting a CPU + Tensor with pinned memory to a CUDA Tensor. + When :attr:`copy` is set, a new Tensor is created even when the Tensor + already matches the desired conversion. + + Example:: + + >>> tensor = torch.randn(2, 2) # Initially dtype=float32, device=cpu + >>> tensor.to(torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64) + + >>> cuda0 = torch.device('cuda:0') + >>> tensor.to(cuda0) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], device='cuda:0') + + >>> tensor.to(cuda0, dtype=torch.float64) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + + >>> other = torch.randn((), dtype=torch.float64, device=cuda0) + >>> tensor.to(other, non_blocking=True) + tensor([[-0.5044, 0.0005], + [ 0.3310, -0.0584]], dtype=torch.float64, device='cuda:0') + """ + ... + def to_dense(self, dtype: Optional[_dtype] = None, *, masked_grad: Optional[_bool] = None) -> Tensor: + r""" + to_dense(dtype=None, *, masked_grad=True) -> Tensor + + Creates a strided copy of :attr:`self` if :attr:`self` is not a strided tensor, otherwise returns :attr:`self`. + + Keyword args: + {dtype} + masked_grad (bool, optional): If set to ``True`` (default) and + :attr:`self` has a sparse layout then the backward of + :meth:`to_dense` returns ``grad.sparse_mask(self)``. + + Example:: + + >>> s = torch.sparse_coo_tensor( + ... torch.tensor([[1, 1], + ... [0, 2]]), + ... torch.tensor([9, 10]), + ... size=(3, 3)) + >>> s.to_dense() + tensor([[ 0, 0, 0], + [ 9, 0, 10], + [ 0, 0, 0]]) + """ + ... + def to_mkldnn(self, dtype: Optional[_dtype] = None) -> Tensor: + r""" + to_mkldnn() -> Tensor + Returns a copy of the tensor in ``torch.mkldnn`` layout. + """ + ... + def to_padded_tensor(self, padding: _float, output_size: Optional[Sequence[Union[_int, SymInt]]] = None) -> Tensor: + r""" + to_padded_tensor(padding, output_size=None) -> Tensor + See :func:`to_padded_tensor` + """ + ... + @overload + def to_sparse(self, *, layout: Optional[_layout] = None, blocksize: Optional[Union[_int, _size]] = None, dense_dim: Optional[_int] = None) -> Tensor: + r""" + to_sparse(sparseDims) -> Tensor + + Returns a sparse copy of the tensor. PyTorch supports sparse tensors in + :ref:`coordinate format `. + + Args: + sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor + + Example:: + + >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) + >>> d + tensor([[ 0, 0, 0], + [ 9, 0, 10], + [ 0, 0, 0]]) + >>> d.to_sparse() + tensor(indices=tensor([[1, 1], + [0, 2]]), + values=tensor([ 9, 10]), + size=(3, 3), nnz=2, layout=torch.sparse_coo) + >>> d.to_sparse(1) + tensor(indices=tensor([[1]]), + values=tensor([[ 9, 0, 10]]), + size=(3, 3), nnz=1, layout=torch.sparse_coo) + + .. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor + :noindex: + + Returns a sparse tensor with the specified layout and blocksize. If + the :attr:`self` is strided, the number of dense dimensions could be + specified, and a hybrid sparse tensor will be created, with + `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch + dimension. + + .. note:: If the :attr:`self` layout and blocksize parameters match + with the specified layout and blocksize, return + :attr:`self`. Otherwise, return a sparse tensor copy of + :attr:`self`. + + Args: + + layout (:class:`torch.layout`, optional): The desired sparse + layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, + ``torch.sparse_csc``, ``torch.sparse_bsr``, or + ``torch.sparse_bsc``. Default: if ``None``, + ``torch.sparse_coo``. + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSR or BSC tensor. For other layouts, + specifying the block size that is not ``None`` will result in a + RuntimeError exception. A block size must be a tuple of length + two such that its items evenly divide the two sparse dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSR, CSC, BSR or BSC tensor. This argument should be + used only if :attr:`self` is a strided tensor, and must be a + value between 0 and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) + >>> x.to_sparse(layout=torch.sparse_coo) + tensor(indices=tensor([[0, 2, 2], + [0, 0, 1]]), + values=tensor([1, 2, 3]), + size=(3, 2), nnz=3, layout=torch.sparse_coo) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) + tensor(crow_indices=tensor([0, 1, 1, 2]), + col_indices=tensor([0, 0]), + values=tensor([[[1, 0]], + [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) + RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 + >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) + RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize + + >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) + >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) + tensor(crow_indices=tensor([0, 1, 1, 3]), + col_indices=tensor([0, 0, 1]), + values=tensor([[1], + [2], + [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) + """ + ... + @overload + def to_sparse(self, sparse_dim: _int) -> Tensor: + r""" + to_sparse(sparseDims) -> Tensor + + Returns a sparse copy of the tensor. PyTorch supports sparse tensors in + :ref:`coordinate format `. + + Args: + sparseDims (int, optional): the number of sparse dimensions to include in the new sparse tensor + + Example:: + + >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]]) + >>> d + tensor([[ 0, 0, 0], + [ 9, 0, 10], + [ 0, 0, 0]]) + >>> d.to_sparse() + tensor(indices=tensor([[1, 1], + [0, 2]]), + values=tensor([ 9, 10]), + size=(3, 3), nnz=2, layout=torch.sparse_coo) + >>> d.to_sparse(1) + tensor(indices=tensor([[1]]), + values=tensor([[ 9, 0, 10]]), + size=(3, 3), nnz=1, layout=torch.sparse_coo) + + .. method:: to_sparse(*, layout=None, blocksize=None, dense_dim=None) -> Tensor + :noindex: + + Returns a sparse tensor with the specified layout and blocksize. If + the :attr:`self` is strided, the number of dense dimensions could be + specified, and a hybrid sparse tensor will be created, with + `dense_dim` dense dimensions and `self.dim() - 2 - dense_dim` batch + dimension. + + .. note:: If the :attr:`self` layout and blocksize parameters match + with the specified layout and blocksize, return + :attr:`self`. Otherwise, return a sparse tensor copy of + :attr:`self`. + + Args: + + layout (:class:`torch.layout`, optional): The desired sparse + layout. One of ``torch.sparse_coo``, ``torch.sparse_csr``, + ``torch.sparse_csc``, ``torch.sparse_bsr``, or + ``torch.sparse_bsc``. Default: if ``None``, + ``torch.sparse_coo``. + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSR or BSC tensor. For other layouts, + specifying the block size that is not ``None`` will result in a + RuntimeError exception. A block size must be a tuple of length + two such that its items evenly divide the two sparse dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSR, CSC, BSR or BSC tensor. This argument should be + used only if :attr:`self` is a strided tensor, and must be a + value between 0 and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> x = torch.tensor([[1, 0], [0, 0], [2, 3]]) + >>> x.to_sparse(layout=torch.sparse_coo) + tensor(indices=tensor([[0, 2, 2], + [0, 0, 1]]), + values=tensor([1, 2, 3]), + size=(3, 2), nnz=3, layout=torch.sparse_coo) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(1, 2)) + tensor(crow_indices=tensor([0, 1, 1, 2]), + col_indices=tensor([0, 0]), + values=tensor([[[1, 0]], + [[2, 3]]]), size=(3, 2), nnz=2, layout=torch.sparse_bsr) + >>> x.to_sparse(layout=torch.sparse_bsr, blocksize=(2, 1)) + RuntimeError: Tensor size(-2) 3 needs to be divisible by blocksize[0] 2 + >>> x.to_sparse(layout=torch.sparse_csr, blocksize=(3, 1)) + RuntimeError: to_sparse for Strided to SparseCsr conversion does not use specified blocksize + + >>> x = torch.tensor([[[1], [0]], [[0], [0]], [[2], [3]]]) + >>> x.to_sparse(layout=torch.sparse_csr, dense_dim=1) + tensor(crow_indices=tensor([0, 1, 1, 3]), + col_indices=tensor([0, 0, 1]), + values=tensor([[1], + [2], + [3]]), size=(3, 2, 1), nnz=3, layout=torch.sparse_csr) + """ + ... + def to_sparse_bsc(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: + r""" + to_sparse_bsc(blocksize, dense_dim) -> Tensor + + Convert a tensor to a block sparse column (BSC) storage format of + given blocksize. If the :attr:`self` is strided, then the number of + dense dimensions could be specified, and a hybrid BSC tensor will be + created, with `dense_dim` dense dimensions and `self.dim() - 2 - + dense_dim` batch dimension. + + Args: + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSC tensor. A block size must be a tuple of + length two such that its items evenly divide the two sparse + dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting BSC tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> dense = torch.randn(10, 10) + >>> sparse = dense.to_sparse_csr() + >>> sparse_bsc = sparse.to_sparse_bsc((5, 5)) + >>> sparse_bsc.row_indices() + tensor([0, 1, 0, 1]) + + >>> dense = torch.zeros(4, 3, 1) + >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 + >>> dense.to_sparse_bsc((2, 1), 1) + tensor(ccol_indices=tensor([0, 1, 2, 3]), + row_indices=tensor([0, 1, 0]), + values=tensor([[[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]]]), size=(4, 3, 1), nnz=3, + layout=torch.sparse_bsc) + """ + ... + def to_sparse_bsr(self, blocksize: Union[_int, _size], dense_dim: Optional[_int] = None) -> Tensor: + r""" + to_sparse_bsr(blocksize, dense_dim) -> Tensor + + Convert a tensor to a block sparse row (BSR) storage format of given + blocksize. If the :attr:`self` is strided, then the number of dense + dimensions could be specified, and a hybrid BSR tensor will be + created, with `dense_dim` dense dimensions and `self.dim() - 2 - + dense_dim` batch dimension. + + Args: + + blocksize (list, tuple, :class:`torch.Size`, optional): Block size + of the resulting BSR tensor. A block size must be a tuple of + length two such that its items evenly divide the two sparse + dimensions. + + dense_dim (int, optional): Number of dense dimensions of the + resulting BSR tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> dense = torch.randn(10, 10) + >>> sparse = dense.to_sparse_csr() + >>> sparse_bsr = sparse.to_sparse_bsr((5, 5)) + >>> sparse_bsr.col_indices() + tensor([0, 1, 0, 1]) + + >>> dense = torch.zeros(4, 3, 1) + >>> dense[0:2, 0] = dense[0:2, 2] = dense[2:4, 1] = 1 + >>> dense.to_sparse_bsr((2, 1), 1) + tensor(crow_indices=tensor([0, 2, 3]), + col_indices=tensor([0, 2, 1]), + values=tensor([[[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]], + + + [[[1.]], + + [[1.]]]]), size=(4, 3, 1), nnz=3, + layout=torch.sparse_bsr) + """ + ... + def to_sparse_csc(self, dense_dim: Optional[_int] = None) -> Tensor: + r""" + to_sparse_csc() -> Tensor + + Convert a tensor to compressed column storage (CSC) format. Except + for strided tensors, only works with 2D tensors. If the :attr:`self` + is strided, then the number of dense dimensions could be specified, + and a hybrid CSC tensor will be created, with `dense_dim` dense + dimensions and `self.dim() - 2 - dense_dim` batch dimension. + + Args: + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSC tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> dense = torch.randn(5, 5) + >>> sparse = dense.to_sparse_csc() + >>> sparse._nnz() + 25 + + >>> dense = torch.zeros(3, 3, 1, 1) + >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 + >>> dense.to_sparse_csc(dense_dim=2) + tensor(ccol_indices=tensor([0, 1, 2, 3]), + row_indices=tensor([0, 2, 1]), + values=tensor([[[1.]], + + [[1.]], + + [[1.]]]), size=(3, 3, 1, 1), nnz=3, + layout=torch.sparse_csc) + """ + ... + def to_sparse_csr(self, dense_dim: Optional[_int] = None) -> Tensor: + r""" + to_sparse_csr(dense_dim=None) -> Tensor + + Convert a tensor to compressed row storage format (CSR). Except for + strided tensors, only works with 2D tensors. If the :attr:`self` is + strided, then the number of dense dimensions could be specified, and a + hybrid CSR tensor will be created, with `dense_dim` dense dimensions + and `self.dim() - 2 - dense_dim` batch dimension. + + Args: + + dense_dim (int, optional): Number of dense dimensions of the + resulting CSR tensor. This argument should be used only if + :attr:`self` is a strided tensor, and must be a value between 0 + and dimension of :attr:`self` tensor minus two. + + Example:: + + >>> dense = torch.randn(5, 5) + >>> sparse = dense.to_sparse_csr() + >>> sparse._nnz() + 25 + + >>> dense = torch.zeros(3, 3, 1, 1) + >>> dense[0, 0] = dense[1, 2] = dense[2, 1] = 1 + >>> dense.to_sparse_csr(dense_dim=2) + tensor(crow_indices=tensor([0, 1, 2, 3]), + col_indices=tensor([0, 2, 1]), + values=tensor([[[1.]], + + [[1.]], + + [[1.]]]), size=(3, 3, 1, 1), nnz=3, + layout=torch.sparse_csr) + """ + ... + def tolist(self) -> List: + r""" + tolist() -> list or number + + Returns the tensor as a (nested) list. For scalars, a standard + Python number is returned, just like with :meth:`~Tensor.item`. + Tensors are automatically moved to the CPU first if necessary. + + This operation is not differentiable. + + Examples:: + + >>> a = torch.randn(2, 2) + >>> a.tolist() + [[0.012766935862600803, 0.5415473580360413], + [-0.08909505605697632, 0.7729271650314331]] + >>> a[0,0].tolist() + 0.012766935862600803 + """ + ... + def topk(self, k: Union[_int, SymInt], dim: _int = -1, largest: _bool = True, sorted: _bool = True) -> torch.return_types.topk: + r""" + topk(k, dim=None, largest=True, sorted=True) -> (Tensor, LongTensor) + + See :func:`torch.topk` + """ + ... + def trace(self) -> Tensor: + r""" + trace() -> Tensor + + See :func:`torch.trace` + """ + ... + @overload + def transpose(self, dim0: _int, dim1: _int) -> Tensor: + r""" + transpose(dim0, dim1) -> Tensor + + See :func:`torch.transpose` + """ + ... + @overload + def transpose(self, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: + r""" + transpose(dim0, dim1) -> Tensor + + See :func:`torch.transpose` + """ + ... + def transpose_(self, dim0: _int, dim1: _int) -> Tensor: + r""" + transpose_(dim0, dim1) -> Tensor + + In-place version of :meth:`~Tensor.transpose` + """ + ... + def triangular_solve(self, A: Tensor, upper: _bool = True, transpose: _bool = False, unitriangular: _bool = False) -> torch.return_types.triangular_solve: + r""" + triangular_solve(A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) + + See :func:`torch.triangular_solve` + """ + ... + def tril(self, diagonal: _int = 0) -> Tensor: + r""" + tril(diagonal=0) -> Tensor + + See :func:`torch.tril` + """ + ... + def tril_(self, diagonal: _int = 0) -> Tensor: + r""" + tril_(diagonal=0) -> Tensor + + In-place version of :meth:`~Tensor.tril` + """ + ... + def triu(self, diagonal: _int = 0) -> Tensor: + r""" + triu(diagonal=0) -> Tensor + + See :func:`torch.triu` + """ + ... + def triu_(self, diagonal: _int = 0) -> Tensor: + r""" + triu_(diagonal=0) -> Tensor + + In-place version of :meth:`~Tensor.triu` + """ + ... + def true_divide(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out: Optional[Tensor] = None) -> Tensor: + r""" + true_divide(value) -> Tensor + + See :func:`torch.true_divide` + """ + ... + def true_divide_(self, other: Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor: + r""" + true_divide_(value) -> Tensor + + In-place version of :meth:`~Tensor.true_divide_` + """ + ... + def trunc(self) -> Tensor: + r""" + trunc() -> Tensor + + See :func:`torch.trunc` + """ + ... + def trunc_(self) -> Tensor: + r""" + trunc_() -> Tensor + + In-place version of :meth:`~Tensor.trunc` + """ + ... + @overload + def type(self, dtype: None = None, non_blocking: _bool = False) -> str: + r""" + type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor + Returns the type if `dtype` is not provided, else casts this object to + the specified type. + + If this is already of the correct type, no copy is performed and the + original object is returned. + + Args: + dtype (dtype or string): The desired type + non_blocking (bool): If ``True``, and the source is in pinned memory + and destination is on the GPU or vice versa, the copy is performed + asynchronously with respect to the host. Otherwise, the argument + has no effect. + **kwargs: For compatibility, may contain the key ``async`` in place of + the ``non_blocking`` argument. The ``async`` arg is deprecated. + """ + ... + @overload + def type(self, dtype: Union[str, _dtype], non_blocking: _bool = False) -> Tensor: + r""" + type(dtype=None, non_blocking=False, **kwargs) -> str or Tensor + Returns the type if `dtype` is not provided, else casts this object to + the specified type. + + If this is already of the correct type, no copy is performed and the + original object is returned. + + Args: + dtype (dtype or string): The desired type + non_blocking (bool): If ``True``, and the source is in pinned memory + and destination is on the GPU or vice versa, the copy is performed + asynchronously with respect to the host. Otherwise, the argument + has no effect. + **kwargs: For compatibility, may contain the key ``async`` in place of + the ``non_blocking`` argument. The ``async`` arg is deprecated. + """ + ... + def type_as(self, other: Tensor) -> Tensor: + r""" + type_as(tensor) -> Tensor + + Returns this tensor cast to the type of the given tensor. + + This is a no-op if the tensor is already of the correct type. This is + equivalent to ``self.type(tensor.type())`` + + Args: + tensor (Tensor): the tensor which has the desired type + """ + ... + @overload + def unbind(self, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unbind(dim=0) -> seq + + See :func:`torch.unbind` + """ + ... + @overload + def unbind(self, dim: Union[str, ellipsis, None]) -> Tuple[Tensor, ...]: + r""" + unbind(dim=0) -> seq + + See :func:`torch.unbind` + """ + ... + @overload + def unflatten(self, dim: Union[str, ellipsis, None], sizes: Sequence[Union[_int, SymInt]], names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ... + @overload + def unflatten(self, dim: _int, sizes: Sequence[Union[_int, SymInt]]) -> Tensor: ... + def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: + r""" + unfold(dimension, size, step) -> Tensor + + Returns a view of the original tensor which contains all slices of size :attr:`size` from + :attr:`self` tensor in the dimension :attr:`dimension`. + + Step between two slices is given by :attr:`step`. + + If `sizedim` is the size of dimension :attr:`dimension` for :attr:`self`, the size of + dimension :attr:`dimension` in the returned tensor will be + `(sizedim - size) / step + 1`. + + An additional dimension of size :attr:`size` is appended in the returned tensor. + + Args: + dimension (int): dimension in which unfolding happens + size (int): the size of each slice that is unfolded + step (int): the step between each slice + + Example:: + + >>> x = torch.arange(1., 8) + >>> x + tensor([ 1., 2., 3., 4., 5., 6., 7.]) + >>> x.unfold(0, 2, 1) + tensor([[ 1., 2.], + [ 2., 3.], + [ 3., 4.], + [ 4., 5.], + [ 5., 6.], + [ 6., 7.]]) + >>> x.unfold(0, 2, 2) + tensor([[ 1., 2.], + [ 3., 4.], + [ 5., 6.]]) + """ + ... + def uniform_(self, from_: _float = 0, to: _float = 1, *, generator: Optional[Generator] = None) -> Tensor: + r""" + uniform_(from=0, to=1, *, generator=None) -> Tensor + + Fills :attr:`self` tensor with numbers sampled from the continuous uniform + distribution: + + .. math:: + f(x) = \dfrac{1}{\text{to} - \text{from}} + """ + ... + def unsafe_chunk(self, chunks: _int, dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unsafe_chunk(chunks, dim=0) -> List of Tensors + + See :func:`torch.unsafe_chunk` + """ + ... + def unsafe_split(self, split_size: Union[_int, SymInt], dim: _int = 0) -> Tuple[Tensor, ...]: + r""" + unsafe_split(split_size, dim=0) -> List of Tensors + + See :func:`torch.unsafe_split` + """ + ... + def unsafe_split_with_sizes(self, split_sizes: Sequence[Union[_int, SymInt]], dim: _int = 0) -> Tuple[Tensor, ...]: ... + def unsqueeze(self, dim: _int) -> Tensor: + r""" + unsqueeze(dim) -> Tensor + + See :func:`torch.unsqueeze` + """ + ... + def unsqueeze_(self, dim: _int) -> Tensor: + r""" + unsqueeze_(dim) -> Tensor + + In-place version of :meth:`~Tensor.unsqueeze` + """ + ... + def values(self) -> Tensor: + r""" + values() -> Tensor + + Return the values tensor of a :ref:`sparse COO tensor `. + + .. warning:: + Throws an error if :attr:`self` is not a sparse COO tensor. + + See also :meth:`Tensor.indices`. + + .. note:: + This method can only be called on a coalesced sparse tensor. See + :meth:`Tensor.coalesce` for details. + """ + ... + @overload + def var(self, dim: Optional[Union[_int, _size]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: + r""" + var(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.var` + """ + ... + @overload + def var(self, dim: Optional[Union[_int, _size]] = None, *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: + r""" + var(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.var` + """ + ... + @overload + def var(self, unbiased: _bool = True) -> Tensor: + r""" + var(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.var` + """ + ... + @overload + def var(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool = True, keepdim: _bool = False) -> Tensor: + r""" + var(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.var` + """ + ... + @overload + def var(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[Union[Number, _complex]] = None, keepdim: _bool = False) -> Tensor: + r""" + var(dim=None, *, correction=1, keepdim=False) -> Tensor + + See :func:`torch.var` + """ + ... + def vdot(self, other: Tensor) -> Tensor: + r""" + vdot(other) -> Tensor + + See :func:`torch.vdot` + """ + ... + @overload + def view(self, dtype: _dtype) -> Tensor: + r""" + view(*shape) -> Tensor + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`shape`. + + The returned tensor shares the same data and must have the same number + of elements, but may have a different size. For a tensor to be viewed, the new + view size must be compatible with its original size and stride, i.e., each new + view dimension must either be a subspace of an original dimension, or only span + across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following + contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, + + .. math:: + + \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] + + Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` + without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a + :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which + returns a view if the shapes are compatible, and copies (equivalent to calling + :meth:`contiguous`) otherwise. + + Args: + shape (torch.Size or int...): the desired size + + Example:: + + >>> x = torch.randn(4, 4) + >>> x.size() + torch.Size([4, 4]) + >>> y = x.view(16) + >>> y.size() + torch.Size([16]) + >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions + >>> z.size() + torch.Size([2, 8]) + + >>> a = torch.randn(1, 2, 3, 4) + >>> a.size() + torch.Size([1, 2, 3, 4]) + >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension + >>> b.size() + torch.Size([1, 3, 2, 4]) + >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory + >>> c.size() + torch.Size([1, 3, 2, 4]) + >>> torch.equal(b, c) + False + + + .. method:: view(dtype) -> Tensor + :noindex: + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`dtype`. + + If the element size of :attr:`dtype` is different than that of ``self.dtype``, + then the size of the last dimension of the output will be scaled + proportionally. For instance, if :attr:`dtype` element size is twice that of + ``self.dtype``, then each pair of elements in the last dimension of + :attr:`self` will be combined, and the size of the last dimension of the output + will be half that of :attr:`self`. If :attr:`dtype` element size is half that + of ``self.dtype``, then each element in the last dimension of :attr:`self` will + be split in two, and the size of the last dimension of the output will be + double that of :attr:`self`. For this to be possible, the following conditions + must be true: + + * ``self.dim()`` must be greater than 0. + * ``self.stride(-1)`` must be 1. + + Additionally, if the element size of :attr:`dtype` is greater than that of + ``self.dtype``, the following conditions must be true as well: + + * ``self.size(-1)`` must be divisible by the ratio between the element + sizes of the dtypes. + * ``self.storage_offset()`` must be divisible by the ratio between the + element sizes of the dtypes. + * The strides of all dimensions, except the last dimension, must be + divisible by the ratio between the element sizes of the dtypes. + + If any of the above conditions are not met, an error is thrown. + + .. warning:: + + This overload is not supported by TorchScript, and using it in a Torchscript + program will cause undefined behavior. + + + Args: + dtype (:class:`torch.dtype`): the desired dtype + + Example:: + + >>> x = torch.randn(4, 4) + >>> x + tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + >>> x.dtype + torch.float32 + + >>> y = x.view(torch.int32) + >>> y + tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], + [-1105482831, 1061112040, 1057999968, -1084397505], + [-1071760287, -1123489973, -1097310419, -1084649136], + [-1101533110, 1073668768, -1082790149, -1088634448]], + dtype=torch.int32) + >>> y[0, 0] = 1000000000 + >>> x + tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + + >>> x.view(torch.cfloat) + tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], + [-0.1520+0.7472j, 0.5617-0.8649j], + [-2.4724-0.0334j, -0.2976-0.8499j], + [-0.2109+1.9913j, -0.9607-0.6123j]]) + >>> x.view(torch.cfloat).size() + torch.Size([4, 2]) + + >>> x.view(torch.uint8) + tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, + 8, 191], + [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, + 93, 191], + [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, + 89, 191], + [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, + 28, 191]], dtype=torch.uint8) + >>> x.view(torch.uint8).size() + torch.Size([4, 16]) + """ + ... + @overload + def view(self, size: Sequence[Union[_int, SymInt]]) -> Tensor: + r""" + view(*shape) -> Tensor + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`shape`. + + The returned tensor shares the same data and must have the same number + of elements, but may have a different size. For a tensor to be viewed, the new + view size must be compatible with its original size and stride, i.e., each new + view dimension must either be a subspace of an original dimension, or only span + across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following + contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, + + .. math:: + + \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] + + Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` + without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a + :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which + returns a view if the shapes are compatible, and copies (equivalent to calling + :meth:`contiguous`) otherwise. + + Args: + shape (torch.Size or int...): the desired size + + Example:: + + >>> x = torch.randn(4, 4) + >>> x.size() + torch.Size([4, 4]) + >>> y = x.view(16) + >>> y.size() + torch.Size([16]) + >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions + >>> z.size() + torch.Size([2, 8]) + + >>> a = torch.randn(1, 2, 3, 4) + >>> a.size() + torch.Size([1, 2, 3, 4]) + >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension + >>> b.size() + torch.Size([1, 3, 2, 4]) + >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory + >>> c.size() + torch.Size([1, 3, 2, 4]) + >>> torch.equal(b, c) + False + + + .. method:: view(dtype) -> Tensor + :noindex: + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`dtype`. + + If the element size of :attr:`dtype` is different than that of ``self.dtype``, + then the size of the last dimension of the output will be scaled + proportionally. For instance, if :attr:`dtype` element size is twice that of + ``self.dtype``, then each pair of elements in the last dimension of + :attr:`self` will be combined, and the size of the last dimension of the output + will be half that of :attr:`self`. If :attr:`dtype` element size is half that + of ``self.dtype``, then each element in the last dimension of :attr:`self` will + be split in two, and the size of the last dimension of the output will be + double that of :attr:`self`. For this to be possible, the following conditions + must be true: + + * ``self.dim()`` must be greater than 0. + * ``self.stride(-1)`` must be 1. + + Additionally, if the element size of :attr:`dtype` is greater than that of + ``self.dtype``, the following conditions must be true as well: + + * ``self.size(-1)`` must be divisible by the ratio between the element + sizes of the dtypes. + * ``self.storage_offset()`` must be divisible by the ratio between the + element sizes of the dtypes. + * The strides of all dimensions, except the last dimension, must be + divisible by the ratio between the element sizes of the dtypes. + + If any of the above conditions are not met, an error is thrown. + + .. warning:: + + This overload is not supported by TorchScript, and using it in a Torchscript + program will cause undefined behavior. + + + Args: + dtype (:class:`torch.dtype`): the desired dtype + + Example:: + + >>> x = torch.randn(4, 4) + >>> x + tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + >>> x.dtype + torch.float32 + + >>> y = x.view(torch.int32) + >>> y + tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], + [-1105482831, 1061112040, 1057999968, -1084397505], + [-1071760287, -1123489973, -1097310419, -1084649136], + [-1101533110, 1073668768, -1082790149, -1088634448]], + dtype=torch.int32) + >>> y[0, 0] = 1000000000 + >>> x + tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + + >>> x.view(torch.cfloat) + tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], + [-0.1520+0.7472j, 0.5617-0.8649j], + [-2.4724-0.0334j, -0.2976-0.8499j], + [-0.2109+1.9913j, -0.9607-0.6123j]]) + >>> x.view(torch.cfloat).size() + torch.Size([4, 2]) + + >>> x.view(torch.uint8) + tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, + 8, 191], + [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, + 93, 191], + [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, + 89, 191], + [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, + 28, 191]], dtype=torch.uint8) + >>> x.view(torch.uint8).size() + torch.Size([4, 16]) + """ + ... + @overload + def view(self, *size: Union[_int, SymInt]) -> Tensor: + r""" + view(*shape) -> Tensor + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`shape`. + + The returned tensor shares the same data and must have the same number + of elements, but may have a different size. For a tensor to be viewed, the new + view size must be compatible with its original size and stride, i.e., each new + view dimension must either be a subspace of an original dimension, or only span + across original dimensions :math:`d, d+1, \dots, d+k` that satisfy the following + contiguity-like condition that :math:`\forall i = d, \dots, d+k-1`, + + .. math:: + + \text{stride}[i] = \text{stride}[i+1] \times \text{size}[i+1] + + Otherwise, it will not be possible to view :attr:`self` tensor as :attr:`shape` + without copying it (e.g., via :meth:`contiguous`). When it is unclear whether a + :meth:`view` can be performed, it is advisable to use :meth:`reshape`, which + returns a view if the shapes are compatible, and copies (equivalent to calling + :meth:`contiguous`) otherwise. + + Args: + shape (torch.Size or int...): the desired size + + Example:: + + >>> x = torch.randn(4, 4) + >>> x.size() + torch.Size([4, 4]) + >>> y = x.view(16) + >>> y.size() + torch.Size([16]) + >>> z = x.view(-1, 8) # the size -1 is inferred from other dimensions + >>> z.size() + torch.Size([2, 8]) + + >>> a = torch.randn(1, 2, 3, 4) + >>> a.size() + torch.Size([1, 2, 3, 4]) + >>> b = a.transpose(1, 2) # Swaps 2nd and 3rd dimension + >>> b.size() + torch.Size([1, 3, 2, 4]) + >>> c = a.view(1, 3, 2, 4) # Does not change tensor layout in memory + >>> c.size() + torch.Size([1, 3, 2, 4]) + >>> torch.equal(b, c) + False + + + .. method:: view(dtype) -> Tensor + :noindex: + + Returns a new tensor with the same data as the :attr:`self` tensor but of a + different :attr:`dtype`. + + If the element size of :attr:`dtype` is different than that of ``self.dtype``, + then the size of the last dimension of the output will be scaled + proportionally. For instance, if :attr:`dtype` element size is twice that of + ``self.dtype``, then each pair of elements in the last dimension of + :attr:`self` will be combined, and the size of the last dimension of the output + will be half that of :attr:`self`. If :attr:`dtype` element size is half that + of ``self.dtype``, then each element in the last dimension of :attr:`self` will + be split in two, and the size of the last dimension of the output will be + double that of :attr:`self`. For this to be possible, the following conditions + must be true: + + * ``self.dim()`` must be greater than 0. + * ``self.stride(-1)`` must be 1. + + Additionally, if the element size of :attr:`dtype` is greater than that of + ``self.dtype``, the following conditions must be true as well: + + * ``self.size(-1)`` must be divisible by the ratio between the element + sizes of the dtypes. + * ``self.storage_offset()`` must be divisible by the ratio between the + element sizes of the dtypes. + * The strides of all dimensions, except the last dimension, must be + divisible by the ratio between the element sizes of the dtypes. + + If any of the above conditions are not met, an error is thrown. + + .. warning:: + + This overload is not supported by TorchScript, and using it in a Torchscript + program will cause undefined behavior. + + + Args: + dtype (:class:`torch.dtype`): the desired dtype + + Example:: + + >>> x = torch.randn(4, 4) + >>> x + tensor([[ 0.9482, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + >>> x.dtype + torch.float32 + + >>> y = x.view(torch.int32) + >>> y + tensor([[ 1064483442, -1124191867, 1069546515, -1089989247], + [-1105482831, 1061112040, 1057999968, -1084397505], + [-1071760287, -1123489973, -1097310419, -1084649136], + [-1101533110, 1073668768, -1082790149, -1088634448]], + dtype=torch.int32) + >>> y[0, 0] = 1000000000 + >>> x + tensor([[ 0.0047, -0.0310, 1.4999, -0.5316], + [-0.1520, 0.7472, 0.5617, -0.8649], + [-2.4724, -0.0334, -0.2976, -0.8499], + [-0.2109, 1.9913, -0.9607, -0.6123]]) + + >>> x.view(torch.cfloat) + tensor([[ 0.0047-0.0310j, 1.4999-0.5316j], + [-0.1520+0.7472j, 0.5617-0.8649j], + [-2.4724-0.0334j, -0.2976-0.8499j], + [-0.2109+1.9913j, -0.9607-0.6123j]]) + >>> x.view(torch.cfloat).size() + torch.Size([4, 2]) + + >>> x.view(torch.uint8) + tensor([[ 0, 202, 154, 59, 182, 243, 253, 188, 185, 252, 191, 63, 240, 22, + 8, 191], + [227, 165, 27, 190, 128, 72, 63, 63, 146, 203, 15, 63, 22, 106, + 93, 191], + [205, 59, 30, 192, 112, 206, 8, 189, 7, 95, 152, 190, 12, 147, + 89, 191], + [ 43, 246, 87, 190, 235, 226, 254, 63, 111, 240, 117, 191, 177, 191, + 28, 191]], dtype=torch.uint8) + >>> x.view(torch.uint8).size() + torch.Size([4, 16]) + """ + ... + def view_as(self, other: Tensor) -> Tensor: + r""" + view_as(other) -> Tensor + + View this tensor as the same size as :attr:`other`. + ``self.view_as(other)`` is equivalent to ``self.view(other.size())``. + + Please see :meth:`~Tensor.view` for more information about ``view``. + + Args: + other (:class:`torch.Tensor`): The result tensor has the same size + as :attr:`other`. + """ + ... + @overload + def vsplit(self, sections: _int) -> Tuple[Tensor, ...]: + r""" + vsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.vsplit` + """ + ... + @overload + def vsplit(self, indices: _size) -> Tuple[Tensor, ...]: + r""" + vsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.vsplit` + """ + ... + @overload + def vsplit(self, *indices: _int) -> Tuple[Tensor, ...]: + r""" + vsplit(split_size_or_sections) -> List of Tensors + + See :func:`torch.vsplit` + """ + ... + @overload + def where(self, condition: Tensor, other: Tensor) -> Tensor: + r""" + where(condition, y) -> Tensor + + ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. + See :func:`torch.where` + """ + ... + @overload + def where(self, condition: Tensor, other: Union[Number, _complex]) -> Tensor: + r""" + where(condition, y) -> Tensor + + ``self.where(condition, y)`` is equivalent to ``torch.where(condition, self, y)``. + See :func:`torch.where` + """ + ... + @overload + def xlogy(self, other: Tensor) -> Tensor: + r""" + xlogy(other) -> Tensor + + See :func:`torch.xlogy` + """ + ... + @overload + def xlogy(self, other: Union[Number, _complex]) -> Tensor: + r""" + xlogy(other) -> Tensor + + See :func:`torch.xlogy` + """ + ... + @overload + def xlogy_(self, other: Tensor) -> Tensor: + r""" + xlogy_(other) -> Tensor + + In-place version of :meth:`~Tensor.xlogy` + """ + ... + @overload + def xlogy_(self, other: Union[Number, _complex]) -> Tensor: + r""" + xlogy_(other) -> Tensor + + In-place version of :meth:`~Tensor.xlogy` + """ + ... + def xpu(self, device: Optional[Union[_device, _int, str]] = None, non_blocking: _bool = False, memory_format: torch.memory_format = torch.preserve_format) -> Tensor: + r""" + xpu(device=None, non_blocking=False, memory_format=torch.preserve_format) -> Tensor + + Returns a copy of this object in XPU memory. + + If this object is already in XPU memory and on the correct device, + then no copy is performed and the original object is returned. + + Args: + device (:class:`torch.device`): The destination XPU device. + Defaults to the current XPU device. + non_blocking (bool): If ``True`` and the source is in pinned memory, + the copy will be asynchronous with respect to the host. + Otherwise, the argument has no effect. Default: ``False``. + memory_format (:class:`torch.memory_format`, optional): the desired memory format of + returned Tensor. Default: ``torch.preserve_format``. + """ + ... + def zero_(self) -> Tensor: + r""" + zero_() -> Tensor + + Fills :attr:`self` tensor with zeros. + """ + ... + +_TensorBase = TensorBase + +# Defined in torch/csrc/multiprocessing/init.cpp +def _multiprocessing_init() -> None: ... +def _set_thread_name(name: str) -> None: ... +def _get_thread_name() -> str: ... + +# Defined in torch/csrc/Module.cpp +def _accelerator_hooks_device_count() -> _int: ... +def _accelerator_hooks_set_current_device(device_index: _int) -> None: ... +def _accelerator_hooks_get_current_device() -> _int: ... +def _accelerator_hooks_exchange_device(device_index: _int) -> _int: ... +def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int: ... +def _get_accelerator(check: _bool = False) -> _device: ... + +# Defined in torch/csrc/mtia/Module.cpp +def _mtia_init() -> None: ... +def _mtia_isBuilt() -> _bool: ... +def _mtia_isInBadFork() -> _bool: ... +def _mtia_deviceSynchronize() -> None: ... +def _mtia_getCurrentStream(device: _int) -> Stream: ... +def _mtia_setCurrentStream(stream: Stream) -> None: ... +def _mtia_getDefaultStream(device: _int) -> Stream: ... +def _mtia_memoryStats(device: _int) -> Dict[str, Any]: ... + + +# Defined in torch/csrc/mps/Module.cpp +def _mps_deviceSynchronize() -> None: ... +def _mps_get_default_generator() -> Generator: ... +def _mps_emptyCache() -> None: ... +def _mps_setMemoryFraction(fraction: _float) -> None: ... +def _mps_currentAllocatedMemory() -> _int: ... +def _mps_driverAllocatedMemory() -> _int: ... +def _mps_recommendedMaxMemory() -> _int: ... +def _mps_is_available() -> _bool: ... +def _mps_is_on_macos_or_newer(major: _int, minor: _int) -> _bool: ... +def _mps_profilerStartTrace(mode: str, wait_until_completed: _bool) -> None: ... +def _mps_profilerStopTrace() -> None: ... +def _mps_acquireEvent(enable_timing: _bool) -> _int: ... +def _mps_releaseEvent(event_id: _int) -> None: ... +def _mps_recordEvent(event_id: _int) -> None: ... +def _mps_waitForEvent(event_id: _int) -> None: ... +def _mps_synchronizeEvent(event_id: _int) -> None: ... +def _mps_queryEvent(event_id: _int) -> _bool: ... +def _mps_elapsedTimeOfEvents(start_event_id: _int, end_event_id: _int) -> _float: ... + + +# Defined in torch/csrc/cuda/Module.cpp +def _cuda_getCurrentStream(device: _int) -> Tuple: ... +def _cuda_getCurrentRawStream(device: _int) -> _int: ... +def _cuda_getDefaultStream(device: _int) -> Tuple: ... +def _cuda_getCurrentBlasHandle() -> _int: ... +def _cuda_clearCublasWorkspaces() -> None: ... +def _cuda_setDevice(device: _int) -> None: ... +def _cuda_exchangeDevice(device: _int) -> _int: ... +def _cuda_maybeExchangeDevice(device: _int) -> _int: ... +def _cuda_getDevice() -> _int: ... +def _cuda_getDeviceCount() -> _int: ... +def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ... +def _cuda_get_sync_debug_mode() -> _int: ... +def _cuda_sleep(cycles: _int) -> None: ... +def _cuda_synchronize() -> None: ... +def _cuda_ipc_collect() -> None: ... +def _cuda_getArchFlags() -> Optional[str]: ... +def _cuda_init() -> None: ... +def _cuda_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ... +def _cuda_getCompiledVersion() -> _int: ... +def _cuda_cudaHostAllocator() -> _int: ... +def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ... +def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ... +def _cuda_cudaCachingAllocator_set_allocator_settings(env: str) -> None: ... +def _cuda_beginAllocateToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ... +def _cuda_beginAllocateCurrentStreamToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ... +def _cuda_endAllocateCurrentStreamToPool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ... +def _cuda_releasePool(device: _int, mempool_id: Tuple[_int, _int]) -> None: ... +def _cuda_checkPoolLiveAllocations(device: _int, mempool_id: Tuple[_int, _int], expected_live_allocations: Set) -> _bool: ... +def _cuda_setCheckpointPoolState(device: _int, state: _cuda_CUDAAllocator_AllocatorState, stale_storages: List[_int], storages_to_add_deleters_to: List[_int]) -> None: ... +def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ... +def _cuda_emptyCache() -> None: ... +def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ... +def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ... +def _cuda_resetPeakMemoryStats(device: _int) -> None: ... +def _cuda_memorySnapshot() -> Dict[str, Any]: ... +def _cuda_record_memory_history_legacy( + enabled: _bool, + record_context: _bool, + record_context_cpp: _bool, + alloc_trace_max_entries: _int, + alloc_trace_record_context: _bool, +) -> None: ... +def _cuda_record_memory_history( + enabled: Optional[str], + context: Optional[str], + stacks: str, + max_entries +) -> None: ... +def _cuda_isHistoryEnabled() -> _bool: ... + +def _cuda_getAllocatorBackend() -> str: ... +class _cuda_CUDAAllocator_AllocatorState: + pass +def _cuda_getCheckpointState(device: _int, mempool: Tuple[_int, _int]) -> _cuda_CUDAAllocator_AllocatorState: ... +def _set_cached_tensors_enabled(enabled: _bool) -> None: ... +def _add_cached_tensor(t: Tensor) -> None: ... +def _remove_cached_tensor(t: Tensor) -> None: ... +def _tensors_data_ptrs_at_indices_equal(tensors: List[Union[Tensor, _int]], ptrs: List[Optional[_int]], indices: List[_int]) -> _bool: ... +def _construct_CUDA_Tensor_From_Storage_And_Metadata(metadata: dict, storage: Storage) -> Tensor: ... +def _storage_Use_Count(storage_ptr: _int) -> _int: ... +def _set_storage_access_error_msg(t: Tensor, s: str) -> None: ... +def _free_And_Remove_DeleterFn(storage_ptr: _int) -> None: ... +def _has_Standard_Deleter(storage_ptr: _int) -> _bool: ... + +class _cuda_CUDAAllocator: ... + +def _cuda_customAllocator(alloc_fn: _int, free_fn: _int) -> _cuda_CUDAAllocator: ... +def _cuda_changeCurrentAllocator(allocator: _cuda_CUDAAllocator) -> None: ... +def _cuda_getAllocator() -> _cuda_CUDAAllocator: ... +def _cuda_lock_mutex() -> None: ... +def _cuda_unlock_mutex() -> None: ... +def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ... +def _cuda_jiterator_compile_and_launch_kernel( + code_string: str, + kernel_name: str, + return_by_ref: _bool, + num_outputs: _int, + tensors: Tuple, + kwargs: Dict[str, Union[_int, _float, _bool]], +) -> Tensor: ... +def _cuda_get_cudnn_benchmark_limit() -> _int: ... +def _cuda_set_cudnn_benchmark_limit(arg: _int) -> None: ... +def _cuda_get_conv_benchmark_empty_cache() -> _bool: ... +def _cudnn_set_conv_benchmark_empty_cache(enable: _bool) -> None: ... +def _nccl_version() -> _int: ... +def _nccl_version_suffix() -> bytes : ... +def _nccl_unique_id() -> bytes: ... +def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ... +def _nccl_reduce( + input: Sequence[Tensor], + output: Tensor, + root: _int, + op: _int, + streams: Optional[Sequence[_CudaStreamBase]], + comms: Optional[Sequence[object]], +) -> None: ... +def _nccl_all_reduce( + input: Sequence[Tensor], + output: Sequence[Tensor], + op: _int, + streams: Optional[Sequence[_CudaStreamBase]], + comms: Optional[Sequence[object]], +) -> None: ... +def _nccl_broadcast( + input: Sequence[Tensor], + root: _int, + streams: Optional[Sequence[_CudaStreamBase]], + comms: Optional[Sequence[object]], +) -> None: ... +def _nccl_all_gather( + input: Sequence[Tensor], + output: Sequence[Tensor], + streams: Optional[Sequence[_CudaStreamBase]], + comms: Optional[Sequence[object]], +) -> None: ... +def _nccl_reduce_scatter( + input: Sequence[Tensor], + output: Sequence[Tensor], + op: _int, + streams: Optional[Sequence[_CudaStreamBase]], + comms: Optional[Sequence[object]], +) -> None: ... +def _rocm_is_backward_pass() -> _bool: ... +def _cuda_tunableop_enable(val: _bool) -> None: ... +def _cuda_tunableop_is_enabled() -> _bool: ... +def _cuda_tunableop_tuning_enable(val: _bool) -> None: ... +def _cuda_tunableop_tuning_is_enabled() -> _bool: ... +def _cuda_tunableop_set_max_tuning_duration(duration: _int) -> None: ... +def _cuda_tunableop_get_max_tuning_duration() -> _int: ... +def _cuda_tunableop_set_max_tuning_iterations(iterations: _int) -> None: ... +def _cuda_tunableop_get_max_tuning_iterations() -> _int: ... +def _cuda_tunableop_set_filename(filename: str, insert_device_ordinal: Optional[_bool]) -> None: ... +def _cuda_tunableop_get_filename() -> str: ... +def _cuda_tunableop_write_file(filename: Optional[str]) -> _bool: ... +def _cuda_tunableop_read_file(filename: Optional[str]) -> _bool: ... +def _cuda_tunableop_write_file_on_exit(val: _bool) -> None: ... +def _cuda_tunableop_get_results() -> Tuple[str, str, str, _float]: ... +def _cuda_tunableop_get_validators() -> Tuple[str, str]: ... + +class _CudaDeviceProperties: + name: str + major: _int + minor: _int + multi_processor_count: _int + total_memory: _int + is_integrated: _int + is_multi_gpu_board: _int + max_threads_per_multi_processor: _int + gcnArchName: str + warp_size: _int + uuid: str + L2_cache_size: _int + +# Functions related to SDPA +class _SDPAParams: + query: Tensor + key: Tensor + value: Tensor + attn_mask: Optional[Tensor] + dropout: _float + is_causal: _bool + enable_gqa: _bool + def __init__( + self, + query: Tensor, + key: Tensor, + value: Tensor, + attn_mask: Optional[Tensor], + dropout: _float, + is_causal: _bool, + enable_gqa: _bool) -> None: ... + +class _SDPBackend(Enum): + ERROR = -1 + MATH = 0 + FLASH_ATTENTION = 1 + EFFICIENT_ATTENTION = 2 + CUDNN_ATTENTION = 3 + +def _is_flash_attention_available() -> _bool: ... +def _can_use_cudnn_attention(params: _SDPAParams, debug: _bool) -> _bool: ... +def _can_use_flash_attention(params: _SDPAParams, debug: _bool) -> _bool: ... +def _can_use_mem_efficient_attention(params: _SDPAParams, debug: _bool) -> _bool: ... + +# Defined in torch/csrc/cuda/GdsFile.cpp +def _gds_register_buffer(t: Storage) -> None: ... +def _gds_deregister_buffer(t: Storage) -> None: ... +def _gds_register_handle(fd: _int) -> _int: ... +def _gds_deregister_handle(handle: _int) -> None: ... +def _gds_load_storage(handle: _int, s: Storage, offset: _int) -> None: ... +def _gds_save_storage(handle: _int, s: Storage, offset: _int) -> None: ... + +# Defined in torch/csrc/cuda/python_comm.cpp +def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ... +def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ... +def _broadcast_coalesced( + tensors: List[Tensor], + devices: List[_int], + buffer_size: _int, +) -> List[List[Tensor]]: ... +def _scatter( + tensor: Tensor, + devices: List[_int], + chunk_sizes: Optional[List[_int]], + dim: _int, + streams: Optional[List[Stream]], +) -> List[Tensor]: ... +def _scatter_out( + tensor: Tensor, + out_tensors: List[Tensor], + dim: _int, + streams: Optional[List[Stream]], +) -> List[Tensor]: ... +def _gather( + tensors: List[Tensor], + dim: _int, + destination_index: Optional[_int], +) -> Tensor: ... +def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ... + +# Defined in torch/csrc/cuda/Stream.cpp +class _CudaStreamBase(Stream): + stream_id: _int + device_index: _int + device_type: _int + + device: _device + cuda_stream: _int + priority: _int + + def __new__( + self, + priority: _int = 0, + stream_id: _int = 0, + device_index: _int = 0, + stream_ptr: _int = 0, + ) -> _CudaStreamBase: ... + def query(self) -> _bool: ... + def synchronize(self) -> None: ... + def priority_range(self) -> Tuple[_int, _int]: ... + +# Defined in torch/csrc/cuda/Event.cpp +class _CudaEventBase: + device: _device + cuda_event: _int + + def __new__( + cls, + enable_timing: _bool = False, + blocking: _bool = False, + interprocess: _bool = False, + ) -> _CudaEventBase: ... + @classmethod + def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ... + def record(self, stream: _CudaStreamBase) -> None: ... + def wait(self, stream: _CudaStreamBase) -> None: ... + def query(self) -> _bool: ... + def elapsed_time(self, other: _CudaEventBase) -> _float: ... + def synchronize(self) -> None: ... + def ipc_handle(self) -> bytes: ... + +# Defined in torch/csrc/cuda/Graph.cpp +class _CUDAGraph: + def capture_begin(self, pool: Optional[Tuple[_int, _int]] = ..., capture_error_mode: str = "global") -> None: ... + def capture_end(self) -> None: ... + def register_generator_state(self, Generator) -> None: ... + def replay(self) -> None: ... + def reset(self) -> None: ... + def pool(self) -> Tuple[_int, _int]: ... + def enable_debug_mode(self) -> None: ... + def debug_dump(self, debug_path: str) -> None: ... + +# Defined in torch/csrc/cuda/MemPool.cpp +class _MemPool: + def __init__(self, allocator: Optional[_cuda_CUDAAllocator] = None, is_user_created: _bool = True) -> None: ... + @property + def id(self) -> Tuple[_int, _int]: ... + @property + def allocator(self) -> Optional[_cuda_CUDAAllocator]: ... + +class _MemPoolContext: + def __init__(self, pool: _MemPool) -> None: ... + @staticmethod + def active_pool() -> Optional[_MemPool]: ... + +def _cuda_isCurrentStreamCapturing() -> _bool: ... +def _graph_pool_handle() -> Tuple[_int, _int]: ... + +# Defined in torch/csrc/xpu/Module.cpp +def _xpu_setDevice(device: _int) -> None: ... +def _xpu_exchangeDevice(device: _int) -> _int: ... +def _xpu_maybeExchangeDevice(device: _int) -> _int: ... +def _xpu_getDevice() -> _int: ... +def _xpu_getDeviceCount() -> _int: ... +def _xpu_init() -> None: ... +def _xpu_setStream(stream_id: _int, device_index: _int, device_type: _int) -> None: ... +def _xpu_getCurrentStream(device: _int) -> Tuple: ... +def _xpu_getCurrentRawStream(device: _int) -> _int: ... +def _xpu_synchronize(device: _int) -> None: ... +def _xpu_emptyCache() -> None: ... +def _xpu_memoryStats(device: _int) -> Dict[str, Any]: ... +def _xpu_resetAccumulatedMemoryStats(device: _int) -> None: ... +def _xpu_resetPeakMemoryStats(device: _int) -> None: ... + +class _XpuDeviceProperties: + name: str + platform_name: str + vendor: str + driver_version: str + version: str + total_memory: _int + max_compute_units: _int + gpu_eu_count: _int + gpu_subslice_count: _int + max_work_group_size: _int + max_num_sub_groups: _int + sub_group_sizes: List[_int] + has_fp16: _bool + has_fp64: _bool + has_atomic64: _bool + type: str + +# Defined in torch/csrc/xpu/Stream.cpp +class _XpuStreamBase(Stream): + stream_id: _int + device_index: _int + device_type: _int + + device: _device + sycl_queue: _int + priority: _int + + def __new__( + cls, + priority: _int = 0, + stream_id: _int = 0, + device_index: _int = 0, + device_type: _int = 0, + ) -> _XpuStreamBase: ... + def query(self) -> _bool: ... + def synchronize(self) -> None: ... + @staticmethod + def priority_range() -> Tuple: ... + +# Defined in torch/csrc/xpu/Event.cpp +class _XpuEventBase: + device: _device + sycl_event: _int + + def __new__(cls, enable_timing: _bool = False) -> _XpuEventBase: ... + def record(self, stream: _XpuEventBase) -> None: ... + def wait(self, stream: _XpuStreamBase) -> None: ... + def query(self) -> _bool: ... + def elapsed_time(self, other: _XpuEventBase) -> _float: ... + def synchronize(self) -> None: ... + +# Defined in torch/csrc/DataLoader.cpp +def _set_worker_signal_handlers( + *arg: Any, +) -> None: ... # THPModule_setWorkerSignalHandlers +def _set_worker_pids( + key: _int, + child_pids: Tuple[_int, ...], +) -> None: ... # THPModule_setWorkerPIDs +def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs +def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails + +# Defined in torch/csrc/jit/python/python_tracer.cpp +class TracingState: + def push_scope(self, scope_name: str) -> None: ... + def pop_scope(self) -> None: ... + def current_scope(self) -> str: ... + def set_graph(self, graph: Graph) -> None: ... + def graph(self) -> Graph: ... + +def _create_graph_by_tracing( + func: Callable[..., Any], + inputs: Any, + var_name_lookup_fn: Callable[[Tensor], str], + strict: Any, + force_outplace: Any, + self: Any = None, + argument_names: List[str] = [], +) -> Tuple[Graph, Stack]: ... +def _tracer_warn_use_python(): ... +def _get_tracing_state() -> TracingState: ... + +# Defined in torch/csrc/jit/python/python_ir.cpp +# Not actually defined in python_ir.cpp, not sure where they are. +class IValue: ... + +Stack = List[IValue] + +class JitType: + annotation_str: str + def isSubtypeOf(self, other: JitType) -> _bool: ... + def with_dtype(self, dtype: _dtype) -> JitType: ... + def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ... + def kind(self) -> str: ... + def scalarType(self) -> Optional[str]: ... + def getElementType(self) -> JitType: ... + def dtype(self) -> Optional[_dtype]: ... + +class InferredType: + def __init__(self, arg: Union[JitType, str]): ... + def type(self) -> JitType: ... + def success(self) -> _bool: ... + def reason(self) -> str: ... + +R = TypeVar("R", bound=JitType) + +class Type(JitType): + def str(self) -> _str: ... + def containedTypes(self) -> List[JitType]: ... + def dim(self) -> Optional[_int]: ... + def undefined(self) -> Optional[_bool]: ... + def sizes(self) -> Optional[List[_int]]: ... + def symbol_sizes(self) -> Optional[List[_int]]: ... + def varyingSizes(self) -> Optional[List[Optional[_int]]]: ... + def strides(self) -> Optional[List[_int]]: ... + def contiguous(self) -> Self: ... + def device(self) -> Optional[_device]: ... + def __eq__(self, other: object) -> _bool: ... + __hash__ = None # type: ignore[assignment] + def is_interface_type(self) -> _bool: ... + def requires_grad(self) -> _bool: ... + @property + def annotation_string(self) -> _str: ... + +class AnyType(JitType): + @staticmethod + def get() -> AnyType: ... + +class NoneType(JitType): + @staticmethod + def get() -> NoneType: ... + +class BoolType(JitType): + @staticmethod + def get() -> BoolType: ... + +class FloatType(JitType): + @staticmethod + def get() -> FloatType: ... + +class ComplexType(JitType): + @staticmethod + def get() -> ComplexType: ... + +class IntType(JitType): + @staticmethod + def get() -> IntType: ... + +class SymIntType(JitType): + @staticmethod + def get() -> SymIntType: ... + +class SymBoolType(JitType): + @staticmethod + def get() -> SymBoolType: ... + +class NumberType(JitType): + @staticmethod + def get() -> NumberType: ... + +class StringType(JitType): + @staticmethod + def get() -> StringType: ... + +class DeviceObjType(JitType): + @staticmethod + def get() -> DeviceObjType: ... + +class _GeneratorType(JitType): + @staticmethod + def get() -> _GeneratorType: ... + +class StreamObjType(JitType): + @staticmethod + def get() -> StreamObjType: ... + +class ListType(JitType): + def __init__(self, a: JitType) -> None: ... + def getElementType(self) -> JitType: ... + @staticmethod + def ofInts() -> ListType: ... + @staticmethod + def ofTensors() -> ListType: ... + @staticmethod + def ofFloats() -> ListType: ... + @staticmethod + def ofComplexDoubles() -> ListType: ... + @staticmethod + def ofBools() -> ListType: ... + @staticmethod + def ofStrings() -> ListType: ... + +class DictType(JitType): + def __init__(self, key: JitType, value: JitType) -> None: ... + def getKeyType(self) -> JitType: ... + def getValueType(self) -> JitType: ... + +class TupleType(JitType): + def __init__(self, a: List[Optional[JitType]]) -> None: ... + def elements(self) -> List[JitType]: ... + +class UnionType(JitType): + def __init__(self, a: List[JitType]) -> None: ... + +class ClassType(JitType): + def __init__(self, qualified_name: str) -> None: ... + +class InterfaceType(JitType): + def __init__(self, qualified_name: str) -> None: ... + def getMethod(self, name: str) -> Optional[FunctionSchema]: ... + def getMethodNames(self) -> List[str]: ... + +class OptionalType(JitType, Generic[R]): + def __init__(self, a: JitType) -> None: ... + def getElementType(self) -> JitType: ... + @staticmethod + def ofTensor() -> OptionalType: ... + +class FutureType(JitType): + def __init__(self, a: JitType) -> None: ... + def getElementType(self) -> JitType: ... + +class AwaitType(JitType): + def __init__(self, a: JitType) -> None: ... + def getElementType(self) -> JitType: ... + +class RRefType(JitType): + def __init__(self, a: JitType) -> None: ... + +class EnumType(JitType): + def __init__( + self, + qualified_name: str, + value_type: JitType, + enum_names_values: List[Any], + ) -> None: ... + +class TensorType(JitType): + @classmethod + def get(cls) -> TensorType: ... + @classmethod + def getInferred(cls) -> TensorType: ... + def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ... + def sizes(self) -> Optional[List[_int]]: ... + def varyingSizes(self) -> Optional[List[Optional[_int]]]: ... + def strides(self) -> Optional[List[_int]]: ... + def device(self) -> Optional[_device]: ... + def dim(self) -> _int: ... + def dtype(self) -> Optional[_dtype]: ... + @staticmethod + def create_from_tensor(t: Tensor) -> TensorType: ... + +# Defined in torch/csrc/jit/python/python_tree_views.cpp +class SourceRange: ... +class TreeView: ... + +class Ident(TreeView): + @property + def name(self) -> str: ... + +class ClassDef(TreeView): ... + +class Def(TreeView): + def name(self) -> Ident: ... + +class Decl(TreeView): ... + +# Defined in torch/csrc/distributed/rpc/init.cpp +def _rpc_init() -> _bool: ... + +# Defined in torch/csrc/distributed/autograd/init.cpp +def _dist_autograd_init() -> _bool: ... + +# Defined in torch/csrc/distributed/c10d/init.cpp +def _c10d_init() -> _bool: ... + +# Defined in torch/csrc/distributed/rpc/testing/init.cpp +def _faulty_agent_init() -> _bool: ... +def _register_py_class_for_device(device: str, cls: Any) -> None: ... + +# Defined in torch/csrc/Module.cpp +def _current_graph_task_id() -> _int: ... +def _current_autograd_node() -> _Node: ... +def _will_engine_execute_node(node: _Node) -> _bool: ... +def _dispatch_key_set(tensor) -> str: ... + +# Defined in torch/csrc/Exceptions.cpp +class OutOfMemoryError(RuntimeError): ... +class _DistError(RuntimeError): ... +class _DistBackendError(RuntimeError): ... +class _DistStoreError(RuntimeError): ... +class _DistNetworkError(RuntimeError): ... + +# Defined in torch/csrc/profiler/init.cpp +class CapturedTraceback: + pass +def gather_traceback(python: _bool, script: _bool, cpp: _bool) -> CapturedTraceback: ... +def symbolize_tracebacks(tracebacks: List[CapturedTraceback]) -> List[Dict[str, Any]]: ... + +def _load_mobile_module_from_file(filename: str): ... +def _load_mobile_module_from_bytes(bytes_: bytes): ... +def _load_jit_module_from_file(filename: str): ... +def _load_jit_module_from_bytes(bytes_: bytes): ... +def _save_mobile_module(m: LiteScriptModule, filename: str): ... +def _save_jit_module(m: ScriptModule, filename: str, extra_files: Dict[str, Any]): ... +def _save_mobile_module_to_bytes(m: LiteScriptModule) -> bytes: ... +def _save_jit_module_to_bytes(m: ScriptModule, extra_files: Dict[str, Any]) -> bytes: ... +def _get_module_info_from_flatbuffer(data: bytes): ... +def _jit_resolve_packet(op_name: str, *args, **kwargs) -> str: ... +def _swap_tensor_impl(t1: Tensor, t2: Tensor): ... +def _pickle_save(obj: Any) -> bytes: ... +def _pickle_load_obj(bs: bytes) -> Any: ... + +# Defined in torch/csrc/jit/runtime/static/init.cpp +def _jit_to_static_module(graph_or_module: Union[Graph,ScriptModule]) -> Any: ... +def _fuse_to_static_module(graph_or_module: Union[Graph,ScriptModule], min_size: _int) -> Any: ... + +# Defined in torch/csrc/fx/node.cpp +class _NodeBase: + _erased: _bool + _prev: FxNode + _next: FxNode + +class _NodeIter(Iterator): + def __init__(self, root: FxNode, reversed: _bool) -> None: ... + def __iter__(self) -> Iterator[FxNode]: ... + def __next__(self) -> FxNode: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_aoti.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_aoti.pyi new file mode 100644 index 0000000000000000000000000000000000000000..a5e782fe62123e6e6c141c80a10e70fd991ee654 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_aoti.pyi @@ -0,0 +1,20 @@ +from ctypes import c_void_p + +from torch import Tensor + +# Defined in torch/csrc/inductor/aoti_runner/pybind.cpp + +# Tensor to AtenTensorHandle +def unsafe_alloc_void_ptrs_from_tensors(tensors: list[Tensor]) -> list[c_void_p]: ... +def unsafe_alloc_void_ptr_from_tensor(tensor: Tensor) -> c_void_p: ... + +# AtenTensorHandle to Tensor +def alloc_tensors_by_stealing_from_void_ptrs( + handles: list[c_void_p], +) -> list[Tensor]: ... +def alloc_tensor_by_stealing_from_void_ptr( + handle: c_void_p, +) -> Tensor: ... + +class AOTIModelContainerRunnerCpu: ... +class AOTIModelContainerRunnerCuda: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_autograd.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_autograd.pyi new file mode 100644 index 0000000000000000000000000000000000000000..f756828ed6c9bf23a901e7416474fc86215276f4 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_autograd.pyi @@ -0,0 +1,135 @@ +# mypy: allow-untyped-defs +from enum import Enum +from typing import Any, Callable + +import torch +from torch._C._profiler import ( + _ProfilerEvent, + ActiveProfilerType, + ProfilerActivity, + ProfilerConfig, +) + +# Defined in torch/csrc/autograd/init.cpp + +class DeviceType(Enum): + CPU = ... + CUDA = ... + XPU = ... + MKLDNN = ... + OPENGL = ... + OPENCL = ... + IDEEP = ... + HIP = ... + FPGA = ... + MAIA = ... + XLA = ... + MTIA = ... + MPS = ... + HPU = ... + Meta = ... + Vulkan = ... + Metal = ... + PrivateUse1 = ... + +class ProfilerEvent: + def cpu_elapsed_us(self, other: ProfilerEvent) -> float: ... + def cpu_memory_usage(self) -> int: ... + def cuda_elapsed_us(self, other: ProfilerEvent) -> float: ... + def privateuse1_elapsed_us(self, other: ProfilerEvent) -> float: ... + def cuda_memory_usage(self) -> int: ... + def device(self) -> int: ... + def handle(self) -> int: ... + def has_cuda(self) -> bool: ... + def is_remote(self) -> bool: ... + def kind(self) -> int: ... + def name(self) -> str: ... + def node_id(self) -> int: ... + def sequence_nr(self) -> int: ... + def shapes(self) -> list[list[int]]: ... + def thread_id(self) -> int: ... + def flops(self) -> float: ... + def is_async(self) -> bool: ... + +class _KinetoEvent: + def name(self) -> str: ... + def device_index(self) -> int: ... + def device_resource_id(self) -> int: ... + def start_ns(self) -> int: ... + def end_ns(self) -> int: ... + def duration_ns(self) -> int: ... + def is_async(self) -> bool: ... + def linked_correlation_id(self) -> int: ... + def shapes(self) -> list[list[int]]: ... + def dtypes(self) -> list[str]: ... + def concrete_inputs(self) -> list[Any]: ... + def kwinputs(self) -> dict[str, Any]: ... + def device_type(self) -> DeviceType: ... + def start_thread_id(self) -> int: ... + def end_thread_id(self) -> int: ... + def correlation_id(self) -> int: ... + def fwd_thread_id(self) -> int: ... + def stack(self) -> list[str]: ... + def scope(self) -> int: ... + def sequence_nr(self) -> int: ... + def flops(self) -> int: ... + def cuda_elapsed_us(self) -> int: ... + def privateuse1_elapsed_us(self) -> int: ... + def is_user_annotation(self) -> bool: ... + +class _ProfilerResult: + def events(self) -> list[_KinetoEvent]: ... + def legacy_events(self) -> list[list[ProfilerEvent]]: ... + def save(self, path: str) -> None: ... + def experimental_event_tree(self) -> list[_ProfilerEvent]: ... + def trace_start_ns(self) -> int: ... + +class SavedTensor: ... + +def _enable_profiler( + config: ProfilerConfig, + activities: set[ProfilerActivity], +) -> None: ... +def _prepare_profiler( + config: ProfilerConfig, + activities: set[ProfilerActivity], +) -> None: ... +def _toggle_collection_dynamic( + enable: bool, + activities: set[ProfilerActivity], +) -> None: ... +def _disable_profiler() -> _ProfilerResult: ... +def _profiler_enabled() -> bool: ... +def _add_metadata_json(key: str, value: str) -> None: ... +def _kineto_step() -> None: ... +def _get_current_graph_task_keep_graph() -> bool: ... +def _get_sequence_nr() -> int: ... +def kineto_available() -> bool: ... +def _record_function_with_args_enter(name: str, *args) -> torch.Tensor: ... +def _record_function_with_args_exit(handle: torch.Tensor) -> None: ... +def _supported_activities() -> set[ProfilerActivity]: ... +def _enable_record_function(enable: bool) -> None: ... +def _set_empty_test_observer(is_global: bool, sampling_prob: float) -> None: ... +def _push_saved_tensors_default_hooks( + pack_hook: Callable[[torch.Tensor], Any], + unpack_hook: Callable[[Any], torch.Tensor], +) -> None: ... +def _pop_saved_tensors_default_hooks() -> None: ... +def _unsafe_set_version_counter(t: torch.Tensor, prev_version: int) -> None: ... +def _enable_profiler_legacy(config: ProfilerConfig) -> None: ... +def _disable_profiler_legacy() -> list[list[ProfilerEvent]]: ... +def _profiler_type() -> ActiveProfilerType: ... +def _saved_tensors_hooks_enable() -> None: ... +def _saved_tensors_hooks_disable(message: str) -> None: ... +def _saved_tensors_hooks_get_disabled_error_message() -> str | None: ... +def _saved_tensors_hooks_set_tracing(is_tracing: bool) -> bool: ... + +class CreationMeta(Enum): + DEFAULT = ... + IN_CUSTOM_FUNCTION = ... + MULTI_OUTPUT_NODE = ... + NO_GRAD_MODE = ... + INFERENCE_MODE = ... + +def _set_creation_meta(t: torch.Tensor, creation_meta: CreationMeta) -> None: ... +def _get_creation_meta(t: torch.Tensor) -> CreationMeta: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cpu.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cpu.pyi new file mode 100644 index 0000000000000000000000000000000000000000..6593222a119f4dfbd532859009ecb24ea4522323 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cpu.pyi @@ -0,0 +1,12 @@ +from torch.types import _bool, _int + +# Defined in torch/csrc/cpu/Module.cpp + +def _is_avx2_supported() -> _bool: ... +def _is_avx512_supported() -> _bool: ... +def _is_avx512_vnni_supported() -> _bool: ... +def _is_avx512_bf16_supported() -> _bool: ... +def _is_amx_tile_supported() -> _bool: ... +def _init_amx() -> _bool: ... +def _L1d_cache_size() -> _int: ... +def _L2_cache_size() -> _int: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cudnn.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cudnn.pyi new file mode 100644 index 0000000000000000000000000000000000000000..689c984b9d7de1ca98329495223dcb0a13a54f4e --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cudnn.pyi @@ -0,0 +1,17 @@ +from enum import Enum + +from torch.types import _bool, Tuple + +# Defined in torch/csrc/cuda/shared/cudnn.cpp +is_cuda: _bool + +def getRuntimeVersion() -> Tuple[int, int, int]: ... +def getCompileVersion() -> Tuple[int, int, int]: ... +def getVersionInt() -> int: ... + +class RNNMode(int, Enum): + value: int + rnn_relu = ... + rnn_tanh = ... + lstm = ... + gru = ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cusparselt.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cusparselt.pyi new file mode 100644 index 0000000000000000000000000000000000000000..a1c4bbb217777d50b9a3384da11d9992db5e18f0 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_cusparselt.pyi @@ -0,0 +1 @@ +def getVersionInt() -> int: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi new file mode 100644 index 0000000000000000000000000000000000000000..d103a9ba067ee041ceca5f5ce92aa69a21e2f373 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_autograd.pyi @@ -0,0 +1,27 @@ +# mypy: allow-untyped-defs +from typing import Any + +import torch + +# This module is defined in torch/csrc/distributed/autograd/init.cpp + +class DistAutogradContext: + def _context_id(self) -> int: ... + def _recv_functions(self) -> dict[int, Any]: ... + def _send_functions(self) -> dict[int, Any]: ... + def _known_worker_ids(self) -> set[int]: ... + +def _new_context() -> DistAutogradContext: ... +def _release_context(context_id: int) -> None: ... +def _get_max_id() -> int: ... +def _is_valid_context(worker_id: int) -> bool: ... +def _retrieve_context(context_id: int) -> DistAutogradContext: ... +def _current_context() -> DistAutogradContext: ... +def _init(worker_id: int) -> None: ... +def _get_debug_info() -> dict[str, str]: ... +def backward( + context_id: int, + roots: list[torch.Tensor], + retain_graph=False, +) -> None: ... +def get_gradients(context_id: int) -> dict[torch.Tensor, torch.Tensor]: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi new file mode 100644 index 0000000000000000000000000000000000000000..94e8578bbfff62b37a9102e4c770feb74b1866db --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_c10d.pyi @@ -0,0 +1,699 @@ +# mypy: allow-untyped-defs +# mypy: disable-error-code="type-arg" +from datetime import timedelta +from enum import Enum +from typing import Any, Optional, overload + +import torch +from torch import Tensor +from torch._C import ScriptObject +from torch.futures import Future + +# This module is defined in torch/csrc/distributed/c10d/init.cpp + +_DEFAULT_FIRST_BUCKET_BYTES: int +_DEFAULT_NO_TIMEOUT: timedelta +_DEFAULT_PG_TIMEOUT: timedelta +_DEFAULT_PG_NCCL_TIMEOUT: timedelta + +class BuiltinCommHookType(Enum): + ALLREDUCE = ... + FP16_COMPRESS = ... + +def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ... +def _register_builtin_comm_hook( + reducer: Reducer, + comm_hook_type: BuiltinCommHookType, +): ... +def _set_global_rank(rank: int) -> None: ... +def _hash_tensors(tensors: list[Tensor]) -> int: ... + +class GradBucket: + def index(self) -> int: ... + def buffer(self) -> Tensor: ... + def gradients(self) -> list[Tensor]: ... + def is_last(self) -> bool: ... + def set_buffer(self, tensor: Tensor) -> None: ... + def parameters(self) -> list[Tensor]: ... + +class Reducer: + def __init__( + self, + params: list[Tensor], + bucket_indices: list[list[int]], + per_bucket_size_limits: list[int], + process_group: ProcessGroup, + expect_sparse_gradients: list[bool] = ..., + bucket_bytes_cap: int = ..., # kDefaultBucketBytesCap in reducer.hpp + find_unused_parameters: bool = ..., + gradient_as_bucket_view: bool = ..., + param_to_name_mapping: dict[int, str] = ..., + first_bucket_types_cap: int = ..., # kDefaultFirstBucketBytes in reducer.hpp + ) -> None: ... + def prepare_for_forward(self) -> None: ... + def prepare_for_backward(self, output: list[Tensor]) -> None: ... + def get_backward_stats(self) -> list[int]: ... + def _install_post_backward_futures(self, futures: list[Future]) -> None: ... + def _rebuild_buckets(self) -> bool: ... + def _get_zeros_like_grad_buckets(self) -> list[GradBucket]: ... + def _push_all_rebuilt_params(self) -> None: ... + def _set_forward_pass_work_handle( + self, + work: Work, + use_static_world_size: bool, + ): ... + def _get_local_used_map(self) -> Tensor: ... + def _set_ddp_runtime_logging_sample_rate(self, sample_rate: int) -> None: ... + def _set_static_graph(self) -> None: ... + def _run_comm_hook(self, bucket: GradBucket) -> Future: ... + def set_logger(self, logger: Logger) -> None: ... + def _remove_autograd_hooks(self) -> None: ... + def _check_reducer_finalized(self) -> None: ... + def _set_sparse_metadata(self, global_unique_ids: dict[str, Tensor]) -> None: ... + def _reset_state(self) -> None: ... + def _update_process_group(self, new_process_group: ProcessGroup) -> None: ... + +class DDPLoggingData: + strs_map: dict[str, str] + ints_map: dict[str, int] + +class Logger: + def __init__(self, reducer: Reducer) -> None: ... + def set_construction_data_and_log( + self, + module_name: str, + device_ids: list[int], + output_device: int, + broadcast_buffers: bool, + has_sync_bn: bool, + static_graph: bool, + ): ... + def set_runtime_stats_and_log(self) -> None: ... + def set_error_and_log(self, error: str) -> None: ... + def _get_ddp_logging_data(self) -> DDPLoggingData: ... + def _set_comm_hook_name(self, comm_hook: str) -> None: ... + def _set_uneven_input_join(self) -> None: ... + def _set_static_graph(self) -> None: ... + +class _WorkerServer: + def __init__(self, socket_path: str) -> None: ... + def shutdown(self) -> None: ... + +def get_debug_level(): ... +def set_debug_level(): ... +def set_debug_level_from_env(): ... + +class DebugLevel(Enum): + OFF = ... + INFO = ... + DETAIL = ... + +class ReduceOp: + def __init__(self, op: RedOpType) -> None: ... + + SUM: RedOpType = ... + AVG: RedOpType = ... + PRODUCT: RedOpType = ... + MIN: RedOpType = ... + MAX: RedOpType = ... + BAND: RedOpType = ... + BOR: RedOpType = ... + BXOR: RedOpType = ... + PREMUL_SUM: RedOpType = ... + UNUSED: RedOpType = ... + + class RedOpType(Enum): ... + +class BroadcastOptions: + rootRank: int + rootTensor: int + timeout: timedelta + asyncOp: bool + +class AllreduceOptions: + reduceOp: ReduceOp + timeout: timedelta + +class AllreduceCoalescedOptions(AllreduceOptions): ... + +class ReduceOptions: + reduceOp: ReduceOp + rootRank: int + rootTensor: int + timeout: timedelta + +class AllgatherOptions: + timeout: timedelta + asyncOp: bool + +class GatherOptions: + rootRank: int + timeout: timedelta + +class ScatterOptions: + rootRank: int + timeout: timedelta + asyncOp: bool + +class ReduceScatterOptions: + reduceOp: ReduceOp + timeout: timedelta + asyncOp: bool + +class BarrierOptions: + device_ids: list[int] + device: torch.device + timeout: timedelta + +class AllToAllOptions: + timeout: timedelta + +class Store: + def set(self, key: str, value: str): ... + def get(self, key: str) -> bytes: ... + def add(self, key: str, value: int) -> int: ... + def compare_set( + self, + key: str, + expected_value: str, + desired_value: str, + ) -> bytes: ... + def delete_key(self, key: str) -> bool: ... + def num_keys(self) -> int: ... + def set_timeout(self, timeout: timedelta): ... + @overload + def wait(self, keys: list[str]): ... + @overload + def wait(self, keys: list[str], timeout: timedelta): ... + +class FileStore(Store): + def __init__(self, path: str, numWorkers: int = ...) -> None: ... + +class HashStore(Store): + def __init__(self) -> None: ... + +class TCPStore(Store): + def __init__( + self, + host_name: str, + port: int, + world_size: int | None = ..., + is_master: bool = ..., + timeout: timedelta = ..., + wait_for_workers: bool = ..., + multi_tenant: bool = ..., + master_listen_fd: int | None = ..., + use_libuv: bool | None = ..., + ) -> None: ... + @property + def host(self) -> str: ... + @property + def port(self) -> int: ... + +class PrefixStore(Store): + def __init__(self, prefix: str, store: Store) -> None: ... + @property + def underlying_store(self) -> Store: ... + +class _ControlCollectives: + def barrier(self, key: str, timeout: timedelta, blocking: bool) -> None: ... + def broadcast_send(self, key: str, data: str, timeout: timedelta) -> None: ... + def broadcast_recv(self, key: str, timeout: timedelta) -> str: ... + def gather_send(self, key: str, data: str, timeout: timedelta) -> None: ... + def gather_recv(self, key: str, timeout: timedelta) -> str: ... + def scatter_send(self, key: str, data: str, timeout: timedelta) -> None: ... + def scatter_recv(self, key: str, timeout: timedelta) -> str: ... + def all_gather(self, key: str, data: str, timeout: timedelta) -> str: ... + def all_sum(self, key: str, data: int, timeout: timedelta) -> int: ... + +class _StoreCollectives(_ControlCollectives): + def __init__(self, store: Store, rank: int, world_size: int) -> None: ... + +class _DistributedBackendOptions: + def __init__(self) -> None: ... + @property + def store(self) -> Store: ... + @store.setter + def store(self, store: Store) -> None: ... + @property + def group_rank(self) -> int: ... + @group_rank.setter + def group_rank(self, rank: int) -> None: ... + @property + def group_size(self) -> int: ... + @group_size.setter + def group_size(self, size: int) -> None: ... + @property + def timeout(self) -> timedelta: ... + @timeout.setter + def timeout(self, timeout: timedelta) -> None: ... + @property + def group_id(self) -> str: ... + @group_id.setter + def group_id(self, group_id: str) -> None: ... + @property + def global_ranks_in_group(self) -> list[int]: ... + @global_ranks_in_group.setter + def global_ranks_in_group(self, ranks: list[int]) -> None: ... + +class Work: + def is_completed(self) -> bool: ... + def is_success(self) -> bool: ... + def exception(self) -> Any: ... + def wait(self, timeout: timedelta = ...) -> bool: ... + def get_future(self) -> Future: ... + def source_rank(self) -> int: ... + def _source_rank(self) -> int: ... + def result(self) -> list[Tensor]: ... + def synchronize(self): ... + def boxed(self) -> ScriptObject: ... + @staticmethod + def unbox(obj: ScriptObject) -> Work: ... + +class Backend: + class Options: + def __init__(self, backend: str, timeout: timedelta = ...) -> None: ... + @property + def backend(self) -> str: ... + @property + def _timeout(self) -> timedelta: ... + @_timeout.setter + def _timeout(self, val: timedelta) -> None: ... + + def __init__( + self, + rank: int, + size: int, + ) -> None: ... + @property + def supports_splitting(self) -> bool: ... + @property + def options(self) -> Options: ... + def rank(self) -> int: ... + def size(self) -> int: ... + def eager_connect_single_device(self, device: torch.device | None) -> None: ... + def _set_sequence_number_for_group(self) -> None: ... + def _set_default_timeout(self, timeout: timedelta) -> None: ... + +class ProcessGroup: + class Options: + def __init__(self, backend: str, timeout: timedelta = ...) -> None: ... + @property + def backend(self) -> str: ... + @property + def _timeout(self) -> timedelta: ... + @_timeout.setter + def _timeout(self, val: timedelta) -> None: ... + + class BackendType(Enum): + UNDEFINED = ... + GLOO = ... + NCCL = ... + UCC = ... + MPI = ... + CUSTOM = ... + + def __init__( + self, + store: Store, + rank: int, + size: int, + options: Options, + ) -> None: ... + def rank(self) -> int: ... + def size(self) -> int: ... + @overload + def broadcast( + self, + tensors: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def broadcast( + self, + tensor: Tensor, + root: int, + ) -> Work: ... + @overload + def allreduce( + self, + tensors: list[Tensor], + opts: AllreduceOptions = ..., + ) -> Work: ... + @overload + def allreduce( + self, + tensors: list[Tensor], + op=..., + ) -> Work: ... + @overload + def allreduce( + self, + tensor: Tensor, + op=..., + ) -> Work: ... + def allreduce_coalesced( + self, + tensors: list[Tensor], + opts=..., + ) -> Work: ... + def reduce_scatter_tensor_coalesced( + self, + outputTensors: list[Tensor], + inputTensors: list[Tensor], + opts: ReduceScatterOptions | None = None, + ) -> Work: ... + @overload + def reduce( + self, + tensors: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def reduce( + self, + tensor: Tensor, + root: int, + op=..., + ) -> Work: ... + @overload + def allgather( + self, + output_tensors: list[list[Tensor]], + input_tensors: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def allgather( + self, + output_tensors: list[Tensor], + input_tensor: Tensor, + ) -> Work: ... + def _allgather_base( + self, + output: Tensor, + input: Tensor, + opts=..., + ) -> Work: ... + def allgather_coalesced( + self, + output_lists: list[list[Tensor]], + input_list: list[Tensor], + opts=..., + ) -> Work: ... + def allgather_into_tensor_coalesced( + self, + output_lists: list[Tensor], + input_list: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def gather( + self, + output_tensors: list[list[Tensor]], + input_tensors: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def gather( + self, + output_tensors: list[Tensor], + input_tensor: Tensor, + root: int, + ) -> Work: ... + @overload + def scatter( + self, + output_tensors: list[Tensor], + input_tensors: list[list[Tensor]], + opts=..., + ) -> Work: ... + @overload + def scatter( + self, + output_tensor: Tensor, + input_tensors: list[Tensor], + root: int, + ) -> Work: ... + @overload + def reduce_scatter( + self, + output_tensors: list[Tensor], + input_tensors: list[list[Tensor]], + opts=..., + ) -> Work: ... + @overload + def reduce_scatter( + self, + output_tensors: Tensor, + input_tensor: list[Tensor], + ) -> Work: ... + def _reduce_scatter_base( + self, + outputTensor: Tensor, + inputTensor: Tensor, + opts: ReduceScatterOptions | None, + ) -> Work: ... + @overload + def alltoall_base( + self, + output_tensor: Tensor, + input_tensor: Tensor, + output_split_sizes: list[int], + input_split_sizes: list[int], + opts=..., + ) -> Work: ... + @overload + def alltoall_base( + self, + output: Tensor, + input: Tensor, + output_split_sizes: list[int], + input_split_sizes: list[int], + ) -> Work: ... + @overload + def alltoall( + self, + output_tensor: list[Tensor], + input_tensor: list[Tensor], + opts=..., + ) -> Work: ... + @overload + def alltoall( + self, + output: list[Tensor], + input: