
LEVERAGING REINFORCEMENT LEARNING AND LARGE LANGUAGE MODELS
FOR CODE OPTIMIZATION

Shukai Duan 1 Nikos Kanakaris 2 Xiongye Xiao 1 Heng Ping 1 Chenyu Zhou 1 Nesreen K. Ahmed 3

Guixiang Ma 3 Mihai Capotă 3 Theodore L. Willke 3 Shahin Nazarian 1 Paul Bogdan 1

ABSTRACT
Code optimization is a daunting task that requires a significant level of expertise from experienced programmers.
This level of expertise is not sufficient when compared to the rapid development of new hardware architectures.
Towards advancing the whole code optimization process, recent approaches rely on machine learning and artificial
intelligence techniques. This paper introduces a new framework to decrease the complexity of code optimization.
The proposed framework builds on large language models (LLMs) and reinforcement learning (RL) and enables
LLMs to receive feedback from their environment (i.e., unit tests) during the fine-tuning process. We compare
our framework with existing state-of-the-art models and show that it is more efficient with respect to speed
and computational usage, as a result of the decrement in training steps and its applicability to models with
fewer parameters. Additionally, our framework reduces the possibility of logical and syntactical errors. Toward
evaluating our approach, we run several experiments on the PIE dataset using a CodeT5 language model and RRHF,
a new reinforcement learning algorithm. We adopt a variety of evaluation metrics with regards to optimization
quality, and speedup. The evaluation results demonstrate that the proposed framework has similar results in
comparison with existing models using shorter training times and smaller pre-trained models. In particular, we
accomplish an increase of 5.6% and 2.2 over the baseline models concerning the %OPT and SP metrics.

1 INTRODUCTION

Developing software (codes) from plain text descriptions or
from prior implementations is a highly demanding cogni-
tive task. However, it is significantly more challenging to
optimize the code for an emerging parallel heterogeneous
computing architecture. Code optimization is the task of
converting a given program to a more efficient version while
retaining the same input and output (Bunel et al., 2016). It
requires either the utilization of a higher level of optimiza-
tion (e.g., -O3) during compilation or expert programmers
to manually refactor their code to make it more optimized
for certain hardware. Both of these tasks can be daunting
with the rapid advancement in hardware, which leads to an
increase in development time, bug fixing, and code opti-
mization. Thus, there has been a noticeable shift to utilizing
machine learning-based solutions for tasks related to au-
tomatic code optimization, code generation, and machine
programming in general (Gottschlich et al., 2018b; Sho-
jaee et al., 2023; Gottschlich et al., 2018a). Along With

1Department of Electrical and Computer Engineering, Univer-
sity of Southern California 2Department of Mechanical Engineer-
ing and Aeronautics, University of Patras 3Intel Labs, Intel, USA.
Correspondence to: Shukai Duan <shukaidu@usc.edu>, Nikos
Kanakaris <nkanakaris@upnet.gr>.

recent advancements in heterogeneous devices, circuits, and
computing systems, researchers have aimed to utilize ma-
chine learning and AI to initiate, design, and engineer an
evolving autonomous yet compact machine programming
paradigm and system that seek to provide optimized codes
for distributed mobile edge computing systems having strict
power/energy budgets (Gottschlich et al., 2018a). One of the
directions machine programming can help is the challenging
task of code optimization.

With the advent of transformer architectures (Vaswani et al.,
2017), large language models (LLMs) have emerged as
the default technology to perform tasks in natural language
processing (NLP). Among other applications, prominent
solutions that use LLMs have shown encouraging results
for software-related tasks. Undoubtedly, LLMs can perform
several tasks related to programming languages, including
code generation, code optimization, defect detection, and
code completion, to name a few (Nijkamp et al., 2023b;
Wang et al., 2021). This is so easily achievable due to the
large amounts of source code available in online repositories
such as GitHub, which facilitate the training process (Lu
et al., 2021). However, even if LLMs are capable of pro-
ducing code that superficially looks correct, they are unable
to check its logical and syntactical validity without any ex-
ternal assistance. As a result, the suggested snippets of

ar
X

iv
:2

31
2.

05
65

7v
1

 [
cs

.L
G

]
 9

 D
ec

 2
02

3

code are not always guaranteed to work as expected (Husain
et al., 2019). To that end, the combination of LLMs and
Reinforcement Learning (RL) has been recently proposed in
the literature (Shojaee et al., 2023). Briefly, the inclusion of
RL techniques enables LLMs to interact with their environ-
ment and receive valuable feedback. Such feedback often
comes from the execution of unit tests, where the functional
correctness of a given program is confirmed.

