import os import numpy as np from PIL import Image from tqdm import tqdm from concurrent.futures import ThreadPoolExecutor # Define the function to retrieve the color palette for a given dataset def get_palette(dataset_name: str): if dataset_name in ["cloudsen12_high_l1c", "cloudsen12_high_l2a"]: return [79, 253, 199, 77, 2, 115, 251, 255, 41, 221, 53, 223] if dataset_name == "l8_biome": return [79, 253, 199, 221, 53, 223, 251, 255, 41, 77, 2, 115] if dataset_name in ["gf12ms_whu_gf1", "gf12ms_whu_gf2", "hrc_whu"]: return [79, 253, 199, 77, 2, 115] raise Exception("dataset_name not supported") # Function to apply the color palette to a mask def give_colors_to_mask(mask: np.ndarray, colors=None) -> np.ndarray: """Convert a mask to a colorized version using the specified palette.""" im = Image.fromarray(mask.astype(np.uint8)).convert("P") im.putpalette(colors) return im # Function to process a single file def process_file(file_path, palette): try: # Load the mask mask = np.array(Image.open(file_path)) # Apply the color palette colored_mask = give_colors_to_mask(mask, palette) # Save the colored mask, overwriting the original file colored_mask.save(file_path) return True except Exception as e: print(f"Error processing {file_path}: {e}") return False # Main processing function for a dataset def process_dataset(dataset_name, base_root, progress_bar): ann_dir = os.path.join(base_root, dataset_name, "ann_dir") if not os.path.exists(ann_dir): print(f"Annotation directory does not exist for {dataset_name}: {ann_dir}") return # Get the color palette for this dataset palette = get_palette(dataset_name) # Gather all files to process files_to_process = [] for split in ["train", "val", "test"]: split_dir = os.path.join(ann_dir, split) if not os.path.exists(split_dir): print(f"Split directory does not exist for {dataset_name}: {split_dir}") continue # Add all png files in the directory to the list for file_name in os.listdir(split_dir): if file_name.endswith(".png"): files_to_process.append(os.path.join(split_dir, file_name)) # Multi-threaded processing with ThreadPoolExecutor() as executor: results = list(tqdm( executor.map(lambda f: process_file(f, palette), files_to_process), total=len(files_to_process), desc=f"Processing {dataset_name}", leave=False )) # Update the progress bar progress_bar.update(len(files_to_process)) print(f"{dataset_name}: Processed {sum(results)} files out of {len(files_to_process)}.") # Define the root directory and datasets base_root = "data" # Replace with your datasets' root directory dataset_names = [ "cloudsen12_high_l1c", "cloudsen12_high_l2a", "gf12ms_whu_gf1", "gf12ms_whu_gf2", "hrc_whu", "l8_biome" ] # Main script if __name__ == "__main__": # Calculate total number of files for all datasets total_files = 0 for dataset_name in dataset_names: ann_dir = os.path.join(base_root, dataset_name, "ann_dir") for split in ["train", "val", "test"]: split_dir = os.path.join(ann_dir, split) if os.path.exists(split_dir): total_files += len([f for f in os.listdir(split_dir) if f.endswith(".png")]) # Create a progress bar with tqdm(total=total_files, desc="Overall Progress") as progress_bar: for dataset_name in dataset_names: process_dataset(dataset_name, base_root, progress_bar)