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Abstract

This paper introduces the Multi-Genre Natu-
ral Language Inference (MultiNLI) corpus, a
dataset designed for use in the development
and evaluation of machine learning models for
sentence understanding. At 433k examples,
this resource is one of the largest corpora avail-
able for natural language inference (a.k.a. rec-
ognizing textual entailment), improving upon
available resources in both its coverage and
difficulty. MultiNLI accomplishes this by of-
fering data from ten distinct genres of written
and spoken English, making it possible to eval-
uate systems on nearly the full complexity of
the language, while supplying an explicit set-
ting for evaluating cross-genre domain adap-
tation. In addition, an evaluation using exist-
ing machine learning models designed for the
Stanford NLI corpus shows that it represents a
substantially more difficult task than does that
corpus, despite the two showing similar levels
of inter-annotator agreement.

1 Introduction

Many of the most actively studied problems in
NLP, including question answering, translation,
and dialog, depend in large part on natural lan-
guage understanding (NLU) for success. While
there has been a great deal of work that uses rep-
resentation learning techniques to pursue progress
on these applied NLU problems directly, in or-
der for a representation learning model to fully
succeed at one of these problems, it must simul-
taneously succeed both at NLU, and at one or
more additional hard machine learning problems
like structured prediction or memory access. This
makes it difficult to accurately judge the degree to

which current models extract reasonable represen-
tations of language meaning in these settings.

The task of natural language inference (NLI)
is well positioned to serve as a benchmark task
for research on NLU. In this task, also known
as recognizing textual entailment (Cooper et al.,
1996; Fyodorov et al., 2000; Condoravdi et al.,
2003; Bos and Markert, 2005; Dagan et al., 2006;
MacCartney and Manning, 2009), a model is pre-
sented with a pair of sentences—like one of those
in Figure 1—and asked to judge the relationship
between their meanings by picking a label from
a small set: typically ENTAILMENT, NEUTRAL,
and CONTRADICTION. Succeeding at NLI does
not require a system to solve any difficult machine
learning problems except, crucially, that of ex-
tracting effective and thorough representations for
the meanings of sentences (i.e., their lexical and
compositional semantics). In particular, a model
must handle phenomena like lexical entailment,
quantification, coreference, tense, belief, modal-
ity, and lexical and syntactic ambiguity.

As the only large human-annotated corpus for
NLI currently available, the Stanford NLI Cor-
pus (SNLI; Bowman et al., 2015) has enabled a
good deal of progress on NLU, serving as a ma-
jor benchmark for machine learning work on sen-
tence understanding and spurring work on core
representation learning techniques for NLU, such
as attention (Wang and Jiang, 2016; Parikh et al.,
2016), memory (Munkhdalai and Yu, 2017), and
the use of parse structure (Mou et al., 2016b; Bow-
man et al., 2016; Chen et al., 2017). However,
SNLI falls short of providing a sufficient testing
ground for machine learning models in two ways.



Met my first girlfriend that way. FACE-TO-FACE
contradiction
C C N C

I didn’t meet my first girlfriend until later.

8 million in relief in the form of emergency housing. GOVERNMENT
neutral
N N N N

The 8 million dollars for emergency hous-
ing was still not enough to solve the prob-
lem.

Now, as children tend their gardens, they have a new ap-
preciation of their relationship to the land, their cultural
heritage, and their community.

LETTERS
neutral
N N N N

All of the children love working in their
gardens.

At 8:34, the Boston Center controller received a third
transmission from American 11

9/11
entailment
E E E E

The Boston Center controller got a third
transmission from American 11.

I am a lacto-vegetarian. SLATE
neutral
N N E N

I enjoy eating cheese too much to abstain
from dairy.

someone else noticed it and i said well i guess that’s true
and it was somewhat melodious in other words it wasn’t
just you know it was really funny

TELEPHONE
contradiction
C C C C

No one noticed and it wasn’t funny at all.

Table 1: Randomly chosen examples from the development set of our new corpus, shown with their genre labels,
their selected gold labels, and the validation labels (abbreviated E, N, C) assigned by individual annotators.

First, the sentences in SNLI are derived from only
a single text genre—image captions—and are thus
limited to descriptions of concrete visual scenes,
rendering the hypothesis sentences used to de-
scribe these scenes short and simple, and ren-
dering many important phenomena—like tempo-
ral reasoning (e.g., yesterday), belief (e.g., know),
and modality (e.g., should)—rare enough to be ir-
relevant to task performance. Second, because of
these issues, SNLI is not sufficiently demanding
to serve as an effective benchmark for NLU, with
the best current model performance falling within
a few percentage points of human accuracy and
limited room left for fine-grained comparisons be-
tween strong models.