Despite the radical changes and improvements that the com-
bination of LLMs and RL offers to the analysis of program-
ming languages, there has not been any significant progress
as far as the problem of code optimization is concerned.
On the one hand, the majority of the existing approaches
use general-purpose datasets for fine-tuning, which in turn
reduces the ability of a model to propose highly optimized
versions of a given code. On the other hand, methods fo-
cusing on code optimization do not exploit RL. Thus, they
are incapable of getting feedback for errors in the produced
snippets of code.

To mitigate the issues mentioned above, in this work, we
propose PerfRL, a novel LLM-based framework that con-
centrates on the task of code optimization. Our approach
fuses techniques from LLMs and RL to enable the utiliza-
tion of external feedback, such as feedback from unit tests.
By leveraging RL techniques, LLMs are able to receive in-
formation about the validity of the generated program. This
helps the whole process to (i) become faster (i.e. less train-
ing is required), (ii) use a smaller model that requires less
power and (iii) generate optimized code that is more likely
to be free from errors. At the same time, the performance
of the produced model remains the same. To the best of
our knowledge, our approach is the first that specializes in
the task of code generation for code optimization, while,
at the same time, incorporating feedback from unit tests
with respect to the correctness of the code into its learning
process.

Broadly speaking, there are three main challenges related to
the work of this paper: (i) How can we incorporate feedback
from unit tests into the training process of an LLM model?
(ii) How can we make a small (compact) model perform
similarly to large models with billions (or more) of parame-
ters? (iii) How can we train such a small model such that it
generates reliable code free from errors and deals with the
code optimization task?

To implement and develop our approach, we use the Python
programming language and PyTorch deep learning library.
To evaluate our approach, we benchmark it against a list of
models that deal with the specific task. Our experimental
results demonstrate a significant performance improvement
of our approach against the baselines. All related code and
evaluation results are openly accessible on GitHub.

Contributions. The main novel contributions of this paper
are the following:

• We propose an end-to-end LLM-based framework for
code optimization, which is capable of incorporating
feedback from unit tests into its learning process using
reinforcement learning (RL) techniques.

• Our framework is flexible and can be used with LLMs
varying in size, complexity, and number of parameters
or with any RL technique.

• We enable smaller language models (SLMs) with fewer
parameters to achieve results comparable to those of
LLMs with billions of parameters.

• We investigate the application of RL techniques com-
bined with LLMs to improve performance on code op-
timization tasks. We mention that the produced LLM
model specializes in the aforementioned tasks.

• We propose a novel approach that incorporates feed-
back from unit tests into the fine-tuning process. This
allows the model to learn to produce error-free code
easily.

• We empirically test our approach using the PIE dataset,
which demonstrated the superiority of our approach
compared to the sate-of-the-art baselines.

2 RELATED WORK

LLMs have demonstrated promising results as far as the
task of code generation is concerned. As a result, several
language models (LM) for different programming languages
have been proposed in the literature (Chen et al., 2021). For
instance, CodeT5 (Wang et al., 2021) is a general language
model, which is pre-trained on an extended version of the
CodeSearchNet dataset (Husain et al., 2019). It builds on
an encoder-decoder architecture similar to T5 (Raffel et al.,
2020) to learn generic text representations for programming
and natural languages. The authors have fine-tuned T5 to a
variety of downstream tasks (e.g. code refinement and code
generation) using task-specific transfer learning and multi-
task learning techniques. The evaluation results have shown
that CodeT5 outperformed its counterparts with respect to
the CodeXGLUE benchmark (Lu et al., 2021).

Another family of large language models for program syn-
thesis is CODEGEN (Nijkamp et al., 2023b;a). These lan-
guage models have been trained with different numbers of
parameters, ranging from 350M to 16.1B. Three datasets
have been used during the training period, i.e. THEPILE,
BIGQUERY and BIGPYTHON. The CODEGEN models
are actually autoregressive transformers with the objective
of predicting the next token similar to traditional models for

natural languages (Vaswani et al., 2017). Along with the
models, the authors have released a multi-turn programming
benchmark that assists in measuring the capacity of a given
model in regard to multi-turn program synthesis. The exper-
imental results show that the multi-step program synthesis
capacity of a model is positively associated with its size.

