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Abstract

Meta-learning enables rapid generalization to new tasks by
learning meta-knowledge from a variety of tasks. It is intu-
itively assumed that the more tasks a model learns in one
training batch, the richer knowledge it acquires, leading to
better generalization performance. However, contrary to this
intuition, our experiments reveal an unexpected result: adding
more tasks within a single batch actually degrades the gen-
eralization performance. To explain this unexpected phe-
nomenon, we conduct a Structural Causal Model (SCM) for
causal analysis. Our investigation uncovers the presence of
spurious correlations between task-specific causal factors and
labels in meta-learning. Furthermore, the confounding factors
differ across different batches. We refer to these confound-
ing factors as “Task Confounders”. Based on this insight, we
propose a plug-and-play Meta-learning Causal Representa-
tion Learner (MetaCRL) to eliminate task confounders. It en-
codes decoupled causal factors from multiple tasks and uti-
lizes an invariant-based bi-level optimization mechanism to
ensure their causality for meta-learning. Extensive experi-
ments on various benchmark datasets demonstrate that our
work achieves state-of-the-art (SOTA) performance.

Introduction

Meta-learning aims to develop algorithms capable of adapt-
ing to previously unseen tasks. To achieve this goal, meta-
learning methods are trained on a diverse set of tasks,
enabling them to learn meta-knowledge that can be ap-
plied to new and related tasks. Moreover, meta-learning
has been demonstrated to address numerous inherent chal-
lenges in deep learning, such as computational bottlenecks
and generalization issues (Du et al. 2020; Li et al. 2018).
It is widely used in domains like reinforcement learning
(Mitchell et al. 2021), computer vision (Mahadevkar et al.
2022), and robotics (Schrum et al. 2022).

In general, meta-learning can be defined as a bi-level op-
timization process. In the inner loop, task-specific parame-
ters are independently learned based on meta-parameters. In
the outer loop, the meta-parameters are updated by minimiz-
ing the average loss across multiple tasks using the learned
task-specific parameters. During the meta-training process,

“Corresponding author
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

4.5-Way 1-shot accuracy on minilmagenet__ ,_ 20-way 1-shot accuracy on Omniglot _

—e— Accuracy on D, —e— Accuracy on D,

—— Accuracyon Ty ||,
1 \
) 3

batch size=4

—e— Accuracy on T, -89

-

N

Accuracy on T,
Accuracy on T,

Accuracy on D,

Accuracy on D,

92-
batch size=8 batch size=32 batch size=64

(a) minilmagenet (b) Omniglot

5-way 1-shot accuracy on tieredimagenet 5-way 1-shot accuracy on CIFAR-FS

60~
—e— Accuracy on D,
—— Accuracyon T,

—e— Accuracy on D,
—e— Accuracy on T,

\ Lo

Accuracy on T

Accuracy on D,
Accuracy on T,
Accuracy on D,

batch size=4 batch size=8 batch size=4 batch size=8

(c) tieredImagenet (d) CIFAR-FS

Figure 1: The empirical results on four benchmark datasets.

each batch’s training set consists of a series of randomly
sampled different tasks, with each task containing train-
ing samples from various categories. By leveraging shared
structures across multiple tasks, the meta-learning model
can acquire rich meta-knowledge, leading to great gener-
alization and adaptation (Wang, Zhao, and Li 2021; Song
et al. 2022). Therefore, a widely adopted hypothesis is that
the more tasks the model learns in a single training batch,
the richer knowledge it acquires, and consequently, the bet-
ter its performance will be (Hospedales et al. 2021; Rivolli
et al. 2022). This idea is intuitively reasonable since learning
from a broader range of scenarios can help grasp a wealth of
knowledge, resembling human cognition.

However, our experiments yield conflicting results. We
sample two sets of non-overlapping tasks, 77 and 7. Within
71, we divide the tasks into a meta-training set D; and a
meta-testing set Dy, while 75 is used solely for separate test-
ing without being split. We train MAML (Finn, Abbeel, and
Levine 2017) on D; with two different batch size settings,
i.e., batch size=B and batch size=2B. Then we test it on Do
and 7. Intuitively, the model with a larger batch size is ex-
pected to perform better. Surprisingly, as shown in Figure 1,
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Figure 2: The Structural Causal Model (SCM) regarding two
tasks 7; and 7;, where (X, Y;) and (X, Y}) are the samples
and corresponding labels of these two tasks. The solid line
means the causal correlation, and the dotted line means the
spurious correlation. (a) is constructed based on the ground-
truth causal mechanism, while (b) can be viewed as the in-
verse process of the generating mechanism.

when batch size=2B, the model exhibits lower accuracy on
both D5 and T3 across all four benchmark datasets.

To explore the causes of this phenomenon, we construct
a Structural Causal Model (SCM). As shown in Figure 2b,
we denote the distinct causal factors of task 7; and task 7; as
A and A7, as well as the shared causal factors as B#J. To
ensure a generic prior that performs well, meta-learning per-
forms joint learning on all tasks. Thus, the non-overlapping
causal factors A’ of 7; may cause spurious correlations with
7j, and AJ holds the same with 7;. This misleading corre-
lation introduces bias into meta-knowledge, ultimately af-
fecting model generalization. Additionally, it varies across
different batches, e.g., the tasks differ in different batches.
We identify this confounding factor as “Task Confounder”.