This paper introduces a new challenge dataset,
the Multi-Genre NLI Corpus (MultiNLI), whose
chief purpose is to remedy these limitations by
making it possible to run large-scale NLI evalua-
tions that capture more of the complexity of mod-
ern English. While its size (433k pairs) and mode
of collection are modeled closely on SNLI, unlike
that corpus, MultiNLI represents both written and
spoken speech in a wide range of styles, degrees
of formality, and topics.

Our chief motivation in creating this corpus is
to provide a benchmark for ambitious machine
learning research on the core problems of NLU,
but we are additionally interested in constructing
a corpus that facilitates work on domain adapta-
tion and cross-domain transfer learning. These
techniques—which use labeled training data for a

source domain, and aim to train a model that per-
forms well on test data from a target domain with
a different distribution—have resulted in gains
across many tasks (Daume III and Marcu, 2006;
Ben-David et al., 2007), including sequence and
part-of-speech tagging (Blitzer et al., 2006; Peng
and Dredze, 2017). Moreover, in application areas
outside NLU, artificial neural network techniques
have made it possible to train general-purpose fea-
ture extractors that, with no or minimal retraining,
can extract useful features for a variety of styles of
data (Krizhevsky et al., 2012; Zeiler and Fergus,
2014; Donahue et al., 2014). However, attempts to
bring this kind of general purpose representation
learning to NLU have seen only very limited suc-
cess (see, for example, Mou et al., 2016a). Nearly
all successful applications of representation learn-
ing to NLU have involved models that are trained
on data closely resembling the target evaluation
data in both task and style. This fact limits the
usefulness of these tools for problems involving
styles of language not represented in large anno-
tated training sets.

With this in mind, we construct MultiNLI so as
to make it possible to explicitly evaluate models
both on the quality of their sentence representa-
tions within the training domain and on their abil-
ity to derive reasonable representations in unfa-
miliar domains. The corpus is derived from ten
different genres of written and spoken English,
which are collectively meant to approximate the
full diversity of ways in which modern standard



This task will involve reading a line from a non-fiction
article and writing three sentences that relate to it. The
line will describe a situation or event. Using only this
description and what you know about the world:

• Write one sentence that is definitely correct about
the situation or event in the line.

• Write one sentence that might be correct about the
situation or event in the line.

• Write one sentence that is definitely incorrect
about the situation or event in the line.

Figure 1: The main text of a prompt (truncated) that
was presented to our annotators. This version is used
for the written non-fiction genres.

American English is used. All of the genres ap-
pear in the test and development sets, but only five
are included in the training set. Models thus can
be evaluated on both the matched test examples,
which are derived from the same sources as those
in the training set, and on the mismatched exam-
ples, which do not closely resemble any of those
seen at training time.

2 The Corpus

2.1 Data Collection
The data collection methodology for MultiNLI is
similar to that of SNLI: We create each sentence
pair by selecting a premise sentence from a preex-
isting text source and asking a human annotator to
compose a novel sentence to pair with it as a hy-
pothesis. This section discusses the sources of our
premise sentences, our collection method for hy-
potheses, and our validation (relabeling) strategy.

Premise Text Sources The MultiNLI premise
sentences are derived from ten sources of freely
available text which are meant to be maximally
diverse and roughly represent the full range of
American English. We selected nine sources from
the second release of the Open American National
Corpus (OANC; Fillmore et al., 1998; Macleod
et al., 2000; Ide and Macleod, 2001; Ide and Su-
derman, 2006, downloaded 12/20161), balancing
the volume of source text roughly evenly across
genres, and avoiding genres with content that
would be too difficult for untrained annotators.

OANC data constitutes the following nine gen-
res: transcriptions from the Charlotte Narrative

1 http://www.anc.org/

and Conversation Collection of two-sided, in-
person conversations that took place in the early
2000s (FACE-TO-FACE); reports, speeches, letters,
and press releases from public domain govern-
ment websites (GOVERNMENT); letters from the
Indiana Center for Intercultural Communication of
Philanthropic Fundraising Discourse written in the
late 1990s–early 2000s (LETTERS); the public re-
port from the National Commission on Terrorist
Attacks Upon the United States released on July
22, 20042 (9/11); five non-fiction works on the
textile industry and child development published
by the Oxford University Press (OUP); popular
culture articles from the archives of Slate Maga-
zine (SLATE) written between 1996–2000; tran-
scriptions from University of Pennsylvania’s Lin-
guistic Data Consortium Switchboard corpus of
two-sided, telephone conversations that took place
in 1990 or 1991 (TELEPHONE); travel guides pub-
lished by Berlitz Publishing in the early 2000s
(TRAVEL); and short posts about linguistics for
non-specialists from the Verbatim archives written
between 1990 and 1996 (VERBATIM).