list[Tensor], + ) -> Work: ... + def send( + self, + tensors: list[Tensor], + dstRank: int, + tag: int, + ) -> Work: ... + def recv( + self, + tensors: list[Tensor], + srcRank: int, + tag: int, + ) -> Work: ... + def recv_anysource(self, tensors: list[Tensor], tag: int) -> Work: ... + def barrier(self, opts=...) -> Work: ... + def boxed(self) -> ScriptObject: ... + @staticmethod + def unbox(obj: ScriptObject) -> ProcessGroup: ... + def _start_coalescing(self, device: torch.device) -> None: ... + def _end_coalescing(self, device: torch.device) -> Work: ... + def _get_backend_name(self) -> str: ... + def _backend_id(self, backend_type: BackendType) -> int: ... + @property + def _device_types(self) -> list[torch.device]: ... + def _get_backend(self, device: torch.device) -> Backend: ... + def _register_backend( + self, + device: torch.device, + backend_type: BackendType, + backend: Backend | None, + ) -> None: ... + def _set_group_name(self, name: str) -> None: ... + def _set_group_desc(self, desc: str) -> None: ... + def name(self) -> str: ... + def _has_hooks(self) -> bool: ... + def _wait_for_pending_works(self) -> None: ... + def _set_sequence_number_for_group(self) -> None: ... + @property + def bound_device_id(self) -> torch.device | None: ... + @bound_device_id.setter + def bound_device_id(self, device: torch.device | None) -> None: ... + @property + def group_name(self) -> str: ... + @property + def group_desc(self) -> str: ... + +class ProcessGroupGloo(Backend): + class Device: ... + + class Options(ProcessGroup.Options): + devices: list[ProcessGroupGloo.Device] + threads: int + + def __init__(self): ... + + def __init__( + self, + store: Store, + rank: int, + size: int, + timeout: timedelta, + ) -> None: ... + @staticmethod + def create_device(hostname="", interface="") -> Device: ... + @staticmethod + def create_default_device() -> Device: ... + def _set_default_timeout(self, timeout) -> None: ... + +class _ProcessGroupWrapper(Backend): + def __init__(self, pg: Backend, gloo_pg: ProcessGroupGloo) -> None: ... + wrapped_pg: Backend + +class ProcessGroupNCCL(Backend): + class NCCLConfig: + blocking: int + cga_cluster_size: int + min_ctas: int + max_ctas: int + + class Options(ProcessGroup.Options): + config: ProcessGroupNCCL.NCCLConfig + is_high_priority_stream: bool + split_from: ProcessGroupNCCL + split_color: int + global_ranks_in_group: list[int] + group_name: str + + def __init__(self, is_high_priority_stream: bool = False): ... + + def __init__( + self, + store: Store, + rank: int, + size: int, + options: Options, + ) -> None: ... + def _group_start(self) -> None: ... + def _group_end(self) -> None: ... + def _set_default_timeout(self, timeout) -> None: ... + def _shutdown(self) -> None: ... + def perform_nocolor_split(self, device: torch.device) -> None: ... + def comm_split_count(self) -> int: ... + def _add_ephemeral_timeout(self, timeout: timedelta) -> None: ... + @property + def uid(self) -> int: ... + @property + def options(self) -> Options: ... # type: ignore[override] + +class ProcessGroupUCC(Backend): + def __init__( + self, + store: Store, + rank: int, + size: int, + timeout: timedelta, + ) -> None: ... + +class ProcessGroupMPI(Backend): + def __init__( + self, + rank: int, + size: int, + pgComm: int, + ) -> None: ... + @staticmethod + def create(ranks: list[int]) -> ProcessGroupMPI: ... + +def _compute_bucket_assignment_by_size( + tensors: list[Tensor], + bucket_size_limits: list[int], + expect_sparse_gradient: list[bool] = ..., + tensor_indices: list[int] = ..., +) -> tuple[list[list[int]], list[int]]: ... +def _broadcast_coalesced( + process_group: ProcessGroup, + tensors: list[Tensor], + buffer_size: int, + src: int, +): ... +def _test_python_store(store: Store): ... +def _verify_params_across_processes( + process_group: ProcessGroup, + params: list[Tensor], + logger: Logger | None, +): ... +def _make_nccl_premul_sum(factor: float | list[Tensor]) -> ReduceOp: ... +def _register_process_group( + group_name: str, + process_group: ProcessGroup, +) -> None: ... +def _resolve_process_group(group_name: str) -> ProcessGroup: ... +def _register_work(tensor: torch.Tensor, work: Work) -> ProcessGroup: ... +def _unregister_all_process_groups() -> None: ... +def _unregister_process_group(group_name: str) -> None: ... + +class _SymmetricMemory: + @staticmethod + def set_group_info( + group_name: str, + rank: int, + world_size: int, + store: Store, + ) -> None: ... + @staticmethod + def empty_strided_p2p( + size: torch.types._size, + stride: torch.types._size, + dtype: torch.dtype, + device: torch.device, + group_name: str, + ) -> torch.Tensor: ... + @property + def rank(self) -> int: ... + @property + def world_size(self) -> int: ... + @staticmethod + def rendezvous(tensor: torch.Tensor) -> _SymmetricMemory: ... + def get_buffer( + self, + rank: int, + sizes: torch.types._size, + dtype: torch.dtype, + storage_offset: int | None = 0, + ) -> torch.Tensor: ... + def barrier(self, channel: int = 0) -> None: ... + def put_signal(self, dst_rank: int, channel: int = 0) -> None: ... + def wait_signal(self, src_rank: int, channel: int = 0) -> None: ... + +class ProcessGroupCudaP2P(Backend): + class Options: + nccl_options: Optional[ProcessGroupNCCL.Options] + buffer_size: Optional[int] + + def __init__(self) -> None: ... + + def __init__( + self, + store: Store, + rank: int, + size: int, + options: ProcessGroupCudaP2P.Options, + ) -> None: ... + def is_p2p_available(self) -> bool: ... + def get_buffer_size(self) -> int: ... + def stream(self) -> torch.cuda.Stream: ... + def intra_node_barrier(self) -> Work: ... + def get_p2p_buffer( + self, + rank: int, + sizes: torch.Size, + dtype: torch.dtype, + storage_offset: Optional[int] = 0, + ) -> torch.Tensor: ... + def _shutdown(self) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi new file mode 100644 index 0000000000000000000000000000000000000000..48f636d8524637305cd9c758e9f22428d3b055cc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc.pyi @@ -0,0 +1,188 @@ +# mypy: allow-untyped-defs +# mypy: disable-error-code="type-arg" +from datetime import timedelta +from typing import Any, Generic, overload, TypeVar + +import torch +from torch._C import Future +from torch._C._autograd import ProfilerEvent +from torch._C._distributed_c10d import Store +from torch._C._profiler import ProfilerConfig + +# This module is defined in torch/csrc/distributed/rpc/init.cpp + +_DEFAULT_INIT_METHOD: str +_DEFAULT_NUM_WORKER_THREADS: int +_UNSET_RPC_TIMEOUT: float +_DEFAULT_RPC_TIMEOUT_SEC: float + +_T = TypeVar("_T") + +class RpcBackendOptions: + rpc_timeout: float + init_method: str + def __init__( + self, + rpc_timeout: float = ..., + init_method: str = ..., + ) -> None: ... + +class WorkerInfo: + def __init__(self, name: str, worker_id: int) -> None: ... + @property + def name(self) -> str: ... + @property + def id(self) -> int: ... + def __eq__(self, other: object) -> bool: ... + +class RpcAgent: + def join(self, shutdown: bool = False, timeout: float = 0): ... + def sync(self): ... + def shutdown(self): ... + @overload + def get_worker_info(self) -> WorkerInfo: ... + @overload + def get_worker_info(self, workerName: str) -> WorkerInfo: ... + def get_worker_infos(self) -> list[WorkerInfo]: ... + def _get_device_map(self, dst: WorkerInfo) -> dict[torch.device, torch.device]: ... + def get_debug_info(self) -> dict[str, str]: ... + def get_metrics(self) -> dict[str, str]: ... + +class PyRRef(Generic[_T]): + def __init__(self, value: _T, type_hint: Any = None) -> None: ... + def is_owner(self) -> bool: ... + def confirmed_by_owner(self) -> bool: ... + def owner(self) -> WorkerInfo: ... + def owner_name(self) -> str: ... + def to_here(self, timeout: float = ...) -> _T: ... + def local_value(self) -> Any: ... + def rpc_sync(self, timeout: float = ...) -> Any: ... + def rpc_async(self, timeout: float = ...) -> Any: ... + def remote(self, timeout: float = ...) -> Any: ... + def _serialize(self) -> tuple: ... + @staticmethod + def _deserialize(tp: tuple) -> PyRRef: ... + def _get_type(self) -> type[_T]: ... + def _get_future(self) -> Future[_T]: ... + def _get_profiling_future(self) -> Future[_T]: ... + def _set_profiling_future(self, profilingFuture: Future[_T]): ... + +class _TensorPipeRpcBackendOptionsBase(RpcBackendOptions): + num_worker_threads: int + device_maps: dict[str, dict[torch.device, torch.device]] + devices: list[torch.device] + def __init__( + self, + num_worker_threads: int, + _transports: list | None, + _channels: list | None, + rpc_timeout: float = ..., + init_method: str = ..., + device_maps: dict[str, dict[torch.device, torch.device]] = {}, # noqa: B006 + devices: list[torch.device] = [], # noqa: B006 + ) -> None: ... + def _set_device_map( + self, + to: str, + device_map: dict[torch.device, torch.device], + ): ... + +class TensorPipeAgent(RpcAgent): + def __init__( + self, + store: Store, + name: str, + worker_id: int, + world_size: int | None, + opts: _TensorPipeRpcBackendOptionsBase, + reverse_device_maps: dict[str, dict[torch.device, torch.device]], + devices: list[torch.device], + ) -> None: ... + def join(self, shutdown: bool = False, timeout: float = 0): ... + def shutdown(self): ... + @overload + def get_worker_info(self) -> WorkerInfo: ... + @overload + def get_worker_info(self, workerName: str) -> WorkerInfo: ... + @overload + def get_worker_info(self, id: int) -> WorkerInfo: ... + def get_worker_infos(self) -> list[WorkerInfo]: ... + def _get_device_map(self, dst: WorkerInfo) -> dict[torch.device, torch.device]: ... + def _update_group_membership( + self, + worker_info: WorkerInfo, + my_devices: list[torch.device], + reverse_device_map: dict[str, dict[torch.device, torch.device]], + is_join: bool, + ): ... + def _get_backend_options(self) -> _TensorPipeRpcBackendOptionsBase: ... + @property + def is_static_group(self) -> bool: ... + @property + def store(self) -> Store: ... + +def _is_current_rpc_agent_set() -> bool: ... +def _get_current_rpc_agent() -> RpcAgent: ... +def _set_and_start_rpc_agent(agent: RpcAgent): ... +def _reset_current_rpc_agent(): ... +def _delete_all_user_and_unforked_owner_rrefs(timeout: timedelta = ...): ... +def _destroy_rref_context(ignoreRRefLeak: bool): ... +def _rref_context_get_debug_info() -> dict[str, str]: ... +def _cleanup_python_rpc_handler(): ... +def _invoke_rpc_builtin( + dst: WorkerInfo, + opName: str, + rpcTimeoutSeconds: float, + *args: Any, + **kwargs: Any, +): ... +def _invoke_rpc_python_udf( + dst: WorkerInfo, + pickledPythonUDF: str, + tensors: list[torch.Tensor], + rpcTimeoutSeconds: float, + isAsyncExecution: bool, +): ... +def _invoke_rpc_torchscript( + dstWorkerName: str, + qualifiedNameStr: str, + argsTuple: tuple, + kwargsDict: dict, + rpcTimeoutSeconds: float, + isAsyncExecution: bool, +): ... +def _invoke_remote_builtin( + dst: WorkerInfo, + opName: str, + rpcTimeoutSeconds: float, + *args: Any, + **kwargs: Any, +): ... +def _invoke_remote_python_udf( + dst: WorkerInfo, + pickledPythonUDF: str, + tensors: list[torch.Tensor], + rpcTimeoutSeconds: float, + isAsyncExecution: bool, +): ... +def _invoke_remote_torchscript( + dstWorkerName: WorkerInfo, + qualifiedNameStr: str, + rpcTimeoutSeconds: float, + isAsyncExecution: bool, + *args: Any, + **kwargs: Any, +): ... +def get_rpc_timeout() -> float: ... +def enable_gil_profiling(flag: bool): ... +def _set_rpc_timeout(rpcTimeoutSeconds: float): ... + +class RemoteProfilerManager: + @staticmethod + def set_current_profiling_key(key: str): ... + +def _enable_server_process_global_profiler(new_config: ProfilerConfig): ... +def _disable_server_process_global_profiler() -> list[list[list[ProfilerEvent]]]: ... +def _set_profiler_node_id(default_node_id: int): ... +def _enable_jit_rref_pickle(): ... +def _disable_jit_rref_pickle(): ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi new file mode 100644 index 0000000000000000000000000000000000000000..9313281027dbd89ae65ebe65c95a1d0c38593b80 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_distributed_rpc_testing.pyi @@ -0,0 +1,32 @@ +import torch +from torch._C._distributed_c10d import Store +from torch._C._distributed_rpc import _TensorPipeRpcBackendOptionsBase, TensorPipeAgent + +# This module is defined in torch/csrc/distributed/rpc/testing/init.cpp + +class FaultyTensorPipeRpcBackendOptions(_TensorPipeRpcBackendOptionsBase): + def __init__( + self, + num_worker_threads: int, + rpc_timeout: float, + init_method: str, + messages_to_fail: list[str], + messages_to_delay: dict[str, float], + num_fail_sends: int, + ) -> None: ... + num_send_recv_threads: int + messages_to_fail: list[str] + messages_to_delay: dict[str, float] + num_fail_sends: int + +class FaultyTensorPipeAgent(TensorPipeAgent): + def __init__( + self, + store: Store, + name: str, + rank: int, + world_size: int, + options: FaultyTensorPipeRpcBackendOptions, + reverse_device_maps: dict[str, dict[torch.device, torch.device]], + devices: list[torch.device], + ) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functions.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functions.pyi new file mode 100644 index 0000000000000000000000000000000000000000..38a6bb8b39faa3e43f585b23a183e4c95b16479d --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functions.pyi @@ -0,0 +1,11 @@ +from typing import AnyStr + +from torch import Tensor + +class UndefinedGrad: + def __init__(self) -> None: ... + def __call__(self, *inputs: Tensor) -> list[Tensor]: ... + +class DelayedError: + def __init__(self, msg: AnyStr, num_inputs: int) -> None: ... + def __call__(self, inputs: list[Tensor]) -> list[Tensor]: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functorch.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functorch.pyi new file mode 100644 index 0000000000000000000000000000000000000000..c5edf2deea1c6748eae5f9aaa8d23ae224d292c5 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_functorch.pyi @@ -0,0 +1,83 @@ +# mypy: allow-untyped-defs +from enum import Enum + +from torch import Tensor + +# Defined in torch/csrc/functorch/init.cpp + +def _set_dynamic_layer_keys_included(included: bool) -> None: ... +def get_unwrapped(tensor: Tensor) -> Tensor: ... +def is_batchedtensor(tensor: Tensor) -> bool: ... +def is_functionaltensor(tensor: Tensor) -> bool: ... +def is_functorch_wrapped_tensor(tensor: Tensor) -> bool: ... +def is_gradtrackingtensor(tensor: Tensor) -> bool: ... +def is_legacy_batchedtensor(tensor: Tensor) -> bool: ... +def maybe_get_bdim(tensor: Tensor) -> int: ... +def maybe_get_level(tensor: Tensor) -> int: ... +def maybe_current_level() -> int | None: ... +def unwrap_if_dead(tensor: Tensor) -> Tensor: ... +def _unwrap_for_grad(tensor: Tensor, level: int) -> Tensor: ... +def _wrap_for_grad(tensor: Tensor, level: int) -> Tensor: ... +def _unwrap_batched(tensor: Tensor, level: int) -> tuple[Tensor, int | None]: ... +def current_level() -> int: ... +def count_jvp_interpreters() -> int: ... +def _add_batch_dim(tensor: Tensor, bdim: int, level: int) -> Tensor: ... +def set_single_level_autograd_function_allowed(allowed: bool) -> None: ... +def get_single_level_autograd_function_allowed() -> bool: ... +def _unwrap_functional_tensor(tensor: Tensor, reapply_views: bool) -> Tensor: ... +def _wrap_functional_tensor(tensor: Tensor, level: int) -> Tensor: ... +def _vmap_increment_nesting(batch_size: int, randomness: str) -> int: ... +def _vmap_decrement_nesting() -> int: ... +def _grad_increment_nesting() -> int: ... +def _grad_decrement_nesting() -> int: ... +def _jvp_increment_nesting() -> int: ... +def _jvp_decrement_nesting() -> int: ... + +# Defined in aten/src/ATen/functorch/Interpreter.h +class TransformType(Enum): + Torch: TransformType = ... + Vmap: TransformType = ... + Grad: TransformType = ... + Jvp: TransformType = ... + Functionalize: TransformType = ... + +class RandomnessType(Enum): + Error: TransformType = ... + Same: TransformType = ... + Different: TransformType = ... + +class CInterpreter: + def key(self) -> TransformType: ... + def level(self) -> int: ... + +class CGradInterpreterPtr: + def __init__(self, interpreter: CInterpreter) -> None: ... + def lift(self, Tensor) -> Tensor: ... + def prevGradMode(self) -> bool: ... + +class CJvpInterpreterPtr: + def __init__(self, interpreter: CInterpreter) -> None: ... + def lift(self, Tensor) -> Tensor: ... + def prevFwdGradMode(self) -> bool: ... + +class CFunctionalizeInterpreterPtr: + def __init__(self, interpreter: CInterpreter) -> None: ... + def key(self) -> TransformType: ... + def level(self) -> int: ... + def functionalizeAddBackViews(self) -> bool: ... + +class CVmapInterpreterPtr: + def __init__(self, interpreter: CInterpreter) -> None: ... + def key(self) -> TransformType: ... + def level(self) -> int: ... + def batchSize(self) -> int: ... + def randomness(self) -> RandomnessType: ... + +class DynamicLayer: ... + +def get_dynamic_layer_stack_depth() -> int: ... +def get_interpreter_stack() -> list[CInterpreter]: ... +def peek_interpreter_stack() -> CInterpreter: ... +def pop_dynamic_layer_stack() -> DynamicLayer: ... +def pop_dynamic_layer_stack_and_undo_to_depth(int) -> None: ... +def push_dynamic_layer_stack(dl: DynamicLayer) -> int: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_instruction_counter.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_instruction_counter.pyi new file mode 100644 index 0000000000000000000000000000000000000000..4e3c27567eb228b8763a6d2578db827b1ffbde41 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_instruction_counter.pyi @@ -0,0 +1,4 @@ +# Defined in torch/csrc/instruction_counter/Module.cpp + +def start() -> int: ... +def end(id: int) -> int: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_itt.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_itt.pyi new file mode 100644 index 0000000000000000000000000000000000000000..8a54437f527b994821133532f26598c951631b28 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_itt.pyi @@ -0,0 +1,5 @@ +# Defined in torch/csrc/itt.cpp +def is_available() -> None: ... +def rangePush(message: str) -> None: ... +def rangePop() -> None: ... +def mark(message: str) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy.pyi new file mode 100644 index 0000000000000000000000000000000000000000..6591aa0da843efd3a1811cd67d7ca741fd3351fc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy.pyi @@ -0,0 +1,27 @@ +# mypy: allow-untyped-defs +from torch import Tensor + +# defined in torch/csrc/lazy/python/init.cpp +def _mark_step(device: str, devices: list[str], wait: bool): ... +def _wait_device_ops(devices: list[str]): ... +def _reset_metrics(): ... +def _counter_names() -> list[str]: ... +def _counter_value(name: str) -> int: ... +def _metrics_report() -> str: ... +def _get_graph_hash(tensors: list[Tensor]) -> str: ... +def _sync_multi( + tensors: list[Tensor], + devices: list[str], + wait: bool = True, + sync_ltc_data: bool = True, +): ... +def _get_tensor_id(tensor: Tensor) -> int: ... +def _get_tensors_text(tensors: list[Tensor]) -> str: ... +def _get_tensors_dot(tensors: list[Tensor]) -> str: ... +def _get_tensors_backend(tensors: list[Tensor]) -> str: ... +def _get_force_fallback() -> str: ... +def _set_force_fallback(newval: str): ... +def _clear_ir_cache(): ... +def _dump_ir_cache(filename: str): ... +def _set_reuse_ir(val: bool): ... +def _get_default_device_type(): ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi new file mode 100644 index 0000000000000000000000000000000000000000..cd1bef2de069dfc93cd2b6243ab97d550d75f086 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_lazy_ts_backend.pyi @@ -0,0 +1,12 @@ +# mypy: allow-untyped-defs +# defined in torch/csrc/lazy/python/init.cpp + +from typing import Any + +from torch import Tensor + +def _init(): ... +def _get_tensors_ts_device_data_node( + tensors: list[Tensor], +) -> tuple[list[int], list[Any]]: ... +def _run_cached_graph(hash_str: str, graph_inputs: list[Any]) -> list[Tensor]: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_monitor.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_monitor.pyi new file mode 100644 index 0000000000000000000000000000000000000000..25485a864bba72cb2b6c9f9b75dc1d12018c4566 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_monitor.pyi @@ -0,0 +1,44 @@ +# Defined in torch/csrc/monitor/python_init.cpp + +import datetime +from enum import Enum +from typing import Callable + +class Aggregation(Enum): + VALUE = ... + MEAN = ... + COUNT = ... + SUM = ... + MAX = ... + MIN = ... + +class Stat: + name: str + count: int + def __init__( + self, + name: str, + aggregations: list[Aggregation], + window_size: int, + max_samples: int = -1, + ) -> None: ... + def add(self, v: float) -> None: ... + def get(self) -> dict[Aggregation, float]: ... + +class Event: + name: str + timestamp: datetime.datetime + data: dict[str, int | float | bool | str] + def __init__( + self, + name: str, + timestamp: datetime.datetime, + data: dict[str, int | float | bool | str], + ) -> None: ... + +def log_event(e: Event) -> None: ... + +class EventHandlerHandle: ... + +def register_event_handler(handler: Callable[[Event], None]) -> EventHandlerHandle: ... +def unregister_event_handler(handle: EventHandlerHandle) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nn.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nn.pyi new file mode 100644 index 0000000000000000000000000000000000000000..8472a309b99c6e4d8f3fde14879ffaaf40b3e208 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nn.pyi @@ -0,0 +1,89 @@ +# @generated by tools/pyi/gen_pyi.py from torch/_C/_nn.pyi.in +# mypy: disable-error-code="type-arg" + +from typing import List, Literal, Optional, overload, Sequence, Tuple, Union + +from torch import memory_format, Tensor +from torch.types import _bool, _device, _dtype, _int, _size + +# Defined in tools/autograd/templates/python_nn_functions.cpp + +def adaptive_max_pool2d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ... +def adaptive_max_pool3d(input: Tensor, output_size: Union[_int, _size]) -> Tuple[Tensor, Tensor]: ... +def avg_pool2d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ... +def avg_pool3d(input: Tensor, kernel_size: Union[_int, _size], stride: Optional[Union[_int, _size]] = None, padding: Union[_int, _size] = 0, ceil_mode: bool = False, count_include_pad: bool = True, divisor_override: Optional[int] = None) -> Tensor: ... +def elu_(input: Tensor, alpha: float = ...) -> Tensor: ... +def fractional_max_pool2d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ... +def fractional_max_pool3d(input: Tensor, kernel_size: Union[_int, _size], output_size: Union[_int, _size], _random_samples: Tensor) -> Tuple[Tensor, Tensor]: ... +def gelu(input: Tensor, approximate: str = ...) -> Tensor: ... +def hardsigmoid(input: Tensor, *, out: Optional[Tensor] = None) -> Tensor: ... +def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ... +def hardtanh_(input: Tensor, min_val: float = ..., max_val: float = ...) -> Tensor: ... +def leaky_relu(input: Tensor, negative_slope: float = ..., *, out: Optional[Tensor] = None) -> Tensor: ... +def leaky_relu_(input: Tensor, negative_slope: float = ...) -> Tensor: ... +def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor: ... +def log_sigmoid(input: Tensor) -> Tensor: ... +def one_hot(tensor: Tensor, num_classes: int = ...) -> Tensor: ... +def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: Optional[float] = None) -> Tensor: ... +def scaled_dot_product_attention(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, dropout_p: float = 0.0, is_causal: bool = False, scale: Optional[float] = None, enable_gqa: bool = False) -> Tensor: ... +def softplus(input: Tensor, beta: float = ..., threshold: float = ...) -> Tensor: ... +def softshrink(input: Tensor, lambd: float = ...) -> Tensor: ... + +# Defined in aten/src/ATen/native/mkldnn/Linear.cpp +def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ... + +# Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp +def mkldnn_reorder_conv2d_weight( + self: Tensor, + padding: List, + stride: List, + dilatation: List, + groups: int, +) -> Tensor: ... +def mkldnn_reorder_conv3d_weight( + self: Tensor, + padding: List, + stride: List, + dilatation: List, + groups: int, +) -> Tensor: ... + +# Defined in aten/src/ATen/native/mkldnn/Prelu.cpp +def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ... + +# Defined at tools/autograd/templates/python_nn_functions.cpp +@overload +def _parse_to( + device: _device, + dtype: _dtype, + non_blocking: _bool, + copy: _bool, + *, + memory_format: memory_format, +) -> Tuple[_device, _dtype, _bool, memory_format]: ... +@overload +def _parse_to( + dtype: _dtype, + non_blocking: _bool, + copy: _bool, + *, + memory_format: memory_format, +) -> Tuple[_device, _dtype, _bool, memory_format]: ... +@overload +def _parse_to( + tensor: Tensor, + non_blocking: _bool, + copy: _bool, + *, + memory_format: memory_format, +) -> Tuple[_device, _dtype, _bool, memory_format]: ... + +# Defined in aten/src/ATen/native/PackedSequence.cpp +def pad_sequence( + sequences: Union[List[Tensor], Tuple[Tensor, ...]], + batch_first: bool = False, + padding_value: float = 0.0, + padding_side: Union[Literal["left", "right"], str] = "right", +) -> Tensor: ... +def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ... +def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nvtx.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nvtx.pyi new file mode 100644 index 0000000000000000000000000000000000000000..79c9cc2c4b9bfe1d00a09c4d45e3d8e2c6f56995 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_nvtx.pyi @@ -0,0 +1,7 @@ +# mypy: allow-untyped-defs +# Defined in torch/csrc/cuda/shared/nvtx.cpp +def rangePushA(message: str) -> int: ... +def rangePop() -> int: ... +def rangeStartA(message: str) -> int: ... +def rangeEnd(int) -> None: ... +def markA(message: str) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_onnx.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_onnx.pyi new file mode 100644 index 0000000000000000000000000000000000000000..349e0b9ad12f0dd9306fde89a40718f26b158f0e --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_onnx.pyi @@ -0,0 +1,39 @@ +# Defined in torch/csrc/onnx/init.cpp + +from enum import Enum + +PRODUCER_VERSION: str + +class TensorProtoDataType(Enum): + UNDEFINED = ... + FLOAT = ... + UINT8 = ... + INT8 = ... + UINT16 = ... + INT16 = ... + INT32 = ... + INT64 = ... + STRING = ... + BOOL = ... + FLOAT16 = ... + DOUBLE = ... + UINT32 = ... + UINT64 = ... + COMPLEX64 = ... + COMPLEX128 = ... + BFLOAT16 = ... + FLOAT8E5M2 = ... + FLOAT8E4M3FN = ... + FLOAT8E5M2FNUZ = ... + FLOAT8E4M3FNUZ = ... + +class OperatorExportTypes(Enum): + ONNX = ... + ONNX_ATEN = ... + ONNX_ATEN_FALLBACK = ... + ONNX_FALLTHROUGH = ... + +class TrainingMode(Enum): + EVAL = ... + PRESERVE = ... + TRAINING = ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_profiler.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_profiler.pyi new file mode 100644 index 0000000000000000000000000000000000000000..3c1b74c681a11e31f7581622b7379e48ff8af44c --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_profiler.pyi @@ -0,0 +1,244 @@ +from enum import Enum +from typing import Any, Literal +from typing_extensions import TypeAlias + +from torch._C import device, dtype, layout + +# defined in torch/csrc/profiler/python/init.cpp + +class RecordScope(Enum): + FUNCTION = ... + BACKWARD_FUNCTION = ... + TORCHSCRIPT_FUNCTION = ... + KERNEL_FUNCTION_DTYPE = ... + CUSTOM_CLASS = ... + BUILD_FEATURE = ... + LITE_INTERPRETER = ... + USER_SCOPE = ... + STATIC_RUNTIME_OP = ... + STATIC_RUNTIME_MODEL = ... + +class ProfilerState(Enum): + Disable = ... + CPU = ... + CUDA = ... + NVTX = ... + ITT = ... + KINETO = ... + KINETO_GPU_FALLBACK = ... + KINETO_PRIVATEUSE1_FALLBACK = ... + KINETO_PRIVATEUSE1 = ... + +class ActiveProfilerType(Enum): + NONE = ... + LEGACY = ... + KINETO = ... + NVTX = ... + ITT = ... + +class ProfilerActivity(Enum): + CPU = ... + CUDA = ... + XPU = ... + MTIA = ... + PrivateUse1 = ... + +class _EventType(Enum): + TorchOp = ... + Backend = ... + Allocation = ... + OutOfMemory = ... + PyCall = ... + PyCCall = ... + Kineto = ... + +class _ExperimentalConfig: + def __init__( + self, + profiler_metrics: list[str] = ..., + profiler_measure_per_kernel: bool = ..., + verbose: bool = ..., + performance_events: list[str] = ..., + enable_cuda_sync_events: bool = ..., + ) -> None: ... + +class ProfilerConfig: + def __init__( + self, + state: ProfilerState, + report_input_shapes: bool, + profile_memory: bool, + with_stack: bool, + with_flops: bool, + with_modules: bool, + experimental_config: _ExperimentalConfig, + ) -> None: ... + +class _ProfilerEvent: + start_tid: int + start_time_ns: int + children: list[_ProfilerEvent] + + # TODO(robieta): remove in favor of `self.typed` + extra_fields: ( + _ExtraFields_TorchOp + | _ExtraFields_Backend + | _ExtraFields_Allocation + | _ExtraFields_OutOfMemory + | _ExtraFields_PyCall + | _ExtraFields_PyCCall + | _ExtraFields_Kineto + ) + + @property + def typed( + self, + ) -> ( + tuple[Literal[_EventType.TorchOp], _ExtraFields_TorchOp] + | tuple[Literal[_EventType.Backend], _ExtraFields_Backend] + | tuple[Literal[_EventType.Allocation], _ExtraFields_Allocation] + | tuple[Literal[_EventType.OutOfMemory], _ExtraFields_OutOfMemory] + | tuple[Literal[_EventType.PyCall], _ExtraFields_PyCall] + | tuple[Literal[_EventType.PyCCall], _ExtraFields_PyCCall] + | tuple[Literal[_EventType.Kineto], _ExtraFields_Kineto] + ): ... + @property + def name(self) -> str: ... + @property + def tag(self) -> _EventType: ... + @property + def id(self) -> int: ... + @property + def parent(self) -> _ProfilerEvent | None: ... + @property + def correlation_id(self) -> int: ... + @property + def end_time_ns(self) -> int: ... + @property + def duration_time_ns(self) -> int: ... + +class _TensorMetadata: + impl_ptr: int | None + storage_data_ptr: int | None + id: int | None + + @property + def allocation_id(self) -> int | None: ... + @property + def layout(self) -> layout: ... + @property + def device(self) -> device: ... + @property + def dtype(self) -> dtype: ... + @property + def sizes(self) -> list[int]: ... + @property + def strides(self) -> list[int]: ... + +Scalar: TypeAlias = int | float | bool | complex +Input: TypeAlias = _TensorMetadata | list[_TensorMetadata] | Scalar | None + +class _ExtraFields_TorchOp: + name: str + sequence_number: int + allow_tf32_cublas: bool + + @property + def inputs(self) -> list[Input]: ... + @property + def scope(self) -> RecordScope: ... + +class _ExtraFields_Backend: ... + +class _ExtraFields_Allocation: + ptr: int + id: int | None + alloc_size: int + total_allocated: int + total_reserved: int + + @property + def allocation_id(self) -> int | None: ... + @property + def device(self) -> device: ... + +class _ExtraFields_OutOfMemory: ... + +class _PyFrameState: + line_number: int + function_name: str + + @property + def file_name(self) -> str: ... + +class _NNModuleInfo: + @property + def self_ptr(self) -> int: ... + @property + def cls_ptr(self) -> int: ... + @property + def cls_name(self) -> str: ... + @property + def parameters( + self, + ) -> list[tuple[str, _TensorMetadata, _TensorMetadata | None]]: ... + +class _OptimizerInfo: + @property + def parameters( + self, + ) -> list[ + tuple[ + # Parameter + _TensorMetadata, + # + # Gradient (if present during optimizer.step()) + _TensorMetadata | None, + # + # Optimizer state for Parameter as (name, tensor) pairs + list[tuple[str, _TensorMetadata]], + ] + ]: ... + +class _ExtraFields_PyCCall: + @property + def caller(self) -> _PyFrameState: ... + +class _ExtraFields_PyCall: + @property + def callsite(self) -> _PyFrameState: ... + @property + def caller(self) -> _PyFrameState: ... + @property + def module(self) -> _NNModuleInfo | None: ... + @property + def optimizer(self) -> _OptimizerInfo | None: ... + +class _ExtraFields_Kineto: ... + +def _add_execution_trace_observer(output_file_path: str) -> bool: ... +def _remove_execution_trace_observer() -> None: ... +def _enable_execution_trace_observer() -> None: ... +def _disable_execution_trace_observer() -> None: ... +def _set_record_concrete_inputs_enabled_val(val: bool) -> None: ... +def _set_fwd_bwd_enabled_val(val: bool) -> None: ... +def _set_cuda_sync_enabled_val(val: bool) -> None: ... + +class CapturedTraceback: ... + +def gather_traceback(python: bool, script: bool, cpp: bool) -> CapturedTraceback: ... + +# The Dict has name, filename, line +def symbolize_tracebacks( + to_symbolize: list[CapturedTraceback], +) -> list[list[dict[str, str]]]: ... + +class _RecordFunctionFast: + def __init__( + self, + name: str, + input_values: list | tuple | None = None, + keyword_values: dict | None = None, + ) -> None: ... + def __enter__(self) -> None: ... + def __exit__(self, *args: Any) -> None: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_verbose.pyi b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_verbose.pyi new file mode 100644 index 0000000000000000000000000000000000000000..2388ce2bb8a5edd4c7640c374537e71607e5b72e --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_C/_verbose.pyi @@ -0,0 +1,3 @@ +# Defined in torch/csrc/utils/verbose.cpp +def mkl_set_verbose(enable: int) -> int: ... +def mkldnn_set_verbose(level: int) -> int: ... diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__init__.py b/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b08067bdcf45a17dbcf3e032b4156315d9e2981b --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__init__.py @@ -0,0 +1,53 @@ +from __future__ import annotations + +from typing import Generic, TypeVar + +import torch + +__all__ = ['Await'] + +W = TypeVar("W") + +class _PyAwaitMeta(type(torch._C._Await), type(Generic)): # type: ignore[misc, no-redef] + pass + +class _Await(torch._C._Await, Generic[W], metaclass=_PyAwaitMeta): + r""" + Wrapper around a ``torch._C.Await`` which encapsulates delayed execution + of a callable. All manipulations happen with functions ``torch.jit._awaitable``, + ``torch.jit._awaitable_wait``, ``torch.jit._awaitable_nowait``. + + Torch scriptable manipulations: + ``torch.jit._awaitable(func, *args)`` + Creates ``Await[W]`` object, where W is return type of func. + + Returns: + ``torch.jit._awaitable_wait(Await[W])`` + Returns the result of the function, specified at ``_awaitable``, with specified arguments. + + Returns: + The result of type ``W`` of the function call. The result is owned by ``Await[W]`` + and returned on all following ``_awaitable_wait`` calls. + + + ``torch.jit._awaitable_nowait(W)`` + Returns: + Trivial ``Await[W]`` with specified result. + + + Only in eager mode: + ``fn() -> Callable[Tuple[Any], W]`` + Returns: + Specified at ``_awaitable`` python function ``func``. + + ``args() -> Tuple[Any]`` + Returns: + Specified at ``_awaitable`` python args. + + ``is_nowait() -> _bool`` + Returns: + ``True`` if this object was created via ``_awaitable_nowait`` call (trivial `Await[W]`). + + In eager mode ``Await[W]`` can be used as ``W`` i.e. attributes of W can be called on ``Await[W]``, + ``_awaitable_wait()`` call will be transparently added. + """ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__pycache__/__init__.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9eee530724e883db754691eb0b42bd1c3ae10d50 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/_awaits/__pycache__/__init__.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__init__.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..fbc2775468d540113beae24a21219778e55f4dad --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__init__.py @@ -0,0 +1,172 @@ +r""" +The ``distributions`` package contains parameterizable probability distributions +and sampling functions. This allows the construction of stochastic computation +graphs and stochastic gradient estimators for optimization. This package +generally follows the design of the `TensorFlow Distributions`_ package. + +.. _`TensorFlow Distributions`: + https://arxiv.org/abs/1711.10604 + +It is not possible to directly backpropagate through random samples. However, +there are two main methods for creating surrogate functions that can be +backpropagated through. These are the score function estimator/likelihood ratio +estimator/REINFORCE and the pathwise derivative estimator. REINFORCE is commonly +seen as the basis for policy gradient methods in reinforcement learning, and the +pathwise derivative estimator is commonly seen in the reparameterization trick +in variational autoencoders. Whilst the score function only requires the value +of samples :math:`f(x)`, the pathwise derivative requires the derivative +:math:`f'(x)`. The next sections discuss these two in a reinforcement learning +example. For more details see +`Gradient Estimation Using Stochastic Computation Graphs`_ . + +.. _`Gradient Estimation Using Stochastic Computation Graphs`: + https://arxiv.org/abs/1506.05254 + +Score function +^^^^^^^^^^^^^^ + +When the probability density function is differentiable with respect to its +parameters, we only need :meth:`~torch.distributions.Distribution.sample` and +:meth:`~torch.distributions.Distribution.log_prob` to implement REINFORCE: + +.. math:: + + \Delta\theta = \alpha r \frac{\partial\log p(a|\pi^\theta(s))}{\partial\theta} + +where :math:`\theta` are the parameters, :math:`\alpha` is the learning rate, +:math:`r` is the reward and :math:`p(a|\pi^\theta(s))` is the probability of +taking action :math:`a` in state :math:`s` given policy :math:`\pi^\theta`. + +In practice we would sample an action from the output of a network, apply this +action in an environment, and then use ``log_prob`` to construct an equivalent +loss function. Note that we use a negative because optimizers use gradient +descent, whilst the rule above assumes gradient ascent. With a categorical +policy, the code for implementing REINFORCE would be as follows:: + + probs = policy_network(state) + # Note that this is equivalent to what used to be called multinomial + m = Categorical(probs) + action = m.sample() + next_state, reward = env.step(action) + loss = -m.log_prob(action) * reward + loss.backward() + +Pathwise derivative +^^^^^^^^^^^^^^^^^^^ + +The other way to implement these stochastic/policy gradients would be to use the +reparameterization trick from the +:meth:`~torch.distributions.Distribution.rsample` method, where the +parameterized random variable can be constructed via a parameterized +deterministic function of a parameter-free random variable. The reparameterized +sample therefore becomes differentiable. The code for implementing the pathwise +derivative would be as follows:: + + params = policy_network(state) + m = Normal(*params) + # Any distribution with .has_rsample == True could work based on the application + action = m.rsample() + next_state, reward = env.step(action) # Assuming that reward is differentiable + loss = -reward + loss.backward() +""" + +from . import transforms +from .bernoulli import Bernoulli +from .beta import Beta +from .binomial import Binomial +from .categorical import Categorical +from .cauchy import Cauchy +from .chi2 import Chi2 +from .constraint_registry import biject_to, transform_to +from .continuous_bernoulli import ContinuousBernoulli +from .dirichlet import Dirichlet +from .distribution import Distribution +from .exp_family import ExponentialFamily +from .exponential import Exponential +from .fishersnedecor import FisherSnedecor +from .gamma import Gamma +from .geometric import Geometric +from .gumbel import Gumbel +from .half_cauchy import HalfCauchy +from .half_normal import HalfNormal +from .independent import Independent +from .inverse_gamma import InverseGamma +from .kl import _add_kl_info, kl_divergence, register_kl +from .kumaraswamy import Kumaraswamy +from .laplace import Laplace +from .lkj_cholesky import LKJCholesky +from .log_normal import LogNormal +from .logistic_normal import LogisticNormal +from .lowrank_multivariate_normal import LowRankMultivariateNormal +from .mixture_same_family import MixtureSameFamily +from .multinomial import Multinomial +from .multivariate_normal import MultivariateNormal +from .negative_binomial import NegativeBinomial +from .normal import Normal +from .one_hot_categorical import OneHotCategorical, OneHotCategoricalStraightThrough +from .pareto import Pareto +from .poisson import Poisson +from .relaxed_bernoulli import RelaxedBernoulli +from .relaxed_categorical import RelaxedOneHotCategorical +from .studentT import StudentT +from .transformed_distribution import TransformedDistribution +from .transforms import * # noqa: F403 +from .uniform import Uniform +from .von_mises import VonMises +from .weibull import Weibull +from .wishart import Wishart + + +_add_kl_info() +del _add_kl_info + +__all__ = [ + "Bernoulli", + "Beta", + "Binomial", + "Categorical", + "Cauchy", + "Chi2", + "ContinuousBernoulli", + "Dirichlet", + "Distribution", + "Exponential", + "ExponentialFamily", + "FisherSnedecor", + "Gamma", + "Geometric", + "Gumbel", + "HalfCauchy", + "HalfNormal", + "Independent", + "InverseGamma", + "Kumaraswamy", + "LKJCholesky", + "Laplace", + "LogNormal", + "LogisticNormal", + "LowRankMultivariateNormal", + "MixtureSameFamily", + "Multinomial", + "MultivariateNormal", + "NegativeBinomial", + "Normal", + "OneHotCategorical", + "OneHotCategoricalStraightThrough", + "Pareto", + "RelaxedBernoulli", + "RelaxedOneHotCategorical", + "StudentT", + "Poisson", + "Uniform", + "VonMises", + "Weibull", + "Wishart", + "TransformedDistribution", + "biject_to", + "kl_divergence", + "register_kl", + "transform_to", +] +__all__.extend(transforms.