Inspired by this insight, we propose a plug-and-play meta-
learning causal representation learner (MetaCRL) to encode
decoupled causal knowledge, thereby eliminating task con-
founders. It consists of two modules: the disentangling mod-
ule and the causal module. The former aims to extract causal
factors across all tasks and provide a subset of causal fac-
tors relevant to each task, while the latter is responsible
for ensuring their causality. The modules achieve their ob-
jectives through a simple bi-level optimization mechanism
with regularization terms. By incorporating MetaCRL into
meta-learning, we dynamically eliminate task confounders
during the training process. Through extensive evaluations
on multiple meta-learning benchmarks, we demonstrate that

MetaCRL can significantly improve performance.

Our contributions are as follows: (i) We discover a coun-
terintuitive phenomenon: by increasing the batch size during
meta-training, the model’s generalization becomes worse;
(i1) We construct an SCM to analyze the phenomenon, find-
ing spurious correlations, named “Task Confounders”, be-
tween non-shared features of training tasks and the generic
label space of meta-learning; (iii) We propose MetaCRL, a
plug-and-play meta-learning causal representation learner,
effectively eliminating the task confounders and improving
generalization performance; (iv) Extensive empirical analy-
sis showcases the outstanding performance of MetaCRL.

Related Work

Meta-learning aims to construct tasks and learn from them
using limited data, thus generalizing to new tasks based on
the acquired knowledge. Typical methods can be catego-
rized into two types: optimization-based (Finn, Abbeel, and
Levine 2017; Nichol and Schulman 2018; Raghu et al. 2019)
and metric-based (Snell, Swersky, and Zemel 2017; Sung
et al. 2018; Chen et al. 2020) approaches. They both rely
on shared structures to extract meta-knowledge, resulting
in remarkable performance on new tasks. However, meta-
learning still faces the crisis of performance degradation.
Various approaches have been proposed to address this is-
sue, such as adding adaptive noise(Lee et al. 2020), reducing
inter-task disparities(Jamal and Qi 2019), limiting the train-
able parameters(Yin et al. 2019; Oh et al. 2020), and task
augmentation(Yao et al. 2021). These methods overlook the
influence between tasks during the training process, which is
shown to be crucial in the motivation section. In this study,
we focus on the fundamental causes of performance degra-
dation in meta-training tasks and attempt to find a general
method to address this problem.

Causal learning is an important branch of machine learn-
ing, aiming to understand and infer causal relationships be-
tween events. It models the target with a directed acyclic
graph and helps in optimizing the model by eliminating con-
founders in the causal graph. Recent studies (Yang, Zhang,
and Cai 2021; Zhang et al. 2020; Nogueira et al. 2022)
have already shown that it aids deep learning models in
unearthing underlying causal factors. Current research at-
tempts to combine causal knowledge with meta-learning
methods to address domain challenges. Yue et al. (Yue
et al. 2020) removed performance limitations of pre-trained
knowledge through backdoor regulation. Ton et al. (Ton,
Sejdinovic, and Fukumizu 2021) utilized causal knowledge
to distinguish causes and effects in a bivariate environment
with limited data. Jiang et al. (Jiang et al. 2022) used causal
graphs to remove undesirable memory effects. While they
all combine meta-learning and causal learning, their focus is
on addressing problems that differ significantly from ours.

Problem Formulation and Analysis
Notation and Problem Definition

Given a task distribution p(7"), the meta-training set Dy, and
the meta-testing set D, are all sampled from p(7") without
any class-level overlap. We denote the [V, tasks in a single
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represents the sample and the corresponding label, and NV,
denotes the number of the samples. Meta-learning utilizes
the shared encoder g and the classifier A to learn the above
tasks. For simplicity, we denote the meta-learning model as
fo = h o g with the meta-parameter € to be learned. Note
that the optimal fy can serve as general initial priors to help
task-specific models adapt quickly to new tasks.

Following (Gordon et al. 2018; Jiang et al. 2022), the ob-
jective of meta-learning can be formulated as maximizing
the conditional likelihood >, p(Y?| X7, Dg, fy). This can
be viewed as a bi-level optimization process. In this context,
the inner-loop optimizes p(Y;*| X7, fy) for learning the i-th
task-specific model fZ, which can be presented as:

fé < fo *Oévfeﬁ(y-s X7, fo)
st LY XS, fo) = Z 13/”10gfe( ;)

where « is the learning rate. The outer loop optimizes
S p(YAIXT f4, fo) for learning fp, which can be pre-
sented as:
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where 3 is the learning rate. It is worth noting that f§ is
obtained by taking the derivative of fg, so fg can be regarded
as a function of fy. Therefore, V 5, =— N SN LY XD, f)
can be viewed as the second derivative of fo.
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Empirical Evidence

According to Eq. 1 and Eq. 2, we can conclude that meta-
learning can be viewed as a multi-task learning process.
Meanwhile, a well-generalized meta-learning model en-
codes the label-related factors for all tasks to obtain rich
knowledge. Therefore, intuitively, one might assume that
increasing the batch size would enhance the performance.
However, our experiments show that this is not always true.

In our empirical evaluation, we begin by sampling a col-

lection of tasks, denoted as 7; = {TZ 1- Subsequently,
we partition the sample sets of all tasks w1th1n 7; into two
distinct subsets: one allocated for training, denoted as D1,
and the other designated for testing, denoted as D,. Fol-
lowing this, we proceed to sample a new task collection

Tz = {7}, ensuring that the tasks do not overlap with
T1. We establish MAML as our baseline method and se-
lect minilmagenet (Vinyals et al. 2016), Omniglot (Lake,
Salakhutdinov, and Tenenbaum 2019), tieredlmagenet (Ren
et al. 2018) and CIFAR-FS (Bertinetto et al. 2018) as bench-
mark datasets. During the training phase, we utilize two dif-
ferent batch size settings on D; to train MAML, i.e., batch
size=B and batch size=2B, where B represents the com-
monly used setting on the corresponding dataset, e.g., B = 4
for minilmagenet and B = 32 for Omniglot. Subsequently,
we evaluate the trained models on D5 and 75, respectively.