For our tenth genre, FICTION, we compile sev-
eral freely available works of contemporary fiction
written between 1912 and 2010, spanning various
genres, including mystery (The Mysterious Affair
at Styles,3 Christie, 1921; The Secret Adversary,4

Christie, 1922; Murder in the Gun Room,5 Piper,
1953), humor (Password Incorrect,6 Name, 2008),
western (Rebel Spurs,7 Norton, 1962), science fic-
tion (Seven Swords,8 Shea, 2008; Living History,9

Essex, 2016; The Sky Is Falling,10 Del Rey, 1973;
Youth,11 Asimov, May 1952), and adventure (Cap-
tain Blood,12 Sabatini, 1922).

We construct premise sentences from these ten
source texts with minimal preprocessing; unique
the sentences within genres, exclude very short

2https://9-11commission.gov/
3gutenberg.org/files/863/863-0.txt
4gutenberg.org/files/1155/1155-0.txt
5gutenberg.org/files/17866/17866.txt
6http://manybooks.net/pages/

namenother09password_incorrect/0.html
7gutenberg.org/files/20840/20840-0.txt
8http://mikeshea.net/stories/seven_

swords.html, shared with the author’s permission.
9manybooks.net/pages/

essexbother10living_history/0.html
10gutenberg.org/cache/epub/18768/

pg18768.txt
11gutenberg.org/cache/epub/31547/

pg31547.txt
12gutenberg.org/files/1965/1965-0.txt

http://newsouthvoices.uncc.edu/
http://newsouthvoices.uncc.edu/
http://www.anc.org/
http://newsouthvoices.uncc.edu/
https://liberalarts.iupui.edu/icic/research/corpus_of_philanthropic_fundraising_discourse
https://liberalarts.iupui.edu/icic/research/corpus_of_philanthropic_fundraising_discourse
https://liberalarts.iupui.edu/icic/research/corpus_of_philanthropic_fundraising_discourse
https://9-11commission.gov/
https://9-11commission.gov/
https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC97S62
http://www.verbatimmag.com/
https://9-11commission.gov/
gutenberg.org/files/863/863-0.txt
gutenberg.org/files/1155/1155-0.txt
gutenberg.org/files/17866/17866.txt
http://manybooks.net/pages/namenother09password_incorrect/0.html
http://manybooks.net/pages/namenother09password_incorrect/0.html
gutenberg.org/files/20840/20840-0.txt
http://mikeshea.net/stories/seven_swords.html
http://mikeshea.net/stories/seven_swords.html
manybooks.net/pages/essexbother10living_history/0.html
manybooks.net/pages/essexbother10living_history/0.html
gutenberg.org/cache/epub/18768/pg18768.txt
gutenberg.org/cache/epub/18768/pg18768.txt
gutenberg.org/cache/epub/31547/pg31547.txt
gutenberg.org/cache/epub/31547/pg31547.txt
gutenberg.org/files/1965/1965-0.txt


sentences (under eight characters), and manu-
ally remove certain types of non-narrative writing,
such as mathematical formulae, bibliographic ref-
erences, and lists.

Although SNLI is collected in largely the same
way as MultiNLI, and is also permissively li-
censed, we do not include SNLI in the MultiNLI
corpus distribution. SNLI can be appended and
treated as an unusually large additional CAPTIONS

genre, built on image captions from the Flickr30k
corpus (Young et al., 2014).

Hypothesis Collection To collect a sentence
pair, we present a crowdworker with a sentence
from a source text and ask them to compose
three novel sentences (the hypotheses): one which
is necessarily true or appropriate whenever the
premise is true (paired with the premise and la-
beled ENTAILMENT), one which is necessarily
false or inappropriate whenever the premise is true
(CONTRADICTION), and one where neither condi-
tion applies (NEUTRAL). This method of data col-
lection ensures that the three classes will be repre-
sented equally in the raw corpus.

The prompts that surround each premise sen-
tence during hypothesis collection are slightly tai-
lored to fit the genre of that premise sentence.
We pilot these prompts prior to data collection
to ensure that the instructions are clear and that
they yield hypothesis sentences that fit the in-
tended meanings of the three classes. There are
five unique prompts in total: one for written
non-fiction genres (SLATE, OUP, GOVERNMENT,
VERBATIM, TRAVEL; Figure 1), one for spoken
genres (TELEPHONE, FACE-TO-FACE), one for
each of the less formal written genres (FICTION,
LETTERS), and a specialized one for 9/11, tai-
lored to fit its potentially emotional content. Each
prompt is accompanied by example premises and
hypothesis that are specific to each genre.