__all__) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/dirichlet.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/dirichlet.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..779bb4c0306c2641522cf713f67081df656079e3 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/dirichlet.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98e2e3b90af28095b6ab9053850f879d52c9d742 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/lkj_cholesky.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/mixture_same_family.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/mixture_same_family.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0246eeb6e14b7c3f6e90b5727413192252d917ab Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/mixture_same_family.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/von_mises.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/von_mises.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c77c5c7743ef238c16dca37f64673cc94d0ecb5b Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/__pycache__/von_mises.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/bernoulli.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/bernoulli.py new file mode 100644 index 0000000000000000000000000000000000000000..8bfcb500b4eb505ffcb43aad9fb124881935e71c --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/bernoulli.py @@ -0,0 +1,132 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch import nan +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import ( + broadcast_all, + lazy_property, + logits_to_probs, + probs_to_logits, +) +from torch.nn.functional import binary_cross_entropy_with_logits + + +__all__ = ["Bernoulli"] + + +class Bernoulli(ExponentialFamily): + r""" + Creates a Bernoulli distribution parameterized by :attr:`probs` + or :attr:`logits` (but not both). + + Samples are binary (0 or 1). They take the value `1` with probability `p` + and `0` with probability `1 - p`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Bernoulli(torch.tensor([0.3])) + >>> m.sample() # 30% chance 1; 70% chance 0 + tensor([ 0.]) + + Args: + probs (Number, Tensor): the probability of sampling `1` + logits (Number, Tensor): the log-odds of sampling `1` + """ + arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} + support = constraints.boolean + has_enumerate_support = True + _mean_carrier_measure = 0 + + def __init__(self, probs=None, logits=None, validate_args=None): + if (probs is None) == (logits is None): + raise ValueError( + "Either `probs` or `logits` must be specified, but not both." + ) + if probs is not None: + is_scalar = isinstance(probs, Number) + (self.probs,) = broadcast_all(probs) + else: + is_scalar = isinstance(logits, Number) + (self.logits,) = broadcast_all(logits) + self._param = self.probs if probs is not None else self.logits + if is_scalar: + batch_shape = torch.Size() + else: + batch_shape = self._param.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Bernoulli, _instance) + batch_shape = torch.Size(batch_shape) + if "probs" in self.__dict__: + new.probs = self.probs.expand(batch_shape) + new._param = new.probs + if "logits" in self.__dict__: + new.logits = self.logits.expand(batch_shape) + new._param = new.logits + super(Bernoulli, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._param.new(*args, **kwargs) + + @property + def mean(self): + return self.probs + + @property + def mode(self): + mode = (self.probs >= 0.5).to(self.probs) + mode[self.probs == 0.5] = nan + return mode + + @property + def variance(self): + return self.probs * (1 - self.probs) + + @lazy_property + def logits(self): + return probs_to_logits(self.probs, is_binary=True) + + @lazy_property + def probs(self): + return logits_to_probs(self.logits, is_binary=True) + + @property + def param_shape(self): + return self._param.size() + + def sample(self, sample_shape=torch.Size()): + shape = self._extended_shape(sample_shape) + with torch.no_grad(): + return torch.bernoulli(self.probs.expand(shape)) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + logits, value = broadcast_all(self.logits, value) + return -binary_cross_entropy_with_logits(logits, value, reduction="none") + + def entropy(self): + return binary_cross_entropy_with_logits( + self.logits, self.probs, reduction="none" + ) + + def enumerate_support(self, expand=True): + values = torch.arange(2, dtype=self._param.dtype, device=self._param.device) + values = values.view((-1,) + (1,) * len(self._batch_shape)) + if expand: + values = values.expand((-1,) + self._batch_shape) + return values + + @property + def _natural_params(self): + return (torch.logit(self.probs),) + + def _log_normalizer(self, x): + return torch.log1p(torch.exp(x)) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/binomial.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/binomial.py new file mode 100644 index 0000000000000000000000000000000000000000..18b267ea27fd9b93dbda2b9a809c3a135ca3f1f0 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/binomial.py @@ -0,0 +1,167 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import ( + broadcast_all, + lazy_property, + logits_to_probs, + probs_to_logits, +) + + +__all__ = ["Binomial"] + + +def _clamp_by_zero(x): + # works like clamp(x, min=0) but has grad at 0 is 0.5 + return (x.clamp(min=0) + x - x.clamp(max=0)) / 2 + + +class Binomial(Distribution): + r""" + Creates a Binomial distribution parameterized by :attr:`total_count` and + either :attr:`probs` or :attr:`logits` (but not both). :attr:`total_count` must be + broadcastable with :attr:`probs`/:attr:`logits`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1])) + >>> x = m.sample() + tensor([ 0., 22., 71., 100.]) + + >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8])) + >>> x = m.sample() + tensor([[ 4., 5.], + [ 7., 6.]]) + + Args: + total_count (int or Tensor): number of Bernoulli trials + probs (Tensor): Event probabilities + logits (Tensor): Event log-odds + """ + arg_constraints = { + "total_count": constraints.nonnegative_integer, + "probs": constraints.unit_interval, + "logits": constraints.real, + } + has_enumerate_support = True + + def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): + if (probs is None) == (logits is None): + raise ValueError( + "Either `probs` or `logits` must be specified, but not both." + ) + if probs is not None: + ( + self.total_count, + self.probs, + ) = broadcast_all(total_count, probs) + self.total_count = self.total_count.type_as(self.probs) + else: + ( + self.total_count, + self.logits, + ) = broadcast_all(total_count, logits) + self.total_count = self.total_count.type_as(self.logits) + + self._param = self.probs if probs is not None else self.logits + batch_shape = self._param.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Binomial, _instance) + batch_shape = torch.Size(batch_shape) + new.total_count = self.total_count.expand(batch_shape) + if "probs" in self.__dict__: + new.probs = self.probs.expand(batch_shape) + new._param = new.probs + if "logits" in self.__dict__: + new.logits = self.logits.expand(batch_shape) + new._param = new.logits + super(Binomial, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._param.new(*args, **kwargs) + + @constraints.dependent_property(is_discrete=True, event_dim=0) + def support(self): + return constraints.integer_interval(0, self.total_count) + + @property + def mean(self): + return self.total_count * self.probs + + @property + def mode(self): + return ((self.total_count + 1) * self.probs).floor().clamp(max=self.total_count) + + @property + def variance(self): + return self.total_count * self.probs * (1 - self.probs) + + @lazy_property + def logits(self): + return probs_to_logits(self.probs, is_binary=True) + + @lazy_property + def probs(self): + return logits_to_probs(self.logits, is_binary=True) + + @property + def param_shape(self): + return self._param.size() + + def sample(self, sample_shape=torch.Size()): + shape = self._extended_shape(sample_shape) + with torch.no_grad(): + return torch.binomial( + self.total_count.expand(shape), self.probs.expand(shape) + ) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + log_factorial_n = torch.lgamma(self.total_count + 1) + log_factorial_k = torch.lgamma(value + 1) + log_factorial_nmk = torch.lgamma(self.total_count - value + 1) + # k * log(p) + (n - k) * log(1 - p) = k * (log(p) - log(1 - p)) + n * log(1 - p) + # (case logit < 0) = k * logit - n * log1p(e^logit) + # (case logit > 0) = k * logit - n * (log(p) - log(1 - p)) + n * log(p) + # = k * logit - n * logit - n * log1p(e^-logit) + # (merge two cases) = k * logit - n * max(logit, 0) - n * log1p(e^-|logit|) + normalize_term = ( + self.total_count * _clamp_by_zero(self.logits) + + self.total_count * torch.log1p(torch.exp(-torch.abs(self.logits))) + - log_factorial_n + ) + return ( + value * self.logits - log_factorial_k - log_factorial_nmk - normalize_term + ) + + def entropy(self): + total_count = int(self.total_count.max()) + if not self.total_count.min() == total_count: + raise NotImplementedError( + "Inhomogeneous total count not supported by `entropy`." + ) + + log_prob = self.log_prob(self.enumerate_support(False)) + return -(torch.exp(log_prob) * log_prob).sum(0) + + def enumerate_support(self, expand=True): + total_count = int(self.total_count.max()) + if not self.total_count.min() == total_count: + raise NotImplementedError( + "Inhomogeneous total count not supported by `enumerate_support`." + ) + values = torch.arange( + 1 + total_count, dtype=self._param.dtype, device=self._param.device + ) + values = values.view((-1,) + (1,) * len(self._batch_shape)) + if expand: + values = values.expand((-1,) + self._batch_shape) + return values diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/cauchy.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/cauchy.py new file mode 100644 index 0000000000000000000000000000000000000000..436cc727baa10b9f95d2eaf0647bce5032709afc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/cauchy.py @@ -0,0 +1,93 @@ +# mypy: allow-untyped-defs +import math +from numbers import Number + +import torch +from torch import inf, nan +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all +from torch.types import _size + + +__all__ = ["Cauchy"] + + +class Cauchy(Distribution): + r""" + Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of + independent normally distributed random variables with means `0` follows a + Cauchy distribution. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) + >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 + tensor([ 2.3214]) + + Args: + loc (float or Tensor): mode or median of the distribution. + scale (float or Tensor): half width at half maximum. + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.real + has_rsample = True + + def __init__(self, loc, scale, validate_args=None): + self.loc, self.scale = broadcast_all(loc, scale) + if isinstance(loc, Number) and isinstance(scale, Number): + batch_shape = torch.Size() + else: + batch_shape = self.loc.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Cauchy, _instance) + batch_shape = torch.Size(batch_shape) + new.loc = self.loc.expand(batch_shape) + new.scale = self.scale.expand(batch_shape) + super(Cauchy, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + @property + def mean(self): + return torch.full( + self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device + ) + + @property + def mode(self): + return self.loc + + @property + def variance(self): + return torch.full( + self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device + ) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + eps = self.loc.new(shape).cauchy_() + return self.loc + eps * self.scale + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + return ( + -math.log(math.pi) + - self.scale.log() + - (((value - self.loc) / self.scale) ** 2).log1p() + ) + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5 + + def icdf(self, value): + return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc + + def entropy(self): + return math.log(4 * math.pi) + self.scale.log() diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/chi2.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/chi2.py new file mode 100644 index 0000000000000000000000000000000000000000..a44035b897edc133a928c41945c823203cbb30f8 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/chi2.py @@ -0,0 +1,35 @@ +# mypy: allow-untyped-defs +from torch.distributions import constraints +from torch.distributions.gamma import Gamma + + +__all__ = ["Chi2"] + + +class Chi2(Gamma): + r""" + Creates a Chi-squared distribution parameterized by shape parameter :attr:`df`. + This is exactly equivalent to ``Gamma(alpha=0.5*df, beta=0.5)`` + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Chi2(torch.tensor([1.0])) + >>> m.sample() # Chi2 distributed with shape df=1 + tensor([ 0.1046]) + + Args: + df (float or Tensor): shape parameter of the distribution + """ + arg_constraints = {"df": constraints.positive} + + def __init__(self, df, validate_args=None): + super().__init__(0.5 * df, 0.5, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Chi2, _instance) + return super().expand(batch_shape, new) + + @property + def df(self): + return self.concentration * 2 diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/constraint_registry.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/constraint_registry.py new file mode 100644 index 0000000000000000000000000000000000000000..ce73b1a4df2eb1fe1ebf38865a061cdb99f14efc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/constraint_registry.py @@ -0,0 +1,294 @@ +# mypy: allow-untyped-defs +r""" +PyTorch provides two global :class:`ConstraintRegistry` objects that link +:class:`~torch.distributions.constraints.Constraint` objects to +:class:`~torch.distributions.transforms.Transform` objects. These objects both +input constraints and return transforms, but they have different guarantees on +bijectivity. + +1. ``biject_to(constraint)`` looks up a bijective + :class:`~torch.distributions.transforms.Transform` from ``constraints.real`` + to the given ``constraint``. The returned transform is guaranteed to have + ``.bijective = True`` and should implement ``.log_abs_det_jacobian()``. +2. ``transform_to(constraint)`` looks up a not-necessarily bijective + :class:`~torch.distributions.transforms.Transform` from ``constraints.real`` + to the given ``constraint``. The returned transform is not guaranteed to + implement ``.log_abs_det_jacobian()``. + +The ``transform_to()`` registry is useful for performing unconstrained +optimization on constrained parameters of probability distributions, which are +indicated by each distribution's ``.arg_constraints`` dict. These transforms often +overparameterize a space in order to avoid rotation; they are thus more +suitable for coordinate-wise optimization algorithms like Adam:: + + loc = torch.zeros(100, requires_grad=True) + unconstrained = torch.zeros(100, requires_grad=True) + scale = transform_to(Normal.arg_constraints['scale'])(unconstrained) + loss = -Normal(loc, scale).log_prob(data).sum() + +The ``biject_to()`` registry is useful for Hamiltonian Monte Carlo, where +samples from a probability distribution with constrained ``.support`` are +propagated in an unconstrained space, and algorithms are typically rotation +invariant.:: + + dist = Exponential(rate) + unconstrained = torch.zeros(100, requires_grad=True) + sample = biject_to(dist.support)(unconstrained) + potential_energy = -dist.log_prob(sample).sum() + +.. note:: + + An example where ``transform_to`` and ``biject_to`` differ is + ``constraints.simplex``: ``transform_to(constraints.simplex)`` returns a + :class:`~torch.distributions.transforms.SoftmaxTransform` that simply + exponentiates and normalizes its inputs; this is a cheap and mostly + coordinate-wise operation appropriate for algorithms like SVI. In + contrast, ``biject_to(constraints.simplex)`` returns a + :class:`~torch.distributions.transforms.StickBreakingTransform` that + bijects its input down to a one-fewer-dimensional space; this a more + expensive less numerically stable transform but is needed for algorithms + like HMC. + +The ``biject_to`` and ``transform_to`` objects can be extended by user-defined +constraints and transforms using their ``.register()`` method either as a +function on singleton constraints:: + + transform_to.register(my_constraint, my_transform) + +or as a decorator on parameterized constraints:: + + @transform_to.register(MyConstraintClass) + def my_factory(constraint): + assert isinstance(constraint, MyConstraintClass) + return MyTransform(constraint.param1, constraint.param2) + +You can create your own registry by creating a new :class:`ConstraintRegistry` +object. +""" + +import numbers + +from torch.distributions import constraints, transforms + + +__all__ = [ + "ConstraintRegistry", + "biject_to", + "transform_to", +] + + +class ConstraintRegistry: + """ + Registry to link constraints to transforms. + """ + + def __init__(self): + self._registry = {} + super().__init__() + + def register(self, constraint, factory=None): + """ + Registers a :class:`~torch.distributions.constraints.Constraint` + subclass in this registry. Usage:: + + @my_registry.register(MyConstraintClass) + def construct_transform(constraint): + assert isinstance(constraint, MyConstraint) + return MyTransform(constraint.arg_constraints) + + Args: + constraint (subclass of :class:`~torch.distributions.constraints.Constraint`): + A subclass of :class:`~torch.distributions.constraints.Constraint`, or + a singleton object of the desired class. + factory (Callable): A callable that inputs a constraint object and returns + a :class:`~torch.distributions.transforms.Transform` object. + """ + # Support use as decorator. + if factory is None: + return lambda factory: self.register(constraint, factory) + + # Support calling on singleton instances. + if isinstance(constraint, constraints.Constraint): + constraint = type(constraint) + + if not isinstance(constraint, type) or not issubclass( + constraint, constraints.Constraint + ): + raise TypeError( + f"Expected constraint to be either a Constraint subclass or instance, but got {constraint}" + ) + + self._registry[constraint] = factory + return factory + + def __call__(self, constraint): + """ + Looks up a transform to constrained space, given a constraint object. + Usage:: + + constraint = Normal.arg_constraints['scale'] + scale = transform_to(constraint)(torch.zeros(1)) # constrained + u = transform_to(constraint).inv(scale) # unconstrained + + Args: + constraint (:class:`~torch.distributions.constraints.Constraint`): + A constraint object. + + Returns: + A :class:`~torch.distributions.transforms.Transform` object. + + Raises: + `NotImplementedError` if no transform has been registered. + """ + # Look up by Constraint subclass. + try: + factory = self._registry[type(constraint)] + except KeyError: + raise NotImplementedError( + f"Cannot transform {type(constraint).__name__} constraints" + ) from None + return factory(constraint) + + +biject_to = ConstraintRegistry() +transform_to = ConstraintRegistry() + + +################################################################################ +# Registration Table +################################################################################ + + +@biject_to.register(constraints.real) +@transform_to.register(constraints.real) +def _transform_to_real(constraint): + return transforms.identity_transform + + +@biject_to.register(constraints.independent) +def _biject_to_independent(constraint): + base_transform = biject_to(constraint.base_constraint) + return transforms.IndependentTransform( + base_transform, constraint.reinterpreted_batch_ndims + ) + + +@transform_to.register(constraints.independent) +def _transform_to_independent(constraint): + base_transform = transform_to(constraint.base_constraint) + return transforms.IndependentTransform( + base_transform, constraint.reinterpreted_batch_ndims + ) + + +@biject_to.register(constraints.positive) +@biject_to.register(constraints.nonnegative) +@transform_to.register(constraints.positive) +@transform_to.register(constraints.nonnegative) +def _transform_to_positive(constraint): + return transforms.ExpTransform() + + +@biject_to.register(constraints.greater_than) +@biject_to.register(constraints.greater_than_eq) +@transform_to.register(constraints.greater_than) +@transform_to.register(constraints.greater_than_eq) +def _transform_to_greater_than(constraint): + return transforms.ComposeTransform( + [ + transforms.ExpTransform(), + transforms.AffineTransform(constraint.lower_bound, 1), + ] + ) + + +@biject_to.register(constraints.less_than) +@transform_to.register(constraints.less_than) +def _transform_to_less_than(constraint): + return transforms.ComposeTransform( + [ + transforms.ExpTransform(), + transforms.AffineTransform(constraint.upper_bound, -1), + ] + ) + + +@biject_to.register(constraints.interval) +@biject_to.register(constraints.half_open_interval) +@transform_to.register(constraints.interval) +@transform_to.register(constraints.half_open_interval) +def _transform_to_interval(constraint): + # Handle the special case of the unit interval. + lower_is_0 = ( + isinstance(constraint.lower_bound, numbers.Number) + and constraint.lower_bound == 0 + ) + upper_is_1 = ( + isinstance(constraint.upper_bound, numbers.Number) + and constraint.upper_bound == 1 + ) + if lower_is_0 and upper_is_1: + return transforms.SigmoidTransform() + + loc = constraint.lower_bound + scale = constraint.upper_bound - constraint.lower_bound + return transforms.ComposeTransform( + [transforms.SigmoidTransform(), transforms.AffineTransform(loc, scale)] + ) + + +@biject_to.register(constraints.simplex) +def _biject_to_simplex(constraint): + return transforms.StickBreakingTransform() + + +@transform_to.register(constraints.simplex) +def _transform_to_simplex(constraint): + return transforms.SoftmaxTransform() + + +# TODO define a bijection for LowerCholeskyTransform +@transform_to.register(constraints.lower_cholesky) +def _transform_to_lower_cholesky(constraint): + return transforms.LowerCholeskyTransform() + + +@transform_to.register(constraints.positive_definite) +@transform_to.register(constraints.positive_semidefinite) +def _transform_to_positive_definite(constraint): + return transforms.PositiveDefiniteTransform() + + +@biject_to.register(constraints.corr_cholesky) +@transform_to.register(constraints.corr_cholesky) +def _transform_to_corr_cholesky(constraint): + return transforms.CorrCholeskyTransform() + + +@biject_to.register(constraints.cat) +def _biject_to_cat(constraint): + return transforms.CatTransform( + [biject_to(c) for c in constraint.cseq], constraint.dim, constraint.lengths + ) + + +@transform_to.register(constraints.cat) +def _transform_to_cat(constraint): + return transforms.CatTransform( + [transform_to(c) for c in constraint.cseq], constraint.dim, constraint.lengths + ) + + +@biject_to.register(constraints.stack) +def _biject_to_stack(constraint): + return transforms.StackTransform( + [biject_to(c) for c in constraint.cseq], constraint.dim + ) + + +@transform_to.register(constraints.stack) +def _transform_to_stack(constraint): + return transforms.StackTransform( + [transform_to(c) for c in constraint.cseq], constraint.dim + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/continuous_bernoulli.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/continuous_bernoulli.py new file mode 100644 index 0000000000000000000000000000000000000000..0eb49f951f1c06b35438cdb4022a6b9003857df2 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/continuous_bernoulli.py @@ -0,0 +1,238 @@ +# mypy: allow-untyped-defs +import math +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import ( + broadcast_all, + clamp_probs, + lazy_property, + logits_to_probs, + probs_to_logits, +) +from torch.nn.functional import binary_cross_entropy_with_logits +from torch.types import _size + + +__all__ = ["ContinuousBernoulli"] + + +class ContinuousBernoulli(ExponentialFamily): + r""" + Creates a continuous Bernoulli distribution parameterized by :attr:`probs` + or :attr:`logits` (but not both). + + The distribution is supported in [0, 1] and parameterized by 'probs' (in + (0,1)) or 'logits' (real-valued). Note that, unlike the Bernoulli, 'probs' + does not correspond to a probability and 'logits' does not correspond to + log-odds, but the same names are used due to the similarity with the + Bernoulli. See [1] for more details. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = ContinuousBernoulli(torch.tensor([0.3])) + >>> m.sample() + tensor([ 0.2538]) + + Args: + probs (Number, Tensor): (0,1) valued parameters + logits (Number, Tensor): real valued parameters whose sigmoid matches 'probs' + + [1] The continuous Bernoulli: fixing a pervasive error in variational + autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019. + https://arxiv.org/abs/1907.06845 + """ + arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} + support = constraints.unit_interval + _mean_carrier_measure = 0 + has_rsample = True + + def __init__( + self, probs=None, logits=None, lims=(0.499, 0.501), validate_args=None + ): + if (probs is None) == (logits is None): + raise ValueError( + "Either `probs` or `logits` must be specified, but not both." + ) + if probs is not None: + is_scalar = isinstance(probs, Number) + (self.probs,) = broadcast_all(probs) + # validate 'probs' here if necessary as it is later clamped for numerical stability + # close to 0 and 1, later on; otherwise the clamped 'probs' would always pass + if validate_args is not None: + if not self.arg_constraints["probs"].check(self.probs).all(): + raise ValueError("The parameter probs has invalid values") + self.probs = clamp_probs(self.probs) + else: + is_scalar = isinstance(logits, Number) + (self.logits,) = broadcast_all(logits) + self._param = self.probs if probs is not None else self.logits + if is_scalar: + batch_shape = torch.Size() + else: + batch_shape = self._param.size() + self._lims = lims + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(ContinuousBernoulli, _instance) + new._lims = self._lims + batch_shape = torch.Size(batch_shape) + if "probs" in self.__dict__: + new.probs = self.probs.expand(batch_shape) + new._param = new.probs + if "logits" in self.__dict__: + new.logits = self.logits.expand(batch_shape) + new._param = new.logits + super(ContinuousBernoulli, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._param.new(*args, **kwargs) + + def _outside_unstable_region(self): + return torch.max( + torch.le(self.probs, self._lims[0]), torch.gt(self.probs, self._lims[1]) + ) + + def _cut_probs(self): + return torch.where( + self._outside_unstable_region(), + self.probs, + self._lims[0] * torch.ones_like(self.probs), + ) + + def _cont_bern_log_norm(self): + """computes the log normalizing constant as a function of the 'probs' parameter""" + cut_probs = self._cut_probs() + cut_probs_below_half = torch.where( + torch.le(cut_probs, 0.5), cut_probs, torch.zeros_like(cut_probs) + ) + cut_probs_above_half = torch.where( + torch.ge(cut_probs, 0.5), cut_probs, torch.ones_like(cut_probs) + ) + log_norm = torch.log( + torch.abs(torch.log1p(-cut_probs) - torch.log(cut_probs)) + ) - torch.where( + torch.le(cut_probs, 0.5), + torch.log1p(-2.0 * cut_probs_below_half), + torch.log(2.0 * cut_probs_above_half - 1.0), + ) + x = torch.pow(self.probs - 0.5, 2) + taylor = math.log(2.0) + (4.0 / 3.0 + 104.0 / 45.0 * x) * x + return torch.where(self._outside_unstable_region(), log_norm, taylor) + + @property + def mean(self): + cut_probs = self._cut_probs() + mus = cut_probs / (2.0 * cut_probs - 1.0) + 1.0 / ( + torch.log1p(-cut_probs) - torch.log(cut_probs) + ) + x = self.probs - 0.5 + taylor = 0.5 + (1.0 / 3.0 + 16.0 / 45.0 * torch.pow(x, 2)) * x + return torch.where(self._outside_unstable_region(), mus, taylor) + + @property + def stddev(self): + return torch.sqrt(self.variance) + + @property + def variance(self): + cut_probs = self._cut_probs() + vars = cut_probs * (cut_probs - 1.0) / torch.pow( + 1.0 - 2.0 * cut_probs, 2 + ) + 1.0 / torch.pow(torch.log1p(-cut_probs) - torch.log(cut_probs), 2) + x = torch.pow(self.probs - 0.5, 2) + taylor = 1.0 / 12.0 - (1.0 / 15.0 - 128.0 / 945.0 * x) * x + return torch.where(self._outside_unstable_region(), vars, taylor) + + @lazy_property + def logits(self): + return probs_to_logits(self.probs, is_binary=True) + + @lazy_property + def probs(self): + return clamp_probs(logits_to_probs(self.logits, is_binary=True)) + + @property + def param_shape(self): + return self._param.size() + + def sample(self, sample_shape=torch.Size()): + shape = self._extended_shape(sample_shape) + u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device) + with torch.no_grad(): + return self.icdf(u) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + u = torch.rand(shape, dtype=self.probs.dtype, device=self.probs.device) + return self.icdf(u) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + logits, value = broadcast_all(self.logits, value) + return ( + -binary_cross_entropy_with_logits(logits, value, reduction="none") + + self._cont_bern_log_norm() + ) + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + cut_probs = self._cut_probs() + cdfs = ( + torch.pow(cut_probs, value) * torch.pow(1.0 - cut_probs, 1.0 - value) + + cut_probs + - 1.0 + ) / (2.0 * cut_probs - 1.0) + unbounded_cdfs = torch.where(self._outside_unstable_region(), cdfs, value) + return torch.where( + torch.le(value, 0.0), + torch.zeros_like(value), + torch.where(torch.ge(value, 1.0), torch.ones_like(value), unbounded_cdfs), + ) + + def icdf(self, value): + cut_probs = self._cut_probs() + return torch.where( + self._outside_unstable_region(), + ( + torch.log1p(-cut_probs + value * (2.0 * cut_probs - 1.0)) + - torch.log1p(-cut_probs) + ) + / (torch.log(cut_probs) - torch.log1p(-cut_probs)), + value, + ) + + def entropy(self): + log_probs0 = torch.log1p(-self.probs) + log_probs1 = torch.log(self.probs) + return ( + self.mean * (log_probs0 - log_probs1) + - self._cont_bern_log_norm() + - log_probs0 + ) + + @property + def _natural_params(self): + return (self.logits,) + + def _log_normalizer(self, x): + """computes the log normalizing constant as a function of the natural parameter""" + out_unst_reg = torch.max( + torch.le(x, self._lims[0] - 0.5), torch.gt(x, self._lims[1] - 0.5) + ) + cut_nat_params = torch.where( + out_unst_reg, x, (self._lims[0] - 0.5) * torch.ones_like(x) + ) + log_norm = torch.log(torch.abs(torch.exp(cut_nat_params) - 1.0)) - torch.log( + torch.abs(cut_nat_params) + ) + taylor = 0.5 * x + torch.pow(x, 2) / 24.0 - torch.pow(x, 4) / 2880.0 + return torch.where(out_unst_reg, log_norm, taylor) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/dirichlet.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/dirichlet.py new file mode 100644 index 0000000000000000000000000000000000000000..25e7bb9cd7c2383409de8ed10fd911e69f3b23c7 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/dirichlet.py @@ -0,0 +1,126 @@ +# mypy: allow-untyped-defs +import torch +from torch.autograd import Function +from torch.autograd.function import once_differentiable +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.types import _size + + +__all__ = ["Dirichlet"] + + +# This helper is exposed for testing. +def _Dirichlet_backward(x, concentration, grad_output): + total = concentration.sum(-1, True).expand_as(concentration) + grad = torch._dirichlet_grad(x, concentration, total) + return grad * (grad_output - (x * grad_output).sum(-1, True)) + + +class _Dirichlet(Function): + @staticmethod + def forward(ctx, concentration): + x = torch._sample_dirichlet(concentration) + ctx.save_for_backward(x, concentration) + return x + + @staticmethod + @once_differentiable + def backward(ctx, grad_output): + x, concentration = ctx.saved_tensors + return _Dirichlet_backward(x, concentration, grad_output) + + +class Dirichlet(ExponentialFamily): + r""" + Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Dirichlet(torch.tensor([0.5, 0.5])) + >>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5] + tensor([ 0.1046, 0.8954]) + + Args: + concentration (Tensor): concentration parameter of the distribution + (often referred to as alpha) + """ + arg_constraints = { + "concentration": constraints.independent(constraints.positive, 1) + } + support = constraints.simplex + has_rsample = True + + def __init__(self, concentration, validate_args=None): + if concentration.dim() < 1: + raise ValueError( + "`concentration` parameter must be at least one-dimensional." + ) + self.concentration = concentration + batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Dirichlet, _instance) + batch_shape = torch.Size(batch_shape) + new.concentration = self.concentration.expand(batch_shape + self.event_shape) + super(Dirichlet, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + def rsample(self, sample_shape: _size = ()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + concentration = self.concentration.expand(shape) + return _Dirichlet.apply(concentration) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + return ( + torch.xlogy(self.concentration - 1.0, value).sum(-1) + + torch.lgamma(self.concentration.sum(-1)) + - torch.lgamma(self.concentration).sum(-1) + ) + + @property + def mean(self): + return self.concentration / self.concentration.sum(-1, True) + + @property + def mode(self): + concentrationm1 = (self.concentration - 1).clamp(min=0.0) + mode = concentrationm1 / concentrationm1.sum(-1, True) + mask = (self.concentration < 1).all(axis=-1) + mode[mask] = torch.nn.functional.one_hot( + mode[mask].argmax(axis=-1), concentrationm1.shape[-1] + ).to(mode) + return mode + + @property + def variance(self): + con0 = self.concentration.sum(-1, True) + return ( + self.concentration + * (con0 - self.concentration) + / (con0.pow(2) * (con0 + 1)) + ) + + def entropy(self): + k = self.concentration.size(-1) + a0 = self.concentration.sum(-1) + return ( + torch.lgamma(self.concentration).sum(-1) + - torch.lgamma(a0) + - (k - a0) * torch.digamma(a0) + - ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1) + ) + + @property + def _natural_params(self): + return (self.concentration,) + + def _log_normalizer(self, x): + return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1)) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/distribution.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/distribution.py new file mode 100644 index 0000000000000000000000000000000000000000..1c3bdf9e85cd52aad69ef9342574604059e2e651 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/distribution.py @@ -0,0 +1,340 @@ +# mypy: allow-untyped-defs +import warnings +from typing import Any, Dict, Optional +from typing_extensions import deprecated + +import torch +from torch.distributions import constraints +from torch.distributions.utils import lazy_property +from torch.types import _size + + +__all__ = ["Distribution"] + + +class Distribution: + r""" + Distribution is the abstract base class for probability distributions. + """ + + has_rsample = False + has_enumerate_support = False + _validate_args = __debug__ + + @staticmethod + def set_default_validate_args(value: bool) -> None: + """ + Sets whether validation is enabled or disabled. + + The default behavior mimics Python's ``assert`` statement: validation + is on by default, but is disabled if Python is run in optimized mode + (via ``python -O``). Validation may be expensive, so you may want to + disable it once a model is working. + + Args: + value (bool): Whether to enable validation. + """ + if value not in [True, False]: + raise ValueError + Distribution._validate_args = value + + def __init__( + self, + batch_shape: torch.Size = torch.Size(), + event_shape: torch.Size = torch.Size(), + validate_args: Optional[bool] = None, + ): + self._batch_shape = batch_shape + self._event_shape = event_shape + if validate_args is not None: + self._validate_args = validate_args + if self._validate_args: + try: + arg_constraints = self.arg_constraints + except NotImplementedError: + arg_constraints = {} + warnings.warn( + f"{self.__class__} does not define `arg_constraints`. " + + "Please set `arg_constraints = {}` or initialize the distribution " + + "with `validate_args=False` to turn off validation." + ) + for param, constraint in arg_constraints.items(): + if constraints.is_dependent(constraint): + continue # skip constraints that cannot be checked + if param not in self.__dict__ and isinstance( + getattr(type(self), param), lazy_property + ): + continue # skip checking lazily-constructed args + value = getattr(self, param) + valid = constraint.check(value) + if not valid.all(): + raise ValueError( + f"Expected parameter {param} " + f"({type(value).__name__} of shape {tuple(value.shape)}) " + f"of distribution {repr(self)} " + f"to satisfy the constraint {repr(constraint)}, " + f"but found invalid values:\n{value}" + ) + super().__init__() + + def expand(self, batch_shape: _size, _instance=None): + """ + Returns a new distribution instance (or populates an existing instance + provided by a derived class) with batch dimensions expanded to + `batch_shape`. This method calls :class:`~torch.Tensor.expand` on + the distribution's parameters. As such, this does not allocate new + memory for the expanded distribution instance. Additionally, + this does not repeat any args checking or parameter broadcasting in + `__init__.py`, when an instance is first created. + + Args: + batch_shape (torch.Size): the desired expanded size. + _instance: new instance provided by subclasses that + need to override `.expand`. + + Returns: + New distribution instance with batch dimensions expanded to + `batch_size`. + """ + raise NotImplementedError + + @property + def batch_shape(self) -> torch.Size: + """ + Returns the shape over which parameters are batched. + """ + return self._batch_shape + + @property + def event_shape(self) -> torch.Size: + """ + Returns the shape of a single sample (without batching). + """ + return self._event_shape + + @property + def arg_constraints(self) -> Dict[str, constraints.Constraint]: + """ + Returns a dictionary from argument names to + :class:`~torch.distributions.constraints.Constraint` objects that + should be satisfied by each argument of this distribution. Args that + are not tensors need not appear in this dict. + """ + raise NotImplementedError + + @property + def support(self) -> Optional[Any]: + """ + Returns a :class:`~torch.distributions.constraints.Constraint` object + representing this distribution's support. + """ + raise NotImplementedError + + @property + def mean(self) -> torch.Tensor: + """ + Returns the mean of the distribution. + """ + raise NotImplementedError + + @property + def mode(self) -> torch.Tensor: + """ + Returns the mode of the distribution. + """ + raise NotImplementedError(f"{self.__class__} does not implement mode") + + @property + def variance(self) -> torch.Tensor: + """ + Returns the variance of the distribution. + """ + raise NotImplementedError + + @property + def stddev(self) -> torch.Tensor: + """ + Returns the standard deviation of the distribution. + """ + return self.variance.sqrt() + + def sample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + """ + Generates a sample_shape shaped sample or sample_shape shaped batch of + samples if the distribution parameters are batched. + """ + with torch.no_grad(): + return self.rsample(sample_shape) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + """ + Generates a sample_shape shaped reparameterized sample or sample_shape + shaped batch of reparameterized samples if the distribution parameters + are batched. + """ + raise NotImplementedError + + @deprecated( + "`sample_n(n)` will be deprecated. Use `sample((n,))` instead.", + category=FutureWarning, + ) + def sample_n(self, n: int) -> torch.Tensor: + """ + Generates n samples or n batches of samples if the distribution + parameters are batched. + """ + return self.sample(torch.Size((n,))) + + def log_prob(self, value: torch.Tensor) -> torch.Tensor: + """ + Returns the log of the probability density/mass function evaluated at + `value`. + + Args: + value (Tensor): + """ + raise NotImplementedError + + def cdf(self, value: torch.Tensor) -> torch.Tensor: + """ + Returns the cumulative density/mass function evaluated at + `value`. + + Args: + value (Tensor): + """ + raise NotImplementedError + + def icdf(self, value: torch.Tensor) -> torch.Tensor: + """ + Returns the inverse cumulative density/mass function evaluated at + `value`. + + Args: + value (Tensor): + """ + raise NotImplementedError + + def enumerate_support(self, expand: bool = True) -> torch.Tensor: + """ + Returns tensor containing all values supported by a discrete + distribution. The result will enumerate over dimension 0, so the shape + of the result will be `(cardinality,) + batch_shape + event_shape` + (where `event_shape = ()` for univariate distributions). + + Note that this enumerates over all batched tensors in lock-step + `[[0, 0], [1, 1], ...]