More recently, the work in (Madaan et al., 2023) proposed
the PIE dataset. PIE is a subset of the CodeNet (Puri et al.,
2021) collection of code samples. It consists of trajectories
of programs, where an individual programmer starts with
a slower version of a program and makes changes towards
improving its performance. The authors of PIE have used
it to evaluate and improve the capacity of multiple variants
of models from CODEGEN family. In particular, they fine-
tuned these models to suggest faster versions of a given
piece of code. Furthermore, they evaluated their approach by
training OpenAI’s CODEX using few-shot learning. Their
evaluation results exhibit a speedup improvement of up to
2.5 for more than 25% of the test programs.

A different set of modern approaches to code generation
builds on the utilization of LLMs and RL. In general, the
essence of incorporating RL techniques is mostly to ensure
the functional correctness of the produced program (Liu
et al., 2023). For instance, CodeRL (Le et al., 2022) com-
bines pre-trained models with DRL for program synthesis in
order to generate a program that fulfills a problem specifica-
tion. It is an extension of CodeT5 that illustrates improved
learning objectives and has more parameters along with bet-
ter pretraining data. In CodeRL, the trained language model
is used as an actor network. A critic network is also incor-
porated, aiming to predict the functional correctness of the
generated code and provide feedback to the actor. The au-
thors also introduce a critical sampling strategy that enables
a model to regenerate programs by taking into consideration
feedback from unit tests and critic scores. The evaluation re-
sults demonstrate that CodeRL can achieve state-of-the-art
performance on APPS benchmark (Hendrycks et al., 2021).

The work in (Shen et al., 2023) introduces the ‘Rank Re-
sponses to align Test&Teacher Feedback’ (RRTF) frame-
work. It also presents an LLM for programming languages,
namely PanGu-Coder2. The main model is trained by rank-
ing the candidate pieces of code using feedback from test
cases and other heuristic preferences. Various experiments
on the HumanEval, CodeEval and LeetCode benchmarks
indicate that PanGu-Coder2 can reach state-of-the-art per-
formance.

Shojaee et al. (2023) introduced PPOCoder, a task and
model agnostic framework that can be used for a variety of
code generation tasks. PPOCoder fuses pre-trained language
models and Proximal Policy Optimization (PPO) (Schulman
et al., 2017), a widely used deep RL technique. PPOCoder
takes into account feedback from the compiler and unit tests

accompanied by syntactic-related feedback. This fosters the
model to generate better code in terms of syntax and logic.
The experimental results point out that PPOCode is more
effective than its baselines with regard to the syntactic and
functional validity of the generated codes.

Although PPO is one of the most popular policy gradient
methods for RL, a list of alternative algorithms has been
proposed in the literature. The purpose of these alterna-
tives is to avoid the disadvantages of PPO (e.g. sensitivity
to hyperparameters), while also reducing the overall algo-
rithmic complexity. More specifically, Preference Ranking
Optimization (PRO) (Song et al., 2023) adopts the Bradley-
Terry comparison from ‘Reinforcement learning from hu-
man feedback’ (RLHF) (Stiennon et al., 2020; Xue et al.,
2023). It also aligns the probability ranking of the responses
generated by an LLM with the preference ranking by hu-
mans. The conducted experiments suggest that PRO out-
performs its counterparts by effectively aligning LLMs to
human preferences. Lately, RRHF, a promising algorithm
has been introduced (Yuan et al., 2023). In a similar fashion
to RLHF, it supports the alignment of LLMs with human
preferences. The authors argue that RRHF can be easily
tuned and achieve a performance comparable to that of PPO
in the Anthropic’s Helpful and Harmless dataset (Bai et al.,
2022).

3 PROBLEM DEFINITION

We consider the problem of generating optimized versions of
an input code. More formally, given a set of input programs
X , the task is to generate a set of optimized programs X̂ ,
for each x ∈ X . The optimized program versions should
take the same input and produce the same output as their
original versions.

To do so, for each x ∈ X , we generate a set of candi-
date programs y ∈ Y , using a sampling strategy s ∈
{greedy, random}. Then our goal is to maximize the cost
function:

cost(x, ybest) = eq(R, ybest) + perf(ybest) (1)

where ybest ∈ Y is the best candidate, the term eq(R, ybest)
measures the ability of a generated sequence with a given
input to match the output of the unit test, and the term
perf(ybest) measures how the performance improvement of
ybest over x for unit tests.