Some abnormal outcomes are summarized in Figure 1
(see appendix for full results). Our observations reveal the
following: (i) Increasing the number of tasks per batch dur-
ing training leads to a decrease in test accuracy on Ds. It
indicates that simply increasing the task quantity does not
guarantee an improvement in the model’s performance on
the current tasks. Furthermore, this observation suggests that
the synergistic enhancement between different tasks is not
always evident; in fact, instances of task confounders, where
different tasks inhibit each other, may also manifest. (ii) The
test accuracy on 7 2 also decreases when the number of tasks
per batch during training is increased. In conjunction with
observation (i), it becomes evident that the generalization of
the meta-learning model is suppressed when there are task
confounders among multiple tasks.

Causal Analysis and Motivation

To explore the reasons behind the task confounders men-
tioned above, we construct an SCM for meta-learning re-
garding two tasks 7; and 7; based on data generation mech-
anisms, as illustrated in Figure 2a. In this model, Y; and Y}
denote the label variables for tasks 7; and 7; respectively,
while X; and X; signify the sample variables for the two
tasks, respectively. Additionally, A’ and A7 represent dis-
tinct sets of causal factors exclusive to tasks 7; and 7;, re-
spectively, such as color, shape, and texture. On the other
hand, B%J encompasses causal factors shared between tasks
7; and 7;. We assume that the samples and the labels are both
generated by a ground-truth causal mechanism following
(Suter et al. 2019; Hu et al. 2022). Specifically, we assume
that the sample is generated by disentangled causal mecha-
nisms, e.g., p(X;|A", B"7) = [, p(Xi|A}) [T, p(Xi|B7),
where A% denotes the k-th element of A? and B}’ denotes
the ¢-th element of B*7. As A%, A7, and B*/ represent high-
level knowledge of the data, we could naturally define the
task label variable Y; for task i as the cause of the B*/ and
A’. For the task 7;, we call B® and A’ as the causal fea-
ture variables that are causally related to Y;, and we call A7
as the non-causal feature variables to task 7;. Therefore, we
have p(X;|A’, B*/, A7) = p(X;|A", B"7).

Based on the proposed SCM, an ideal meta-learning pre-
dictor for each task should only utilize causal factors and
be invariant to any intervention on non-causal factors. How-
ever, the joint learning of multiple tasks can give rise to the
issue of spurious correlations, thereby making it challeng-
ing to achieve optimal predictions. In order to investigate the
mechanisms underlying the generation of spurious correla-
tions, we consider the scenario of two binary classification
tasks. Let Y; and Y; be variables from {£1}. We assume the
two tasks have non-overlapping factors, e.g., B*/ = (), and
the elements in A’ and A7 satisfy the constraint of Gaussian
distribution. Then, we have:

Theorem 1 If the correlation between Y; and Y; is not
equal to 0.5, the optimal classifier has non-zero weights for
non-causal factors for each task. If the correlation between
Y; and Y} equals 0.5 and the number of training samples is
limited, the optimal classifier also has non-zero weights for
non-causal factors for each task.



As inferred from the aforementioned theorem, the learned
model leverages the causal factors from other tasks to facili-
tate the learning of the target task. The SCM corresponding
to this process is illustrated in Figure 2b. Taking the task 7;
as an example, the meta-learning model uses the causal fac-
tors A7 belonging to the task 7; for learning Y;. Thus, there
is a spurious correlation between AJ and Y;, which can be
represented as a spurious path A7 — Y;. Also, we can ob-
tain the spurious path A® — Y;. The learning process can
be viewed as the inverse process of the generating mecha-
nism. Therefore, we can obtain the SCM with two spurious
paths, which can reflect the internal mechanism of task con-
founders in multi-task learning. The proof of Theorem 1 is
provided in Appendix A.

Methodology

Based on the above evidence and analysis, we can know that
task confounders can cause spurious correlations between
causal factors and labels. An ideal meta-learning model
should learn multi-task knowledge in a shared representa-
tion and identify which portions of knowledge are causally
related to each task. This inspires us to propose a method
called MetaCRL that can encode decoupled causal knowl-
edge. It serves as a plug-and-play learner that consists of two
modules: the disentangling module and the causal module.
The disentangling module aims to acquire all causal factors
and provide subsets of causal factors specifically relevant to
individual tasks, while the causal module aims to ensure the
causality of factors in the disentangling module. The pseu-
docode of our MetaCRL is provided in Appendix B.