Below the instructions, we present three text
fields—one for each label—followed by a field
for reporting issues, and a link to the frequently
asked questions (FAQ) page. We provide one FAQ
page per prompt. FAQs are modeled on their SNLI
counterparts (supplied by the authors of that work)
and include additional curated examples, answers
to genre-specific questions arising from our pilot
phase, and information about logistical concerns
like payment.

For both hypothesis collection and validation,
we present prompts to annotators using Hybrid

Statistic SNLI MultiNLI

Pairs w/ unanimous gold label 58.3% 58.2%

Individual label = gold label 89.0% 88.7%
Individual label = author’s label 85.8% 85.2%

Gold label = author’s label 91.2% 92.6%
Gold label 6= author’s label 6.8% 5.6%
No gold label (no 3 labels match) 2.0% 1.8%

Table 2: Key validation statistics for SNLI (copied
from Bowman et al., 2015) and MultiNLI.

(gethybrid.io), a crowdsoucring platform
similar to the Amazon Mechanical Turk platform
used for SNLI. We used this platform to hire an
organized group of workers. 387 annotators con-
tributed through this group, and at no point was
any identifying information about them, including
demographic information, available to the authors.

Validation We perform an additional round of
annotation on test and development examples
to ensure accurate labelling. The validation
phase follows the same procedure used for SICK
(Marelli et al., 2014b) and SNLI: Workers are pre-
sented with pairs of sentences and asked to supply
a single label (ENTAILMENT, CONTRADICTION,
NEUTRAL) for the pair. Each pair is relabeled by
four workers, yielding a total of five labels per
example. Validation instructions are tailored by
genre, based on the main data collection prompt
(Figure 1); a single FAQ, modeled after the valida-
tion FAQ from SNLI, is provided for reference. In
order to encourage thoughtful labeling, we manu-
ally label one percent of the validation examples
and offer a $1 bonus each time a worker selects a
label that matches ours.

For each validated sentence pair, we assign a
gold label representing a majority vote between
the initial label assigned to the pair by the original
annotator, and the four additional labels assigned
by validation annotators. A small number of ex-
amples did not receive a three-vote consensus on
any one label. These examples are included in the
distributed corpus, but are marked with ‘-’ in the
gold label field, and should not be used in stan-
dard evaluations. Table 2 shows summary statis-
tics capturing the results of validation, alongside
corresponding figures for SNLI. These statistics
indicate that the labels included in MultiNLI are
about as reliable as those included in SNLI, de-
spite MultiNLI’s more diverse text contents.

gethybrid.io
gethybrid.io


#Examples #Wds. ‘S’ parses Model Acc.
Genre Train Dev. Test Prem. Prem. Hyp. Agrmt. ESIM CBOW

SNLI 550,152 10,000 10,000 14.1 74% 88% 89.0% 86.7% 80.6 %

FICTION 77,348 2,000 2,000 14.4 94% 97% 89.4% 73.0% 67.5%
GOVERNMENT 77,350 2,000 2,000 24.4 90% 97% 87.4% 74.8% 67.5%
SLATE 77,306 2,000 2,000 21.4 94% 98% 87.1% 67.9% 60.6%
TELEPHONE 83,348 2,000 2,000 25.9 71% 97% 88.3% 72.2% 63.7%
TRAVEL 77,350 2,000 2,000 24.9 97% 98% 89.9% 73.7% 64.6%

9/11 0 2,000 2,000 20.6 98% 99% 90.1% 71.9% 63.2%
FACE-TO-FACE 0 2,000 2,000 18.1 91% 96% 89.5% 71.2% 66.3%
LETTERS 0 2,000 2,000 20.0 95% 98% 90.1% 74.7% 68.3%
OUP 0 2,000 2,000 25.7 96% 98% 88.1% 71.7% 62.8%
VERBATIM 0 2,000 2,000 28.3 93% 97% 87.3% 71.9% 62.7%

MultiNLI Overall 392,702 20,000 20,000 22.3 91% 98% 88.7% 72.2% 64.7%

Table 3: Key statistics for the corpus by genre. The first five genres represent the matched section of the develop-
ment and test sets, and the remaining five represent the mismatched section. The first three statistics provide the
number of examples in each genre. #Wds. Prem. is the mean token count among premise sentences. ‘S’ parses
is the percentage of sentences for which the Stanford Parser produced a parse rooted with an ‘S’ (sentence) node.
Agrmt. is the percent of individual labels that match the gold label in validated examples. Model Acc. gives the test
accuracy for ESIM and CBOW models (trained on either SNLI or MultiNLI), as described in Section 3.