At the same time, we also aim to maximize the probability of
generating ybest from the distribution of the input program
by learning from existing training scripts.

θ∗ = argmax
θ

P (ybest|x; θ) (2)

Here, θ∗ represents the optimal set of model parameters.
Since recent solutions to the problem rely mostly on LLMs,

X

Y

Z

Tuning Efficiency

LM Size

PerfRL

Small LM model, low inference ability,
low tuning efficiency

Small LM model, low inference ability,
high tuning efficiency

Small LM model, low inference ability,
Low tuning efficiency

Large LM model, low inference ability,
low tuning efficiency

Large LM model, high RL complexity,
fully specialized dataset

CodeGen

CODEX

CodeT5

CodeRL

Inference Ability

PPOcoder

Figure 1. The problem of code optimization is seen from three different perspectives, i.e. the size of the LM (Y-axis), the inference ability
of the model (Z-axis), and the tuning efficiency (X-axis). Our approach (the green dot) uses a fully specialized dataset (PIE), an LM model
with a medium size (CodeT5), and has a low inference ability. LMs with a big size include those of the CodeGen family and Codex.

the main challenge of this problem is the fact that LLMs
cannot naturally interact with their environment. As a result,
they can potentially produce optimized versions of a given
code that look correct superficially but contain either syntac-
tical or logical errors. Additionally, existing solutions that
build on LLMs and RL do not concentrate on the task of
code optimization. Thus, they cannot perform sufficiently
well and may suffer from hallucination, i.e. fabricating non-
compilable meaningless pieces of code. (Zhang et al., 2023).
A different challenge of this problem is the ever-increasing
size of the required models. These models require a suffi-
cient amount of computing resources, which in turn results
in an increment of energy consumption.

Considering the challenges above, we propose a different
approach to train an LLM model for the code generation
problem. Instead of using solely an LLM or building a
general-purpose LLM model with some RL steps, we de-
sign a framework targeting the task of code generation (see
Section 4.3). Figure 1 highlights the different perspectives
of the code optimization problem and how our framework
differs from the existing ones.

As Figure 1 illustrates, we can perceive the problem of code
optimization from three different perspectives — depending
on the complexity of the RL algorithm, the size of the LM,
and how relevant the used dataset with the task of code
optimization. For instance, in our experiments, we use
a medium-sized LM (CodeT5), the RRHF RL algorithm
that has a medium complexity and a dataset (PIE) that is
specialized in the considered task. However, the proposed

framework can facilitate different settings and combinations
of the size of the selected LM model, the complexity of the
RL algorithm and the relevance of the used dataset.

Some of the research questions associated with the problem
of code generation are the following:

• How can we reduce the size of the models needed to
generate optimized versions of a code?

• How can we ensure that the generated codes are reli-
able, produce the expected results and are free from
syntactical or logical errors?

4 PROPOSED APPROACH

We propose PerfRL, a reinforcement learning-based LLM
framework for code performance optimization. PerfRL ad-
vances the capability of LLMs to generate optimized code
that improves program runtime, while also being logically
and syntactically correct. To do so, it leverages techniques
from LLMs and RL. It consists of three main components:
(1) fine-tuning of the LLM model (Section 4.1), (2) sample
generation, (Section 4.2), and (3) reinforcement learning
supervision and correction (Section 4.3).

Figure 2 illustrates the architecture of the proposed approach.
We thoroughly describe each of the steps in this section. Dur-
ing the training phase, we first fine-tune an LLMs using a
dataset specialized in the task of code generation. Then, we
utilize the fine-tuned model to generate optimized code ver-
sions for a given input code by employing different sampling

strategies, as described in Section 4.2. We then calculate a
reward value and a score for each generated code and cal-
culate a loss value based on an RL technique (Section 4.3).
Then, during inference, we use the fine-tuned LLM model
to generate an optimized version for each one of the given
codes.

4.1 Fine-tuning of the LLM model

The first step is to fine-tune an LLM model on a dataset that
is specialized in the task of code optimization. For efficiency
and simplicity, in our experiments (see Section 5), we use
the lightweight CodeT5 model (Wang et al., 2021), but our
framework can operate with a variety of LLMs, regardless
of their size. In the initial paper of CodeT5, the authors
use either natural language (NL) or a combination of natu-
ral and programming language (PL) as input. Particularly,
they pre-train their model on tasks such as Identifier-aware
denoising, Identifier Tagging, Masked Identifier Prediction
and Bimodal Dual Generation. Thus, we believe that this
particular kind of models is more capable of understanding
NL-PL inputs. As a result, we follow an NL-PL approach
to feed the input into the CodeT5 model. Meanwhile, the
authors in (Madaan et al., 2023) argue that a few-shot sam-
pling strategy is beneficial for producing an optimized out-
put. Therefore, we concatenate the action’s natural language
of asking the model to improve the execution performance
with the input programming language and feed them into
the model.