Disentangling Module

For a pre-trained CNN-based encoder, each channel can be
regarded as being related to a kind of semantic information
or visual concept (Islam, Jia, and Bruce 2020). Thus, we can
use the data representation to learn the causal factors. Dur-
ing the training phase, we denote the N, training tasks as

{7;} . Suppose that the number of causal factors is Ny,
then, we propose obtaining these NNj factors through the
learning of a matrix = € R¥=*"x_where NV, represents the
dimension of the feature representation, e.g., the output di-
mension of the encoder g, and each column of = represents a
distinct factor. Based on =, we can obtain a new representa-
tion of each sample, which can be called a causal representa-

tion, e.g., the causal representation for z7 ; can be presented
;

as T g(w; ;). Based on the causal analysis above, the causal
factors should be divided into N, overlapping groups, and
each group corresponds to a task. To obtain these groups, we
propose a learnable grouping function f,., which is imple-
mented using Multi-Layer Perceptrons (MLPs). Specifically,
for task 7;, we first calculate the average sample x; for this
s q
ﬁ(ij\;’l x5+ ZjV;I ] ;). Subse-
quently, z; is input into g, =, and f,, e.g., for(ETg(x:)),
yielding a vector with all elements greater than zero and
matching the dimensionality of the causal representation.

Concurrently, each element is subject to the normalization
operation Norm. As a result, the individual elements of the

task, e.g., x; =

output vector Norm( f,,) can be interpreted as the probabil-
ities that each causal factor belongs to 7;. In a word, we can
obtain the causal factors for each task based on 7; and f,..

Ideally, each factor in = should represent a distinct se-
mantic, and changing one factor should not affect others.
However, in reality, without explicit constraints, the factors
in = may still be correlated, hindering the learning of causal
structures (Locatello et al. 2019). Therefore, we propose a
regularization term to achieve complete decoupling. Specif-
ically, we directly penalize the similarity between different
factors, which can be formulated as:

Lou@E) =Y Y ENE, 3)
i=1 j=it1

where E. ; represents the i-th column of Z. As we can see,
minimizing Lpp(E) can lead to a similarity of 0 between
different causal factors, thereby empirically establishing in-
dependence among distinct factors.

Note that each task is only related to a small number of
factors, and the factors of different tasks can vary greatly. It
may lead to degenerate solutions in which only a few factors
are utilized. Therefore, we need to constrain the output of
fqr to be sparse and diverse. To achieve this, we propose to
use the L; norm with an entropy term to the output of fg,

Niy
Lom(for) = ; | for (BT g(xa))]|,

>, for(ETg()),
7Entr0py( EL Zj ng(E?Tg(x,i))j )

4)

where f,,-(ETg(z;)) ; represents the j-th element of the out-
put of f,.. We can see that minimizing the first term of
Lo (fgr) can make the output of f,, to be sparse, and max-
imizing the second term of Lp(fy) can make the output
of fg4r to be diverse.

By combining Eq.3 and Eq.4, the loss of the disentangling
module can be presented as:

[’DM(ng7 E) = )\1 ' LDM(E) + )\2 : ﬁDM(fgr) (5)

where A; and A\ denote the loss weights of Lpy(Z) and
Lowm (fgr), respectively.

Causal Module

In the disentangling module, each column of = is treated as
a causal factor. However, due to the random initialization of
matrix = and the absence of explicit constraints in the disen-
tangling module, ensuring causality in = becomes challeng-
ing. Moreover, the causal factors for each task also exhibit
randomness, making it difficult to guarantee their authentic-
ity. To solve these problems, we propose the causal module
to ensure causality in the disentangling module. Following
(Koyama and Yamaguchi 2020), we can see that a model
invariant to multiple distributions could learn causal corre-
lations. Also, based on Theorem 9 described in (Arjovsky
et al. 2019), by enforcing invariance over multiple train-
ing datasets that exhibit distribution shifts, the task-specific
models should only utilize causal factors that are helpful to



themselves, and assign zero weights to those non-causal fac-
tors for the task. Therefore, the causal module is designed to
facilitate causal learning by using this invariance.

As widely known, during the training phase of meta-
learning, the training data can be divided into multiple sup-
port sets and multiple query sets. As they comprise differ-
ent samples, they can be regarded as distinct data distri-
butions with distributional shifts. Meanwhile, the learning
process in Eq.2 can be depicted as follows: First, for ev-
ery fp, optimizing Eq. 1 can achieve an optimal f§ and
L(Y7#, X$, f4) on the support set. Subsequently, altering the
value of fy impacts the optimal f} accordingly. At last, seek
the optimal fp to obtain the optimal f; that can optimize
NM Ziv’z LY X1, i) on the query set. Consequently,
the optimization of Eq.1 and Eq.2 can be interpreted as
achieving optimality across multiple datasets using the same
fo. Based on the above illustration, we propose to utilize a
bi-level optimization mechanism to learn = and f,,, e.g.,
similar to Eq.1 and Eq.2, thus ensuring causality. Specifi-
cally, for the first level, we learn = and f;r with the support
sets through the following objectives:

{ Z «—=2-— V=L
For & fogr — 2V, L

o SN L(YE, X8 LB for) + LoM(E, for)
K(Y;S7X'29757 gr) = NL:. Z] 1 y” IOgZ
2 = h{Norm{fy: (E7g(x:))] © [E"g(a)])
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and for the second level, we learn = and f,, with the query
sets through the following objectives:

st. L=
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where © represents the element-wise multiplication opera-
tor between two vectors, while a1, as, ag and oy are the
learning rates. It’s worth noting that L(Y X;, 2, for) is op-
timized using the causal representation =T g(z; ) with the
weight Norm|[f,(Eg(z;))]. The weight is mtended to re-
strict the causal features of samples in the task 7; to be asso-
ciated only with a subset of causal factors.

2} = h{Norm]f,,(Z’

[1]

The learning process of = and f,, can be regarded as en-
forcing invariance over the support sets and the query sets,
thus, the bi-level optimization mechanism for = and f,
can ensure causality. Meanwhile, Eq.6 and Eq.7 are learned
based on pre-defined i and g, thus rendering the MetaCRL
a plug-and-play learner.

