import joblib import numpy as np from generate_synthetic_data_online import generate_synth_dataset_log_512, generate_synth_dataset_log_muted_512 from tools import show_spc, spc_to_VAE_input, VAE_out_put_to_spc, np_log10 import torch.utils.data as data class Data_cache(): """This is a class that stores synthetic data.""" def __init__(self, synthetic_data, external_sources): self.n_synthetic = np.shape(synthetic_data)[0] self.synthetic_data = synthetic_data.astype(np.float32) self.external_sources = external_sources.astype(np.float32) self.epsilon = 1e-20 def get_all_data(self): return np.vstack([self.synthetic_data, self.external_sources]) def refresh(self): self.synthetic_data = generate_synth_dataset(self.n_synthetic, mute=True) def get_data_loader(self, shuffle=True, BATCH_SIZE=8, new_way=False): all_data = self.get_all_data() our_data = [] for i in range(len(all_data)): if new_way: spectrogram = VAE_out_put_to_spc(np.reshape(all_data[i], (1, 512, 256))) log_spectrogram = np.log10(spectrogram + self.epsilon) our_data.append(log_spectrogram) else: our_data.append(np.reshape(all_data[i], (1, 512, 256))) iterator = data.DataLoader(our_data, shuffle=shuffle, batch_size=BATCH_SIZE) return iterator def generate_synth_dataset(n_synthetic, mute=False): """Preprocessing for synthetic data""" n_synthetic_sample = n_synthetic if mute: Input0 = generate_synth_dataset_log_muted_512(n_synthetic_sample) else: Input0 = generate_synth_dataset_log_512(n_synthetic_sample) Input0 = spc_to_VAE_input(Input0) Input0 = Input0.reshape(Input0.shape[0], Input0.shape[1], Input0.shape[2], 1) return Input0 def read_data(data_path): """Read external sources""" data = np.array(joblib.load(data_path)) data = spc_to_VAE_input(data) data = data.reshape(data.shape[0], data.shape[1], data.shape[2], 1) return data def load_data(n_synthetic): """Generate the hybrid dataset.""" Input_synthetic = generate_synth_dataset(n_synthetic) Input_AU = read_data("./data/external_data/ARTURIA_data") print("ARTURIA dataset loaded.") Input_NSynth = read_data("./data/external_data/NSynth_data") print("NSynth dataset loaded.") Input_SF = read_data("./data/external_data/soundfonts_data") Input_SF_256 = np.zeros((337, 512, 256, 1)) Input_SF_256[:,:,:251,:] += Input_SF Input_SF =Input_SF_256 print("SoundFonts dataset loaded.") Input_google = read_data("./data/external_data/WaveNet_samples") Input_external = np.vstack([Input_AU, Input_NSynth, Input_SF, Input_google]) data_cache = Data_cache(Input_synthetic, Input_external) print(f"Data loaded, data shape: {np.shape(data_cache.get_all_data())}") return data_cache def show_data(dataset_name, n_sample=3, index=-1, new_way=False): """Show and return a certain dataset. Parameters ---------- dataset_name: String Name of the dataset to show. n_samples: int Number of samples to show. index: int Setting 'index' larger equal 0 shows the 'index'-th sample in the desired dataset. Returns ------- np.ndarray: The showed dataset. """ if dataset_name == "ARTURIA": data = read_data("./data/external_data/ARTURIA_data") elif dataset_name == "NSynth": data = read_data("./data/external_data/NSynth_data") elif dataset_name == "SoundFonts": data = read_data("./data/external_data/soundfonts_data") elif dataset_name == "Synthetic": data = generate_synth_dataset(int(n_sample * 3)) else: print("Example command: \"!python thesis_main.py show_data -s [ARTURIA, NSynth, SoundFonts, Synthetic] -n 5\"") return if index >= 0: show_spc(VAE_out_put_to_spc(data[index])) else: for i in range(n_sample): index = np.random.randint(0,len(data)) print(index) show_spc(VAE_out_put_to_spc(data[index])) return data def show_data(tensor_batch, index=-1, new_way=False): if index < 0: index = np.random.randint(0, tensor_batch.shape[0]) if new_way: sample = tensor_batch[index].detach().numpy() spectrogram = 10.0 ** sample print(f"The {index}-th sample:") show_spc(spectrogram) else: sample = tensor_batch[index].detach().numpy() show_spc(VAE_out_put_to_spc(sample)) # return data