import gradio as gr import numpy as np from modules import codeformer_model, scripts_postprocessing from modules.ui_components import InputAccordion from PIL import Image class CodeFormerPostprocessing(scripts_postprocessing.ScriptPostprocessing): name = "CodeFormer" order = 3000 def ui(self): with InputAccordion(False, label="CodeFormer") as enable: with gr.Row(): codeformer_visibility = gr.Slider( label="Visibility", value=1.0, minimum=0.0, maximum=1.0, step=0.05, elem_id="extras_codeformer_visibility", ) codeformer_weight = gr.Slider( label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, minimum=0.0, maximum=1.0, step=0.05, elem_id="extras_codeformer_weight", ) return { "enable": enable, "codeformer_visibility": codeformer_visibility, "codeformer_weight": codeformer_weight, } def process( self, pp: scripts_postprocessing.PostprocessedImage, enable, codeformer_visibility, codeformer_weight, ): if not enable or codeformer_visibility < 0.05: return restored_img = codeformer_model.codeformer.restore( np.array(pp.image, dtype=np.uint8), w=codeformer_weight ) res = Image.fromarray(restored_img) if codeformer_visibility < 1.0: res = Image.blend(pp.image, res, codeformer_visibility) pp.image = res pp.info["CodeFormer Visibility"] = round(codeformer_visibility, 2) pp.info["CodeFormer Weight"] = round(codeformer_weight, 2)