Overall Objective

In this subsection, we embed the above causal representation
learning process into a meta-learning framework for joint
optimization. The training process for MetaCRL in each
batch is divided into two steps. In the first step, with = and
fqr held fixed, we optimize h and g. Specifically, the objec-
tive of the inner loop mentioned in Eq.1 becomes:
fo = fo— aVy, LY, X3, fo) ®)
s.t. 'C(YiSaXisv fo) = W Zj:il (7 IOng]’

where z; ; is calculated the same as Eq.6. The objective of
the outer loop mentioned in Eq.2 becomes:

fo = Jo = BV i 8 L0 XTL ) o

st. LY XD fh) = Nq Z] 1ywlogz

here, z! ; 1s calculated as mentioned in Eq.7. Furthermore,
in the second step, with h and g held fixed, we optimize =
and f,, using Eq.6 and Eq.7.

In conclusion, MetaCRL, the meta-learning causal repre-
sentation method we proposed, is a plug-and-play learner.
By incorporating the causal invariant-based optimization
mechanism and the additional regularization term, we can
effectively eliminate task confounders that leads to model
degradation and improve generalization capability.

Experiment

We evaluate MetaCRL on various scenarios, including sinu-
soid regression, image classification, drug activity predic-
tion, and pose prediction. Considering that MetaCRL ad-
dresses the “Task Confounder” problem to enhance gen-
eralization, we compare it with two generalization base-
lines, MetaMix(Yao et al. 2021) and Dropout-Bins(Jiang
et al. 2022). We also assess its performance on several back-
bones, including MAML(Finn, Abbeel, and Levine 2017),
ANIL(Raghu et al. 2019), MetaSGD(Li et al. 2017), and
T-NET(Lee and Choi 2018), to demonstrate its compatibil-
ity. Furthermore, the ablation study and visualization high-
light the robustness of our method. We determine the hyper-
parameters based on the results shown in Appendix. More
details about datasets, baselines, implementation, and addi-
tional experimental results can be found in Appendices C-F.

Sinusoid Regression

Firstly, we evaluate the performance of our MetaCRL on a
sinusoid regression problem. Following (Jiang et al. 2022),
the data for each task is generated in the form of Asinw -
z + b+ e where A € [0.1,5.0), w € [0.5,2.0], and b €
[0, 27]. We add Gaussian observation noise with ;1 = 0 and
€ = 0.3 to each data point sampled from the target task. In
this experiment, we set A; and A\ to 0.4 and 0.2. We use the
Mean Squared Error (MSE) as the evaluation metric.

The results are shown in Table 1. Our method achieves
improvements compared to the baselines, resulting in an
average MSE reduction of 0.034 and 0.013, respectively.
MetaCRL demonstrates even more substantial improve-
ments across four different backbones, achieving an MSE



Model \ 5-shot |  10-shot

IFSL 0.592 +0.141 | 0.178 £ 0.040
MR-MAML 0.581 £ 0.110 | 0.104 &+ 0.029
MAML 0.593 +0.120 | 0.166 £ 0.061
MAML + MetaMix 0.476 + 0.109 | 0.085 + 0.024
MAML + Dropout-Bins 0.452 £0.081 | 0.062 £ 0.017
MAML + Ours 0.440 = 0.079 | 0.054 £ 0.018
ANIL 0.541 £0.118 | 0.103 4+ 0.032
ANIL + MetaMix 0.514 +0.106 | 0.083 + 0.022
ANIL + Dropout-Bins 0.487 £0.110 | 0.088 £ 0.025
ANIL + Ours 0.468 + 0.094 | 0.081 £ 0.019
MetaSGD 0.577 £ 0.126 | 0.152 4+ 0.044
MetaSGD + MetaMix 0.468 +0.118 | 0.072 £ 0.023
MetaSGD + Dropout-Bins | 0.435 £ 0.089 | 0.040 £ 0.011
MetaSGD + Ours 0.408 = 0.071 | 0.038 £ 0.010
T-NET 0.564 £ 0.128 | 0.111 £ 0.042
T-NET + MetaMix 0.498 +0.113 | 0.094 + 0.025
T-NET + Dropout-Bins 0.470 £ 0.091 | 0.077 £ 0.028
T-NET + Ours 0.462 £+ 0.078 | 0.071 + 0.019

Table 1: Performance (MSE) comparison on the sinusoid re-
gression problem. The best results are highlighted in bold.

reduction of over 0.1. Furthermore, we introduce IFSL (Yue
et al. 2020) and MR-MAML (Yin et al. 2019) that con-
structed based on SCM, but their effects are less pronounced.
As expected, our method exhibits significant enhancements,
showecasing its high compatibility.

Image Classification

Next, we proceed to conduct tests in image classification,
utilizing two benchmark datasets, minilmagenet and Om-
niglot. Notably, we introduce a specialized dataset called
“TC”, which comprises 50 groups of tasks identified as be-
ing affected by task confounders. We measure the perfor-
mance in the "TC” dataset by comparing the experimen-
tal results with the performance of bachbones. More details
about this dataset are provided in Appendix C. In this exper-
iment, we set A\; and Ao to 0.5 and 0.35, respectively. The
evaluation metric employed here is the average accuracy.