`. With `expand=False`, enumeration happens + along dim 0, but with the remaining batch dimensions being + singleton dimensions, `[[0], [1], ..`. + + To iterate over the full Cartesian product use + `itertools.product(m.enumerate_support())`. + + Args: + expand (bool): whether to expand the support over the + batch dims to match the distribution's `batch_shape`. + + Returns: + Tensor iterating over dimension 0. + """ + raise NotImplementedError + + def entropy(self) -> torch.Tensor: + """ + Returns entropy of distribution, batched over batch_shape. + + Returns: + Tensor of shape batch_shape. + """ + raise NotImplementedError + + def perplexity(self) -> torch.Tensor: + """ + Returns perplexity of distribution, batched over batch_shape. + + Returns: + Tensor of shape batch_shape. + """ + return torch.exp(self.entropy()) + + def _extended_shape(self, sample_shape: _size = torch.Size()) -> torch.Size: + """ + Returns the size of the sample returned by the distribution, given + a `sample_shape`. Note, that the batch and event shapes of a distribution + instance are fixed at the time of construction. If this is empty, the + returned shape is upcast to (1,). + + Args: + sample_shape (torch.Size): the size of the sample to be drawn. + """ + if not isinstance(sample_shape, torch.Size): + sample_shape = torch.Size(sample_shape) + return torch.Size(sample_shape + self._batch_shape + self._event_shape) + + def _validate_sample(self, value: torch.Tensor) -> None: + """ + Argument validation for distribution methods such as `log_prob`, + `cdf` and `icdf`. The rightmost dimensions of a value to be + scored via these methods must agree with the distribution's batch + and event shapes. + + Args: + value (Tensor): the tensor whose log probability is to be + computed by the `log_prob` method. + Raises + ValueError: when the rightmost dimensions of `value` do not match the + distribution's batch and event shapes. + """ + if not isinstance(value, torch.Tensor): + raise ValueError("The value argument to log_prob must be a Tensor") + + event_dim_start = len(value.size()) - len(self._event_shape) + if value.size()[event_dim_start:] != self._event_shape: + raise ValueError( + f"The right-most size of value must match event_shape: {value.size()} vs {self._event_shape}." + ) + + actual_shape = value.size() + expected_shape = self._batch_shape + self._event_shape + for i, j in zip(reversed(actual_shape), reversed(expected_shape)): + if i != 1 and j != 1 and i != j: + raise ValueError( + f"Value is not broadcastable with batch_shape+event_shape: {actual_shape} vs {expected_shape}." + ) + try: + support = self.support + except NotImplementedError: + warnings.warn( + f"{self.__class__} does not define `support` to enable " + + "sample validation. Please initialize the distribution with " + + "`validate_args=False` to turn off validation." + ) + return + assert support is not None + valid = support.check(value) + if not valid.all(): + raise ValueError( + "Expected value argument " + f"({type(value).__name__} of shape {tuple(value.shape)}) " + f"to be within the support ({repr(support)}) " + f"of the distribution {repr(self)}, " + f"but found invalid values:\n{value}" + ) + + def _get_checked_instance(self, cls, _instance=None): + if _instance is None and type(self).__init__ != cls.__init__: + raise NotImplementedError( + f"Subclass {self.__class__.__name__} of {cls.__name__} that defines a custom __init__ method " + "must also define a custom .expand() method." + ) + return self.__new__(type(self)) if _instance is None else _instance + + def __repr__(self) -> str: + param_names = [k for k, _ in self.arg_constraints.items() if k in self.__dict__] + args_string = ", ".join( + [ + f"{p}: {self.__dict__[p] if self.__dict__[p].numel() == 1 else self.__dict__[p].size()}" + for p in param_names + ] + ) + return self.__class__.__name__ + "(" + args_string + ")" diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exp_family.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exp_family.py new file mode 100644 index 0000000000000000000000000000000000000000..33234c47b10282856a94c0b29860db68ac715b18 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exp_family.py @@ -0,0 +1,64 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions.distribution import Distribution + + +__all__ = ["ExponentialFamily"] + + +class ExponentialFamily(Distribution): + r""" + ExponentialFamily is the abstract base class for probability distributions belonging to an + exponential family, whose probability mass/density function has the form is defined below + + .. math:: + + p_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x)) + + where :math:`\theta` denotes the natural parameters, :math:`t(x)` denotes the sufficient statistic, + :math:`F(\theta)` is the log normalizer function for a given family and :math:`k(x)` is the carrier + measure. + + Note: + This class is an intermediary between the `Distribution` class and distributions which belong + to an exponential family mainly to check the correctness of the `.entropy()` and analytic KL + divergence methods. We use this class to compute the entropy and KL divergence using the AD + framework and Bregman divergences (courtesy of: Frank Nielsen and Richard Nock, Entropies and + Cross-entropies of Exponential Families). + """ + + @property + def _natural_params(self): + """ + Abstract method for natural parameters. Returns a tuple of Tensors based + on the distribution + """ + raise NotImplementedError + + def _log_normalizer(self, *natural_params): + """ + Abstract method for log normalizer function. Returns a log normalizer based on + the distribution and input + """ + raise NotImplementedError + + @property + def _mean_carrier_measure(self): + """ + Abstract method for expected carrier measure, which is required for computing + entropy. + """ + raise NotImplementedError + + def entropy(self): + """ + Method to compute the entropy using Bregman divergence of the log normalizer. + """ + result = -self._mean_carrier_measure + nparams = [p.detach().requires_grad_() for p in self._natural_params] + lg_normal = self._log_normalizer(*nparams) + gradients = torch.autograd.grad(lg_normal.sum(), nparams, create_graph=True) + result += lg_normal + for np, g in zip(nparams, gradients): + result -= (np * g).reshape(self._batch_shape + (-1,)).sum(-1) + return result diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exponential.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exponential.py new file mode 100644 index 0000000000000000000000000000000000000000..02e349c11b9cb204279c3f40d80e2e8596b073f2 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/exponential.py @@ -0,0 +1,87 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import broadcast_all +from torch.types import _size + + +__all__ = ["Exponential"] + + +class Exponential(ExponentialFamily): + r""" + Creates a Exponential distribution parameterized by :attr:`rate`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Exponential(torch.tensor([1.0])) + >>> m.sample() # Exponential distributed with rate=1 + tensor([ 0.1046]) + + Args: + rate (float or Tensor): rate = 1 / scale of the distribution + """ + arg_constraints = {"rate": constraints.positive} + support = constraints.nonnegative + has_rsample = True + _mean_carrier_measure = 0 + + @property + def mean(self): + return self.rate.reciprocal() + + @property + def mode(self): + return torch.zeros_like(self.rate) + + @property + def stddev(self): + return self.rate.reciprocal() + + @property + def variance(self): + return self.rate.pow(-2) + + def __init__(self, rate, validate_args=None): + (self.rate,) = broadcast_all(rate) + batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Exponential, _instance) + batch_shape = torch.Size(batch_shape) + new.rate = self.rate.expand(batch_shape) + super(Exponential, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + return self.rate.new(shape).exponential_() / self.rate + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + return self.rate.log() - self.rate * value + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return 1 - torch.exp(-self.rate * value) + + def icdf(self, value): + return -torch.log1p(-value) / self.rate + + def entropy(self): + return 1.0 - torch.log(self.rate) + + @property + def _natural_params(self): + return (-self.rate,) + + def _log_normalizer(self, x): + return -torch.log(-x) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gamma.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gamma.py new file mode 100644 index 0000000000000000000000000000000000000000..97631683d53b2432a974508dfd1daf3868171553 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gamma.py @@ -0,0 +1,111 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import broadcast_all +from torch.types import _size + + +__all__ = ["Gamma"] + + +def _standard_gamma(concentration): + return torch._standard_gamma(concentration) + + +class Gamma(ExponentialFamily): + r""" + Creates a Gamma distribution parameterized by shape :attr:`concentration` and :attr:`rate`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0])) + >>> m.sample() # Gamma distributed with concentration=1 and rate=1 + tensor([ 0.1046]) + + Args: + concentration (float or Tensor): shape parameter of the distribution + (often referred to as alpha) + rate (float or Tensor): rate = 1 / scale of the distribution + (often referred to as beta) + """ + arg_constraints = { + "concentration": constraints.positive, + "rate": constraints.positive, + } + support = constraints.nonnegative + has_rsample = True + _mean_carrier_measure = 0 + + @property + def mean(self): + return self.concentration / self.rate + + @property + def mode(self): + return ((self.concentration - 1) / self.rate).clamp(min=0) + + @property + def variance(self): + return self.concentration / self.rate.pow(2) + + def __init__(self, concentration, rate, validate_args=None): + self.concentration, self.rate = broadcast_all(concentration, rate) + if isinstance(concentration, Number) and isinstance(rate, Number): + batch_shape = torch.Size() + else: + batch_shape = self.concentration.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Gamma, _instance) + batch_shape = torch.Size(batch_shape) + new.concentration = self.concentration.expand(batch_shape) + new.rate = self.rate.expand(batch_shape) + super(Gamma, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand( + shape + ) + value.detach().clamp_( + min=torch.finfo(value.dtype).tiny + ) # do not record in autograd graph + return value + + def log_prob(self, value): + value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device) + if self._validate_args: + self._validate_sample(value) + return ( + torch.xlogy(self.concentration, self.rate) + + torch.xlogy(self.concentration - 1, value) + - self.rate * value + - torch.lgamma(self.concentration) + ) + + def entropy(self): + return ( + self.concentration + - torch.log(self.rate) + + torch.lgamma(self.concentration) + + (1.0 - self.concentration) * torch.digamma(self.concentration) + ) + + @property + def _natural_params(self): + return (self.concentration - 1, -self.rate) + + def _log_normalizer(self, x, y): + return torch.lgamma(x + 1) + (x + 1) * torch.log(-y.reciprocal()) + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return torch.special.gammainc(self.concentration, self.rate * value) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gumbel.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gumbel.py new file mode 100644 index 0000000000000000000000000000000000000000..782aec9b350a52865f7b5fb0ac400640df0c5fe1 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/gumbel.py @@ -0,0 +1,83 @@ +# mypy: allow-untyped-defs +import math +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import AffineTransform, ExpTransform +from torch.distributions.uniform import Uniform +from torch.distributions.utils import broadcast_all, euler_constant + + +__all__ = ["Gumbel"] + + +class Gumbel(TransformedDistribution): + r""" + Samples from a Gumbel Distribution. + + Examples:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) + >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 + tensor([ 1.0124]) + + Args: + loc (float or Tensor): Location parameter of the distribution + scale (float or Tensor): Scale parameter of the distribution + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.real + + def __init__(self, loc, scale, validate_args=None): + self.loc, self.scale = broadcast_all(loc, scale) + finfo = torch.finfo(self.loc.dtype) + if isinstance(loc, Number) and isinstance(scale, Number): + base_dist = Uniform(finfo.tiny, 1 - finfo.eps, validate_args=validate_args) + else: + base_dist = Uniform( + torch.full_like(self.loc, finfo.tiny), + torch.full_like(self.loc, 1 - finfo.eps), + validate_args=validate_args, + ) + transforms = [ + ExpTransform().inv, + AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), + ExpTransform().inv, + AffineTransform(loc=loc, scale=-self.scale), + ] + super().__init__(base_dist, transforms, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Gumbel, _instance) + new.loc = self.loc.expand(batch_shape) + new.scale = self.scale.expand(batch_shape) + return super().expand(batch_shape, _instance=new) + + # Explicitly defining the log probability function for Gumbel due to precision issues + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + y = (self.loc - value) / self.scale + return (y - y.exp()) - self.scale.log() + + @property + def mean(self): + return self.loc + self.scale * euler_constant + + @property + def mode(self): + return self.loc + + @property + def stddev(self): + return (math.pi / math.sqrt(6)) * self.scale + + @property + def variance(self): + return self.stddev.pow(2) + + def entropy(self): + return self.scale.log() + (1 + euler_constant) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/half_cauchy.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/half_cauchy.py new file mode 100644 index 0000000000000000000000000000000000000000..17f48c45cf271ef2c7b4d42ccebf79c4397be09e --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/half_cauchy.py @@ -0,0 +1,84 @@ +# mypy: allow-untyped-defs +import math + +import torch +from torch import inf +from torch.distributions import constraints +from torch.distributions.cauchy import Cauchy +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import AbsTransform + + +__all__ = ["HalfCauchy"] + + +class HalfCauchy(TransformedDistribution): + r""" + Creates a half-Cauchy distribution parameterized by `scale` where:: + + X ~ Cauchy(0, scale) + Y = |X| ~ HalfCauchy(scale) + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = HalfCauchy(torch.tensor([1.0])) + >>> m.sample() # half-cauchy distributed with scale=1 + tensor([ 2.3214]) + + Args: + scale (float or Tensor): scale of the full Cauchy distribution + """ + arg_constraints = {"scale": constraints.positive} + support = constraints.nonnegative + has_rsample = True + + def __init__(self, scale, validate_args=None): + base_dist = Cauchy(0, scale, validate_args=False) + super().__init__(base_dist, AbsTransform(), validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(HalfCauchy, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def scale(self): + return self.base_dist.scale + + @property + def mean(self): + return torch.full( + self._extended_shape(), + math.inf, + dtype=self.scale.dtype, + device=self.scale.device, + ) + + @property + def mode(self): + return torch.zeros_like(self.scale) + + @property + def variance(self): + return self.base_dist.variance + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + value = torch.as_tensor( + value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device + ) + log_prob = self.base_dist.log_prob(value) + math.log(2) + log_prob = torch.where(value >= 0, log_prob, -inf) + return log_prob + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return 2 * self.base_dist.cdf(value) - 1 + + def icdf(self, prob): + return self.base_dist.icdf((prob + 1) / 2) + + def entropy(self): + return self.base_dist.entropy() - math.log(2) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/inverse_gamma.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/inverse_gamma.py new file mode 100644 index 0000000000000000000000000000000000000000..cff64d0a9e4956c6c2267dd10f921bb9e4fa6f4c --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/inverse_gamma.py @@ -0,0 +1,81 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions import constraints +from torch.distributions.gamma import Gamma +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import PowerTransform + + +__all__ = ["InverseGamma"] + + +class InverseGamma(TransformedDistribution): + r""" + Creates an inverse gamma distribution parameterized by :attr:`concentration` and :attr:`rate` + where:: + + X ~ Gamma(concentration, rate) + Y = 1 / X ~ InverseGamma(concentration, rate) + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterinistic") + >>> m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) + >>> m.sample() + tensor([ 1.2953]) + + Args: + concentration (float or Tensor): shape parameter of the distribution + (often referred to as alpha) + rate (float or Tensor): rate = 1 / scale of the distribution + (often referred to as beta) + """ + arg_constraints = { + "concentration": constraints.positive, + "rate": constraints.positive, + } + support = constraints.positive + has_rsample = True + + def __init__(self, concentration, rate, validate_args=None): + base_dist = Gamma(concentration, rate, validate_args=validate_args) + neg_one = -base_dist.rate.new_ones(()) + super().__init__( + base_dist, PowerTransform(neg_one), validate_args=validate_args + ) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(InverseGamma, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def concentration(self): + return self.base_dist.concentration + + @property + def rate(self): + return self.base_dist.rate + + @property + def mean(self): + result = self.rate / (self.concentration - 1) + return torch.where(self.concentration > 1, result, torch.inf) + + @property + def mode(self): + return self.rate / (self.concentration + 1) + + @property + def variance(self): + result = self.rate.square() / ( + (self.concentration - 1).square() * (self.concentration - 2) + ) + return torch.where(self.concentration > 2, result, torch.inf) + + def entropy(self): + return ( + self.concentration + + self.rate.log() + + self.concentration.lgamma() + - (1 + self.concentration) * self.concentration.digamma() + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kl.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kl.py new file mode 100644 index 0000000000000000000000000000000000000000..c94c711cc8b364c68daf5d34830b4756aaced93c --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kl.py @@ -0,0 +1,972 @@ +# mypy: allow-untyped-defs +import math +import warnings +from functools import total_ordering +from typing import Callable, Dict, Tuple, Type + +import torch +from torch import inf + +from .bernoulli import Bernoulli +from .beta import Beta +from .binomial import Binomial +from .categorical import Categorical +from .cauchy import Cauchy +from .continuous_bernoulli import ContinuousBernoulli +from .dirichlet import Dirichlet +from .distribution import Distribution +from .exp_family import ExponentialFamily +from .exponential import Exponential +from .gamma import Gamma +from .geometric import Geometric +from .gumbel import Gumbel +from .half_normal import HalfNormal +from .independent import Independent +from .laplace import Laplace +from .lowrank_multivariate_normal import ( + _batch_lowrank_logdet, + _batch_lowrank_mahalanobis, + LowRankMultivariateNormal, +) +from .multivariate_normal import _batch_mahalanobis, MultivariateNormal +from .normal import Normal +from .one_hot_categorical import OneHotCategorical +from .pareto import Pareto +from .poisson import Poisson +from .transformed_distribution import TransformedDistribution +from .uniform import Uniform +from .utils import _sum_rightmost, euler_constant as _euler_gamma + + +_KL_REGISTRY: Dict[ + Tuple[Type, Type], Callable +] = {} # Source of truth mapping a few general (type, type) pairs to functions. +_KL_MEMOIZE: Dict[ + Tuple[Type, Type], Callable +] = {} # Memoized version mapping many specific (type, type) pairs to functions. + +__all__ = ["register_kl", "kl_divergence"] + + +def register_kl(type_p, type_q): + """ + Decorator to register a pairwise function with :meth:`kl_divergence`. + Usage:: + + @register_kl(Normal, Normal) + def kl_normal_normal(p, q): + # insert implementation here + + Lookup returns the most specific (type,type) match ordered by subclass. If + the match is ambiguous, a `RuntimeWarning` is raised. For example to + resolve the ambiguous situation:: + + @register_kl(BaseP, DerivedQ) + def kl_version1(p, q): ... + @register_kl(DerivedP, BaseQ) + def kl_version2(p, q): ... + + you should register a third most-specific implementation, e.g.:: + + register_kl(DerivedP, DerivedQ)(kl_version1) # Break the tie. + + Args: + type_p (type): A subclass of :class:`~torch.distributions.Distribution`. + type_q (type): A subclass of :class:`~torch.distributions.Distribution`. + """ + if not isinstance(type_p, type) and issubclass(type_p, Distribution): + raise TypeError( + f"Expected type_p to be a Distribution subclass but got {type_p}" + ) + if not isinstance(type_q, type) and issubclass(type_q, Distribution): + raise TypeError( + f"Expected type_q to be a Distribution subclass but got {type_q}" + ) + + def decorator(fun): + _KL_REGISTRY[type_p, type_q] = fun + _KL_MEMOIZE.clear() # reset since lookup order may have changed + return fun + + return decorator + + +@total_ordering +class _Match: + __slots__ = ["types"] + + def __init__(self, *types): + self.types = types + + def __eq__(self, other): + return self.types == other.types + + def __le__(self, other): + for x, y in zip(self.types, other.types): + if not issubclass(x, y): + return False + if x is not y: + break + return True + + +def _dispatch_kl(type_p, type_q): + """ + Find the most specific approximate match, assuming single inheritance. + """ + matches = [ + (super_p, super_q) + for super_p, super_q in _KL_REGISTRY + if issubclass(type_p, super_p) and issubclass(type_q, super_q) + ] + if not matches: + return NotImplemented + # Check that the left- and right- lexicographic orders agree. + # mypy isn't smart enough to know that _Match implements __lt__ + # see: https://github.com/python/typing/issues/760#issuecomment-710670503 + left_p, left_q = min(_Match(*m) for m in matches).types # type: ignore[type-var] + right_q, right_p = min(_Match(*reversed(m)) for m in matches).types # type: ignore[type-var] + left_fun = _KL_REGISTRY[left_p, left_q] + right_fun = _KL_REGISTRY[right_p, right_q] + if left_fun is not right_fun: + warnings.warn( + f"Ambiguous kl_divergence({type_p.__name__}, {type_q.__name__}). " + f"Please register_kl({left_p.__name__}, {right_q.__name__})", + RuntimeWarning, + ) + return left_fun + + +def _infinite_like(tensor): + """ + Helper function for obtaining infinite KL Divergence throughout + """ + return torch.full_like(tensor, inf) + + +def _x_log_x(tensor): + """ + Utility function for calculating x log x + """ + return tensor * tensor.log() + + +def _batch_trace_XXT(bmat): + """ + Utility function for calculating the trace of XX^{T} with X having arbitrary trailing batch dimensions + """ + n = bmat.size(-1) + m = bmat.size(-2) + flat_trace = bmat.reshape(-1, m * n).pow(2).sum(-1) + return flat_trace.reshape(bmat.shape[:-2]) + + +def kl_divergence(p: Distribution, q: Distribution) -> torch.Tensor: + r""" + Compute Kullback-Leibler divergence :math:`KL(p \| q)` between two distributions. + + .. math:: + + KL(p \| q) = \int p(x) \log\frac {p(x)} {q(x)} \,dx + + Args: + p (Distribution): A :class:`~torch.distributions.Distribution` object. + q (Distribution): A :class:`~torch.distributions.Distribution` object. + + Returns: + Tensor: A batch of KL divergences of shape `batch_shape`. + + Raises: + NotImplementedError: If the distribution types have not been registered via + :meth:`register_kl`. + """ + try: + fun = _KL_MEMOIZE[type(p), type(q)] + except KeyError: + fun = _dispatch_kl(type(p), type(q)) + _KL_MEMOIZE[type(p), type(q)] = fun + if fun is NotImplemented: + raise NotImplementedError( + f"No KL(p || q) is implemented for p type {p.__class__.__name__} and q type {q.__class__.__name__}" + ) + return fun(p, q) + + +################################################################################ +# KL Divergence Implementations +################################################################################ + +# Same distributions + + +@register_kl(Bernoulli, Bernoulli) +def _kl_bernoulli_bernoulli(p, q): + t1 = p.probs * ( + torch.nn.functional.softplus(-q.logits) + - torch.nn.functional.softplus(-p.logits) + ) + t1[q.probs == 0] = inf + t1[p.probs == 0] = 0 + t2 = (1 - p.probs) * ( + torch.nn.functional.softplus(q.logits) - torch.nn.functional.softplus(p.logits) + ) + t2[q.probs == 1] = inf + t2[p.probs == 1] = 0 + return t1 + t2 + + +@register_kl(Beta, Beta) +def _kl_beta_beta(p, q): + sum_params_p = p.concentration1 + p.concentration0 + sum_params_q = q.concentration1 + q.concentration0 + t1 = q.concentration1.lgamma() + q.concentration0.lgamma() + (sum_params_p).lgamma() + t2 = p.concentration1.lgamma() + p.concentration0.lgamma() + (sum_params_q).lgamma() + t3 = (p.concentration1 - q.concentration1) * torch.digamma(p.concentration1) + t4 = (p.concentration0 - q.concentration0) * torch.digamma(p.concentration0) + t5 = (sum_params_q - sum_params_p) * torch.digamma(sum_params_p) + return t1 - t2 + t3 + t4 + t5 + + +@register_kl(Binomial, Binomial) +def _kl_binomial_binomial(p, q): + # from https://math.stackexchange.com/questions/2214993/ + # kullback-leibler-divergence-for-binomial-distributions-p-and-q + if (p.total_count < q.total_count).any(): + raise NotImplementedError( + "KL between Binomials where q.total_count > p.total_count is not implemented" + ) + kl = p.total_count * ( + p.probs * (p.logits - q.logits) + (-p.probs).log1p() - (-q.probs).log1p() + ) + inf_idxs = p.total_count > q.total_count + kl[inf_idxs] = _infinite_like(kl[inf_idxs]) + return kl + + +@register_kl(Categorical, Categorical) +def _kl_categorical_categorical(p, q): + t = p.probs * (p.logits - q.logits) + t[(q.probs == 0).expand_as(t)] = inf + t[(p.probs == 0).expand_as(t)] = 0 + return t.sum(-1) + + +@register_kl(ContinuousBernoulli, ContinuousBernoulli) +def _kl_continuous_bernoulli_continuous_bernoulli(p, q): + t1 = p.mean * (p.logits - q.logits) + t2 = p._cont_bern_log_norm() + torch.log1p(-p.probs) + t3 = -q._cont_bern_log_norm() - torch.log1p(-q.probs) + return t1 + t2 + t3 + + +@register_kl(Dirichlet, Dirichlet) +def _kl_dirichlet_dirichlet(p, q): + # From http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions/ + sum_p_concentration = p.concentration.sum(-1) + sum_q_concentration = q.concentration.sum(-1) + t1 = sum_p_concentration.lgamma() - sum_q_concentration.lgamma() + t2 = (p.concentration.lgamma() - q.concentration.lgamma()).sum(-1) + t3 = p.concentration - q.concentration + t4 = p.concentration.digamma() - sum_p_concentration.digamma().unsqueeze(-1) + return t1 - t2 + (t3 * t4).sum(-1) + + +@register_kl(Exponential, Exponential) +def _kl_exponential_exponential(p, q): + rate_ratio = q.rate / p.rate + t1 = -rate_ratio.log() + return t1 + rate_ratio - 1 + + +@register_kl(ExponentialFamily, ExponentialFamily) +def _kl_expfamily_expfamily(p, q): + if not type(p) == type(q): + raise NotImplementedError( + "The cross KL-divergence between different exponential families cannot \ + be computed using Bregman divergences" + ) + p_nparams = [np.detach().requires_grad_() for np in p._natural_params] + q_nparams = q._natural_params + lg_normal = p._log_normalizer(*p_nparams) + gradients = torch.autograd.grad(lg_normal.sum(), p_nparams, create_graph=True) + result = q._log_normalizer(*q_nparams) - lg_normal + for pnp, qnp, g in zip(p_nparams, q_nparams, gradients): + term = (qnp - pnp) * g + result -= _sum_rightmost(term, len(q.event_shape)) + return result + + +@register_kl(Gamma, Gamma) +def _kl_gamma_gamma(p, q): + t1 = q.concentration * (p.rate / q.rate).log() + t2 = torch.lgamma(q.concentration) - torch.lgamma(p.concentration) + t3 = (p.concentration - q.concentration) * torch.digamma(p.concentration) + t4 = (q.rate - p.rate) * (p.concentration / p.rate) + return t1 + t2 + t3 + t4 + + +@register_kl(Gumbel, Gumbel) +def _kl_gumbel_gumbel(p, q): + ct1 = p.scale / q.scale + ct2 = q.loc / q.scale + ct3 = p.loc / q.scale + t1 = -ct1.log() - ct2 + ct3 + t2 = ct1 * _euler_gamma + t3 = torch.exp(ct2 + (1 + ct1).lgamma() - ct3) + return t1 + t2 + t3 - (1 + _euler_gamma) + + +@register_kl(Geometric, Geometric) +def _kl_geometric_geometric(p, q): + return -p.entropy() - torch.log1p(-q.probs) / p.probs - q.logits + + +@register_kl(HalfNormal, HalfNormal) +def _kl_halfnormal_halfnormal(p, q): + return _kl_normal_normal(p.base_dist, q.base_dist) + + +@register_kl(Laplace, Laplace) +def _kl_laplace_laplace(p, q): + # From http://www.mast.queensu.ca/~communications/Papers/gil-msc11.pdf + scale_ratio = p.scale / q.scale + loc_abs_diff = (p.loc - q.loc).abs() + t1 = -scale_ratio.log() + t2 = loc_abs_diff / q.scale + t3 = scale_ratio * torch.exp(-loc_abs_diff / p.scale) + return t1 + t2 + t3 - 1 + + +@register_kl(LowRankMultivariateNormal, LowRankMultivariateNormal) +def _kl_lowrankmultivariatenormal_lowrankmultivariatenormal(p, q): + if p.event_shape != q.event_shape: + raise ValueError( + "KL-divergence between two Low Rank Multivariate Normals with\ + different event shapes cannot be computed" + ) + + term1 = _batch_lowrank_logdet( + q._unbroadcasted_cov_factor, q._unbroadcasted_cov_diag, q._capacitance_tril + ) - _batch_lowrank_logdet( + p._unbroadcasted_cov_factor, p._unbroadcasted_cov_diag, p._capacitance_tril + ) + term3 = _batch_lowrank_mahalanobis( + q._unbroadcasted_cov_factor, + q._unbroadcasted_cov_diag, + q.loc - p.loc, + q._capacitance_tril, + ) + # Expands term2 according to + # inv(qcov) @ pcov = [inv(qD) - inv(qD) @ qW @ inv(qC) @ qW.T @ inv(qD)] @ (pW @ pW.T + pD) + # = [inv(qD) - A.T @ A] @ (pD + pW @ pW.T) + qWt_qDinv = q._unbroadcasted_cov_factor.mT / q._unbroadcasted_cov_diag.unsqueeze(-2) + A = torch.linalg.solve_triangular(q._capacitance_tril, qWt_qDinv, upper=False) + term21 = (p._unbroadcasted_cov_diag / q._unbroadcasted_cov_diag).sum(-1) + term22 = _batch_trace_XXT( + p._unbroadcasted_cov_factor * q._unbroadcasted_cov_diag.rsqrt().unsqueeze(-1) + ) + term23 = _batch_trace_XXT(A * p._unbroadcasted_cov_diag.sqrt().unsqueeze(-2)) + term24 = _batch_trace_XXT(A.matmul(p._unbroadcasted_cov_factor)) + term2 = term21 + term22 - term23 - term24 + return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) + + +@register_kl(MultivariateNormal, LowRankMultivariateNormal) +def _kl_multivariatenormal_lowrankmultivariatenormal(p, q): + if p.event_shape != q.event_shape: + raise ValueError( + "KL-divergence between two (Low Rank) Multivariate Normals with\ + different event shapes cannot be computed" + ) + + term1 = _batch_lowrank_logdet( + q._unbroadcasted_cov_factor, q._unbroadcasted_cov_diag, q._capacitance_tril + ) - 2 * p._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) + term3 = _batch_lowrank_mahalanobis( + q._unbroadcasted_cov_factor, + q._unbroadcasted_cov_diag, + q.loc - p.loc, + q._capacitance_tril, + ) + # Expands term2 according to + # inv(qcov) @ pcov = [inv(qD) - inv(qD) @ qW @ inv(qC) @ qW.T @ inv(qD)] @ p_tril @ p_tril.T + # = [inv(qD) - A.T @ A] @ p_tril @ p_tril.T + qWt_qDinv = q._unbroadcasted_cov_factor.mT / q._unbroadcasted_cov_diag.unsqueeze(-2) + A = torch.linalg.solve_triangular(q._capacitance_tril, qWt_qDinv, upper=False) + term21 = _batch_trace_XXT( + p._unbroadcasted_scale_tril * q._unbroadcasted_cov_diag.rsqrt().unsqueeze(-1) + ) + term22 = _batch_trace_XXT(A.matmul(p._unbroadcasted_scale_tril)) + term2 = term21 - term22 + return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) + + +@register_kl(LowRankMultivariateNormal, MultivariateNormal) +def _kl_lowrankmultivariatenormal_multivariatenormal(p, q): + if p.event_shape != q.event_shape: + raise ValueError( + "KL-divergence between two (Low Rank) Multivariate Normals with\ + different event shapes cannot be computed" + ) + + term1 = 2 * q._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum( + -1 + ) - _batch_lowrank_logdet( + p._unbroadcasted_cov_factor, p._unbroadcasted_cov_diag, p._capacitance_tril + ) + term3 = _batch_mahalanobis(q._unbroadcasted_scale_tril, (q.loc - p.loc)) + # Expands term2 according to + # inv(qcov) @ pcov = inv(q_tril @ q_tril.T) @ (pW @ pW.T + pD) + combined_batch_shape = torch._C._infer_size( + q._unbroadcasted_scale_tril.shape[:-2], p._unbroadcasted_cov_factor.shape[:-2] + ) + n = p.event_shape[0] + q_scale_tril = q._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) + p_cov_factor = p._unbroadcasted_cov_factor.expand( + combined_batch_shape + (n, p.cov_factor.size(-1)) + ) + p_cov_diag = torch.diag_embed(p._unbroadcasted_cov_diag.sqrt()).expand( + combined_batch_shape + (n, n) + ) + term21 = _batch_trace_XXT( + torch.linalg.solve_triangular(q_scale_tril, p_cov_factor, upper=False) + ) + term22 = _batch_trace_XXT( + torch.linalg.solve_triangular(q_scale_tril, p_cov_diag, upper=False) + ) + term2 = term21 + term22 + return 0.5 * (term1 + term2 + term3 - p.event_shape[0]) + + +@register_kl(MultivariateNormal, MultivariateNormal) +def _kl_multivariatenormal_multivariatenormal(p, q): + # From https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Kullback%E2%80%93Leibler_divergence + if p.event_shape != q.event_shape: + raise ValueError( + "KL-divergence between two Multivariate Normals with\ + different event shapes cannot be computed" + ) + + half_term1 = q._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum( + -1 + ) - p._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) + combined_batch_shape = torch._C._infer_size( + q._unbroadcasted_scale_tril.shape[:-2], p._unbroadcasted_scale_tril.shape[:-2] + ) + n = p.event_shape[0] + q_scale_tril = q._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) + p_scale_tril = p._unbroadcasted_scale_tril.expand(combined_batch_shape + (n, n)) + term2 = _batch_trace_XXT( + torch.linalg.solve_triangular(q_scale_tril, p_scale_tril, upper=False) + ) + term3 = _batch_mahalanobis(q._unbroadcasted_scale_tril, (q.loc - p.loc)) + return half_term1 + 0.5 * (term2 + term3 - n) + + +@register_kl(Normal, Normal) +def _kl_normal_normal(p, q): + var_ratio = (p.scale / q.scale).pow(2) + t1 = ((p.loc - q.loc) / q.scale).pow(2) + return 0.5 * (var_ratio + t1 - 1 - var_ratio.log()) + + +@register_kl(OneHotCategorical, OneHotCategorical) +def _kl_onehotcategorical_onehotcategorical(p, q): + return _kl_categorical_categorical(p._categorical, q._categorical) + + +@register_kl(Pareto, Pareto) +def _kl_pareto_pareto(p, q): + # From http://www.mast.queensu.ca/~communications/Papers/gil-msc11.pdf + scale_ratio = p.scale / q.scale + alpha_ratio = q.alpha / p.alpha + t1 = q.alpha * scale_ratio.log() + t2 = -alpha_ratio.log() + result = t1 + t2 + alpha_ratio - 1 + result[p.support.lower_bound < q.support.lower_bound] = inf + return result + + +@register_kl(Poisson, Poisson) +def _kl_poisson_poisson(p, q): + return p.rate * (p.rate.log() - q.rate.log()) - (p.rate - q.rate) + + +@register_kl(TransformedDistribution, TransformedDistribution) +def _kl_transformed_transformed(p, q): + if p.transforms != q.transforms: + raise NotImplementedError + if p.event_shape != q.event_shape: + raise NotImplementedError + return kl_divergence(p.base_dist, q.base_dist) + + +@register_kl(Uniform, Uniform) +def _kl_uniform_uniform(p, q): + result = ((q.high - q.low) / (p.high - p.low)).log() + result[(q.low > p.low) | (q.high < p.high)] = inf + return result + + +# Different distributions +@register_kl(Bernoulli, Poisson) +def _kl_bernoulli_poisson(p, q): + return -p.entropy() - (p.probs * q.rate.log() - q.rate) + + +@register_kl(Beta, ContinuousBernoulli) +def _kl_beta_continuous_bernoulli(p, q): + return ( + -p.entropy() + - p.mean * q.logits + - torch.log1p(-q.probs) + - q._cont_bern_log_norm() + ) + + +@register_kl(Beta, Pareto) +def _kl_beta_infinity(p, q): + return _infinite_like(p.concentration1) + + +@register_kl(Beta, Exponential) +def _kl_beta_exponential(p, q): + return ( + -p.entropy() + - q.rate.log() + + q.rate * (p.concentration1 / (p.concentration1 + p.concentration0)) + ) + + +@register_kl(Beta, Gamma) +def _kl_beta_gamma(p, q): + t1 = -p.entropy() + t2 = q.concentration.lgamma() - q.concentration * q.rate.log() + t3 = (q.concentration - 1) * ( + p.concentration1.digamma() - (p.concentration1 + p.concentration0).digamma() + ) + t4 = q.rate * p.concentration1 / (p.concentration1 + p.concentration0) + return t1 + t2 - t3 + t4 + + +# TODO: Add Beta-Laplace KL Divergence + + +@register_kl(Beta, Normal) +def _kl_beta_normal(p, q): + E_beta = p.concentration1 / (p.concentration1 + p.concentration0) + var_normal = q.scale.pow(2) + t1 = -p.entropy() + t2 = 0.5 * (var_normal * 2 * math.pi).log() + t3 = ( + E_beta * (1 - E_beta) / (p.concentration1 + p.concentration0 + 1) + + E_beta.pow(2) + ) * 0.5 + t4 = q.loc * E_beta + t5 = q.loc.pow(2) * 0.5 + return t1 + t2 + (t3 - t4 + t5) / var_normal + + +@register_kl(Beta, Uniform) +def _kl_beta_uniform(p, q): + result = -p.entropy() + (q.high - q.low).log() + result[(q.low > p.support.lower_bound) | (q.high < p.support.upper_bound)] = inf + return result + + +# Note that the KL between a ContinuousBernoulli and Beta has no closed form + + +@register_kl(ContinuousBernoulli, Pareto) +def _kl_continuous_bernoulli_infinity(p, q): + return _infinite_like(p.probs) + + +@register_kl(ContinuousBernoulli, Exponential) +def _kl_continuous_bernoulli_exponential(p, q): + return -p.entropy() - torch.log(q.rate) + q.rate * p.mean + + +# Note that the KL between a ContinuousBernoulli and Gamma has no closed form +# TODO: Add ContinuousBernoulli-Laplace KL Divergence + + +@register_kl(ContinuousBernoulli, Normal) +def _kl_continuous_bernoulli_normal(p, q): + t1 = -p.entropy() + t2 = 0.5 * (math.log(2.0 * math.pi) + torch.square(q.loc / q.scale)) + torch.log( + q.scale + ) + t3 = (p.variance + torch.square(p.mean) - 2.0 * q.loc * p.mean) / ( + 2.0 * torch.square(q.scale) + ) + return t1 + t2 + t3 + + +@register_kl(ContinuousBernoulli, Uniform) +def _kl_continuous_bernoulli_uniform(p, q): + result = -p.entropy() + (q.high - q.low).log() + return torch.where( + torch.max( + torch.ge(q.low, p.support.lower_bound), + torch.le(q.high, p.support.upper_bound), + ), + torch.ones_like(result) * inf, + result, + ) + + +@register_kl(Exponential, Beta) +@register_kl(Exponential, ContinuousBernoulli) +@register_kl(Exponential, Pareto) +@register_kl(Exponential, Uniform) +def _kl_exponential_infinity(p, q): + return _infinite_like(p.rate) + + +@register_kl(Exponential, Gamma) +def _kl_exponential_gamma(p, q): + ratio = q.rate / p.rate + t1 = -q.concentration * torch.log(ratio) + return ( + t1 + + ratio + + q.concentration.lgamma() + + q.concentration * _euler_gamma + - (1 + _euler_gamma) + ) + + +@register_kl(Exponential, Gumbel) +def _kl_exponential_gumbel(p, q): + scale_rate_prod = p.rate * q.scale + loc_scale_ratio = q.loc / q.scale + t1 = scale_rate_prod.log() - 1 + t2 = torch.exp(loc_scale_ratio) * scale_rate_prod / (scale_rate_prod + 1) + t3 = scale_rate_prod.reciprocal() + return t1 - loc_scale_ratio + t2 + t3 + + +# TODO: Add Exponential-Laplace KL Divergence + + +@register_kl(Exponential, Normal) +def _kl_exponential_normal(p, q): + var_normal = q.scale.pow(2) + rate_sqr = p.rate.pow(2) + t1 = 0.5 * torch.log(rate_sqr * var_normal * 2 * math.pi) + t2 = rate_sqr.reciprocal() + t3 = q.loc / p.rate + t4 = q.loc.pow(2) * 0.5 + return t1 - 1 + (t2 - t3 + t4) / var_normal + + +@register_kl(Gamma, Beta) +@register_kl(Gamma, ContinuousBernoulli) +@register_kl(Gamma, Pareto) +@register_kl(Gamma, Uniform) +def _kl_gamma_infinity(p, q): + return _infinite_like(p.concentration) + + +@register_kl(Gamma, Exponential) +def _kl_gamma_exponential(p, q): + return -p.entropy() - q.rate.log() + q.rate * p.concentration / p.rate + + +@register_kl(Gamma, Gumbel) +def _kl_gamma_gumbel(p, q): + beta_scale_prod = p.rate * q.scale + loc_scale_ratio = q.loc / q.scale + t1 = ( + (p.concentration - 1) * p.concentration.digamma() + - p.concentration.lgamma() + - p.concentration + ) + t2 = beta_scale_prod.log() + p.concentration / beta_scale_prod + t3 = ( + torch.exp(loc_scale_ratio) + * (1 + beta_scale_prod.reciprocal()).pow(-p.concentration) + - loc_scale_ratio + ) + return t1 + t2 + t3 + + +# TODO: Add Gamma-Laplace KL Divergence + + +@register_kl(Gamma, Normal) +def _kl_gamma_normal(p, q): + var_normal = q.scale.pow(2) + beta_sqr = p.rate.pow(2) + t1 = ( + 0.5 * torch.log(beta_sqr * var_normal * 2 * math.pi) + - p.concentration + - p.concentration.lgamma() + ) + t2 = 0.5 * (p.concentration.pow(2) + p.concentration) / beta_sqr + t3 = q.loc * p.concentration / p.rate + t4 = 0.5 * q.loc.pow(2) + return ( + t1 + + (p.concentration - 1) * p.concentration.digamma() + + (t2 - t3 + t4) / var_normal + ) + + +@register_kl(Gumbel, Beta) +@register_kl(Gumbel, ContinuousBernoulli) +@register_kl(Gumbel, Exponential) +@register_kl(Gumbel, Gamma) +@register_kl(Gumbel, Pareto) +@register_kl(Gumbel, Uniform) +def _kl_gumbel_infinity(p, q): + return _infinite_like(p.loc) + + +# TODO: Add Gumbel-Laplace KL Divergence + + +@register_kl(Gumbel, Normal) +def _kl_gumbel_normal(p, q): + param_ratio = p.scale / q.scale + t1 = (param_ratio / math.sqrt(2 * math.pi)).log() + t2 = (math.pi * param_ratio * 0.5).pow(2) / 3 + t3 = ((p.loc + p.scale * _euler_gamma - q.loc) / q.scale).pow(2) * 0.5 + return -t1 + t2 + t3 - (_euler_gamma + 1) + + +@register_kl(Laplace, Beta) +@register_kl(Laplace, ContinuousBernoulli) +@register_kl(Laplace, Exponential) +@register_kl(Laplace, Gamma) +@register_kl(Laplace, Pareto) +@register_kl(Laplace, Uniform) +def _kl_laplace_infinity(p, q): + return _infinite_like(p.loc) + + +@register_kl(Laplace, Normal) +def _kl_laplace_normal(p, q): + var_normal = q.scale.pow(2) + scale_sqr_var_ratio = p.scale.pow(2) / var_normal + t1 = 0.5 * torch.log(2 * scale_sqr_var_ratio / math.pi) + t2 = 0.5 * p.loc.pow(2) + t3 = p.loc * q.loc + t4 = 0.5 * q.loc.pow(2) + return -t1 + scale_sqr_var_ratio + (t2 - t3 + t4) / var_normal - 1 + + +@register_kl(Normal, Beta) +@register_kl(Normal, ContinuousBernoulli) +@register_kl(Normal, Exponential) +@register_kl(Normal, Gamma) +@register_kl(Normal, Pareto) +@register_kl(Normal, Uniform) +def _kl_normal_infinity(p, q): + return _infinite_like(p.loc) + + +@register_kl(Normal, Gumbel) +def _kl_normal_gumbel(p, q): + mean_scale_ratio = p.loc / q.scale + var_scale_sqr_ratio = (p.scale / q.scale).pow(2) + loc_scale_ratio = q.loc / q.scale + t1 = var_scale_sqr_ratio.log() * 0.5 + t2 = mean_scale_ratio - loc_scale_ratio + t3 = torch.exp(-mean_scale_ratio + 0.5 * var_scale_sqr_ratio + loc_scale_ratio) + return -t1 + t2 + t3 - (0.5 * (1 + math.log(2 * math.pi))) + + +@register_kl(Normal, Laplace) +def _kl_normal_laplace(p, q): + loc_diff = p.loc - q.loc + scale_ratio = p.scale / q.scale + loc_diff_scale_ratio = loc_diff / p.scale + t1 = torch.log(scale_ratio) + t2 = ( + math.sqrt(2 / math.pi) * p.scale * torch.exp(-0.5 * loc_diff_scale_ratio.pow(2)) + ) + t3 = loc_diff * torch.erf(math.sqrt(0.5) * loc_diff_scale_ratio) + return -t1 + (t2 + t3) / q.scale - (0.5 * (1 + math.log(0.5 * math.pi))) + + +@register_kl(Pareto, Beta) +@register_kl(Pareto, ContinuousBernoulli) +@register_kl(Pareto, Uniform) +def _kl_pareto_infinity(p, q): + return _infinite_like(p.scale) + + +@register_kl(Pareto, Exponential) +def _kl_pareto_exponential(p, q): + scale_rate_prod = p.scale * q.rate + t1 = (p.alpha / scale_rate_prod).log() + t2 = p.alpha.reciprocal() + t3 = p.alpha * scale_rate_prod / (p.alpha - 1) + result = t1 - t2 + t3 - 1 + result[p.alpha <= 1] = inf + return result + + +@register_kl(Pareto, Gamma) +def _kl_pareto_gamma(p, q): + common_term = p.scale.log() + p.alpha.reciprocal() + t1 = p.alpha.log() - common_term + t2 = q.concentration.lgamma() - q.concentration * q.rate.log() + t3 = (1 - q.concentration) * common_term + t4 = q.rate * p.alpha * p.scale / (p.alpha - 1) + result = t1 + t2 + t3 + t4 - 1 + result[p.alpha <= 1] = inf + return result + + +# TODO: Add Pareto-Laplace KL Divergence + + +@register_kl(Pareto, Normal) +def _kl_pareto_normal(p, q): + var_normal = 2 * q.scale.pow(2) + common_term = p.scale / (p.alpha - 1) + t1 = (math.sqrt(2 * math.pi) * q.scale * p.alpha / p.scale).log() + t2 = p.alpha.reciprocal() + t3 = p.alpha * common_term.pow(2) / (p.alpha - 2) + t4 = (p.alpha * common_term - q.loc).pow(2) + result = t1 - t2 + (t3 + t4) / var_normal - 1 + result[p.alpha <= 2] = inf + return result + + +@register_kl(Poisson, Bernoulli) +@register_kl(Poisson, Binomial) +def _kl_poisson_infinity(p, q): + return _infinite_like(p.rate) + + +@register_kl(Uniform, Beta) +def _kl_uniform_beta(p, q): + common_term = p.high - p.low + t1 = torch.log(common_term) + t2 = ( + (q.concentration1 - 1) + * (_x_log_x(p.high) - _x_log_x(p.low) - common_term) + / common_term + ) + t3 = ( + (q.concentration0 - 1) + * (_x_log_x(1 - p.high) - _x_log_x(1 - p.low) + common_term) + / common_term + ) + t4 = ( + q.concentration1.lgamma() + + q.concentration0.lgamma() + - (q.concentration1 + q.concentration0).lgamma() + ) + result = t3 + t4 - t1 - t2 + result[(p.high > q.support.upper_bound) | (p.low < q.support.lower_bound)] = inf + return result + + +@register_kl(Uniform, ContinuousBernoulli) +def _kl_uniform_continuous_bernoulli(p, q): + result = ( + -p.entropy() + - p.mean * q.logits + - torch.log1p(-q.probs) + - q._cont_bern_log_norm() + ) + return torch.where( + torch.max( + torch.ge(p.high, q.support.upper_bound), + torch.le(p.low, q.support.lower_bound), + ), + torch.ones_like(result) * inf, + result, + ) + + +@register_kl(Uniform, Exponential) +def _kl_uniform_exponetial(p, q): + result = q.rate * (p.high + p.low) / 2 - ((p.high - p.low) * q.rate).log() + result[p.low < q.support.lower_bound] = inf + return result + + +@register_kl(Uniform, Gamma) +def _kl_uniform_gamma(p, q): + common_term = p.high - p.low + t1 = common_term.log() + t2 = q.concentration.lgamma() - q.concentration * q.rate.log() + t3 = ( + (1 - q.concentration) + * (_x_log_x(p.high) - _x_log_x(p.low) - common_term) + / common_term + ) + t4 = q.rate * (p.high + p.low) / 2 + result = -t1 + t2 + t3 + t4 + result[p.low < q.support.lower_bound] = inf + return result + + +@register_kl(Uniform, Gumbel) +def _kl_uniform_gumbel(p, q): + common_term = q.scale / (p.high - p.low) + high_loc_diff = (p.high - q.loc) / q.scale + low_loc_diff = (p.low - q.loc) / q.scale + t1 = common_term.log() + 0.5 * (high_loc_diff + low_loc_diff) + t2 = common_term * (torch.exp(-high_loc_diff) - torch.exp(-low_loc_diff)) + return t1 - t2 + + +# TODO: Uniform-Laplace KL Divergence + + +@register_kl(Uniform, Normal) +def _kl_uniform_normal(p, q): + common_term = p.high - p.low + t1 = (math.sqrt(math.pi * 2) * q.scale / common_term).log() + t2 = (common_term).pow(2) / 12 + t3 = ((p.high + p.low - 2 * q.loc) / 2).pow(2) + return t1 + 0.5 * (t2 + t3) / q.scale.pow(2) + + +@register_kl(Uniform, Pareto) +def _kl_uniform_pareto(p, q): + support_uniform = p.high - p.low + t1 = (q.alpha * q.scale.pow(q.alpha) * (support_uniform)).log() + t2 = (_x_log_x(p.high) - _x_log_x(p.low) - support_uniform) / support_uniform + result = t2 * (q.alpha + 1) - t1 + result[p.low < q.support.lower_bound] = inf + return result + + +@register_kl(Independent, Independent) +def _kl_independent_independent(p, q): + if p.reinterpreted_batch_ndims != q.reinterpreted_batch_ndims: + raise NotImplementedError + result = kl_divergence(p.base_dist, q.base_dist) + return _sum_rightmost(result, p.reinterpreted_batch_ndims) + + +@register_kl(Cauchy, Cauchy) +def _kl_cauchy_cauchy(p, q): + # From https://arxiv.org/abs/1905.10965 + t1 = ((p.scale + q.scale).pow(2) + (p.loc - q.loc).pow(2)).log() + t2 = (4 * p.scale * q.scale).log() + return t1 - t2 + + +def _add_kl_info(): + """Appends a list of implemented KL functions to the doc for kl_divergence.""" + rows = [ + "KL divergence is currently implemented for the following distribution pairs:" + ] + for p, q in sorted( + _KL_REGISTRY, key=lambda p_q: (p_q[0].__name__, p_q[1].__name__) + ): + rows.append( + f"* :class:`~torch.distributions.{p.__name__}` and :class:`~torch.distributions.{q.__name__}`" + ) + kl_info = "\n\t".join(rows) + if kl_divergence.__doc__: + kl_divergence.__doc__ += kl_info # type: ignore[operator] diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kumaraswamy.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kumaraswamy.py new file mode 100644 index 0000000000000000000000000000000000000000..367e5d52e44a29cf00d1edb4317ac8248d1e9e7a --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/kumaraswamy.py @@ -0,0 +1,99 @@ +# mypy: allow-untyped-defs +import torch +from torch import nan +from torch.distributions import constraints +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import AffineTransform, PowerTransform +from torch.distributions.uniform import Uniform +from torch.distributions.utils import broadcast_all, euler_constant + + +__all__ = ["Kumaraswamy"] + + +def _moments(a, b, n): + """ + Computes nth moment of Kumaraswamy using using torch.lgamma + """ + arg1 = 1 + n / a + log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b) + return b * torch.exp(log_value) + + +class Kumaraswamy(TransformedDistribution): + r""" + Samples from a Kumaraswamy distribution. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) + >>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 + tensor([ 0.1729]) + + Args: + concentration1 (float or Tensor): 1st concentration parameter of the distribution + (often referred to as alpha) + concentration0 (float or Tensor): 2nd concentration parameter of the distribution + (often referred to as beta) + """ + arg_constraints = { + "concentration1": constraints.positive, + "concentration0": constraints.positive, + } + support = constraints.unit_interval + has_rsample = True + + def __init__(self, concentration1, concentration0, validate_args=None): + self.concentration1, self.concentration0 = broadcast_all( + concentration1, concentration0 + ) + finfo = torch.finfo(self.concentration0.dtype) + base_dist = Uniform( + torch.full_like(self.concentration0, 0), + torch.full_like(self.concentration0, 1), + validate_args=validate_args, + ) + transforms = [ + PowerTransform(exponent=self.concentration0.reciprocal()), + AffineTransform(loc=1.0, scale=-1.0), + PowerTransform(exponent=self.concentration1.reciprocal()), + ] + super().__init__(base_dist, transforms, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Kumaraswamy, _instance) + new.concentration1 = self.concentration1.expand(batch_shape) + new.concentration0 = self.concentration0.expand(batch_shape) + return super().expand(batch_shape, _instance=new) + + @property + def mean(self): + return _moments(self.concentration1, self.concentration0, 1) + + @property + def mode(self): + # Evaluate in log-space for numerical stability. + log_mode = ( + self.concentration0.reciprocal() * (-self.concentration0).log1p() + - (-self.concentration0 * self.concentration1).log1p() + ) + log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan + return log_mode.exp() + + @property + def variance(self): + return _moments(self.concentration1, self.concentration0, 2) - torch.pow( + self.mean, 2 + ) + + def entropy(self): + t1 = 1 - self.concentration1.reciprocal() + t0 = 1 - self.concentration0.reciprocal() + H0 = torch.digamma(self.concentration0 + 1) + euler_constant + return ( + t0 + + t1 * H0 + - torch.log(self.concentration1) + - torch.log(self.concentration0) + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/laplace.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/laplace.py new file mode 100644 index 0000000000000000000000000000000000000000..e4d33f2638289201a4dd2c580503790ac90256d4 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/laplace.py @@ -0,0 +1,97 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all +from torch.types import _size + + +__all__ = ["Laplace"] + + +class Laplace(Distribution): + r""" + Creates a Laplace distribution parameterized by :attr:`loc` and :attr:`scale`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) + >>> m.sample() # Laplace distributed with loc=0, scale=1 + tensor([ 0.1046]) + + Args: + loc (float or Tensor): mean of the distribution + scale (float or Tensor): scale of the distribution + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.real + has_rsample = True + + @property + def mean(self): + return self.loc + + @property + def mode(self): + return self.loc + + @property + def variance(self): + return 2 * self.scale.pow(2) + + @property + def stddev(self): + return (2**0.5) * self.scale + + def __init__(self, loc, scale, validate_args=None): + self.loc, self.scale = broadcast_all(loc, scale) + if isinstance(loc, Number) and isinstance(scale, Number): + batch_shape = torch.Size() + else: + batch_shape = self.loc.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Laplace, _instance) + batch_shape = torch.Size(batch_shape) + new.loc = self.loc.expand(batch_shape) + new.scale = self.scale.expand(batch_shape) + super(Laplace, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + finfo = torch.finfo(self.loc.dtype) + if torch._C._get_tracing_state(): + # [JIT WORKAROUND] lack of support for .uniform_() + u = torch.rand(shape, dtype=self.loc.dtype, device=self.loc.device) * 2 - 1 + return self.loc - self.scale * u.sign() * torch.log1p( + -u.abs().clamp(min=finfo.tiny) + ) + u = self.loc.new(shape).uniform_(finfo.eps - 1, 1) + # TODO: If we ever implement tensor.nextafter, below is what we want ideally. + # u = self.loc.new(shape).uniform_(self.loc.nextafter(-.5, 0), .5) + return self.loc - self.scale * u.sign() * torch.log1p(-u.abs()) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + return -torch.log(2 * self.scale) - torch.abs(value - self.loc) / self.scale + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return 0.5 - 0.5 * (value - self.loc).sign() * torch.expm1( + -(value - self.loc).abs() / self.scale + ) + + def icdf(self, value): + term = value - 0.5 + return self.loc - self.scale * (term).sign() * torch.log1p(-2 * term.abs()) + + def entropy(self): + return 1 + torch.log(2 * self.scale) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py new file mode 100644 index 0000000000000000000000000000000000000000..479568bdd428d6e36a78ee8a532f9cd6c35c7ef8 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lkj_cholesky.py @@ -0,0 +1,144 @@ +# mypy: allow-untyped-defs +""" +This closely follows the implementation in NumPyro (https://github.com/pyro-ppl/numpyro). + +Original copyright notice: + +# Copyright: Contributors to the Pyro project. +# SPDX-License-Identifier: Apache-2.0 +""" + +import math + +import torch +from torch.distributions import Beta, constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all + + +__all__ = ["LKJCholesky"] + + +class LKJCholesky(Distribution): + r""" + LKJ distribution for lower Cholesky factor of correlation matrices. + The distribution is controlled by ``concentration`` parameter :math:`\eta` + to make the probability of the correlation matrix :math:`M` generated from + a Cholesky factor proportional to :math:`\det(M)^{\eta - 1}`. Because of that, + when ``concentration == 1``, we have a uniform distribution over Cholesky + factors of correlation matrices:: + + L ~ LKJCholesky(dim, concentration) + X = L @ L' ~ LKJCorr(dim, concentration) + + Note that this distribution samples the + Cholesky factor of correlation matrices and not the correlation matrices + themselves and thereby differs slightly from the derivations in [1] for + the `LKJCorr` distribution. For sampling, this uses the Onion method from + [1] Section 3. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> l = LKJCholesky(3, 0.5) + >>> l.sample() # l @ l.T is a sample of a correlation 3x3 matrix + tensor([[ 1.0000, 0.0000, 0.0000], + [ 0.3516, 0.9361, 0.0000], + [-0.1899, 0.4748, 0.8593]]) + + Args: + dimension (dim): dimension of the matrices + concentration (float or Tensor): concentration/shape parameter of the + distribution (often referred to as eta) + + **References** + + [1] `Generating random correlation matrices based on vines and extended onion method` (2009), + Daniel Lewandowski, Dorota Kurowicka, Harry Joe. + Journal of Multivariate Analysis. 100. 10.1016/j.jmva.2009.04.008 + """ + arg_constraints = {"concentration": constraints.positive} + support = constraints.corr_cholesky + + def __init__(self, dim, concentration=1.0, validate_args=None): + if dim < 2: + raise ValueError( + f"Expected dim to be an integer greater than or equal to 2. Found dim={dim}." + ) + self.dim = dim + (self.concentration,) = broadcast_all(concentration) + batch_shape = self.concentration.size() + event_shape = torch.Size((dim, dim)) + # This is used to draw vectorized samples from the beta distribution in Sec. 3.2 of [1]. + marginal_conc = self.concentration + 0.5 * (self.dim - 2) + offset = torch.arange( + self.dim - 1, + dtype=self.concentration.dtype, + device=self.concentration.device, + ) + offset = torch.cat([offset.new_zeros((1,)), offset]) + beta_conc1 = offset + 0.5 + beta_conc0 = marginal_conc.unsqueeze(-1) - 0.5 * offset + self._beta = Beta(beta_conc1, beta_conc0) + super().__init__(batch_shape, event_shape, validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(LKJCholesky, _instance) + batch_shape = torch.Size(batch_shape) + new.dim = self.dim + new.concentration = self.concentration.expand(batch_shape) + new._beta = self._beta.expand(batch_shape + (self.dim,)) + super(LKJCholesky, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + def sample(self, sample_shape=torch.Size()): + # This uses the Onion method, but there are a few differences from [1] Sec. 3.2: + # - This vectorizes the for loop and also works for heterogeneous eta. + # - Same algorithm generalizes to n=1. + # - The procedure is simplified since we are sampling the cholesky factor of + # the correlation matrix instead of the correlation matrix itself. As such, + # we only need to generate `w`. + y = self._beta.sample(sample_shape).unsqueeze(-1) + u_normal = torch.randn( + self._extended_shape(sample_shape), dtype=y.dtype, device=y.device + ).tril(-1) + u_hypersphere = u_normal / u_normal.norm(dim=-1, keepdim=True) + # Replace NaNs in first row + u_hypersphere[..., 0, :].fill_(0.0) + w = torch.sqrt(y) * u_hypersphere + # Fill diagonal elements; clamp for numerical stability + eps = torch.finfo(w.dtype).tiny + diag_elems = torch.clamp(1 - torch.sum(w**2, dim=-1), min=eps).sqrt() + w += torch.diag_embed(diag_elems) + return w + + def log_prob(self, value): + # See: https://mc-stan.org/docs/2_25/functions-reference/cholesky-lkj-correlation-distribution.html + # The probability of a correlation matrix is proportional to + # determinant ** (concentration - 1) = prod(L_ii ^ 2(concentration - 1)) + # Additionally, the Jacobian of the transformation from Cholesky factor to + # correlation matrix is: + # prod(L_ii ^ (D - i)) + # So the probability of a Cholesky factor is propotional to + # prod(L_ii ^ (2 * concentration - 2 + D - i)) = prod(L_ii ^ order_i) + # with order_i = 2 * concentration - 2 + D - i + if self._validate_args: + self._validate_sample(value) + diag_elems = value.diagonal(dim1=-1, dim2=-2)[..., 1:] + order = torch.arange(2, self.dim + 1, device=self.concentration.device) + order = 2 * (self.concentration - 1).unsqueeze(-1) + self.dim - order + unnormalized_log_pdf = torch.sum(order * diag_elems.log(), dim=-1) + # Compute normalization constant (page 1999 of [1]) + dm1 = self.dim - 1 + alpha = self.concentration + 0.5 * dm1 + denominator = torch.lgamma(alpha) * dm1 + numerator = torch.mvlgamma(alpha - 0.5, dm1) + # pi_constant in [1] is D * (D - 1) / 4 * log(pi) + # pi_constant in multigammaln is (D - 1) * (D - 2) / 4 * log(pi) + # hence, we need to add a pi_constant = (D - 1) * log(pi) / 2 + pi_constant = 0.5 * dm1 * math.log(math.pi) + normalize_term = pi_constant + numerator - denominator + return unnormalized_log_pdf - normalize_term diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/log_normal.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/log_normal.py new file mode 100644 index 0000000000000000000000000000000000000000..d40d21b9ef4a6a28fd89656c9d3cc66d370492fa --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/log_normal.py @@ -0,0 +1,64 @@ +# mypy: allow-untyped-defs +from torch.distributions import constraints +from torch.distributions.normal import Normal +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import ExpTransform + + +__all__ = ["LogNormal"] + + +class LogNormal(TransformedDistribution): + r""" + Creates a log-normal distribution parameterized by + :attr:`loc` and :attr:`scale` where:: + + X ~ Normal(loc, scale) + Y = exp(X) ~ LogNormal(loc, scale) + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) + >>> m.sample() # log-normal distributed with mean=0 and stddev=1 + tensor([ 0.1046]) + + Args: + loc (float or Tensor): mean of log of distribution + scale (float or Tensor): standard deviation of log of the distribution + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.positive + has_rsample = True + + def __init__(self, loc, scale, validate_args=None): + base_dist = Normal(loc, scale, validate_args=validate_args) + super().__init__(base_dist, ExpTransform(), validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(LogNormal, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def loc(self): + return self.base_dist.loc + + @property + def scale(self): + return self.base_dist.scale + + @property + def mean(self): + return (self.loc + self.scale.pow(2) / 2).exp() + + @property + def mode(self): + return (self.loc - self.scale.square()).exp() + + @property + def variance(self): + scale_sq = self.scale.pow(2) + return scale_sq.expm1() * (2 * self.loc + scale_sq).exp() + + def entropy(self): + return self.base_dist.entropy() + self.loc diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/logistic_normal.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/logistic_normal.py new file mode 100644 index 0000000000000000000000000000000000000000..466afe50f48e0fafe4dda73550748c331e0d0adc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/logistic_normal.py @@ -0,0 +1,56 @@ +# mypy: allow-untyped-defs +from torch.distributions import constraints +from torch.distributions.normal import Normal +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import StickBreakingTransform + + +__all__ = ["LogisticNormal"] + + +class LogisticNormal(TransformedDistribution): + r""" + Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale` + that define the base `Normal` distribution transformed with the + `StickBreakingTransform` such that:: + + X ~ LogisticNormal(loc, scale) + Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale) + + Args: + loc (float or Tensor): mean of the base distribution + scale (float or Tensor): standard deviation of the base distribution + + Example:: + + >>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1) + >>> # of the base Normal distribution + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3)) + >>> m.sample() + tensor([ 0.7653, 0.0341, 0.0579, 0.1427]) + + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.simplex + has_rsample = True + + def __init__(self, loc, scale, validate_args=None): + base_dist = Normal(loc, scale, validate_args=validate_args) + if not base_dist.batch_shape: + base_dist = base_dist.expand([1]) + super().__init__( + base_dist, StickBreakingTransform(), validate_args=validate_args + ) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(LogisticNormal, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def loc(self): + return self.base_dist.base_dist.loc + + @property + def scale(self): + return self.base_dist.base_dist.scale diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lowrank_multivariate_normal.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lowrank_multivariate_normal.py new file mode 100644 index 0000000000000000000000000000000000000000..22dea3ca6bda217f8ad3de15ed771bd8cb1696a3 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/lowrank_multivariate_normal.py @@ -0,0 +1,240 @@ +# mypy: allow-untyped-defs +import math + +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.multivariate_normal import _batch_mahalanobis, _batch_mv +from torch.distributions.utils import _standard_normal, lazy_property +from torch.types import _size + + +__all__ = ["LowRankMultivariateNormal"] + + +def _batch_capacitance_tril(W, D): + r""" + Computes Cholesky of :math:`I + W.T @ inv(D) @ W` for a batch of matrices :math:`W` + and a batch of vectors :math:`D`. + """ + m = W.size(-1) + Wt_Dinv = W.mT / D.unsqueeze(-2) + K = torch.matmul(Wt_Dinv, W).contiguous() + K.view(-1, m * m)[:, :: m + 1] += 1 # add identity matrix to K + return torch.linalg.cholesky(K) + + +def _batch_lowrank_logdet(W, D, capacitance_tril): + r""" + Uses "matrix determinant lemma":: + log|W @ W.T + D| = log|C| + log|D|, + where :math:`C` is the capacitance matrix :math:`I + W.T @ inv(D) @ W`, to compute + the log determinant. + """ + return 2 * capacitance_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) + D.log().sum( + -1 + ) + + +def _batch_lowrank_mahalanobis(W, D, x, capacitance_tril): + r""" + Uses "Woodbury matrix identity":: + inv(W @ W.T + D) = inv(D) - inv(D) @ W @ inv(C) @ W.T @ inv(D), + where :math:`C` is the capacitance matrix :math:`I + W.T @ inv(D) @ W`, to compute the squared + Mahalanobis distance :math:`x.T @ inv(W @ W.T + D) @ x`. + """ + Wt_Dinv = W.mT / D.unsqueeze(-2) + Wt_Dinv_x = _batch_mv(Wt_Dinv, x) + mahalanobis_term1 = (x.pow(2) / D).sum(-1) + mahalanobis_term2 = _batch_mahalanobis(capacitance_tril, Wt_Dinv_x) + return mahalanobis_term1 - mahalanobis_term2 + + +class LowRankMultivariateNormal(Distribution): + r""" + Creates a multivariate normal distribution with covariance matrix having a low-rank form + parameterized by :attr:`cov_factor` and :attr:`cov_diag`:: + + covariance_matrix = cov_factor @ cov_factor.T + cov_diag + + Example: + >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK) + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = LowRankMultivariateNormal(torch.zeros(2), torch.tensor([[1.], [0.]]), torch.ones(2)) + >>> m.sample() # normally distributed with mean=`[0,0]`, cov_factor=`[[1],[0]]`, cov_diag=`[1,1]` + tensor([-0.2102, -0.5429]) + + Args: + loc (Tensor): mean of the distribution with shape `batch_shape + event_shape` + cov_factor (Tensor): factor part of low-rank form of covariance matrix with shape + `batch_shape + event_shape + (rank,)` + cov_diag (Tensor): diagonal part of low-rank form of covariance matrix with shape + `batch_shape + event_shape` + + Note: + The computation for determinant and inverse of covariance matrix is avoided when + `cov_factor.shape[1] << cov_factor.shape[0]` thanks to `Woodbury matrix identity + `_ and + `matrix determinant lemma `_. + Thanks to these formulas, we just need to compute the determinant and inverse of + the small size "capacitance" matrix:: + + capacitance = I + cov_factor.T @ inv(cov_diag) @ cov_factor + """ + arg_constraints = { + "loc": constraints.real_vector, + "cov_factor": constraints.independent(constraints.real, 2), + "cov_diag": constraints.independent(constraints.positive, 1), + } + support = constraints.real_vector + has_rsample = True + + def __init__(self, loc, cov_factor, cov_diag, validate_args=None): + if loc.dim() < 1: + raise ValueError("loc must be at least one-dimensional.") + event_shape = loc.shape[-1:] + if cov_factor.dim() < 2: + raise ValueError( + "cov_factor must be at least two-dimensional, " + "with optional leading batch dimensions" + ) + if cov_factor.shape[-2:-1] != event_shape: + raise ValueError( + f"cov_factor must be a batch of matrices with shape {event_shape[0]} x m" + ) + if cov_diag.shape[-1:] != event_shape: + raise ValueError( + f"cov_diag must be a batch of vectors with shape {event_shape}" + ) + + loc_ = loc.unsqueeze(-1) + cov_diag_ = cov_diag.unsqueeze(-1) + try: + loc_, self.cov_factor, cov_diag_ = torch.broadcast_tensors( + loc_, cov_factor, cov_diag_ + ) + except RuntimeError as e: + raise ValueError( + f"Incompatible batch shapes: loc {loc.shape}, cov_factor {cov_factor.shape}, cov_diag {cov_diag.shape}" + ) from e + self.loc = loc_[..., 0] + self.cov_diag = cov_diag_[..., 0] + batch_shape = self.loc.shape[:-1] + + self._unbroadcasted_cov_factor = cov_factor + self._unbroadcasted_cov_diag = cov_diag + self._capacitance_tril = _batch_capacitance_tril(cov_factor, cov_diag) + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(LowRankMultivariateNormal, _instance) + batch_shape = torch.Size(batch_shape) + loc_shape = batch_shape + self.event_shape + new.loc = self.loc.expand(loc_shape) + new.cov_diag = self.cov_diag.expand(loc_shape) + new.cov_factor = self.cov_factor.expand(loc_shape + self.cov_factor.shape[-1:]) + new._unbroadcasted_cov_factor = self._unbroadcasted_cov_factor + new._unbroadcasted_cov_diag = self._unbroadcasted_cov_diag + new._capacitance_tril = self._capacitance_tril + super(LowRankMultivariateNormal, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + @property + def mean(self): + return self.loc + + @property + def mode(self): + return self.loc + + @lazy_property + def variance(self): + return ( + self._unbroadcasted_cov_factor.pow(2).sum(-1) + self._unbroadcasted_cov_diag + ).expand(self._batch_shape + self._event_shape) + + @lazy_property + def scale_tril(self): + # The following identity is used to increase the numerically computation stability + # for Cholesky decomposition (see http://www.gaussianprocess.org/gpml/, Section 3.4.3): + # W @ W.T + D = D1/2 @ (I + D-1/2 @ W @ W.T @ D-1/2) @ D1/2 + # The matrix "I + D-1/2 @ W @ W.T @ D-1/2" has eigenvalues bounded from below by 1, + # hence it is well-conditioned and safe to take Cholesky decomposition. + n = self._event_shape[0] + cov_diag_sqrt_unsqueeze = self._unbroadcasted_cov_diag.sqrt().unsqueeze(-1) + Dinvsqrt_W = self._unbroadcasted_cov_factor / cov_diag_sqrt_unsqueeze + K = torch.matmul(Dinvsqrt_W, Dinvsqrt_W.mT).contiguous() + K.view(-1, n * n)[:, :: n + 1] += 1 # add identity matrix to K + scale_tril = cov_diag_sqrt_unsqueeze * torch.linalg.cholesky(K) + return scale_tril.expand( + self._batch_shape + self._event_shape + self._event_shape + ) + + @lazy_property + def covariance_matrix(self): + covariance_matrix = torch.matmul( + self._unbroadcasted_cov_factor, self._unbroadcasted_cov_factor.mT + ) + torch.diag_embed(self._unbroadcasted_cov_diag) + return covariance_matrix.expand( + self._batch_shape + self._event_shape + self._event_shape + ) + + @lazy_property + def precision_matrix(self): + # We use "Woodbury matrix identity" to take advantage of low rank form:: + # inv(W @ W.T + D) = inv(D) - inv(D) @ W @ inv(C) @ W.T @ inv(D) + # where :math:`C` is the capacitance matrix. + Wt_Dinv = ( + self._unbroadcasted_cov_factor.mT + / self._unbroadcasted_cov_diag.unsqueeze(-2) + ) + A = torch.linalg.solve_triangular(self._capacitance_tril, Wt_Dinv, upper=False) + precision_matrix = ( + torch.diag_embed(self._unbroadcasted_cov_diag.reciprocal()) - A.mT @ A + ) + return precision_matrix.expand( + self._batch_shape + self._event_shape + self._event_shape + ) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + W_shape = shape[:-1] + self.cov_factor.shape[-1:] + eps_W = _standard_normal(W_shape, dtype=self.loc.dtype, device=self.loc.device) + eps_D = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) + return ( + self.loc + + _batch_mv(self._unbroadcasted_cov_factor, eps_W) + + self._unbroadcasted_cov_diag.sqrt() * eps_D + ) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + diff = value - self.loc + M = _batch_lowrank_mahalanobis( + self._unbroadcasted_cov_factor, + self._unbroadcasted_cov_diag, + diff, + self._capacitance_tril, + ) + log_det = _batch_lowrank_logdet( + self._unbroadcasted_cov_factor, + self._unbroadcasted_cov_diag, + self._capacitance_tril, + ) + return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + log_det + M) + + def entropy(self): + log_det = _batch_lowrank_logdet( + self._unbroadcasted_cov_factor, + self._unbroadcasted_cov_diag, + self._capacitance_tril, + ) + H = 0.5 * (self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + log_det) + if len(self._batch_shape) == 0: + return H + else: + return H.expand(self._batch_shape) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/mixture_same_family.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/mixture_same_family.py new file mode 100644 index 0000000000000000000000000000000000000000..99e0362cead32b12a0145977cad9d46bd1fe588b --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/mixture_same_family.py @@ -0,0 +1,216 @@ +# mypy: allow-untyped-defs +from typing import Dict + +import torch +from torch.distributions import Categorical, constraints +from torch.distributions.distribution import Distribution + + +__all__ = ["MixtureSameFamily"] + + +class MixtureSameFamily(Distribution): + r""" + The `MixtureSameFamily` distribution implements a (batch of) mixture + distribution where all component are from different parameterizations of + the same distribution type. It is parameterized by a `Categorical` + "selecting distribution" (over `k` component) and a component + distribution, i.e., a `Distribution` with a rightmost batch shape + (equal to `[k]`) which indexes each (batch of) component. + + Examples:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> # Construct Gaussian Mixture Model in 1D consisting of 5 equally + >>> # weighted normal distributions + >>> mix = D.Categorical(torch.ones(5,)) + >>> comp = D.Normal(torch.randn(5,), torch.rand(5,)) + >>> gmm = MixtureSameFamily(mix, comp) + + >>> # Construct Gaussian Mixture Model in 2D consisting of 5 equally + >>> # weighted bivariate normal distributions + >>> mix = D.Categorical(torch.ones(5,)) + >>> comp = D.Independent(D.Normal( + ... torch.randn(5,2), torch.rand(5,2)), 1) + >>> gmm = MixtureSameFamily(mix, comp) + + >>> # Construct a batch of 3 Gaussian Mixture Models in 2D each + >>> # consisting of 5 random weighted bivariate normal distributions + >>> mix = D.Categorical(torch.rand(3,5)) + >>> comp = D.Independent(D.Normal( + ... torch.randn(3,5,2), torch.rand(3,5,2)), 1) + >>> gmm = MixtureSameFamily(mix, comp) + + Args: + mixture_distribution: `torch.distributions.Categorical`-like + instance. Manages the probability of selecting component. + The number of categories must match the rightmost batch + dimension of the `component_distribution`. Must have either + scalar `batch_shape` or `batch_shape` matching + `component_distribution.batch_shape[:-1]` + component_distribution: `torch.distributions.Distribution`-like + instance. Right-most batch dimension indexes component. + """ + arg_constraints: Dict[str, constraints.Constraint] = {} + has_rsample = False + + def __init__( + self, mixture_distribution, component_distribution, validate_args=None + ): + self._mixture_distribution = mixture_distribution + self._component_distribution = component_distribution + + if not isinstance(self._mixture_distribution, Categorical): + raise ValueError( + " The Mixture distribution needs to be an " + " instance of torch.distributions.Categorical" + ) + + if not isinstance(self._component_distribution, Distribution): + raise ValueError( + "The Component distribution need to be an " + "instance of torch.distributions.Distribution" + ) + + # Check that batch size matches + mdbs = self._mixture_distribution.batch_shape + cdbs = self._component_distribution.batch_shape[:-1] + for size1, size2 in zip(reversed(mdbs), reversed(cdbs)): + if size1 != 1 and size2 != 1 and size1 != size2: + raise ValueError( + f"`mixture_distribution.batch_shape` ({mdbs}) is not " + "compatible with `component_distribution." + f"batch_shape`({cdbs})" + ) + + # Check that the number of mixture component matches + km = self._mixture_distribution.logits.shape[-1] + kc = self._component_distribution.batch_shape[-1] + if km is not None and kc is not None and km != kc: + raise ValueError( + f"`mixture_distribution component` ({km}) does not" + " equal `component_distribution.batch_shape[-1]`" + f" ({kc})" + ) + self._num_component = km + + event_shape = self._component_distribution.event_shape + self._event_ndims = len(event_shape) + super().__init__( + batch_shape=cdbs, event_shape=event_shape, validate_args=validate_args + ) + + def expand(self, batch_shape, _instance=None): + batch_shape = torch.Size(batch_shape) + batch_shape_comp = batch_shape + (self._num_component,) + new = self._get_checked_instance(MixtureSameFamily, _instance) + new._component_distribution = self._component_distribution.expand( + batch_shape_comp + ) + new._mixture_distribution = self._mixture_distribution.expand(batch_shape) + new._num_component = self._num_component + new._event_ndims = self._event_ndims + event_shape = new._component_distribution.event_shape + super(MixtureSameFamily, new).__init__( + batch_shape=batch_shape, event_shape=event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + @constraints.dependent_property + def support(self): + # FIXME this may have the wrong shape when support contains batched + # parameters + return self._component_distribution.support + + @property + def mixture_distribution(self): + return self._mixture_distribution + + @property + def component_distribution(self): + return self._component_distribution + + @property + def mean(self): + probs = self._pad_mixture_dimensions(self.mixture_distribution.probs) + return torch.sum( + probs * self.component_distribution.mean, dim=-1 - self._event_ndims + ) # [B, E] + + @property + def variance(self): + # Law of total variance: Var(Y) = E[Var(Y|X)] + Var(E[Y|X]) + probs = self._pad_mixture_dimensions(self.mixture_distribution.probs) + mean_cond_var = torch.sum( + probs * self.component_distribution.variance, dim=-1 - self._event_ndims + ) + var_cond_mean = torch.sum( + probs * (self.component_distribution.mean - self._pad(self.mean)).pow(2.0), + dim=-1 - self._event_ndims, + ) + return mean_cond_var + var_cond_mean + + def cdf(self, x): + x = self._pad(x) + cdf_x = self.component_distribution.cdf(x) + mix_prob = self.mixture_distribution.probs + + return torch.sum(cdf_x * mix_prob, dim=-1) + + def log_prob(self, x): + if self._validate_args: + self._validate_sample(x) + x = self._pad(x) + log_prob_x = self.component_distribution.log_prob(x) # [S, B, k] + log_mix_prob = torch.log_softmax( + self.mixture_distribution.logits, dim=-1 + ) # [B, k] + return torch.logsumexp(log_prob_x + log_mix_prob, dim=-1) # [S, B] + + def sample(self, sample_shape=torch.Size()): + with torch.no_grad(): + sample_len = len(sample_shape) + batch_len = len(self.batch_shape) + gather_dim = sample_len + batch_len + es = self.event_shape + + # mixture samples [n, B] + mix_sample = self.mixture_distribution.sample(sample_shape) + mix_shape = mix_sample.shape + + # component samples [n, B, k, E] + comp_samples = self.component_distribution.sample(sample_shape) + + # Gather along the k dimension + mix_sample_r = mix_sample.reshape( + mix_shape + torch.Size([1] * (len(es) + 1)) + ) + mix_sample_r = mix_sample_r.repeat( + torch.Size([1] * len(mix_shape)) + torch.Size([1]) + es + ) + + samples = torch.gather(comp_samples, gather_dim, mix_sample_r) + return samples.squeeze(gather_dim) + + def _pad(self, x): + return x.unsqueeze(-1 - self._event_ndims) + + def _pad_mixture_dimensions(self, x): + dist_batch_ndims = len(self.batch_shape) + cat_batch_ndims = len(self.mixture_distribution.batch_shape) + pad_ndims = 0 if cat_batch_ndims == 1 else dist_batch_ndims - cat_batch_ndims + xs = x.shape + x = x.reshape( + xs[:-1] + + torch.Size(pad_ndims * [1]) + + xs[-1:] + + torch.Size(self._event_ndims * [1]) + ) + return x + + def __repr__(self): + args_string = ( + f"\n {self.mixture_distribution},\n {self.component_distribution}" + ) + return "MixtureSameFamily" + "(" + args_string + ")" diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multinomial.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multinomial.py new file mode 100644 index 0000000000000000000000000000000000000000..12295a80e1855ceaf39aadd79f6df025ad7882ad --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multinomial.py @@ -0,0 +1,137 @@ +# mypy: allow-untyped-defs +import torch +from torch import inf +from torch.distributions import Categorical, constraints +from torch.distributions.binomial import Binomial +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all + + +__all__ = ["Multinomial"] + + +class Multinomial(Distribution): + r""" + Creates a Multinomial distribution parameterized by :attr:`total_count` and + either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of + :attr:`probs` indexes over categories. All other dimensions index over batches. + + Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is + called (see example below) + + .