|
|
|
|
|
import torch |
|
from torch.utils.data import Dataset |
|
from torchvision import datasets |
|
from torchvision.transforms import ToTensor |
|
import matplotlib.pyplot as plt |
|
import zipfile |
|
import os |
|
import pandas as pd |
|
from torchvision.io import read_image |
|
|
|
class CustomImageDataset(Dataset): |
|
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): |
|
self.img_labels = pd.read_csv(annotations_file) |
|
self.img_dir = img_dir |
|
self.transform = transform |
|
self.target_transform = target_transform |
|
|
|
def __len__(self): |
|
return len(self.img_labels) |
|
|
|
def __getitem__(self, idx): |
|
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, -1]) |
|
image = read_image(img_path) |
|
label = self.img_labels.iloc[idx, 2] |
|
if self.transform: |
|
image = self.transform(image) |
|
if self.target_transform: |
|
label = self.target_transform(label) |
|
return image, label |
|
|
|
with zipfile.ZipFile("150_Dataset(1).zip", 'r') as zip_ref: |
|
zip_ref.extractall(".") |
|
|
|
train_dataset = CustomImageDataset(annotations_file="./images/train/train.csv", |
|
img_dir="./images/train") |
|
|
|
train_dataloader = DataLoader(train_dataset, batch_size=12, shuffle=True) |
|
|
|
train_features, train_labels = next(iter(train_dataloader)) |
|
print(f"Feature batch shape: {train_features.size()}") |
|
print(f"Labels batch shape: {len(train_labels)}") |
|
img = train_features[0].squeeze() |
|
label = train_labels[0] |
|
plt.imshow(img, cmap="gray") |
|
plt.show() |
|
print(f"Label: {label}") |
|
|