The results are shown in Table 2. Across all datasets,
our method consistently surpasses the SOTA baseline. No-
tably, for the third data group, our approach outperforms
the other baselines by a significant margin. This indicates
that our MetaCRL can achieve similar or even better gener-
alization improvements than baselines do without the need
for task-specific or general-label space augmentation, while
also demonstrating a unique advantage in handling task con-
founders. MetaCRL continues to exhibit remarkable perfor-
mance and adeptly eliminates task confounders.

Drug Activity Prediction

Following (Yao et al. 2021), we evaluate MetaCRL on the
drug activity prediction task (Martin et al. 2019). The dataset
is designed to forecast the activity of compounds on specific
target proteins, encompassing a total of 4276 tasks. In this
experiment, A\; and A, are both set to 0.3, and the evaluation
metric is the squared Pearson correlation coefficient (R?),
reflecting the correlation between predictions and the actual

Model | Omniglot | minilmagenet | TC

MAML 87.15 + 0.61 33.16 £ 1.70 0.00
MAML + MetaMix 91.97 £ 0.51 38.97 + 1.81 | +0.42
MAML + Dropout-Bins 92.89 £ 0.46 | 39.66 + 1.74 -0.14
MAML + Ours 93.00 £ 0.42 | 41.55+1.76 | +4.12
ANIL 89.17 £ 0.56 | 34.96 +1.71 0.00
ANIL + MetaMix 92.88 £ 0.51 37.82 £ 1.75 -0.10
ANIL + Dropout-Bins 92.824+0.49 | 38.09£1.76 | +0.97
ANIL + Ours 9291 + 0.52 | 38.55+1.81 | +3.56
MetaSGD 87.81 £ 0.61 33.97 £0.92 0.00
MetaSGD + MetaMix 93.44 £ 045 | 40.28+0.96 | +0.05
MetaSGD + Dropout-Bins | 93.93 £ 0.40 | 40.31 £0.96 | +1.08
MetaSGD + Ours 94.12 £ 043 | 41.22+0.93 | +6.19
T-NET 87.66 +0.59 | 33.69 +1.72 0.00
T-NET + MetaMix 93.16 £0.48 | 39.18+1.73 | +0.28
T-NET + Dropout-Bins 93.54 £049 | 39.06£1.72 | +1.03
T-NET + Ours 93.81 +0.52 | 40.08 +1.74 | +4.65

Table 2: Performance (accuracy + 95% confidence interval)
of image classification on (20-way 1-shot) Omniglot and (5-
way 1-shot) minilmagenet. See Appendix F for full results.

values for each task. We record both the mean and median
R? values, along with the count of R? values exceeding 0.3,
which stands as a reliable indicator in pharmacology.

The results are shown in Table 3. Across the diverse sets
of data, our approach attains performance levels akin to the
SOTA baseline across all tasks. Notably, we achieve a note-
worthy enhancement of 3 in the reliability index R? > 0.3.
This achievement underscores the effectiveness of our ap-
proach across disparate domains and the pervasive influence
of task confounders. See Appendix F for full results.

Pose Prediction

Lastly, we undertake the fourth benchmark, focusing on
pose prediction. This task is constructed using the Pascal 3D
dataset (Xiang, Mottaghi, and Savarese 2014). We randomly
select 50 objects for meta-training and 15 additional objects
for meta-testing. The values of \; and A5 are set to 0.3 and
0.2. The evaluation metric employed here is MSE.

The results are shown in Table 4. Our MetaCRL achieves
best performance. Notably, drawing insights from the find-
ings presented in (Yao et al. 2021), we posit that augment-
ing the dataset could yield more effective results in this sce-
nario, potentially outperforming the reliance solely on meta-
regularization techniques. Thus, our approach incorporates
regularization terms and still manages to achieve enhanced
performance, thereby affirming its efficacy.

Ablation Study

We conduct ablation study to explore the impact of different
regularization terms, that is Lpm(Z), Lom(fgr), and their
combination Lpwm(fyr, Z). We select two classification and
two regression scenarios from the aforementioned experi-
ments for evaluation. The results, as shown in Figure 3, indi-
cate that the first two regularization terms promote the model
in all data sets, and the improvement is the largest when
combined. Moreover, combining the aforementioned results,
despite eliminating the regularization terms, our work still
significantly outperforms the backbones, illustrating the ef-
fectiveness of the causal mechanism.



Model Group 1 Group 2 Group 3 Group 4
ode Mean Med. >03 | Mean Med. >03 | Mean Med. > 0.3 | Mean Med. > 0.3

MAML 0.371 0.315 52 0.321 0.254 43 0.318 0.239 44 0.348 0.281 47
MAML + Dropout-Bins | 0.410 0.376 60 0.355 0.257 48 0.320 0.275 46 0.370 0.337 56
MAML + Ours 0413 0.378 60 0.360 0.261 50 0.334  0.282 51 0.375 0.341 59
ANIL 0.355 0.296 50 0.318 0.297 49 0.304 0.247 46 0.338 0.301 50
ANIL + MetaMix 0.347 0.292 49 0.302 0.258 45 0.301 0.282 47 0.348 0.303 51
ANIL + Dropout-Bins 0.394 0.321 53 0.338 0.271 48 0.312 0.284 46 0.370  0.297 50
ANIL + Ours 0.401 0.339 57 0.341 0.277 49 0.312  0.291 47 0.366  0.301 51

Table 3: Performance comparison on drug activity prediction. “Mean”, “Mde.”, and “> 0.3 are the mean, the median value of
R?, and the number of analyzes for R? > 0.3. Values in the table is based on the results in (Jiang et al. 2022).