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum, + and it will be normalized to sum to 1 along the last dimension. :attr:`probs` + will return this normalized value. + The `logits` argument will be interpreted as unnormalized log probabilities + and can therefore be any real number. It will likewise be normalized so that + the resulting probabilities sum to 1 along the last dimension. :attr:`logits` + will return this normalized value. + + - :meth:`sample` requires a single shared `total_count` for all + parameters and samples. + - :meth:`log_prob` allows different `total_count` for each parameter and + sample. + + Example:: + + >>> # xdoctest: +SKIP("FIXME: found invalid values") + >>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) + >>> x = m.sample() # equal probability of 0, 1, 2, 3 + tensor([ 21., 24., 30., 25.]) + + >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) + tensor([-4.1338]) + + Args: + total_count (int): number of trials + probs (Tensor): event probabilities + logits (Tensor): event log probabilities (unnormalized) + """ + arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} + total_count: int + + @property + def mean(self): + return self.probs * self.total_count + + @property + def variance(self): + return self.total_count * self.probs * (1 - self.probs) + + def __init__(self, total_count=1, probs=None, logits=None, validate_args=None): + if not isinstance(total_count, int): + raise NotImplementedError("inhomogeneous total_count is not supported") + self.total_count = total_count + self._categorical = Categorical(probs=probs, logits=logits) + self._binomial = Binomial(total_count=total_count, probs=self.probs) + batch_shape = self._categorical.batch_shape + event_shape = self._categorical.param_shape[-1:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Multinomial, _instance) + batch_shape = torch.Size(batch_shape) + new.total_count = self.total_count + new._categorical = self._categorical.expand(batch_shape) + super(Multinomial, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._categorical._new(*args, **kwargs) + + @constraints.dependent_property(is_discrete=True, event_dim=1) + def support(self): + return constraints.multinomial(self.total_count) + + @property + def logits(self): + return self._categorical.logits + + @property + def probs(self): + return self._categorical.probs + + @property + def param_shape(self): + return self._categorical.param_shape + + def sample(self, sample_shape=torch.Size()): + sample_shape = torch.Size(sample_shape) + samples = self._categorical.sample( + torch.Size((self.total_count,)) + sample_shape + ) + # samples.shape is (total_count, sample_shape, batch_shape), need to change it to + # (sample_shape, batch_shape, total_count) + shifted_idx = list(range(samples.dim())) + shifted_idx.append(shifted_idx.pop(0)) + samples = samples.permute(*shifted_idx) + counts = samples.new(self._extended_shape(sample_shape)).zero_() + counts.scatter_add_(-1, samples, torch.ones_like(samples)) + return counts.type_as(self.probs) + + def entropy(self): + n = torch.tensor(self.total_count) + + cat_entropy = self._categorical.entropy() + term1 = n * cat_entropy - torch.lgamma(n + 1) + + support = self._binomial.enumerate_support(expand=False)[1:] + binomial_probs = torch.exp(self._binomial.log_prob(support)) + weights = torch.lgamma(support + 1) + term2 = (binomial_probs * weights).sum([0, -1]) + + return term1 + term2 + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + logits, value = broadcast_all(self.logits, value) + logits = logits.clone(memory_format=torch.contiguous_format) + log_factorial_n = torch.lgamma(value.sum(-1) + 1) + log_factorial_xs = torch.lgamma(value + 1).sum(-1) + logits[(value == 0) & (logits == -inf)] = 0 + log_powers = (logits * value).sum(-1) + return log_factorial_n - log_factorial_xs + log_powers diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py new file mode 100644 index 0000000000000000000000000000000000000000..bece6d0606a8c93af31d78a3be1e5623bf127a2f --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/multivariate_normal.py @@ -0,0 +1,265 @@ +# mypy: allow-untyped-defs +import math + +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import _standard_normal, lazy_property +from torch.types import _size + + +__all__ = ["MultivariateNormal"] + + +def _batch_mv(bmat, bvec): + r""" + Performs a batched matrix-vector product, with compatible but different batch shapes. + + This function takes as input `bmat`, containing :math:`n \times n` matrices, and + `bvec`, containing length :math:`n` vectors. + + Both `bmat` and `bvec` may have any number of leading dimensions, which correspond + to a batch shape. They are not necessarily assumed to have the same batch shape, + just ones which can be broadcasted. + """ + return torch.matmul(bmat, bvec.unsqueeze(-1)).squeeze(-1) + + +def _batch_mahalanobis(bL, bx): + r""" + Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}` + for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`. + + Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch + shape, but `bL` one should be able to broadcasted to `bx` one. + """ + n = bx.size(-1) + bx_batch_shape = bx.shape[:-1] + + # Assume that bL.shape = (i, 1, n, n), bx.shape = (..., i, j, n), + # we are going to make bx have shape (..., 1, j, i, 1, n) to apply batched tri.solve + bx_batch_dims = len(bx_batch_shape) + bL_batch_dims = bL.dim() - 2 + outer_batch_dims = bx_batch_dims - bL_batch_dims + old_batch_dims = outer_batch_dims + bL_batch_dims + new_batch_dims = outer_batch_dims + 2 * bL_batch_dims + # Reshape bx with the shape (..., 1, i, j, 1, n) + bx_new_shape = bx.shape[:outer_batch_dims] + for sL, sx in zip(bL.shape[:-2], bx.shape[outer_batch_dims:-1]): + bx_new_shape += (sx // sL, sL) + bx_new_shape += (n,) + bx = bx.reshape(bx_new_shape) + # Permute bx to make it have shape (..., 1, j, i, 1, n) + permute_dims = ( + list(range(outer_batch_dims)) + + list(range(outer_batch_dims, new_batch_dims, 2)) + + list(range(outer_batch_dims + 1, new_batch_dims, 2)) + + [new_batch_dims] + ) + bx = bx.permute(permute_dims) + + flat_L = bL.reshape(-1, n, n) # shape = b x n x n + flat_x = bx.reshape(-1, flat_L.size(0), n) # shape = c x b x n + flat_x_swap = flat_x.permute(1, 2, 0) # shape = b x n x c + M_swap = ( + torch.linalg.solve_triangular(flat_L, flat_x_swap, upper=False).pow(2).sum(-2) + ) # shape = b x c + M = M_swap.t() # shape = c x b + + # Now we revert the above reshape and permute operators. + permuted_M = M.reshape(bx.shape[:-1]) # shape = (..., 1, j, i, 1) + permute_inv_dims = list(range(outer_batch_dims)) + for i in range(bL_batch_dims): + permute_inv_dims += [outer_batch_dims + i, old_batch_dims + i] + reshaped_M = permuted_M.permute(permute_inv_dims) # shape = (..., 1, i, j, 1) + return reshaped_M.reshape(bx_batch_shape) + + +def _precision_to_scale_tril(P): + # Ref: https://nbviewer.jupyter.org/gist/fehiepsi/5ef8e09e61604f10607380467eb82006#Precision-to-scale_tril + Lf = torch.linalg.cholesky(torch.flip(P, (-2, -1))) + L_inv = torch.transpose(torch.flip(Lf, (-2, -1)), -2, -1) + Id = torch.eye(P.shape[-1], dtype=P.dtype, device=P.device) + L = torch.linalg.solve_triangular(L_inv, Id, upper=False) + return L + + +class MultivariateNormal(Distribution): + r""" + Creates a multivariate normal (also called Gaussian) distribution + parameterized by a mean vector and a covariance matrix. + + The multivariate normal distribution can be parameterized either + in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}` + or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}` + or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued + diagonal entries, such that + :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix + can be obtained via e.g. Cholesky decomposition of the covariance. + + Example: + + >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK) + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = MultivariateNormal(torch.zeros(2), torch.eye(2)) + >>> m.sample() # normally distributed with mean=`[0,0]` and covariance_matrix=`I` + tensor([-0.2102, -0.5429]) + + Args: + loc (Tensor): mean of the distribution + covariance_matrix (Tensor): positive-definite covariance matrix + precision_matrix (Tensor): positive-definite precision matrix + scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal + + Note: + Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or + :attr:`scale_tril` can be specified. + + Using :attr:`scale_tril` will be more efficient: all computations internally + are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or + :attr:`precision_matrix` is passed instead, it is only used to compute + the corresponding lower triangular matrices using a Cholesky decomposition. + """ + arg_constraints = { + "loc": constraints.real_vector, + "covariance_matrix": constraints.positive_definite, + "precision_matrix": constraints.positive_definite, + "scale_tril": constraints.lower_cholesky, + } + support = constraints.real_vector + has_rsample = True + + def __init__( + self, + loc, + covariance_matrix=None, + precision_matrix=None, + scale_tril=None, + validate_args=None, + ): + if loc.dim() < 1: + raise ValueError("loc must be at least one-dimensional.") + if (covariance_matrix is not None) + (scale_tril is not None) + ( + precision_matrix is not None + ) != 1: + raise ValueError( + "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified." + ) + + if scale_tril is not None: + if scale_tril.dim() < 2: + raise ValueError( + "scale_tril matrix must be at least two-dimensional, " + "with optional leading batch dimensions" + ) + batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1]) + self.scale_tril = scale_tril.expand(batch_shape + (-1, -1)) + elif covariance_matrix is not None: + if covariance_matrix.dim() < 2: + raise ValueError( + "covariance_matrix must be at least two-dimensional, " + "with optional leading batch dimensions" + ) + batch_shape = torch.broadcast_shapes( + covariance_matrix.shape[:-2], loc.shape[:-1] + ) + self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1)) + else: + if precision_matrix.dim() < 2: + raise ValueError( + "precision_matrix must be at least two-dimensional, " + "with optional leading batch dimensions" + ) + batch_shape = torch.broadcast_shapes( + precision_matrix.shape[:-2], loc.shape[:-1] + ) + self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1)) + self.loc = loc.expand(batch_shape + (-1,)) + + event_shape = self.loc.shape[-1:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + if scale_tril is not None: + self._unbroadcasted_scale_tril = scale_tril + elif covariance_matrix is not None: + self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix) + else: # precision_matrix is not None + self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(MultivariateNormal, _instance) + batch_shape = torch.Size(batch_shape) + loc_shape = batch_shape + self.event_shape + cov_shape = batch_shape + self.event_shape + self.event_shape + new.loc = self.loc.expand(loc_shape) + new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril + if "covariance_matrix" in self.__dict__: + new.covariance_matrix = self.covariance_matrix.expand(cov_shape) + if "scale_tril" in self.__dict__: + new.scale_tril = self.scale_tril.expand(cov_shape) + if "precision_matrix" in self.__dict__: + new.precision_matrix = self.precision_matrix.expand(cov_shape) + super(MultivariateNormal, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + @lazy_property + def scale_tril(self): + return self._unbroadcasted_scale_tril.expand( + self._batch_shape + self._event_shape + self._event_shape + ) + + @lazy_property + def covariance_matrix(self): + return torch.matmul( + self._unbroadcasted_scale_tril, self._unbroadcasted_scale_tril.mT + ).expand(self._batch_shape + self._event_shape + self._event_shape) + + @lazy_property + def precision_matrix(self): + return torch.cholesky_inverse(self._unbroadcasted_scale_tril).expand( + self._batch_shape + self._event_shape + self._event_shape + ) + + @property + def mean(self): + return self.loc + + @property + def mode(self): + return self.loc + + @property + def variance(self): + return ( + self._unbroadcasted_scale_tril.pow(2) + .sum(-1) + .expand(self._batch_shape + self._event_shape) + ) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) + return self.loc + _batch_mv(self._unbroadcasted_scale_tril, eps) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + diff = value - self.loc + M = _batch_mahalanobis(self._unbroadcasted_scale_tril, diff) + half_log_det = ( + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) + ) + return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + M) - half_log_det + + def entropy(self): + half_log_det = ( + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1) + ) + H = 0.5 * self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + half_log_det + if len(self._batch_shape) == 0: + return H + else: + return H.expand(self._batch_shape) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/negative_binomial.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/negative_binomial.py new file mode 100644 index 0000000000000000000000000000000000000000..c3e1a66639ba101a35c7deca67a7567e938a1608 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/negative_binomial.py @@ -0,0 +1,135 @@ +# mypy: allow-untyped-defs +import torch +import torch.nn.functional as F +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import ( + broadcast_all, + lazy_property, + logits_to_probs, + probs_to_logits, +) + + +__all__ = ["NegativeBinomial"] + + +class NegativeBinomial(Distribution): + r""" + Creates a Negative Binomial distribution, i.e. distribution + of the number of successful independent and identical Bernoulli trials + before :attr:`total_count` failures are achieved. The probability + of success of each Bernoulli trial is :attr:`probs`. + + Args: + total_count (float or Tensor): non-negative number of negative Bernoulli + trials to stop, although the distribution is still valid for real + valued count + probs (Tensor): Event probabilities of success in the half open interval [0, 1) + logits (Tensor): Event log-odds for probabilities of success + """ + arg_constraints = { + "total_count": constraints.greater_than_eq(0), + "probs": constraints.half_open_interval(0.0, 1.0), + "logits": constraints.real, + } + support = constraints.nonnegative_integer + + def __init__(self, total_count, probs=None, logits=None, validate_args=None): + if (probs is None) == (logits is None): + raise ValueError( + "Either `probs` or `logits` must be specified, but not both." + ) + if probs is not None: + ( + self.total_count, + self.probs, + ) = broadcast_all(total_count, probs) + self.total_count = self.total_count.type_as(self.probs) + else: + ( + self.total_count, + self.logits, + ) = broadcast_all(total_count, logits) + self.total_count = self.total_count.type_as(self.logits) + + self._param = self.probs if probs is not None else self.logits + batch_shape = self._param.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(NegativeBinomial, _instance) + batch_shape = torch.Size(batch_shape) + new.total_count = self.total_count.expand(batch_shape) + if "probs" in self.__dict__: + new.probs = self.probs.expand(batch_shape) + new._param = new.probs + if "logits" in self.__dict__: + new.logits = self.logits.expand(batch_shape) + new._param = new.logits + super(NegativeBinomial, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._param.new(*args, **kwargs) + + @property + def mean(self): + return self.total_count * torch.exp(self.logits) + + @property + def mode(self): + return ((self.total_count - 1) * self.logits.exp()).floor().clamp(min=0.0) + + @property + def variance(self): + return self.mean / torch.sigmoid(-self.logits) + + @lazy_property + def logits(self): + return probs_to_logits(self.probs, is_binary=True) + + @lazy_property + def probs(self): + return logits_to_probs(self.logits, is_binary=True) + + @property + def param_shape(self): + return self._param.size() + + @lazy_property + def _gamma(self): + # Note we avoid validating because self.total_count can be zero. + return torch.distributions.Gamma( + concentration=self.total_count, + rate=torch.exp(-self.logits), + validate_args=False, + ) + + def sample(self, sample_shape=torch.Size()): + with torch.no_grad(): + rate = self._gamma.sample(sample_shape=sample_shape) + return torch.poisson(rate) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + + log_unnormalized_prob = self.total_count * F.logsigmoid( + -self.logits + ) + value * F.logsigmoid(self.logits) + + log_normalization = ( + -torch.lgamma(self.total_count + value) + + torch.lgamma(1.0 + value) + + torch.lgamma(self.total_count) + ) + # The case self.total_count == 0 and value == 0 has probability 1 but + # lgamma(0) is infinite. Handle this case separately using a function + # that does not modify tensors in place to allow Jit compilation. + log_normalization = log_normalization.masked_fill( + self.total_count + value == 0.0, 0.0 + ) + + return log_unnormalized_prob - log_normalization diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/normal.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/normal.py new file mode 100644 index 0000000000000000000000000000000000000000..5c6f9b7170855d615eb2ee94902e5b40a6facefc --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/normal.py @@ -0,0 +1,112 @@ +# mypy: allow-untyped-defs +import math +from numbers import Number, Real + +import torch +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import _standard_normal, broadcast_all +from torch.types import _size + + +__all__ = ["Normal"] + + +class Normal(ExponentialFamily): + r""" + Creates a normal (also called Gaussian) distribution parameterized by + :attr:`loc` and :attr:`scale`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) + >>> m.sample() # normally distributed with loc=0 and scale=1 + tensor([ 0.1046]) + + Args: + loc (float or Tensor): mean of the distribution (often referred to as mu) + scale (float or Tensor): standard deviation of the distribution + (often referred to as sigma) + """ + arg_constraints = {"loc": constraints.real, "scale": constraints.positive} + support = constraints.real + has_rsample = True + _mean_carrier_measure = 0 + + @property + def mean(self): + return self.loc + + @property + def mode(self): + return self.loc + + @property + def stddev(self): + return self.scale + + @property + def variance(self): + return self.stddev.pow(2) + + def __init__(self, loc, scale, validate_args=None): + self.loc, self.scale = broadcast_all(loc, scale) + if isinstance(loc, Number) and isinstance(scale, Number): + batch_shape = torch.Size() + else: + batch_shape = self.loc.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Normal, _instance) + batch_shape = torch.Size(batch_shape) + new.loc = self.loc.expand(batch_shape) + new.scale = self.scale.expand(batch_shape) + super(Normal, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def sample(self, sample_shape=torch.Size()): + shape = self._extended_shape(sample_shape) + with torch.no_grad(): + return torch.normal(self.loc.expand(shape), self.scale.expand(shape)) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) + return self.loc + eps * self.scale + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + # compute the variance + var = self.scale**2 + log_scale = ( + math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log() + ) + return ( + -((value - self.loc) ** 2) / (2 * var) + - log_scale + - math.log(math.sqrt(2 * math.pi)) + ) + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + return 0.5 * ( + 1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2)) + ) + + def icdf(self, value): + return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2) + + def entropy(self): + return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale) + + @property + def _natural_params(self): + return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal()) + + def _log_normalizer(self, x, y): + return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/one_hot_categorical.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/one_hot_categorical.py new file mode 100644 index 0000000000000000000000000000000000000000..76cf6137b0c9df0e805b6e5e69992da09da77d1c --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/one_hot_categorical.py @@ -0,0 +1,132 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions import constraints +from torch.distributions.categorical import Categorical +from torch.distributions.distribution import Distribution +from torch.types import _size + + +__all__ = ["OneHotCategorical", "OneHotCategoricalStraightThrough"] + + +class OneHotCategorical(Distribution): + r""" + Creates a one-hot categorical distribution parameterized by :attr:`probs` or + :attr:`logits`. + + Samples are one-hot coded vectors of size ``probs.size(-1)``. + + .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum, + and it will be normalized to sum to 1 along the last dimension. :attr:`probs` + will return this normalized value. + The `logits` argument will be interpreted as unnormalized log probabilities + and can therefore be any real number. It will likewise be normalized so that + the resulting probabilities sum to 1 along the last dimension. :attr:`logits` + will return this normalized value. + + See also: :func:`torch.distributions.Categorical` for specifications of + :attr:`probs` and :attr:`logits`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) + >>> m.sample() # equal probability of 0, 1, 2, 3 + tensor([ 0., 0., 0., 1.]) + + Args: + probs (Tensor): event probabilities + logits (Tensor): event log probabilities (unnormalized) + """ + arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} + support = constraints.one_hot + has_enumerate_support = True + + def __init__(self, probs=None, logits=None, validate_args=None): + self._categorical = Categorical(probs, logits) + batch_shape = self._categorical.batch_shape + event_shape = self._categorical.param_shape[-1:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(OneHotCategorical, _instance) + batch_shape = torch.Size(batch_shape) + new._categorical = self._categorical.expand(batch_shape) + super(OneHotCategorical, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._categorical._new(*args, **kwargs) + + @property + def _param(self): + return self._categorical._param + + @property + def probs(self): + return self._categorical.probs + + @property + def logits(self): + return self._categorical.logits + + @property + def mean(self): + return self._categorical.probs + + @property + def mode(self): + probs = self._categorical.probs + mode = probs.argmax(axis=-1) + return torch.nn.functional.one_hot(mode, num_classes=probs.shape[-1]).to(probs) + + @property + def variance(self): + return self._categorical.probs * (1 - self._categorical.probs) + + @property + def param_shape(self): + return self._categorical.param_shape + + def sample(self, sample_shape=torch.Size()): + sample_shape = torch.Size(sample_shape) + probs = self._categorical.probs + num_events = self._categorical._num_events + indices = self._categorical.sample(sample_shape) + return torch.nn.functional.one_hot(indices, num_events).to(probs) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + indices = value.max(-1)[1] + return self._categorical.log_prob(indices) + + def entropy(self): + return self._categorical.entropy() + + def enumerate_support(self, expand=True): + n = self.event_shape[0] + values = torch.eye(n, dtype=self._param.dtype, device=self._param.device) + values = values.view((n,) + (1,) * len(self.batch_shape) + (n,)) + if expand: + values = values.expand((n,) + self.batch_shape + (n,)) + return values + + +class OneHotCategoricalStraightThrough(OneHotCategorical): + r""" + Creates a reparameterizable :class:`OneHotCategorical` distribution based on the straight- + through gradient estimator from [1]. + + [1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation + (Bengio et al., 2013) + """ + has_rsample = True + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + samples = self.sample(sample_shape) + probs = self._categorical.probs # cached via @lazy_property + return samples + (probs - probs.detach()) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/pareto.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/pareto.py new file mode 100644 index 0000000000000000000000000000000000000000..798330d7bca7a8e497a306606f3d722d3ffbd4f3 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/pareto.py @@ -0,0 +1,62 @@ +# mypy: allow-untyped-defs +from torch.distributions import constraints +from torch.distributions.exponential import Exponential +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import AffineTransform, ExpTransform +from torch.distributions.utils import broadcast_all + + +__all__ = ["Pareto"] + + +class Pareto(TransformedDistribution): + r""" + Samples from a Pareto Type 1 distribution. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) + >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 + tensor([ 1.5623]) + + Args: + scale (float or Tensor): Scale parameter of the distribution + alpha (float or Tensor): Shape parameter of the distribution + """ + arg_constraints = {"alpha": constraints.positive, "scale": constraints.positive} + + def __init__(self, scale, alpha, validate_args=None): + self.scale, self.alpha = broadcast_all(scale, alpha) + base_dist = Exponential(self.alpha, validate_args=validate_args) + transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)] + super().__init__(base_dist, transforms, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Pareto, _instance) + new.scale = self.scale.expand(batch_shape) + new.alpha = self.alpha.expand(batch_shape) + return super().expand(batch_shape, _instance=new) + + @property + def mean(self): + # mean is inf for alpha <= 1 + a = self.alpha.clamp(min=1) + return a * self.scale / (a - 1) + + @property + def mode(self): + return self.scale + + @property + def variance(self): + # var is inf for alpha <= 2 + a = self.alpha.clamp(min=2) + return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2)) + + @constraints.dependent_property(is_discrete=False, event_dim=0) + def support(self): + return constraints.greater_than_eq(self.scale) + + def entropy(self): + return (self.scale / self.alpha).log() + (1 + self.alpha.reciprocal()) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/poisson.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/poisson.py new file mode 100644 index 0000000000000000000000000000000000000000..4f386e9361fdd9da310568b79238127fe2caa5e7 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/poisson.py @@ -0,0 +1,79 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.utils import broadcast_all + + +__all__ = ["Poisson"] + + +class Poisson(ExponentialFamily): + r""" + Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter. + + Samples are nonnegative integers, with a pmf given by + + .. math:: + \mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} + + Example:: + + >>> # xdoctest: +SKIP("poisson_cpu not implemented for 'Long'") + >>> m = Poisson(torch.tensor([4])) + >>> m.sample() + tensor([ 3.]) + + Args: + rate (Number, Tensor): the rate parameter + """ + arg_constraints = {"rate": constraints.nonnegative} + support = constraints.nonnegative_integer + + @property + def mean(self): + return self.rate + + @property + def mode(self): + return self.rate.floor() + + @property + def variance(self): + return self.rate + + def __init__(self, rate, validate_args=None): + (self.rate,) = broadcast_all(rate) + if isinstance(rate, Number): + batch_shape = torch.Size() + else: + batch_shape = self.rate.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Poisson, _instance) + batch_shape = torch.Size(batch_shape) + new.rate = self.rate.expand(batch_shape) + super(Poisson, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def sample(self, sample_shape=torch.Size()): + shape = self._extended_shape(sample_shape) + with torch.no_grad(): + return torch.poisson(self.rate.expand(shape)) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + rate, value = broadcast_all(self.rate, value) + return value.xlogy(rate) - rate - (value + 1).lgamma() + + @property + def _natural_params(self): + return (torch.log(self.rate),) + + def _log_normalizer(self, x): + return torch.exp(x) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py new file mode 100644 index 0000000000000000000000000000000000000000..04f70519e805cdfc47f9546f8b318456a46c62c9 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_bernoulli.py @@ -0,0 +1,152 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import SigmoidTransform +from torch.distributions.utils import ( + broadcast_all, + clamp_probs, + lazy_property, + logits_to_probs, + probs_to_logits, +) +from torch.types import _size + + +__all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"] + + +class LogitRelaxedBernoulli(Distribution): + r""" + Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs` + or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli + distribution. + + Samples are logits of values in (0, 1). See [1] for more details. + + Args: + temperature (Tensor): relaxation temperature + probs (Number, Tensor): the probability of sampling `1` + logits (Number, Tensor): the log-odds of sampling `1` + + [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random + Variables (Maddison et al., 2017) + + [2] Categorical Reparametrization with Gumbel-Softmax + (Jang et al., 2017) + """ + arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} + support = constraints.real + + def __init__(self, temperature, probs=None, logits=None, validate_args=None): + self.temperature = temperature + if (probs is None) == (logits is None): + raise ValueError( + "Either `probs` or `logits` must be specified, but not both." + ) + if probs is not None: + is_scalar = isinstance(probs, Number) + (self.probs,) = broadcast_all(probs) + else: + is_scalar = isinstance(logits, Number) + (self.logits,) = broadcast_all(logits) + self._param = self.probs if probs is not None else self.logits + if is_scalar: + batch_shape = torch.Size() + else: + batch_shape = self._param.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(LogitRelaxedBernoulli, _instance) + batch_shape = torch.Size(batch_shape) + new.temperature = self.temperature + if "probs" in self.__dict__: + new.probs = self.probs.expand(batch_shape) + new._param = new.probs + if "logits" in self.__dict__: + new.logits = self.logits.expand(batch_shape) + new._param = new.logits + super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._param.new(*args, **kwargs) + + @lazy_property + def logits(self): + return probs_to_logits(self.probs, is_binary=True) + + @lazy_property + def probs(self): + return logits_to_probs(self.logits, is_binary=True) + + @property + def param_shape(self): + return self._param.size() + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + probs = clamp_probs(self.probs.expand(shape)) + uniforms = clamp_probs( + torch.rand(shape, dtype=probs.dtype, device=probs.device) + ) + return ( + uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p() + ) / self.temperature + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + logits, value = broadcast_all(self.logits, value) + diff = logits - value.mul(self.temperature) + return self.temperature.log() + diff - 2 * diff.exp().log1p() + + +class RelaxedBernoulli(TransformedDistribution): + r""" + Creates a RelaxedBernoulli distribution, parametrized by + :attr:`temperature`, and either :attr:`probs` or :attr:`logits` + (but not both). This is a relaxed version of the `Bernoulli` distribution, + so the values are in (0, 1), and has reparametrizable samples. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = RelaxedBernoulli(torch.tensor([2.2]), + ... torch.tensor([0.1, 0.2, 0.3, 0.99])) + >>> m.sample() + tensor([ 0.2951, 0.3442, 0.8918, 0.9021]) + + Args: + temperature (Tensor): relaxation temperature + probs (Number, Tensor): the probability of sampling `1` + logits (Number, Tensor): the log-odds of sampling `1` + """ + arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real} + support = constraints.unit_interval + has_rsample = True + + def __init__(self, temperature, probs=None, logits=None, validate_args=None): + base_dist = LogitRelaxedBernoulli(temperature, probs, logits) + super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(RelaxedBernoulli, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def temperature(self): + return self.base_dist.temperature + + @property + def logits(self): + return self.base_dist.logits + + @property + def probs(self): + return self.base_dist.probs diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_categorical.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_categorical.py new file mode 100644 index 0000000000000000000000000000000000000000..0f9b027f1a500c8bd91bbf07e76fe746b9866d55 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/relaxed_categorical.py @@ -0,0 +1,142 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions import constraints +from torch.distributions.categorical import Categorical +from torch.distributions.distribution import Distribution +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import ExpTransform +from torch.distributions.utils import broadcast_all, clamp_probs +from torch.types import _size + + +__all__ = ["ExpRelaxedCategorical", "RelaxedOneHotCategorical"] + + +class ExpRelaxedCategorical(Distribution): + r""" + Creates a ExpRelaxedCategorical parameterized by + :attr:`temperature`, and either :attr:`probs` or :attr:`logits` (but not both). + Returns the log of a point in the simplex. Based on the interface to + :class:`OneHotCategorical`. + + Implementation based on [1]. + + See also: :func:`torch.distributions.OneHotCategorical` + + Args: + temperature (Tensor): relaxation temperature + probs (Tensor): event probabilities + logits (Tensor): unnormalized log probability for each event + + [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables + (Maddison et al., 2017) + + [2] Categorical Reparametrization with Gumbel-Softmax + (Jang et al., 2017) + """ + arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} + support = ( + constraints.real_vector + ) # The true support is actually a submanifold of this. + has_rsample = True + + def __init__(self, temperature, probs=None, logits=None, validate_args=None): + self._categorical = Categorical(probs, logits) + self.temperature = temperature + batch_shape = self._categorical.batch_shape + event_shape = self._categorical.param_shape[-1:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(ExpRelaxedCategorical, _instance) + batch_shape = torch.Size(batch_shape) + new.temperature = self.temperature + new._categorical = self._categorical.expand(batch_shape) + super(ExpRelaxedCategorical, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + def _new(self, *args, **kwargs): + return self._categorical._new(*args, **kwargs) + + @property + def param_shape(self): + return self._categorical.param_shape + + @property + def logits(self): + return self._categorical.logits + + @property + def probs(self): + return self._categorical.probs + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + uniforms = clamp_probs( + torch.rand(shape, dtype=self.logits.dtype, device=self.logits.device) + ) + gumbels = -((-(uniforms.log())).log()) + scores = (self.logits + gumbels) / self.temperature + return scores - scores.logsumexp(dim=-1, keepdim=True) + + def log_prob(self, value): + K = self._categorical._num_events + if self._validate_args: + self._validate_sample(value) + logits, value = broadcast_all(self.logits, value) + log_scale = torch.full_like( + self.temperature, float(K) + ).lgamma() - self.temperature.log().mul(-(K - 1)) + score = logits - value.mul(self.temperature) + score = (score - score.logsumexp(dim=-1, keepdim=True)).sum(-1) + return score + log_scale + + +class RelaxedOneHotCategorical(TransformedDistribution): + r""" + Creates a RelaxedOneHotCategorical distribution parametrized by + :attr:`temperature`, and either :attr:`probs` or :attr:`logits`. + This is a relaxed version of the :class:`OneHotCategorical` distribution, so + its samples are on simplex, and are reparametrizable. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = RelaxedOneHotCategorical(torch.tensor([2.2]), + ... torch.tensor([0.1, 0.2, 0.3, 0.4])) + >>> m.sample() + tensor([ 0.1294, 0.2324, 0.3859, 0.2523]) + + Args: + temperature (Tensor): relaxation temperature + probs (Tensor): event probabilities + logits (Tensor): unnormalized log probability for each event + """ + arg_constraints = {"probs": constraints.simplex, "logits": constraints.real_vector} + support = constraints.simplex + has_rsample = True + + def __init__(self, temperature, probs=None, logits=None, validate_args=None): + base_dist = ExpRelaxedCategorical( + temperature, probs, logits, validate_args=validate_args + ) + super().__init__(base_dist, ExpTransform(), validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(RelaxedOneHotCategorical, _instance) + return super().expand(batch_shape, _instance=new) + + @property + def temperature(self): + return self.base_dist.temperature + + @property + def logits(self): + return self.base_dist.logits + + @property + def probs(self): + return self.base_dist.probs diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/studentT.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/studentT.py new file mode 100644 index 0000000000000000000000000000000000000000..50b2b995bd501dcf0c09d6b4f35aa1910f1a3182 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/studentT.py @@ -0,0 +1,119 @@ +# mypy: allow-untyped-defs +import math + +import torch +from torch import inf, nan +from torch.distributions import Chi2, constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import _standard_normal, broadcast_all +from torch.types import _size + + +__all__ = ["StudentT"] + + +class StudentT(Distribution): + r""" + Creates a Student's t-distribution parameterized by degree of + freedom :attr:`df`, mean :attr:`loc` and scale :attr:`scale`. + + Example:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = StudentT(torch.tensor([2.0])) + >>> m.sample() # Student's t-distributed with degrees of freedom=2 + tensor([ 0.1046]) + + Args: + df (float or Tensor): degrees of freedom + loc (float or Tensor): mean of the distribution + scale (float or Tensor): scale of the distribution + """ + arg_constraints = { + "df": constraints.positive, + "loc": constraints.real, + "scale": constraints.positive, + } + support = constraints.real + has_rsample = True + + @property + def mean(self): + m = self.loc.clone(memory_format=torch.contiguous_format) + m[self.df <= 1] = nan + return m + + @property + def mode(self): + return self.loc + + @property + def variance(self): + m = self.df.clone(memory_format=torch.contiguous_format) + m[self.df > 2] = ( + self.scale[self.df > 2].pow(2) + * self.df[self.df > 2] + / (self.df[self.df > 2] - 2) + ) + m[(self.df <= 2) & (self.df > 1)] = inf + m[self.df <= 1] = nan + return m + + def __init__(self, df, loc=0.0, scale=1.0, validate_args=None): + self.df, self.loc, self.scale = broadcast_all(df, loc, scale) + self._chi2 = Chi2(self.df) + batch_shape = self.df.size() + super().__init__(batch_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(StudentT, _instance) + batch_shape = torch.Size(batch_shape) + new.df = self.df.expand(batch_shape) + new.loc = self.loc.expand(batch_shape) + new.scale = self.scale.expand(batch_shape) + new._chi2 = self._chi2.expand(batch_shape) + super(StudentT, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + # NOTE: This does not agree with scipy implementation as much as other distributions. + # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor + # parameters seems to help. + + # X ~ Normal(0, 1) + # Z ~ Chi2(df) + # Y = X / sqrt(Z / df) ~ StudentT(df) + shape = self._extended_shape(sample_shape) + X = _standard_normal(shape, dtype=self.df.dtype, device=self.df.device) + Z = self._chi2.rsample(sample_shape) + Y = X * torch.rsqrt(Z / self.df) + return self.loc + self.scale * Y + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + y = (value - self.loc) / self.scale + Z = ( + self.scale.log() + + 0.5 * self.df.log() + + 0.5 * math.log(math.pi) + + torch.lgamma(0.5 * self.df) + - torch.lgamma(0.5 * (self.df + 1.0)) + ) + return -0.5 * (self.df + 1.0) * torch.log1p(y**2.0 / self.df) - Z + + def entropy(self): + lbeta = ( + torch.lgamma(0.5 * self.df) + + math.lgamma(0.5) + - torch.lgamma(0.5 * (self.df + 1)) + ) + return ( + self.scale.log() + + 0.5 + * (self.df + 1) + * (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df)) + + 0.5 * self.df.log() + + lbeta + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/transformed_distribution.