ColonCancerCTDataset / ColonCancerCTDataset.py
YuxuanZhang888's picture
Changed the name of my dataset loading script.
0233002 verified
raw
history blame
6.53 kB
import pydicom
from PIL import Image
import numpy as np
import io
import datasets
import gdown
import re
import s3fs
import random
example_manifest_url = "https://drive.google.com/uc?id=1JBkQTXeieyN9_6BGdTF_DDlFFyZrGyU6"
example_manifest_file = gdown.download(example_manifest_url, 'manifest_file.s5cmd', quiet = False)
full_manifest_url = "https://drive.google.com/uc?id=1KP6qxcQoPF4MJdEPNwW7J6BlL_sUJ17j"
full_manifest_file = gdown.download(full_manifest_url, 'full_manifest_file.s5cmd', quiet = False)
fs = s3fs.S3FileSystem(anon=True)
_DESCRIPTION = "This is the description"
_HOMEPAGE = "https://imaging.datacommons.cancer.gov/"
_LICENSE = "https://fairsharing.org/FAIRsharing.0b5a1d"
_CITATION = "National Cancer Institute Imaging Data Commons (IDC) Collections was accessed on DATE from https://registry.opendata.aws/nci-imaging-data-commons"
class ColonCancerCTDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="example", version=VERSION, description="This is a subset of the full dataset for demonstration purposes"),
datasets.BuilderConfig(name="full_data", version=VERSION, description="This is the complete dataset"),
]
DEFAULT_CONFIG_NAME = "example"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"ImageType": datasets.Sequence(datasets.Value('string')),
"StudyDate": datasets.Value('string'),
"SeriesDate": datasets.Value('string'),
"Manufacturer": datasets.Value('string'),
"StudyDescription": datasets.Value('string'),
"SeriesDescription": datasets.Value('string'),
"PatientSex": datasets.Value('string'),
"PatientAge": datasets.Value('string'),
"PregnancyStatus": datasets.Value('string'),
"BodyPartExamined": datasets.Value('string'),
}),
homepage = _HOMEPAGE,
license = _LICENSE,
citation = _CITATION
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the
s3_series_paths = []
s3_individual_paths = []
if self.config.name == 'example':
manifest_file = example_manifest_file
else:
manifest_file = full_manifest_file
with open(manifest_file, 'r') as file:
for line in file:
match = re.search(r'cp (s3://[\S]+) .', line)
if match:
s3_series_paths.append(match.group(1)[:-2]) # Deleting the '/*' in directories
for series in s3_series_paths:
for content in fs.ls(series):
s3_individual_paths.append(fs.info(content)['Key'])
random.shuffle(s3_individual_paths)
# Define the split sizes
train_size = int(0.7 * len(s3_individual_paths))
val_size = int(0.15 * len(s3_individual_paths))
# Split the paths into train, validation, and test sets
train_paths = s3_individual_paths[:train_size]
val_paths = s3_individual_paths[train_size:train_size + val_size]
test_paths = s3_individual_paths[train_size + val_size:]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"paths": train_paths,
"split": "train"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"paths": val_paths,
"split": "dev"
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"paths": test_paths,
"split": "test"
},
),
]
def _generate_examples(self, paths, split):
"""Yields examples."""
# TODO: This method will yield examples, i.e. rows in the dataset.
for path in paths:
key = path
with fs.open(path, 'rb') as f:
dicom_data = pydicom.dcmread(f)
pixel_array = dicom_data.pixel_array
# Adjust for MONOCHROME1 to invert the grayscale values
if dicom_data.PhotometricInterpretation == "MONOCHROME1":
pixel_array = np.max(pixel_array) - pixel_array
# Normalize or scale 16-bit or other depth images to 8-bit
if pixel_array.dtype != np.uint8:
pixel_array = (np.divide(pixel_array, np.max(pixel_array)) * 255).astype(np.uint8)
# Convert to RGB if it is not already (e.g., for color images)
if len(pixel_array.shape) == 2:
im = Image.fromarray(pixel_array, mode="L") # L mode is for grayscale
elif len(pixel_array.shape) == 3 and pixel_array.shape[2] in [3, 4]:
im = Image.fromarray(pixel_array, mode="RGB")
else:
raise ValueError("Unsupported DICOM image format")
with io.BytesIO() as output:
im.save(output, format="PNG")
png_image = output.getvalue()
# Extracting metadata
ImageType = dicom_data.get("ImageType", "")
StudyDate = dicom_data.get("StudyDate", "")
SeriesDate = dicom_data.get("SeriesDate", "")
Manufacturer = dicom_data.get("Manufacturer", "")
StudyDescription = dicom_data.get("StudyDescription", "")
SeriesDescription = dicom_data.get("SeriesDescription", "")
PatientSex = dicom_data.get("PatientSex", "")
PatientAge = dicom_data.get("PatientAge", "")
PregnancyStatus = dicom_data.get("PregnancyStatus", "")
if PregnancyStatus == None:
PregnancyStatus = "None"
else:
PregnancyStatus = "Yes"
BodyPartExamined = dicom_data.get("BodyPartExamined", "")
yield key, {"image": png_image,
"ImageType": ImageType,
"StudyDate": StudyDate,
"SeriesDate": SeriesDate,
"Manufacturer": Manufacturer,
"StudyDescription": StudyDescription,
"SeriesDescription": SeriesDescription,
"PatientSex": PatientSex,
"PatientAge": PatientAge,
"PregnancyStatus": PregnancyStatus,
"BodyPartExamined": BodyPartExamined}