2.2 The Resulting Corpus
Table 1 shows randomly chosen development set
examples from the collected corpus. Hypotheses
tend to be fluent and correctly spelled, though not
all are complete sentences. Punctuation is often
omitted. Hypotheses can rely heavily on knowl-
edge about the world, and often don’t correspond
closely with their premises in syntactic structure.

Unlabeled test data is available on Kaggle for
both matched and mismatched sets as competi-
tions that will be open indefinitely; Evaluations
on a subset of the test set have previously been
conducted with different leaderboards through the
RepEval 2017 Workshop (Nangia et al., 2017).

The corpus is available in two formats—tab sep-
arated text and JSON Lines (jsonl), following
SNLI. For each example, premise and hypothesis
strings, unique identifiers for the pair and prompt,
and the following additional fields are specified:

• gold label: label used for classification.
In examples rejected during the validation
process, the value of this field will be ‘-’.

• sentence{1,2} parse: Each sentence
as parsed by the Stanford PCFG Parser 3.5.2
(Klein and Manning, 2003).

• sentence{1,2} binary parse: parses
in unlabeled binary-branching format.

• label[1]: The label assigned during the
creation of the sentence pair. In rare cases

this may be different from gold label, if
a consensus of annotators chose a different
label during the validation phase.

• label[2...5]: The four labels assigned
during validation by individual annotators to
each development and test example. These
fields will be empty for training examples.

The current version of the
corpus is freely available at
nyu.edu/projects/bowman/multinli/
for typical machine learning uses, and may be
modified and redistributed. The majority of the
corpus is released under the OANC’s license,
which allows all content to be freely used, modi-
fied, and shared under permissive terms. The data
in the FICTION section falls under several per-
missive licenses; Seven Swords is available under
a Creative Commons Share-Alike 3.0 Unported
License, and with the explicit permission of the
author, Living History and Password Incorrect are
available under Creative Commons Attribution
3.0 Unported Licenses; the remaining works of
fiction are in the public domain in the United
States (but may be licensed differently elsewhere).

Partition The distributed corpus comes with an
explicit train/test/development split. The test and
development sets contain 2,000 randomly selected
examples each from each of the genres, resulting
in a total of 20,000 examples per set. No premise
sentence occurs in more than one set.

https://www.kaggle.com/c/multinli-matched-open-evaluation
https://www.kaggle.com/c/multinli-mismatched-open-evaluation
https://repeval2017.github.io/shared/
http://nyu.edu/projects/bowman/multinli/


MNLI
Train Model SNLI Match. Mis.

Most freq. 34.3 36.5 35.6

SNLI
CBOW 80.6 - -
BiLSTM 81.5 - -
ESIM 86.7 - -

MNLI
CBOW 51.5 64.8 64.5
BiLSTM 50.8 66.9 66.9
ESIM 60.7 72.3 72.1

MNLI+
SNLI

CBOW 74.7 65.2 64.6
BiLSTM 74.0 67.5 67.1
ESIM 79.7 72.4 71.9

Table 4: Test set accuracies (%) for all models; Match.
represents test set performance on the MultiNLI genres
that are also represented in the training set, Mis. repre-
sents test set performance on the remaining ones; Most
freq. is a trivial ‘most frequent class’ baseline.

Statistics Table 3 shows some additional statis-
tics. Premise sentences in MultiNLI tend to
be longer (max 401 words, mean 22.3 words)
than their hypotheses (max 70 words, mean
11.4 words), and much longer, on average, than
premises in SNLI (mean 14.1 words); premises
in MultiNLI also tend to be parsed as complete
sentences at a much higher rate on average (91%)
than their SNLI counterparts (74%). We observe
that the two spoken genres differ in this—with
FACE-TO-FACE showing more complete sentences
(91%) than TELEPHONE (71%)—and speculate
that the lack of visual feedback in a telephone set-
ting may result in a high incidence of interrupted
or otherwise incomplete sentences.