The CodeT5 model expects as input and target the prepro-
cessed slower and faster code queries, respectively. The
objective of fine-tuning is to minimize the cross-entropy
loss:

Lft(θ) = − 1

N

N∑
i=1

V∑
j=1

log(pi,j) (3)

where θ is the parameter of the given LLM (in our case,
CodeT5), N is the number of tokens, V is the vocabulary
set of the tokenizer, y is the embedded value of the j-th token
in the vocabulary at position i in the true output sequence,
and pi,j is the predicted probability for the j-th token in the
vocabulary at position i.

4.2 Sample Generation

To generate candidate samples of code, we employ different
sampling strategies during training, testing, and validation.
More specifically, we use greedy sampling and random
sampling.

Greedy sampling with beam search generates B number of
distinct samples for the same input. For each step of the
sequence generation, the model takes the current generated

sequence of tokens of sample k and computes the probability
distribution of the next token over the vocabulary for the
corresponding sample. The top B candidate vocabulary and
its cumulative probability are calculated and ranked for each
sample. The top B sequences among all candidates with
the greatest cumulative probability are selected to repeat the
process of generating the next token.

y
(1)
t , . . . , y

(B)
t = topB

{
P (yt|y(c)1 , . . . , y

(c)
t−1, x)

}
(4)

where x is the input of the model, Y = (y1, . . . , yT), yt ∈
V is the output tokens from the model c ∈ [0, B − 1].

The second sampling strategy is random sampling, which
generates a number of distinct samples with the same input.
During the generation, we set a temperature value Tem
in order to affect the diversity of the output. Given the
probability distribution of the given logits l, the scaled l′

equals to:

l = logP (yt|y1, . . . , yt−1, x) (5)

l′ =
l

T em
(6)

The probability of each token after scaling is:

pi =
exp(l′i)∑
i exp(l

′
i)

(7)

Based on pi, we select the top-k tokens and randomly pick
one of them. We repeat such sampling steps for t times until
reaching the max length or end conditions.

The next step is to generate the code samples. We observed
that the model is unable to learn from most of the initially
generated samples of code since they have a syntactical
or logical error; as a result, the code samples do not pass
the unit test. Thus, to generate samples of code during
training, we first apply random sampling and select two
candidates from independent runs. Then, we perform one
greedy sampling to find the candidate with the highest prob-
ability. Finally, to ensure that at least one correct sample
exists, we include the target sequence from the dataset in
the list with the samples. These four samples are then fed to
the model on each step.

During validation and testing (i.e. inference), we generate 4
samples using greedy sampling with beam search and return
the top-2 best candidates. For a given input, we generate
two candidates for evaluation. Similar to (Lu et al., 2021),
we consider a sample as successful, when it has a better
execution time compared to the input code.

4.3 Reinforcement Learning

Our RL step builds on RRHF, which is a lightweight RL
framework for tuning LLMs with feedback scores. During

Discard

Input Code

Fine-tuned LM

Target Code

RL Update

Score
Estimation

Rewards

afdsGenerated Samples

Scores

Reward Model

Compiler

Compilable?

Runtime Errors?

Unit test

Runtime Improved?

No

Yes

No pass

No

Yes

R1

R2

R3

R4

Yes

No

All pass

Reward
Model

Input Code

Fine-tuned LM

(a) (b) (c)

Generated Samples

Reward Model

R4

Optimized
 Code

Other
Rewards

Figure 2. Overview of the PerfRL framework. (a) Training. We first fine-tune an LLM model using the whole training dataset. Then, we
pass the input codes into the fine-tuned LM to generate a predefined number of optimized samples for each input program. We assign a
score value to each sample and calculate its reward using the reward model. We utilize the score and reward values to calculate the Lrank

and Ltuning loss values for RL. The final loss L is calculated by combining the two previous loss values and is used to retrain the model.
In that way, our framework incorporates feedback from unit tests into its training process. Thus, it is more likely to generate optimized
code that is free from syntactical and logical errors, mitigating hallucinations. (b) Reward model. Depending on the status of the code
(e.g. can be compiled, has a run-time error or passes all the unit tests) a different reward value is given by the reward model. (c) Inference.
During inference, the final LLM is utilized to generate multiple samples of candidate source codes. These generated source codes are then
evaluated using the reward model. All samples that do not receive an R4 reward are filtered out. The source codes that remain after this
elimination process are considered as the optimized code.

