# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The Multilingual SemEval2016 Task5 Reviews Corpus""" import datasets _CITATION = """\ @inproceedings{pontiki2016semeval, title={Semeval-2016 task 5: Aspect based sentiment analysis}, author={Pontiki, Maria and Galanis, Dimitrios and Papageorgiou, Haris and Androutsopoulos, Ion and Manandhar, Suresh and Al-Smadi, Mohammad and Al-Ayyoub, Mahmoud and Zhao, Yanyan and Qin, Bing and De Clercq, Orph{\'e}e and others}, booktitle={International workshop on semantic evaluation}, pages={19--30}, year={2016} } """ _LICENSE = """\ Please click on the homepage URL for license details. """ _DESCRIPTION = """\ A collection of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis. """ _CONFIG = [ # restaruants Domain "restaurants_english", "restaurants_french", "restaurants_spanish", "restaurants_russian", "restaurants_dutch", "restaurants_turkish", # hotels domain "hotels_arabic", # Consumer Electronics Domain "mobilephones_dutch", "mobilephones_chinese", "laptops_english", "digitalcameras_chinese" ] _VERSION = "0.1.0" _HOMEPAGE_URL = "https://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools/" _DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2016Task5Corrected/{split}/{domain}_{split}_{lang}.xml" class SemEval2016Config(datasets.BuilderConfig): """BuilderConfig for SemEval2016Config.""" def __init__(self, _CONFIG, **kwargs): super(SemEval2016Config, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs), self.configs = _CONFIG class SemEval2016(datasets.GeneratorBasedBuilder): """The Multilingual SemEval2016 ABSA Corpus""" BUILDER_CONFIGS = [ SemEval2016Config( name="All", _CONFIG=_CONFIG, description="A collection of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis.", ) ] + [ SemEval2016Config( name=config, _CONFIG=[config], description=f"{config} of SemEval2016 specifically designed to aid research in multilingual Aspect Based Sentiment Analysis", ) for config in _CONFIG ] BUILDER_CONFIG_CLASS = SemEval2016Config DEFAULT_CONFIG_NAME = "restaurants_english" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {'text': datasets.Value(dtype='string'), 'opinions': [ {'category': datasets.Value(dtype='string'), 'from': datasets.Value(dtype='string'), 'polarity': datasets.Value(dtype='string'), 'target': datasets.Value(dtype='string'), 'to': datasets.Value(dtype='string')} ], 'tokens': [datasets.Value(dtype='string')], 'ATESP_BIEOS_tags': [datasets.Value(dtype='string')], 'ATESP_BIO_tags': [datasets.Value(dtype='string')], 'ATE_BIEOS_tags': [datasets.Value(dtype='string')], 'ATE_BIO_tags': [datasets.Value(dtype='string')], 'domain': datasets.Value(dtype='string'), 'reviewId': datasets.Value(dtype='string'), 'sentenceId': datasets.Value(dtype='string') } ), supervised_keys=None, license=_LICENSE, homepage=_HOMEPAGE_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): lang_list = [] domain_list = [] for config in self.config.configs: domain_list.append(config.split('_')[0]) lang_list.append(config.split('_')[1]) train_urls = [_DOWNLOAD_URL.format(split="train", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs] dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs] test_urls = [_DOWNLOAD_URL.format(split="test", domain=config.split('_')[0], lang=config.split('_')[1]) for config in self.config.configs] train_paths = dl_manager.download_and_extract(train_urls) dev_paths = dl_manager.download_and_extract(dev_urls) test_paths = dl_manager.download_and_extract(test_urls) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "lang_list": lang_list, "domain_list": domain_list}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "lang_list": lang_list, "domain_list": domain_list}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "lang_list": lang_list, "domain_list": domain_list}), ] def _generate_examples(self, file_paths, lang_list, domain_list): row_count = 0 assert len(file_paths)==len(lang_list) and len(lang_list)==len(domain_list) for i in range(len(file_paths)): file_path, domain, language = file_paths[i], domain_list[i], lang_list[i] semEvalDataset = SemEvalXMLDataset(file_path, language, domain) for example in semEvalDataset.SentenceWithOpinions: yield row_count, example row_count += 1 # 输入:xlm文件的文件路径 # 输出:一个DataSet,每个样例包含[reviewid, sentenceId, text, UniOpinions] # 每个样例包含的Opinion,是一个列表,包含的是单个Opinion的详情 from xml.dom.minidom import parse class SemEvalXMLDataset(): def __init__(self, file_name, language, domain): # 获得SentenceWithOpinions,一个List包含(reviewId, sentenceId, text, Opinions) self.SentenceWithOpinions = [] self.xml_path = file_name self.sentenceXmlList = parse(self.xml_path).getElementsByTagName('sentence') for sentenceXml in self.sentenceXmlList: reviewId = sentenceXml.getAttribute("id").split(':')[0] sentenceId = sentenceXml.getAttribute("id") if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1: # skip no reviews part continue text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue OpinionXmlList = sentenceXml.getElementsByTagName("Opinion") Opinions = [] for opinionXml in OpinionXmlList: # some text maybe have no opinion target = opinionXml.getAttribute("target") category = opinionXml.getAttribute("category") polarity = opinionXml.getAttribute("polarity") from_ = opinionXml.getAttribute("from") to = opinionXml.getAttribute("to") opinionDict = { "target": target, "category": category, "polarity": polarity, "from": from_, "to": to } Opinions.append(opinionDict) Opinions.sort(key=lambda x: x["from"]) # 从小到大排序 example = { "text": text, "opinions": Opinions, "domain": domain, "reviewId": reviewId, "sentenceId": sentenceId } example = addTokenAndLabel(example) self.SentenceWithOpinions.append(example) import nltk def clearOpinion(example): opinions = example['opinions'] skipNullOpinions = [] # 去掉NULL的opinion for opinion in opinions: targetKey = 'target' target = opinion[targetKey] from_ = opinion['from'] to = opinion['to'] # skill NULL if target.lower() == 'null' or target == '' or from_ == to: continue skipNullOpinions.append(opinion) # delete repeate Opinions skipNullOpinions.sort(key=lambda x: int(x['from'])) # 从小到大排序 UniOpinions = [] for opinion in skipNullOpinions: if len(UniOpinions) < 1: UniOpinions.append(opinion) else: if opinion['from'] != UniOpinions[-1]['from'] and opinion['to'] != UniOpinions[-1]['to']: UniOpinions.append(opinion) return UniOpinions def addTokenAndLabel(example): tokens = [] labels = [] text = example['text'] UniOpinions = clearOpinion(example) text_begin = 0 for aspect in UniOpinions: polarity = aspect['polarity'][:3].upper() pre_O_tokens = nltk.word_tokenize(text[text_begin: int(aspect['from'])]) tokens.extend(pre_O_tokens) labels.extend(['O']*len(pre_O_tokens)) BIES_tokens = nltk.word_tokenize(text[int(aspect['from']): int(aspect['to'])]) tokens.extend(BIES_tokens) assert len(BIES_tokens) > 0, print('error in BIES_tokens length') if len(BIES_tokens)==1: labels.append('S-'+polarity) elif len(BIES_tokens)==2: labels.append('B-'+polarity) labels.append('E-'+polarity) else: labels.append('B-'+polarity) labels.extend(['I-'+polarity]*(len(BIES_tokens)-2)) labels.append('E-'+polarity) text_begin = int(aspect['to']) pre_O_tokens = nltk.word_tokenize(text[text_begin: ]) labels.extend(['O']*len(pre_O_tokens)) tokens.extend(pre_O_tokens) example['tokens'] = tokens example['ATESP_BIEOS_tags'] = labels ATESP_BIO_labels = [] for label in labels: ATESP_BIO_labels.append(label.replace('E-', 'I-').replace('S-', 'B-')) example['ATESP_BIO_tags'] = ATESP_BIO_labels ATE_BIEOS_labels = [] for label in labels: ATE_BIEOS_labels.append(label[0]) example['ATE_BIEOS_tags'] = ATE_BIEOS_labels ATE_BIO_labels = [] for label in ATESP_BIO_labels: ATE_BIO_labels.append(label[0]) example['ATE_BIO_tags'] = ATE_BIO_labels return example