Hypothesis sentences in MultiNLI generally
cannot be derived from their premise sentences us-
ing only trivial editing strategies. While 2.5% of
the hypotheses in SNLI differ from their premises
by deletion, only 0.9% of those in MultiNLI (170
examples total) are constructed in this way. Sim-
ilarly, in SNLI, 1.6% of hypotheses differ from
their premises by addition, substitution, or shuf-
fling a single word, while in MultiNLI this only
happens in 1.2% of examples. The percentage of
hypothesis-premise pairs with high token overlap
(>37%) was comparable between MultiNLI (30%
of pairs) and SNLI (29%). These statistics sug-
gest that MultiNLI’s annotations are comparable
in quality to those of SNLI.

3 Baselines

To test the difficulty of the corpus, we experiment
with three neural network models. The first is a

simple continuous bag of words (CBOW) model
in which each sentence is represented as the sum
of the embedding representations of its words.
The second computes representations by averag-
ing the states of a bidirectional LSTM RNN (BiL-
STM; Hochreiter and Schmidhuber, 1997) over
words. For the third, we implement and evalu-
ate Chen et al.’s Enhanced Sequential Inference
Model (ESIM), which is roughly tied for the state
of the art on SNLI at the time of writing. We use
the base ESIM without ensembling with a TreeL-
STM (as in the ‘HIM’ runs in that work).

The first two models produce separate vec-
tor representations for each sentence and com-
pute label predictions for pairs of representations.
To do this, they concatenate the representations
for premise and hypothesis, their difference, and
their element-wise product, following Mou et al.
(2016b), and pass the result to a single tanh layer
followed by a three-way softmax classifier.

All models are initialized with 300D reference
GloVe vectors (840B token version; Pennington
et al., 2014). Out-of-vocabulary (OOV) words
are initialized randomly and word embeddings are
fine-tuned during training. The models use 300D
hidden states, as in most prior work on SNLI. We
use Dropout (Srivastava et al., 2014) for regular-
ization. For ESIM, we use a dropout rate of 0.5,
following the paper. For CBOW and BiLSTM
models, we tune Dropout on the SNLI develop-
ment set and find that a drop rate of 0.1 works
well. We use the Adam (Kingma and Ba, 2015)
optimizer with default parameters. Code is avail-
able at github.com/nyu-mll/multiNLI/.

We train models on SNLI, MultiNLI, and a mix-
ture; Table 4 shows the results. In the mixed set-
ting, we use the full MultiNLI training set and ran-
domly select 15% of the SNLI training set at each
epoch, ensuring that each available genre is seen
during training with roughly equal frequency.

We also train a separate CBOW model on each
individual genre to establish the degree to which
simple models already allow for effective transfer
across genres, using a dropout rate of 0.2. When
training on SNLI, a single random sample of 15%
of the original training set is used. For each genre
represented in the training set, the model that per-
forms best on it was trained on that genre; a
model trained only on SNLI performs worse on
every genre than comparable models trained on
any genre from MultiNLI.

https://github.com/nyu-mll/multiNLI/


Models trained on a single genre from MultiNLI
perform well on similar genres; for example, the
model trained on TELEPHONE attains the best
accuracy (63%) on FACE-TO-FACE, which was
nearly one point better than it received on itself.
SLATE seems to be a difficult and relatively un-
usual genre and performance on it is relatively
poor in this setting; when averaging over runs
trained on SNLI and all genres in the matched
section of the training set, average performance
on SLATE was only 57.5%. Sentences in SLATE

cover a wide range of topics and phenomena, mak-
ing it hard to do well on, but also forcing models
trained on it be broadly capable; the model trained
on SLATE achieves the highest accuracy of any
model on 9/11 (55.6%) and VERBATIM (57.2%),
and relatively high accuracy on TRAVEL (57.4%)
and GOVERNMENT (58.3%). We also observe that
our models perform similarly on both the matched
and mismatched test sets of MultiNLI. We expect
genre mismatch issues to become more conspic-
uous as models are developed that can better fit
MultiNLI’s training genres.

To evaluate the contribution of sentence length
to corpus difficulty, we binned premises and hy-
potheses by length in 25-word increments for
premises and 10-word increments for hypotheses.
Using the ESIM model, our strong baseline, we
find a small effect (stronger for matched than mis-
matched) of premise length on model accuracy:
accuracy decreases slightly as premise sentences
increase in length. We find no effect of hypothesis
length on accuracy.

4 Discussion and Analysis

4.1 Data Collection

In data collection for NLI, different annotator de-
cisions about the coreference between entities and
events across the two sentences in a pair can lead
to very different assignments of pairs to labels
(de Marneffe et al., 2008; Marelli et al., 2014a;
Bowman et al., 2015). Drawing an example from
Bowman et al., the pair “a boat sank in the Pacific
Ocean” and “a boat sank in the Atlantic Ocean”
can be labeled either CONTRADICTION or NEU-
TRAL depending on (among other things) whether
the two mentions of boats are assumed to refer
to the same entity in the world. This uncertainty
can present a serious problem for inter-annotator
agreement, since it is not clear that it is possible to
define an explicit set of rules around coreference

that would be easily intelligible to an untrained an-
notator (or any non-expert).