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/transformed_distribution.py new file mode 100644 index 0000000000000000000000000000000000000000..a9450accea23057e01aeb7bb9d33e468124f7499 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/transformed_distribution.py @@ -0,0 +1,216 @@ +# mypy: allow-untyped-defs +from typing import Dict + +import torch +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.independent import Independent +from torch.distributions.transforms import ComposeTransform, Transform +from torch.distributions.utils import _sum_rightmost +from torch.types import _size + + +__all__ = ["TransformedDistribution"] + + +class TransformedDistribution(Distribution): + r""" + Extension of the Distribution class, which applies a sequence of Transforms + to a base distribution. Let f be the composition of transforms applied:: + + X ~ BaseDistribution + Y = f(X) ~ TransformedDistribution(BaseDistribution, f) + log p(Y) = log p(X) + log |det (dX/dY)| + + Note that the ``.event_shape`` of a :class:`TransformedDistribution` is the + maximum shape of its base distribution and its transforms, since transforms + can introduce correlations among events. + + An example for the usage of :class:`TransformedDistribution` would be:: + + # Building a Logistic Distribution + # X ~ Uniform(0, 1) + # f = a + b * logit(X) + # Y ~ f(X) ~ Logistic(a, b) + base_distribution = Uniform(0, 1) + transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)] + logistic = TransformedDistribution(base_distribution, transforms) + + For more examples, please look at the implementations of + :class:`~torch.distributions.gumbel.Gumbel`, + :class:`~torch.distributions.half_cauchy.HalfCauchy`, + :class:`~torch.distributions.half_normal.HalfNormal`, + :class:`~torch.distributions.log_normal.LogNormal`, + :class:`~torch.distributions.pareto.Pareto`, + :class:`~torch.distributions.weibull.Weibull`, + :class:`~torch.distributions.relaxed_bernoulli.RelaxedBernoulli` and + :class:`~torch.distributions.relaxed_categorical.RelaxedOneHotCategorical` + """ + arg_constraints: Dict[str, constraints.Constraint] = {} + + def __init__(self, base_distribution, transforms, validate_args=None): + if isinstance(transforms, Transform): + self.transforms = [ + transforms, + ] + elif isinstance(transforms, list): + if not all(isinstance(t, Transform) for t in transforms): + raise ValueError( + "transforms must be a Transform or a list of Transforms" + ) + self.transforms = transforms + else: + raise ValueError( + f"transforms must be a Transform or list, but was {transforms}" + ) + + # Reshape base_distribution according to transforms. + base_shape = base_distribution.batch_shape + base_distribution.event_shape + base_event_dim = len(base_distribution.event_shape) + transform = ComposeTransform(self.transforms) + if len(base_shape) < transform.domain.event_dim: + raise ValueError( + f"base_distribution needs to have shape with size at least {transform.domain.event_dim}, but got {base_shape}." + ) + forward_shape = transform.forward_shape(base_shape) + expanded_base_shape = transform.inverse_shape(forward_shape) + if base_shape != expanded_base_shape: + base_batch_shape = expanded_base_shape[ + : len(expanded_base_shape) - base_event_dim + ] + base_distribution = base_distribution.expand(base_batch_shape) + reinterpreted_batch_ndims = transform.domain.event_dim - base_event_dim + if reinterpreted_batch_ndims > 0: + base_distribution = Independent( + base_distribution, reinterpreted_batch_ndims + ) + self.base_dist = base_distribution + + # Compute shapes. + transform_change_in_event_dim = ( + transform.codomain.event_dim - transform.domain.event_dim + ) + event_dim = max( + transform.codomain.event_dim, # the transform is coupled + base_event_dim + transform_change_in_event_dim, # the base dist is coupled + ) + assert len(forward_shape) >= event_dim + cut = len(forward_shape) - event_dim + batch_shape = forward_shape[:cut] + event_shape = forward_shape[cut:] + super().__init__(batch_shape, event_shape, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(TransformedDistribution, _instance) + batch_shape = torch.Size(batch_shape) + shape = batch_shape + self.event_shape + for t in reversed(self.transforms): + shape = t.inverse_shape(shape) + base_batch_shape = shape[: len(shape) - len(self.base_dist.event_shape)] + new.base_dist = self.base_dist.expand(base_batch_shape) + new.transforms = self.transforms + super(TransformedDistribution, new).__init__( + batch_shape, self.event_shape, validate_args=False + ) + new._validate_args = self._validate_args + return new + + @constraints.dependent_property(is_discrete=False) + def support(self): + if not self.transforms: + return self.base_dist.support + support = self.transforms[-1].codomain + if len(self.event_shape) > support.event_dim: + support = constraints.independent( + support, len(self.event_shape) - support.event_dim + ) + return support + + @property + def has_rsample(self): + return self.base_dist.has_rsample + + def sample(self, sample_shape=torch.Size()): + """ + Generates a sample_shape shaped sample or sample_shape shaped batch of + samples if the distribution parameters are batched. Samples first from + base distribution and applies `transform()` for every transform in the + list. + """ + with torch.no_grad(): + x = self.base_dist.sample(sample_shape) + for transform in self.transforms: + x = transform(x) + return x + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + """ + Generates a sample_shape shaped reparameterized sample or sample_shape + shaped batch of reparameterized samples if the distribution parameters + are batched. Samples first from base distribution and applies + `transform()` for every transform in the list. + """ + x = self.base_dist.rsample(sample_shape) + for transform in self.transforms: + x = transform(x) + return x + + def log_prob(self, value): + """ + Scores the sample by inverting the transform(s) and computing the score + using the score of the base distribution and the log abs det jacobian. + """ + if self._validate_args: + self._validate_sample(value) + event_dim = len(self.event_shape) + log_prob = 0.0 + y = value + for transform in reversed(self.transforms): + x = transform.inv(y) + event_dim += transform.domain.event_dim - transform.codomain.event_dim + log_prob = log_prob - _sum_rightmost( + transform.log_abs_det_jacobian(x, y), + event_dim - transform.domain.event_dim, + ) + y = x + + log_prob = log_prob + _sum_rightmost( + self.base_dist.log_prob(y), event_dim - len(self.base_dist.event_shape) + ) + return log_prob + + def _monotonize_cdf(self, value): + """ + This conditionally flips ``value -> 1-value`` to ensure :meth:`cdf` is + monotone increasing. + """ + sign = 1 + for transform in self.transforms: + sign = sign * transform.sign + if isinstance(sign, int) and sign == 1: + return value + return sign * (value - 0.5) + 0.5 + + def cdf(self, value): + """ + Computes the cumulative distribution function by inverting the + transform(s) and computing the score of the base distribution. + """ + for transform in self.transforms[::-1]: + value = transform.inv(value) + if self._validate_args: + self.base_dist._validate_sample(value) + value = self.base_dist.cdf(value) + value = self._monotonize_cdf(value) + return value + + def icdf(self, value): + """ + Computes the inverse cumulative distribution function using + transform(s) and computing the score of the base distribution. + """ + value = self._monotonize_cdf(value) + value = self.base_dist.icdf(value) + for transform in self.transforms: + value = transform(value) + return value diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/uniform.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/uniform.py new file mode 100644 index 0000000000000000000000000000000000000000..0fe3678a319c406a1aabcacefa465391cd94e615 --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/uniform.py @@ -0,0 +1,102 @@ +# mypy: allow-untyped-defs +from numbers import Number + +import torch +from torch import nan +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all +from torch.types import _size + + +__all__ = ["Uniform"] + + +class Uniform(Distribution): + r""" + Generates uniformly distributed random samples from the half-open interval + ``[low, high)``. + + Example:: + + >>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0])) + >>> m.sample() # uniformly distributed in the range [0.0, 5.0) + >>> # xdoctest: +SKIP + tensor([ 2.3418]) + + Args: + low (float or Tensor): lower range (inclusive). + high (float or Tensor): upper range (exclusive). + """ + # TODO allow (loc,scale) parameterization to allow independent constraints. + arg_constraints = { + "low": constraints.dependent(is_discrete=False, event_dim=0), + "high": constraints.dependent(is_discrete=False, event_dim=0), + } + has_rsample = True + + @property + def mean(self): + return (self.high + self.low) / 2 + + @property + def mode(self): + return nan * self.high + + @property + def stddev(self): + return (self.high - self.low) / 12**0.5 + + @property + def variance(self): + return (self.high - self.low).pow(2) / 12 + + def __init__(self, low, high, validate_args=None): + self.low, self.high = broadcast_all(low, high) + + if isinstance(low, Number) and isinstance(high, Number): + batch_shape = torch.Size() + else: + batch_shape = self.low.size() + super().__init__(batch_shape, validate_args=validate_args) + + if self._validate_args and not torch.lt(self.low, self.high).all(): + raise ValueError("Uniform is not defined when low>= high") + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Uniform, _instance) + batch_shape = torch.Size(batch_shape) + new.low = self.low.expand(batch_shape) + new.high = self.high.expand(batch_shape) + super(Uniform, new).__init__(batch_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + @constraints.dependent_property(is_discrete=False, event_dim=0) + def support(self): + return constraints.interval(self.low, self.high) + + def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor: + shape = self._extended_shape(sample_shape) + rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device) + return self.low + rand * (self.high - self.low) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + lb = self.low.le(value).type_as(self.low) + ub = self.high.gt(value).type_as(self.low) + return torch.log(lb.mul(ub)) - torch.log(self.high - self.low) + + def cdf(self, value): + if self._validate_args: + self._validate_sample(value) + result = (value - self.low) / (self.high - self.low) + return result.clamp(min=0, max=1) + + def icdf(self, value): + result = value * (self.high - self.low) + self.low + return result + + def entropy(self): + return torch.log(self.high - self.low) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/utils.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..90c6d98a11ab1bb9c6571aa48293333b0cc3c28e --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/utils.py @@ -0,0 +1,200 @@ +# mypy: allow-untyped-defs +from functools import update_wrapper +from numbers import Number +from typing import Any, Dict + +import torch +import torch.nn.functional as F +from torch.overrides import is_tensor_like + + +euler_constant = 0.57721566490153286060 # Euler Mascheroni Constant + +__all__ = [ + "broadcast_all", + "logits_to_probs", + "clamp_probs", + "probs_to_logits", + "lazy_property", + "tril_matrix_to_vec", + "vec_to_tril_matrix", +] + + +def broadcast_all(*values): + r""" + Given a list of values (possibly containing numbers), returns a list where each + value is broadcasted based on the following rules: + - `torch.*Tensor` instances are broadcasted as per :ref:`_broadcasting-semantics`. + - numbers.Number instances (scalars) are upcast to tensors having + the same size and type as the first tensor passed to `values`. If all the + values are scalars, then they are upcasted to scalar Tensors. + + Args: + values (list of `numbers.Number`, `torch.*Tensor` or objects implementing __torch_function__) + + Raises: + ValueError: if any of the values is not a `numbers.Number` instance, + a `torch.*Tensor` instance, or an instance implementing __torch_function__ + """ + if not all(is_tensor_like(v) or isinstance(v, Number) for v in values): + raise ValueError( + "Input arguments must all be instances of numbers.Number, " + "torch.Tensor or objects implementing __torch_function__." + ) + if not all(is_tensor_like(v) for v in values): + options: Dict[str, Any] = dict(dtype=torch.get_default_dtype()) + for value in values: + if isinstance(value, torch.Tensor): + options = dict(dtype=value.dtype, device=value.device) + break + new_values = [ + v if is_tensor_like(v) else torch.tensor(v, **options) for v in values + ] + return torch.broadcast_tensors(*new_values) + return torch.broadcast_tensors(*values) + + +def _standard_normal(shape, dtype, device): + if torch._C._get_tracing_state(): + # [JIT WORKAROUND] lack of support for .normal_() + return torch.normal( + torch.zeros(shape, dtype=dtype, device=device), + torch.ones(shape, dtype=dtype, device=device), + ) + return torch.empty(shape, dtype=dtype, device=device).normal_() + + +def _sum_rightmost(value, dim): + r""" + Sum out ``dim`` many rightmost dimensions of a given tensor. + + Args: + value (Tensor): A tensor of ``.dim()`` at least ``dim``. + dim (int): The number of rightmost dims to sum out. + """ + if dim == 0: + return value + required_shape = value.shape[:-dim] + (-1,) + return value.reshape(required_shape).sum(-1) + + +def logits_to_probs(logits, is_binary=False): + r""" + Converts a tensor of logits into probabilities. Note that for the + binary case, each value denotes log odds, whereas for the + multi-dimensional case, the values along the last dimension denote + the log probabilities (possibly unnormalized) of the events. + """ + if is_binary: + return torch.sigmoid(logits) + return F.softmax(logits, dim=-1) + + +def clamp_probs(probs): + """Clamps the probabilities to be in the open interval `(0, 1)`. + + The probabilities would be clamped between `eps` and `1 - eps`, + and `eps` would be the smallest representable positive number for the input data type. + + Args: + probs (Tensor): A tensor of probabilities. + + Returns: + Tensor: The clamped probabilities. + + Examples: + >>> probs = torch.tensor([0.0, 0.5, 1.0]) + >>> clamp_probs(probs) + tensor([1.1921e-07, 5.0000e-01, 1.0000e+00]) + + >>> probs = torch.tensor([0.0, 0.5, 1.0], dtype=torch.float64) + >>> clamp_probs(probs) + tensor([2.2204e-16, 5.0000e-01, 1.0000e+00], dtype=torch.float64) + + """ + eps = torch.finfo(probs.dtype).eps + return probs.clamp(min=eps, max=1 - eps) + + +def probs_to_logits(probs, is_binary=False): + r""" + Converts a tensor of probabilities into logits. For the binary case, + this denotes the probability of occurrence of the event indexed by `1`. + For the multi-dimensional case, the values along the last dimension + denote the probabilities of occurrence of each of the events. + """ + ps_clamped = clamp_probs(probs) + if is_binary: + return torch.log(ps_clamped) - torch.log1p(-ps_clamped) + return torch.log(ps_clamped) + + +class lazy_property: + r""" + Used as a decorator for lazy loading of class attributes. This uses a + non-data descriptor that calls the wrapped method to compute the property on + first call; thereafter replacing the wrapped method into an instance + attribute. + """ + + def __init__(self, wrapped): + self.wrapped = wrapped + update_wrapper(self, wrapped) # type:ignore[arg-type] + + def __get__(self, instance, obj_type=None): + if instance is None: + return _lazy_property_and_property(self.wrapped) + with torch.enable_grad(): + value = self.wrapped(instance) + setattr(instance, self.wrapped.__name__, value) + return value + + +class _lazy_property_and_property(lazy_property, property): + """We want lazy properties to look like multiple things. + + * property when Sphinx autodoc looks + * lazy_property when Distribution validate_args looks + """ + + def __init__(self, wrapped): + property.__init__(self, wrapped) + + +def tril_matrix_to_vec(mat: torch.Tensor, diag: int = 0) -> torch.Tensor: + r""" + Convert a `D x D` matrix or a batch of matrices into a (batched) vector + which comprises of lower triangular elements from the matrix in row order. + """ + n = mat.shape[-1] + if not torch._C._get_tracing_state() and (diag < -n or diag >= n): + raise ValueError(f"diag ({diag}) provided is outside [{-n}, {n-1}].") + arange = torch.arange(n, device=mat.device) + tril_mask = arange < arange.view(-1, 1) + (diag + 1) + vec = mat[..., tril_mask] + return vec + + +def vec_to_tril_matrix(vec: torch.Tensor, diag: int = 0) -> torch.Tensor: + r""" + Convert a vector or a batch of vectors into a batched `D x D` + lower triangular matrix containing elements from the vector in row order. + """ + # +ve root of D**2 + (1+2*diag)*D - |diag| * (diag+1) - 2*vec.shape[-1] = 0 + n = ( + -(1 + 2 * diag) + + ((1 + 2 * diag) ** 2 + 8 * vec.shape[-1] + 4 * abs(diag) * (diag + 1)) ** 0.5 + ) / 2 + eps = torch.finfo(vec.dtype).eps + if not torch._C._get_tracing_state() and (round(n) - n > eps): + raise ValueError( + f"The size of last dimension is {vec.shape[-1]} which cannot be expressed as " + + "the lower triangular part of a square D x D matrix." + ) + n = round(n.item()) if isinstance(n, torch.Tensor) else round(n) + mat = vec.new_zeros(vec.shape[:-1] + torch.Size((n, n))) + arange = torch.arange(n, device=vec.device) + tril_mask = arange < arange.view(-1, 1) + (diag + 1) + mat[..., tril_mask] = vec + return mat diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/von_mises.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/von_mises.py new file mode 100644 index 0000000000000000000000000000000000000000..bd8fa87f2619a476d85cab44accac728d7b8fb2a --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/von_mises.py @@ -0,0 +1,211 @@ +# mypy: allow-untyped-defs +import math + +import torch +import torch.jit +from torch.distributions import constraints +from torch.distributions.distribution import Distribution +from torch.distributions.utils import broadcast_all, lazy_property + + +__all__ = ["VonMises"] + + +def _eval_poly(y, coef): + coef = list(coef) + result = coef.pop() + while coef: + result = coef.pop() + y * result + return result + + +_I0_COEF_SMALL = [ + 1.0, + 3.5156229, + 3.0899424, + 1.2067492, + 0.2659732, + 0.360768e-1, + 0.45813e-2, +] +_I0_COEF_LARGE = [ + 0.39894228, + 0.1328592e-1, + 0.225319e-2, + -0.157565e-2, + 0.916281e-2, + -0.2057706e-1, + 0.2635537e-1, + -0.1647633e-1, + 0.392377e-2, +] +_I1_COEF_SMALL = [ + 0.5, + 0.87890594, + 0.51498869, + 0.15084934, + 0.2658733e-1, + 0.301532e-2, + 0.32411e-3, +] +_I1_COEF_LARGE = [ + 0.39894228, + -0.3988024e-1, + -0.362018e-2, + 0.163801e-2, + -0.1031555e-1, + 0.2282967e-1, + -0.2895312e-1, + 0.1787654e-1, + -0.420059e-2, +] + +_COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL] +_COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE] + + +def _log_modified_bessel_fn(x, order=0): + """ + Returns ``log(I_order(x))`` for ``x > 0``, + where `order` is either 0 or 1. + """ + assert order == 0 or order == 1 + + # compute small solution + y = x / 3.75 + y = y * y + small = _eval_poly(y, _COEF_SMALL[order]) + if order == 1: + small = x.abs() * small + small = small.log() + + # compute large solution + y = 3.75 / x + large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log() + + result = torch.where(x < 3.75, small, large) + return result + + +@torch.jit.script_if_tracing +def _rejection_sample(loc, concentration, proposal_r, x): + done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device) + while not done.all(): + u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device) + u1, u2, u3 = u.unbind() + z = torch.cos(math.pi * u1) + f = (1 + proposal_r * z) / (proposal_r + z) + c = concentration * (proposal_r - f) + accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0) + if accept.any(): + x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x) + done = done | accept + return (x + math.pi + loc) % (2 * math.pi) - math.pi + + +class VonMises(Distribution): + """ + A circular von Mises distribution. + + This implementation uses polar coordinates. The ``loc`` and ``value`` args + can be any real number (to facilitate unconstrained optimization), but are + interpreted as angles modulo 2 pi. + + Example:: + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0])) + >>> m.sample() # von Mises distributed with loc=1 and concentration=1 + tensor([1.9777]) + + :param torch.Tensor loc: an angle in radians. + :param torch.Tensor concentration: concentration parameter + """ + + arg_constraints = {"loc": constraints.real, "concentration": constraints.positive} + support = constraints.real + has_rsample = False + + def __init__(self, loc, concentration, validate_args=None): + self.loc, self.concentration = broadcast_all(loc, concentration) + batch_shape = self.loc.shape + event_shape = torch.Size() + super().__init__(batch_shape, event_shape, validate_args) + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + log_prob = self.concentration * torch.cos(value - self.loc) + log_prob = ( + log_prob + - math.log(2 * math.pi) + - _log_modified_bessel_fn(self.concentration, order=0) + ) + return log_prob + + @lazy_property + def _loc(self): + return self.loc.to(torch.double) + + @lazy_property + def _concentration(self): + return self.concentration.to(torch.double) + + @lazy_property + def _proposal_r(self): + kappa = self._concentration + tau = 1 + (1 + 4 * kappa**2).sqrt() + rho = (tau - (2 * tau).sqrt()) / (2 * kappa) + _proposal_r = (1 + rho**2) / (2 * rho) + # second order Taylor expansion around 0 for small kappa + _proposal_r_taylor = 1 / kappa + kappa + return torch.where(kappa < 1e-5, _proposal_r_taylor, _proposal_r) + + @torch.no_grad() + def sample(self, sample_shape=torch.Size()): + """ + The sampling algorithm for the von Mises distribution is based on the + following paper: D.J. Best and N.I. Fisher, "Efficient simulation of the + von Mises distribution." Applied Statistics (1979): 152-157. + + Sampling is always done in double precision internally to avoid a hang + in _rejection_sample() for small values of the concentration, which + starts to happen for single precision around 1e-4 (see issue #88443). + """ + shape = self._extended_shape(sample_shape) + x = torch.empty(shape, dtype=self._loc.dtype, device=self.loc.device) + return _rejection_sample( + self._loc, self._concentration, self._proposal_r, x + ).to(self.loc.dtype) + + def expand(self, batch_shape): + try: + return super().expand(batch_shape) + except NotImplementedError: + validate_args = self.__dict__.get("_validate_args") + loc = self.loc.expand(batch_shape) + concentration = self.concentration.expand(batch_shape) + return type(self)(loc, concentration, validate_args=validate_args) + + @property + def mean(self): + """ + The provided mean is the circular one. + """ + return self.loc + + @property + def mode(self): + return self.loc + + @lazy_property + def variance(self): + """ + The provided variance is the circular one. + """ + return ( + 1 + - ( + _log_modified_bessel_fn(self.concentration, order=1) + - _log_modified_bessel_fn(self.concentration, order=0) + ).exp() + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/weibull.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/weibull.py new file mode 100644 index 0000000000000000000000000000000000000000..a1a5af16968413ebd16bed2d5f94f827294ff93a --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/weibull.py @@ -0,0 +1,85 @@ +# mypy: allow-untyped-defs +import torch +from torch.distributions import constraints +from torch.distributions.exponential import Exponential +from torch.distributions.gumbel import euler_constant +from torch.distributions.transformed_distribution import TransformedDistribution +from torch.distributions.transforms import AffineTransform, PowerTransform +from torch.distributions.utils import broadcast_all + + +__all__ = ["Weibull"] + + +class Weibull(TransformedDistribution): + r""" + Samples from a two-parameter Weibull distribution. + + Example: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) + >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 + tensor([ 0.4784]) + + Args: + scale (float or Tensor): Scale parameter of distribution (lambda). + concentration (float or Tensor): Concentration parameter of distribution (k/shape). + """ + arg_constraints = { + "scale": constraints.positive, + "concentration": constraints.positive, + } + support = constraints.positive + + def __init__(self, scale, concentration, validate_args=None): + self.scale, self.concentration = broadcast_all(scale, concentration) + self.concentration_reciprocal = self.concentration.reciprocal() + base_dist = Exponential( + torch.ones_like(self.scale), validate_args=validate_args + ) + transforms = [ + PowerTransform(exponent=self.concentration_reciprocal), + AffineTransform(loc=0, scale=self.scale), + ] + super().__init__(base_dist, transforms, validate_args=validate_args) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Weibull, _instance) + new.scale = self.scale.expand(batch_shape) + new.concentration = self.concentration.expand(batch_shape) + new.concentration_reciprocal = new.concentration.reciprocal() + base_dist = self.base_dist.expand(batch_shape) + transforms = [ + PowerTransform(exponent=new.concentration_reciprocal), + AffineTransform(loc=0, scale=new.scale), + ] + super(Weibull, new).__init__(base_dist, transforms, validate_args=False) + new._validate_args = self._validate_args + return new + + @property + def mean(self): + return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) + + @property + def mode(self): + return ( + self.scale + * ((self.concentration - 1) / self.concentration) + ** self.concentration.reciprocal() + ) + + @property + def variance(self): + return self.scale.pow(2) * ( + torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) + - torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)) + ) + + def entropy(self): + return ( + euler_constant * (1 - self.concentration_reciprocal) + + torch.log(self.scale * self.concentration_reciprocal) + + 1 + ) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/wishart.py b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/wishart.py new file mode 100644 index 0000000000000000000000000000000000000000..e0a00f0cc6db06412b13d3d9157eb9d8bade1eaf --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/distributions/wishart.py @@ -0,0 +1,339 @@ +# mypy: allow-untyped-defs +import math +import warnings +from numbers import Number +from typing import Optional, Union + +import torch +from torch import nan +from torch.distributions import constraints +from torch.distributions.exp_family import ExponentialFamily +from torch.distributions.multivariate_normal import _precision_to_scale_tril +from torch.distributions.utils import lazy_property +from torch.types import _size + + +__all__ = ["Wishart"] + +_log_2 = math.log(2) + + +def _mvdigamma(x: torch.Tensor, p: int) -> torch.Tensor: + assert x.gt((p - 1) / 2).all(), "Wrong domain for multivariate digamma function." + return torch.digamma( + x.unsqueeze(-1) + - torch.arange(p, dtype=x.dtype, device=x.device).div(2).expand(x.shape + (-1,)) + ).sum(-1) + + +def _clamp_above_eps(x: torch.Tensor) -> torch.Tensor: + # We assume positive input for this function + return x.clamp(min=torch.finfo(x.dtype).eps) + + +class Wishart(ExponentialFamily): + r""" + Creates a Wishart distribution parameterized by a symmetric positive definite matrix :math:`\Sigma`, + or its Cholesky decomposition :math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top` + + Example: + >>> # xdoctest: +SKIP("FIXME: scale_tril must be at least two-dimensional") + >>> m = Wishart(torch.Tensor([2]), covariance_matrix=torch.eye(2)) + >>> m.sample() # Wishart distributed with mean=`df * I` and + >>> # variance(x_ij)=`df` for i != j and variance(x_ij)=`2 * df` for i == j + + Args: + df (float or Tensor): real-valued parameter larger than the (dimension of Square matrix) - 1 + covariance_matrix (Tensor): positive-definite covariance matrix + precision_matrix (Tensor): positive-definite precision matrix + scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal + Note: + Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or + :attr:`scale_tril` can be specified. + Using :attr:`scale_tril` will be more efficient: all computations internally + are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or + :attr:`precision_matrix` is passed instead, it is only used to compute + the corresponding lower triangular matrices using a Cholesky decomposition. + 'torch.distributions.LKJCholesky' is a restricted Wishart distribution.[1] + + **References** + + [1] Wang, Z., Wu, Y. and Chu, H., 2018. `On equivalence of the LKJ distribution and the restricted Wishart distribution`. + [2] Sawyer, S., 2007. `Wishart Distributions and Inverse-Wishart Sampling`. + [3] Anderson, T. W., 2003. `An Introduction to Multivariate Statistical Analysis (3rd ed.)`. + [4] Odell, P. L. & Feiveson, A. H., 1966. `A Numerical Procedure to Generate a SampleCovariance Matrix`. JASA, 61(313):199-203. + [5] Ku, Y.-C. & Bloomfield, P., 2010. `Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX`. + """ + arg_constraints = { + "covariance_matrix": constraints.positive_definite, + "precision_matrix": constraints.positive_definite, + "scale_tril": constraints.lower_cholesky, + "df": constraints.greater_than(0), + } + support = constraints.positive_definite + has_rsample = True + _mean_carrier_measure = 0 + + def __init__( + self, + df: Union[torch.Tensor, Number], + covariance_matrix: Optional[torch.Tensor] = None, + precision_matrix: Optional[torch.Tensor] = None, + scale_tril: Optional[torch.Tensor] = None, + validate_args=None, + ): + assert (covariance_matrix is not None) + (scale_tril is not None) + ( + precision_matrix is not None + ) == 1, "Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified." + + param = next( + p + for p in (covariance_matrix, precision_matrix, scale_tril) + if p is not None + ) + + if param.dim() < 2: + raise ValueError( + "scale_tril must be at least two-dimensional, with optional leading batch dimensions" + ) + + if isinstance(df, Number): + batch_shape = torch.Size(param.shape[:-2]) + self.df = torch.tensor(df, dtype=param.dtype, device=param.device) + else: + batch_shape = torch.broadcast_shapes(param.shape[:-2], df.shape) + self.df = df.expand(batch_shape) + event_shape = param.shape[-2:] + + if self.df.le(event_shape[-1] - 1).any(): + raise ValueError( + f"Value of df={df} expected to be greater than ndim - 1 = {event_shape[-1]-1}." + ) + + if scale_tril is not None: + self.scale_tril = param.expand(batch_shape + (-1, -1)) + elif covariance_matrix is not None: + self.covariance_matrix = param.expand(batch_shape + (-1, -1)) + elif precision_matrix is not None: + self.precision_matrix = param.expand(batch_shape + (-1, -1)) + + self.arg_constraints["df"] = constraints.greater_than(event_shape[-1] - 1) + if self.df.lt(event_shape[-1]).any(): + warnings.warn( + "Low df values detected. Singular samples are highly likely to occur for ndim - 1 < df < ndim." + ) + + super().__init__(batch_shape, event_shape, validate_args=validate_args) + self._batch_dims = [-(x + 1) for x in range(len(self._batch_shape))] + + if scale_tril is not None: + self._unbroadcasted_scale_tril = scale_tril + elif covariance_matrix is not None: + self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix) + else: # precision_matrix is not None + self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix) + + # Chi2 distribution is needed for Bartlett decomposition sampling + self._dist_chi2 = torch.distributions.chi2.Chi2( + df=( + self.df.unsqueeze(-1) + - torch.arange( + self._event_shape[-1], + dtype=self._unbroadcasted_scale_tril.dtype, + device=self._unbroadcasted_scale_tril.device, + ).expand(batch_shape + (-1,)) + ) + ) + + def expand(self, batch_shape, _instance=None): + new = self._get_checked_instance(Wishart, _instance) + batch_shape = torch.Size(batch_shape) + cov_shape = batch_shape + self.event_shape + new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril.expand(cov_shape) + new.df = self.df.expand(batch_shape) + + new._batch_dims = [-(x + 1) for x in range(len(batch_shape))] + + if "covariance_matrix" in self.__dict__: + new.covariance_matrix = self.covariance_matrix.expand(cov_shape) + if "scale_tril" in self.__dict__: + new.scale_tril = self.scale_tril.expand(cov_shape) + if "precision_matrix" in self.__dict__: + new.precision_matrix = self.precision_matrix.expand(cov_shape) + + # Chi2 distribution is needed for Bartlett decomposition sampling + new._dist_chi2 = torch.distributions.chi2.Chi2( + df=( + new.df.unsqueeze(-1) + - torch.arange( + self.event_shape[-1], + dtype=new._unbroadcasted_scale_tril.dtype, + device=new._unbroadcasted_scale_tril.device, + ).expand(batch_shape + (-1,)) + ) + ) + + super(Wishart, new).__init__(batch_shape, self.event_shape, validate_args=False) + new._validate_args = self._validate_args + return new + + @lazy_property + def scale_tril(self): + return self._unbroadcasted_scale_tril.expand( + self._batch_shape + self._event_shape + ) + + @lazy_property + def covariance_matrix(self): + return ( + self._unbroadcasted_scale_tril + @ self._unbroadcasted_scale_tril.transpose(-2, -1) + ).expand(self._batch_shape + self._event_shape) + + @lazy_property + def precision_matrix(self): + identity = torch.eye( + self._event_shape[-1], + device=self._unbroadcasted_scale_tril.device, + dtype=self._unbroadcasted_scale_tril.dtype, + ) + return torch.cholesky_solve(identity, self._unbroadcasted_scale_tril).expand( + self._batch_shape + self._event_shape + ) + + @property + def mean(self): + return self.df.view(self._batch_shape + (1, 1)) * self.covariance_matrix + + @property + def mode(self): + factor = self.df - self.covariance_matrix.shape[-1] - 1 + factor[factor <= 0] = nan + return factor.view(self._batch_shape + (1, 1)) * self.covariance_matrix + + @property + def variance(self): + V = self.covariance_matrix # has shape (batch_shape x event_shape) + diag_V = V.diagonal(dim1=-2, dim2=-1) + return self.df.view(self._batch_shape + (1, 1)) * ( + V.pow(2) + torch.einsum("...i,...j->...ij", diag_V, diag_V) + ) + + def _bartlett_sampling(self, sample_shape=torch.Size()): + p = self._event_shape[-1] # has singleton shape + + # Implemented Sampling using Bartlett decomposition + noise = _clamp_above_eps( + self._dist_chi2.rsample(sample_shape).sqrt() + ).diag_embed(dim1=-2, dim2=-1) + + i, j = torch.tril_indices(p, p, offset=-1) + noise[..., i, j] = torch.randn( + torch.Size(sample_shape) + self._batch_shape + (int(p * (p - 1) / 2),), + dtype=noise.dtype, + device=noise.device, + ) + chol = self._unbroadcasted_scale_tril @ noise + return chol @ chol.transpose(-2, -1) + + def rsample( + self, sample_shape: _size = torch.Size(), max_try_correction=None + ) -> torch.Tensor: + r""" + .. warning:: + In some cases, sampling algorithm based on Bartlett decomposition may return singular matrix samples. + Several tries to correct singular samples are performed by default, but it may end up returning + singular matrix samples. Singular samples may return `-inf` values in `.log_prob()`. + In those cases, the user should validate the samples and either fix the value of `df` + or adjust `max_try_correction` value for argument in `.rsample` accordingly. + """ + + if max_try_correction is None: + max_try_correction = 3 if torch._C._get_tracing_state() else 10 + + sample_shape = torch.Size(sample_shape) + sample = self._bartlett_sampling(sample_shape) + + # Below part is to improve numerical stability temporally and should be removed in the future + is_singular = self.support.check(sample) + if self._batch_shape: + is_singular = is_singular.amax(self._batch_dims) + + if torch._C._get_tracing_state(): + # Less optimized version for JIT + for _ in range(max_try_correction): + sample_new = self._bartlett_sampling(sample_shape) + sample = torch.where(is_singular, sample_new, sample) + + is_singular = ~self.support.check(sample) + if self._batch_shape: + is_singular = is_singular.amax(self._batch_dims) + + else: + # More optimized version with data-dependent control flow. + if is_singular.any(): + warnings.warn("Singular sample detected.") + + for _ in range(max_try_correction): + sample_new = self._bartlett_sampling(is_singular[is_singular].shape) + sample[is_singular] = sample_new + + is_singular_new = ~self.support.check(sample_new) + if self._batch_shape: + is_singular_new = is_singular_new.amax(self._batch_dims) + is_singular[is_singular.clone()] = is_singular_new + + if not is_singular.any(): + break + + return sample + + def log_prob(self, value): + if self._validate_args: + self._validate_sample(value) + nu = self.df # has shape (batch_shape) + p = self._event_shape[-1] # has singleton shape + return ( + -nu + * ( + p * _log_2 / 2 + + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1) + .log() + .sum(-1) + ) + - torch.mvlgamma(nu / 2, p=p) + + (nu - p - 1) / 2 * torch.linalg.slogdet(value).logabsdet + - torch.cholesky_solve(value, self._unbroadcasted_scale_tril) + .diagonal(dim1=-2, dim2=-1) + .sum(dim=-1) + / 2 + ) + + def entropy(self): + nu = self.df # has shape (batch_shape) + p = self._event_shape[-1] # has singleton shape + V = self.covariance_matrix # has shape (batch_shape x event_shape) + return ( + (p + 1) + * ( + p * _log_2 / 2 + + self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1) + .log() + .sum(-1) + ) + + torch.mvlgamma(nu / 2, p=p) + - (nu - p - 1) / 2 * _mvdigamma(nu / 2, p=p) + + nu * p / 2 + ) + + @property + def _natural_params(self): + nu = self.df # has shape (batch_shape) + p = self._event_shape[-1] # has singleton shape + return -self.precision_matrix / 2, (nu - p - 1) / 2 + + def _log_normalizer(self, x, y): + p = self._event_shape[-1] + return (y + (p + 1) / 2) * ( + -torch.linalg.slogdet(-2 * x).logabsdet + _log_2 * p + ) + torch.mvlgamma(y + (p + 1) / 2, p=p) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__init__.py b/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..36493cd7539c90736a06d08da972eb546645dbda --- /dev/null +++ b/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__init__.py @@ -0,0 +1,38 @@ +from torch._C._monitor import * # noqa: F403 +from typing import TYPE_CHECKING + +from torch._C._monitor import _WaitCounter # type: ignore[attr-defined] + +if TYPE_CHECKING: + from torch.utils.tensorboard import SummaryWriter + + +STAT_EVENT = "torch.monitor.Stat" + + +class TensorboardEventHandler: + """ + TensorboardEventHandler is an event handler that will write known events to + the provided SummaryWriter. + + This currently only supports ``torch.monitor.Stat`` events which are logged + as scalars. + + Example: + >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_MONITOR) + >>> # xdoctest: +REQUIRES(module:tensorboard) + >>> from torch.utils.tensorboard import SummaryWriter + >>> from torch.monitor import TensorboardEventHandler, register_event_handler + >>> writer = SummaryWriter("log_dir") + >>> register_event_handler(TensorboardEventHandler(writer)) + """ + def __init__(self, writer: "SummaryWriter") -> None: + """ + Constructs the ``TensorboardEventHandler``. + """ + self._writer = writer + + def __call__(self, event: Event) -> None: + if event.name == STAT_EVENT: + for k, v in event.data.items(): + self._writer.add_scalar(k, v, walltime=event.timestamp.timestamp()) diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__pycache__/__init__.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b34428db361c917e60533c79a922d469a327357 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/monitor/__pycache__/__init__.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/__init__.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e0fb85da9f06affbcfc61d89cf198fec031b9978 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/__init__.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_comparison.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_comparison.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3f42c37e214297b449c1cca00c335529add63c00 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_comparison.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_creation.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_creation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..377bc1fdf132c00e6ba4fbdf47448c84d236d8e4 Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_creation.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_utils.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..497ab786496a178704290b88c18b6c438c57d3de Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/__pycache__/_utils.cpython-310.pyc differ diff --git a/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/optests/__pycache__/generate_tests.cpython-310.pyc b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/optests/__pycache__/generate_tests.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4afe415dfaa7be6dda4f193dee9de813c91beb4f Binary files /dev/null and b/infer_4_30_0/lib/python3.10/site-packages/torch/testing/_internal/optests/__pycache__/generate_tests.cpython-310.pyc differ diff --git a/janus/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_heuristic.so.9 b/janus/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_heuristic.so.9 new file mode 100644 index 0000000000000000000000000000000000000000..7e10ed9de449c49d91e04a91ab513efe25586e80 --- /dev/null +++ b/janus/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_heuristic.so.9 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:94fab98c15040558c3c80f2c1a2f5fda9baa72afc39a88bdcc82185f49d241c3 +size 86326864