--- license: mit --- # Dataset of DeformPAM ## Contents - [Description](#description) - [Structure](#structure) - [Usage](#usage) ## Description This is the dataset used in the paper [DeformPAM: Data-Efficient Learning for Long-horizon Deformable Object Manipulation via Preference-based Action Alignment](https://deform-pam.robotflow.ai). - [Paper](https://arxiv.org/pdf/2410.11584.pdf) - [Project Homepage](https://deform-pam.robotflow.ai) - [Github Repository](https://github.com/xiaoxiaoxh/DeformPAM) ## Structure We offer two versions of the dataset: one is the [full dataset](https://huggingface.co/datasets/WendiChen/DeformPAM/tree/main/dataset_full) used to train the models in our paper, and the other is a [mini dataset](https://huggingface.co/datasets/WendiChen/DeformPAM/tree/main/dataset_mini) for easier examination. Both datasets include data for the supervised and finetuning stages of granular pile shaping, rope shaping, and T-shirt unfolding. Each subset is structured as follows: ``` ├── annotations │ ├── 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab │ │ └── metadata.yaml annotations and other detailed information │ ├── ... └── observations ├── 0aa71092-06c1-4d3f-8f70-e0bf86eeaeab │ ├── mask │ │ └── begin.png mask img used for segmenting the point cloud │ ├── metadata.yaml detailed information │ ├── pcd │ │ ├── processed_begin.npz segmented point cloud of the object; processed_begin["points"]: np.ndarray (N, 3) float16 │ │ └── raw_begin.npz raw point cloud of the object; raw_begin["points"]: np.ndarray (N, 3) float16 │ └── rgb │ └── begin.jpg RGB image of the object ├── ... ``` ## Usage There are two ways to utilize the dataset for training: - Install the tool according to the [data management toolkit's installation guide](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/tools/data_management/README.md), and then store the metadata to MongoDB. - Or, you can modify the [dataset](https://github.com/xiaoxiaoxh/DeformPAM/blob/main/learning/datasets/runtime_dataset_real.py#L307) to load data from local files.