Bowman et al. attempt to avoid this problem by
using an annotation prompt that is highly depen-
dent on the concreteness of image descriptions;
but, as we engage with the much more abstract
writing that is found in, for example, government
documents, there is no reason to assume a pri-
ori that any similar prompt and annotation strat-
egy can work. We are surprised to find that this
is not a major issue. Through a relatively straight-
forward trial-and-error piloting phase, followed by
discussion with our annotators, we manage to de-
sign prompts for abstract genres that yield high
inter-annotator agreement scores nearly identical
to those of SNLI (see Table 2). These high scores
suggest that our annotators agreed on a single task
definition, and were able to apply it consistently
across genres.

4.2 Overall Difficulty
As expected, both the increase in the diver-
sity of linguistic phenomena in MultiNLI and its
longer average sentence length conspire to make
MultiNLI dramatically more difficult than SNLI.
Our three baseline models perform better on SNLI
than MultiNLI by about 15% when trained on
the respective datasets. All three models achieve
accuracy above 80% on the SNLI test set when
trained only on SNLI. However, when trained on
MultiNLI, only ESIM surpasses 70% accuracy
on MultiNLI’s test sets. When we train mod-
els on MultiNLI and downsampled SNLI, we see
an expected significant improvement on SNLI,
but no significant change in performance on the
MultiNLI test sets, suggesting including SNLI
in training doesn’t drive substantial improvement.
These results attest to MultiNLI’s difficulty, and
with its relatively high inter-annotator agreement,
suggest that it presents a problem with substantial
headroom for future work.

4.3 Analysis by Linguistic Phenomenon
To better understand the types of language un-
derstanding skills that MultiNLI tests, we analyze
the collected corpus using a set of annotation tags
chosen to reflect linguistic phenomena which are
known to be potentially difficult. We use two
methods to assign tags to sentences. First, we
use the Penn Treebank (PTB; Marcus et al., 1993)
part-of-speech tag set (via the included Stanford
Parser parses) to automatically isolate sentences



Dev. Freq. Most Frequent Label Model Acc.
Tag SNLI MultiNLI Diff. Label % CBOW BiLSTM ESIM

Entire Corpus 100 100 0 entailment ∼35 ∼65 ∼67 ∼72

Pronouns (PTB) 34 68 34 entailment 34 66 68 73
Quantifiers 33 63 30 contradiction 36 66 68 73
Modals (PTB) <1 28 28 entailment 35 65 67 72
Negation (PTB) 5 31 26 contradiction 48 67 70 75
WH terms (PTB) 5 30 25 entailment 35 64 65 72
Belief Verbs <1 19 18 entailment 34 64 67 71
Time Terms 19 36 17 neutral 35 64 66 71
Discourse Mark. <1 14 14 neutral 34 62 64 70
Presup. Triggers 8 22 14 neutral 34 65 67 73
Compr./Supr.(PTB) 3 17 14 neutral 39 61 63 69
Conditionals 4 15 11 neutral 35 65 68 73
Tense Match (PTB) 62 69 7 entailment 37 67 68 73
Interjections (PTB) <1 5 5 entailment 36 67 70 75
>20 words <1 5 5 entailment 42 65 67 76

Table 5: Dev. Freq. is the percentage of dev. set examples that include each phenomenon, ordered by greatest
difference in frequency of occurrence (Diff.) between MultiNLI and SNLI. Most Frequent Label specifies which
label is the most frequent for each tag in the MultiNLI dev. set, and % is its incidence. Model Acc. is the dev. set
accuracy (%) by annotation tag for each baseline model (trained on MultiNLI only). (PTB) marks a tag as derived
from Penn Treebank-style parser output tags (Marcus et al., 1993).

containing a range of easily-identified phenomena
like comparatives. Second, we isolate sentences
that contain hand-chosen key words indicative of
additional interesting phenomena.