Model |  10-shot |  15-shot

MAML 3.113 £ 0.241 | 2.496 +0.182
MAML + MetaMix 2.429 +0.198 | 1.987 £ 0.151
MAML + Dropout-Bins 2.396 £0.209 | 1.961 £0.134
MAML + Ours 2.355 +0.200 | 1.931 + 0.134
ANIL 6.921 = 0.415 | 6.602 £ 0.385
ANIL + MetaMix 6.394 +0.385 | 6.097 £ 0.311
ANIL + Dropout-Bins 6.289 £+ 0.416 | 6.064 + 0.397
ANIL + Ours 6.287 + 0.401 | 6.055 £ 0.339
MetaSGD 2.811 +£0.239 | 2.017 £0.182
MetaSGD + MetaMix 2.388 +0.204 | 1.952 £0.134
MetaSGD + Dropout-Bins | 2.369 £ 0.217 | 1.927 £ 0.120
MetaSGD + Ours 2.362 +0.196 | 1.920 £ 0.191
T-NET 2.841 +£0.177 | 2.712 £ 0.225
T-NET + MetaMix 2.562 +0.280 | 2.410 £0.192
T-NET + Dropout-Bins 2487 +0.212 | 2.402 +0.178
T-NET + Ours 2.481 +0.274 | 2.400 + 0.171

Table 4: Performance (MSE + 95% confidence interval)

comparison on pose prediction.
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Figure 3: Ablation study of MetaCRL on 4 benchmarks. The
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backbone in this experiment is MAML.
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Figure 5: Visualization of the
similarity matrix for causal
factors in meta-training.

Visualization

To better evaluate the effect of MetaCRL, we select MAML
as the backbone and visualize the following metrics: (i) ac-
curacy under different batch sizes; and (ii) the similarity be-
tween causal factors. The former evaluates MetaCRL’s ef-
ficacy in ensuring causality, while the latter assesses the
decoupling of causal factors. Figures 4 and 5 show visual-
izations for these two aspects, respectively. Figure 4 shows
that the model’s performance doesn’t decrease as batch size
increases, which indicates that MetaCRL effectively elimi-
nates task confounders. Figure 5 demonstrates that the dis-
entangling module successfully decouples causal factors.

Conclusion

In this paper, we propose a novel problem called “Task Con-
founder” and present a method called MetaCRL to address
its unique challenges. We begin by analyzing a counterintu-
itive performance degradation phenomenon with SCM, re-
vealing spurious correlations between causal factors of the
training tasks and the generic label space, called “Task Con-
founder”. Then, we devise MetaCRL, which consists of two
modules: (i) the disentangling module that acquires causal
factors; (ii) the causal module that ensures causality of the
factors. It is a plug-and-play causal representation learner
that can be easily introduced into the meta-learning frame-
work to eliminate task confounders. Extensive experiments
demonstrate the effectiveness of our approach. Our work un-
covers a novel and significant issue in meta-learning, provid-
ing valuable insights for future research.



References

Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz, D.
2019. Invariant Risk Minimization. CoRR, abs/1907.02893.

Bertinetto, L.; Henriques, J. F.; Torr, P. H.; and Vedaldi,
A. 2018. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136.

Chen, J.; Zhan, L.-M.; Wu, X.-M.; and Chung, F.-1. 2020.
Variational metric scaling for metric-based meta-learning.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 34, 3478-3485.

Du, Y.; Xu, J.; Xiong, H.; Qiu, Q.; Zhen, X.; Snoek, C. G.;
and Shao, L. 2020. Learning to learn with variational infor-
mation bottleneck for domain generalization. In Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part X 16, 200-216.
Springer.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In In-

ternational conference on machine learning, 1126—1135.
PMLR.

Gordon, J.; Bronskill, J.; Bauer, M.; Nowozin, S.; and
Turner, R. E. 2018. Meta-learning probabilistic inference
for prediction. arXiv preprint arXiv:1805.09921.

Hospedales, T.; Antoniou, A.; Micaelli, P.; and Storkey, A.
2021. Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence,
44(9): 5149-5169.

Hu, Z.; Zhao, Z.; Yi, X.; Yao, T.; Hong, L.; Sun, Y.; and Chi,
E. 2022. Improving multi-task generalization via regulariz-
ing spurious correlation. Advances in Neural Information
Processing Systems, 35: 11450—-11466.

Islam, M. A.; Jia, S.; and Bruce, N. D. 2020. How much
position information do convolutional neural networks en-
code? arXiv preprint arXiv:2001.08248.

Jamal, M. A.; and Qi, G.-J. 2019. Task agnostic meta-
learning for few-shot learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 11719-11727.

Jiang, Y.; Chen, Z.; Kuang, K.; Yuan, L.; Ye, X.; Wang,
Z.; Wu, E; and Wei, Y. 2022. The Role of Deconfounding
in Meta-learning. In International Conference on Machine
Learning, 10161-10176. PMLR.

Koyama, M.; and Yamaguchi, S. 2020. When is invari-
ance useful in an Out-of-Distribution Generalization prob-
lem? arXiv preprint arXiv:2008.01883.

Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2019.
The Omniglot challenge: a 3-year progress report. Current
Opinion in Behavioral Sciences, 29: 97-104.

Lee, H. B.; Nam, T.; Yang, E.; and Hwang, S. J. 2020. Meta
dropout: Learning to perturb latent features for generaliza-
tion.

Lee, Y.; and Choi, S. 2018. Gradient-based meta-learning
with learned layerwise metric and subspace. In International
Conference on Machine Learning, 2927-2936. PMLR.

Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. 2018.
Learning to generalize: Meta-learning for domain general-
ization. In Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Li, Z.; Zhou, F.; Chen, F.; and Li, H. 2017. Meta-sgd: Learn-
ing to learn quickly for few-shot learning. arXiv preprint
arXiv:1707.09835.

Locatello, F.; Bauer, S.; Lucic, M.; Raetsch, G.; Gelly, S.;
Scholkopf, B.; and Bachem, O. 2019. Challenging com-
mon assumptions in the unsupervised learning of disentan-
gled representations. In international conference on ma-
chine learning, 4114—4124. PMLR.

Mahadevkar, S. V.; Khemani, B.; Patil, S.; Kotecha, K.;
Vora, D.; Abraham, A.; and Gabralla, L. A. 2022. A review
on machine learning styles in computer vision-techniques
and future directions. IEEE Access.

Martin, E. J.; Polyakov, V. R.; Zhu, X.-W.; Tian, L.; Mukher-
jee, P; and Liu, X. 2019. All-assay-Max2 pQSAR: activity
predictions as accurate as four-concentration IC50s for 8558
Novartis assays. Journal of chemical information and mod-
eling, 59(10): 4450-4459.

Mitchell, E.; Rafailov, R.; Peng, X. B.; Levine, S.; and Finn,
C. 2021. Offline meta-reinforcement learning with advan-
tage weighting. In International Conference on Machine
Learning, 7780-7791. PMLR.

Nichol, A.; and Schulman, J. 2018. Reptile: a scalable met-
alearning algorithm. arXiv preprint arXiv:1803.02999, 2(3):
4.

Nogueira, A. R.; Pugnana, A.; Ruggieri, S.; Pedreschi, D.;
and Gama, J. 2022. Methods and tools for causal discovery
and causal inference. Wiley interdisciplinary reviews: data
mining and knowledge discovery, 12(2): €1449.

Oh, J.; Yoo, H.; Kim, C.; and Yun, S.-Y. 2020. Boil: Towards
representation change for few-shot learning. arXiv preprint
arXiv:2008.08882.

Raghu, A.; Raghu, M.; Bengio, S.; and Vinyals, O. 2019.
Rapid learning or feature reuse? towards understanding the
effectiveness of maml. arXiv preprint arXiv:1909.09157.
Ren, M.; Triantafillou, E.; Ravi, S.; Snell, J.; Swersky, K.;
Tenenbaum, J. B.; Larochelle, H.; and Zemel, R. S. 2018.
Meta-learning for semi-supervised few-shot classification.
arXiv preprint arXiv:1803.00676.

Rivolli, A.; Garcia, L. P.; Soares, C.; Vanschoren, J.; and
de Carvalho, A. C. 2022. Meta-features for meta-learning.
Knowledge-Based Systems, 240: 108101.

Schrum, M. L.; Hedlund-Botti, E.; Moorman, N.; and
Gombolay, M. C. 2022. Mind meld: Personalized meta-
learning for robot-centric imitation learning. In 2022 17th
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 157-165. IEEE.

Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical net-
works for few-shot learning. Advances in neural information
processing systems, 30.

Song, X.; Zheng, S.; Cao, W.; Yu, J.; and Bian, J. 2022. Ef-
ficient and effective multi-task grouping via meta learning

on task combinations. Advances in Neural Information Pro-
cessing Systems, 35: 37647-37659.



Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H.; and
Hospedales, T. M. 2018. Learning to compare: Relation net-
work for few-shot learning. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 1199—
1208.

Suter, R.; Miladinovic, D.; Scholkopf, B.; and Bauer, S.
2019. Robustly disentangled causal mechanisms: Validating
deep representations for interventional robustness. In In-
ternational Conference on Machine Learning, 6056-6065.
PMLR.

Ton, J.-F.; Sejdinovic, D.; and Fukumizu, K. 2021. Meta
learning for causal direction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, 9897—
9905.

Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D.; et al.
2016. Matching networks for one shot learning. Advances
in neural information processing systems, 29.

Wang, H.; Zhao, H.; and Li, B. 2021. Bridging multi-task
learning and meta-learning: Towards efficient training and

effective adaptation. In International conference on machine
learning, 10991-11002. PMLR.

Xiang, Y.; Mottaghi, R.; and Savarese, S. 2014. Beyond pas-
cal: A benchmark for 3d object detection in the wild. In

IEEE winter conference on applications of computer vision,
75-82. IEEE.

Yang, X.; Zhang, H.; and Cai, J. 2021. Deconfounded im-
age captioning: A causal retrospect. IEEE Transactions on
Pattern Analysis and Machine Intelligence.

Yao, H.; Huang, L.-K.; Zhang, L.; Wei, Y.; Tian, L.; Zou,
J.; Huang, J.; et al. 2021. Improving generalization in meta-
learning via task augmentation. In International conference
on machine learning, 11887-11897. PMLR.

Yin, M.; Tucker, G.; Zhou, M.; Levine, S.; and Finn, C.
2019. Meta-learning without memorization. arXiv preprint
arXiv:1912.03820.

Yue, Z.; Zhang, H.; Sun, Q.; and Hua, X.-S. 2020. Interven-
tional few-shot learning. Advances in neural information
processing systems, 33: 2734-2746.

Zhang, D.; Zhang, H.; Tang, J.; Hua, X.-S.; and Sun, Q.
2020. Causal intervention for weakly-supervised semantic

segmentation. Advances in Neural Information Processing
Systems, 33: 655-666.



