import torch import torch.nn as nn import torch.nn.functional as F class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) y = avg_out + max_out y = self.sigmoid(y) return x * y.expand_as(x) class ResCell(nn.Module): def __init__(self, input_channel, output_channel, stride=1): super(ResCell, self).__init__() self.stride = stride self.input_channel = input_channel self.output_channel = output_channel if self.stride == -1: output_size = () self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.skip = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=1, stride=1, padding=0) self.conv1 = nn.ConvTranspose2d(self.input_channel, self.output_channel, kernel_size=5, stride=2, padding=2, output_padding=1) self.conv2 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=5, padding=2) elif self.stride == 2: self.skip = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=1, stride=2, padding=0) self.conv1 = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=5, stride=self.stride, padding=2) self.conv2 = nn.Conv2d(self.output_channel, self.output_channel, kernel_size=5, padding=2) else: self.conv1 = nn.Conv2d(self.input_channel, self.output_channel, kernel_size=5, stride=self.stride, padding=2) self.conv2 = nn.Conv2d(self.output_channel, self.output_channel, kernel_size=5, padding=2) self.bn1 = nn.BatchNorm2d(self.output_channel) self.bn2 = nn.BatchNorm2d(self.output_channel) # Please replace `CBAM` with the actual module and parameters self.cbam = ChannelAttention(self.output_channel) def forward(self, x): if self.stride == -1: upsampled_x = self.upsample(x) skip = self.skip(upsampled_x) x = F.elu(self.bn1(self.conv1(x))) x = self.conv2(x) elif self.stride == 2: skip = self.skip(x) x = F.elu(self.bn1(self.conv1(x))) x = self.conv2(x) else: skip = x x = F.elu(self.bn1(self.conv1(x))) x = self.conv2(x) x = self.bn2(x) x = self.cbam(x) x = x + skip x = F.elu(x) return x class ResBlock(nn.Module): def __init__(self, input_channel, output_channel, upsample=False, n_cells=2): super(ResBlock, self).__init__() stride = -1 if upsample else 2 self.cells = nn.ModuleList([ResCell(input_channel, output_channel, stride=stride)]) for _ in range(n_cells - 1): self.cells.append(ResCell(input_channel, output_channel, stride=1)) def forward(self, x): for cell in self.cells: x = cell(x) return x class Encoder(nn.Module): def __init__(self, input_shape, timbre_dim, N2=0, channel_sizes=None): super(Encoder, self).__init__() if channel_sizes is None: channel_sizes = [32, 64, 64, 96, 96, 128, 160, 216] self.input_shape = input_shape self.timbre_dim = timbre_dim self.blocks = nn.ModuleList() self.blocks.append(ResBlock(input_channel=1, output_channel=channel_sizes[0], upsample=False, n_cells=1)) input_channel = channel_sizes[0] for c in channel_sizes[1:]: self.blocks.append(ResBlock(input_channel=input_channel, output_channel=c, upsample=False, n_cells=1 + N2)) input_channel = c self.flatten = nn.Flatten() self.mu_timbre = nn.Linear(self._get_flattened_dim(), timbre_dim) self.sigma_timbre = nn.Linear(self._get_flattened_dim(), timbre_dim) def _get_flattened_dim(self): x = torch.zeros((1,) + self.input_shape) for block in self.blocks: x = block(x) x = self.flatten(x) return x.shape[1] def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def forward(self, x): for block in self.blocks: x = block(x) x = self.flatten(x) mu = self.mu_timbre(x) logvar = self.sigma_timbre(x) latent_vector = self.reparameterize(mu, logvar) # kl_loss = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=1) # kl_loss = torch.mean(kl_loss) return mu, logvar, latent_vector class Decoder(nn.Module): def __init__(self, timbre_dim, N2=0, N3=8, channel_sizes=None): super(Decoder, self).__init__() if channel_sizes is None: channel_sizes = [32, 64, 64, 96, 96, 128, 160, 216] self.conv_shape = [-1, channel_sizes[-1], 2 ** (9 - N3), 2 ** (8 - N3)] self.dense = nn.Linear(timbre_dim, self.conv_shape[1] * self.conv_shape[2] * self.conv_shape[3]) self.blocks = nn.ModuleList() input_channel = channel_sizes[-1] for c in list(reversed(channel_sizes))[1:]: self.blocks.append(ResBlock(input_channel=input_channel, output_channel=c, upsample=True, n_cells=1 + N2)) input_channel = c self.decoder_conv = nn.ConvTranspose2d(channel_sizes[0], 1, kernel_size=5, stride=2, padding=2, output_padding=1) def forward(self, x): x = F.elu(self.dense(x)) x = x.view(-1, self.conv_shape[1], self.conv_shape[2], self.conv_shape[3]) for block in self.blocks: x = block(x) x = self.decoder_conv(x) x = torch.sigmoid(x) return x