The hand-chosen tag set covers the follow-
ing phenomena: QUANTIFIERS contains single
words with quantificational force (see, for exam-
ple, Heim and Kratzer, 1998; Szabolcsi, 2010,
e.g., many, all, few, some); BELIEF VERBS con-
tains sentence-embedding verbs denoting mental
states (e.g., know, believe, think), including irregu-
lar past tense forms; TIME TERMS contains single
words with abstract temporal interpretation, (e.g.,
then, today) and month names and days of the
week; DISCOURSE MARKERS contains words that
facilitate discourse coherence (e.g., yet, however,
but, thus, despite); PRESUPPOSITION TRIGGERS

contains words with lexical presuppositions (Stal-
naker, 1974; Schlenker, 2016, e.g., again, too,
anymore13); CONDITIONALS contains the word if.
Table 5 presents the frequency of the tags in SNLI
and MultiNLI, and model accuracy on MultiNLI
(trained only on MultiNLI).

The incidence of tags varies by genre; the per-
centage of sentence pairs containing a particular
annotation tag differs by a maximum over 30%
across genres. Sentence pairs containing pronouns
are predictably common for all genres, with 93%
of Government and Face-to-face pairs including at

13Because their high frequency in the corpus, extremely
common triggers like the were excluded from this tag.

least one. The Telephone genre has the highest
percentage of sentence pairs containing one oc-
currence of negation, WH-words, belief -verbs and
time terms, Verbatim has the highest percentage
of pairs containing quantifiers and conversational
pivots, and Letters has the highest percentage of
pairs that contain one or more modals. Pairs con-
taining comparatives and/or superlatives, which is
the tag that our baseline models perform worst on,
are most common in the Oxford University Press
genre. Based on this, we conclude that the genres
are sufficiently different, because they are not uni-
form with respect to the percentages of sentence
pairs that contain each of the annotation tags.

The distributions of labels within each tagged
subset of the corpus roughly mirrors the balanced
overall distribution. The most frequent class over-
all (in this case, ENTAILMENT) occurs with a fre-
quency of roughly one third (see Table 4) in most.
Only two annotation tags differ from the baseline
percentage of the most frequent class in the cor-
pus by at least 5%: sentences containing negation,
and sentences exceeding 20 words. Sentences that
contain negation are slightly more likely than av-
erage to be labeled CONTRADICTION, reflecting a
similar finding in SNLI, while long sentences are
slightly more likely to be labeled ENTAILMENT.

None of the baseline models perform substan-
tially better on any tagged set than they do on the
corpus overall, with average model accuracies on
sentences containing specific tags falling within



about 3 points of overall averages. Using base-
line model test accuracy overall as a metric (see
Table 4), our baseline models had the most trouble
on sentences containing comparatives or superla-
tives (losing 3-4 points each). Despite the fact that
17% of sentence pairs in the corpus contained at
least one instance of comparative or superlative,
our baseline models don’t utilize the information
present in these sentences to predict the correct la-
bel for the pair, although presence of a compara-
tive or superlative is slightly more predictive of a
NEUTRAL label.

Moreover, the baseline models perform below
average on discourse markers, such as despite and
however, losing roughly 2 to 3 points each. Un-
surprisingly, the attention-based ESIM model per-
forms better than the other two on sentences with
greater than 20 words. Additionally, our baseline
models do show slight improvements in accuracy
on negation, suggesting that they may be tracking
it as a predictor of CONTRADICTION.

5 Conclusion

Natural language inference makes it easy to judge
the degree to which neural network models for
sentence understanding capture the full meanings
for natural language sentences. Existing NLI
datasets like SNLI have facilitated substantial ad-
vances in modeling, but have limited headroom
and coverage of the full diversity of meanings ex-
pressed in English. This paper presents a new
dataset that offers dramatically greater linguistic
difficulty and diversity, and also serves as a bench-
mark for cross-genre domain adaptation.

Our new corpus, MultiNLI, improves upon
SNLI in its empirical coverage—because it in-
cludes a representative sample of text and speech
from ten different genres, as opposed to just sim-
ple image captions—and its difficulty, containing
a much higher percentage of sentences tagged with
one or more elements from our tag set of thir-
teen difficult linguistic phenomena. This greater
diversity is reflected in the dramatically lower
baseline model performance on MultiNLI than
on SNLI (see Table 5) and comparable inter-
annotator agreement, suggesting that MultiNLI
has a lot of headroom remaining for future work.

The MultiNLI corpus was first released in draft
form in the first half of 2017, and in the time since
its initial release, work by others (Conneau et al.,
2017) has shown that NLI can also be an effective

source task for pre-training and transfer learning
in the context of sentence-to-vector models, with
models trained on SNLI and MultiNLI substan-
tially outperforming all prior models on a suite
of established transfer learning benchmarks. We
hope that this corpus will continue to serve for
many years as a resource for the development and
evaluation of methods for sentence understanding.
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