each RL step, our objective is to maximize the probability
of generating highly rewarded pieces of code by ranking
and fine-tuning the LLM model. For each RL step, we
sample all the data from the training set and generate the
candidate outputs. Finally, for each candidate output, we
compute the score, reward and loss in order to tune the
model parameter θ.

4.3.1 Reward

After the code generation step, we execute each sample
of code with a Python interpreter. If an error is detected,
an error message is displayed. If a piece of code does not
have syntax errors, we test it for logical errors using the
associated unit tests on a single core. The execution time
eto for an input code o is measured during the execution,
assuming that there are no runtime errors within a prede-
fined time period (eto ≤ timeout). In a similar fashion to
the reward function proposed in (Le et al., 2022), for each

sample y ∈ Y , the reward r(y) is calculated as follows:

r(y(c)) =

R1 if y(c)cannot be compiled
R2 if y(c) run-time error, timeout, or failed

any unit test
R3 if y(c)passed all unit tests
R4 if y(c)passed and improved run time

(8)

As described in the paper of RRHF (Yuan et al., 2023),
the reward values, which are assigned to the different code
samples, are irrelevant to the computation of the loss, as
long as a more desirable result is associated with a higher
value (see Section 4.3).

4.3.2 Score Function

For a given generated code x, we have a candidate sequence
y(c), where 0 < c < B. For each y(c), we compute the pre-
dicted score of the sequence as the sum of the log probability
of each token divided by number of tokens t:

p(c) =

∑
t logP (y

(c)
t |y(c)1 , . . . , y

(c)
t−1, x)

||y(c)t ||
(9)

4.3.3 Minimizing the Probability of Less Rewarded
Outputs

From the execution of the evaluation system, we obtain our
reward r(c) = r(y(c)) for each y(c) with a given input x.
We maximize the loss of correct responses and minimize
the wrong responses by:

Lrank =
∑

r(a)<r(b)

max(0, p(a) − p(b)) (10)

4.3.4 Fine-tuning loss to maximize the best-rewarded
candidate

Since our approach is based on RRHF, we calculate the
cross-entropy for the best response similar to fine-tuning:

Ltuning = −
∑
t

logP (ybest,t|x, ybest,<t) (11)

where ybest has the greatest r(yi) among all 0 < i < k.

In that way, PerfRL can continuously enhance its output,
even in cases where the best-generated code contains syntax
errors or does not have the best execution time. As we only
compare the candidate outputs based on the execution time
of the input program, it is highly likely that two candidate
output codes will have the same reward. The loss Ltuning

selects the ybest based on the sampling strategy. To foster
the model’s propensity for independent discovery of opti-
mization strategies, we have calibrated its learning priorities.
The highest priority is assigned to learning from random
samples, followed by a preference for greedy samples. The
target program is designated as the final learning priority.

4.3.5 Loss

We sample all the input data and calculate the loss L as a
combination of Lrank and Ltuning for the samples from the
same input.

Lz =
(
aLz

rank + Lz
tuning

)
(12)

z ∈ samplefrom(X) (13)

where X is all the input prompts from the dataset and a is a
constant.

5 EXPERIMENTS

5.1 Dataset

To fine-tune and evaluate PerfRL, we use the dataset from
PIE (Madaan et al., 2023). This dataset consists of approxi-
mately 40k Python files, 88k C++ files, and 3.6k Java files.
PIE captures the progressive changes made by a programmer

over time to improve their code. The dataset also contains
(slow, fast) pairs of code written by the same programmer.
We run our experiments on the subset of the dataset that
concerns the Python files. The training, test and validation
sets consist of approximately 36k, 1k and 2k samples respec-
tively. Each of the samples has at least one associated unit
test file that requires a specific input and has an expected
output result. We test the accuracy of the dataset by exe-
cuting all the input source code with a 5-second execution
limit. We found that the 72.4% of the training data, 76.4%
of the testing data, and 70.8% of the validation data are exe-
cutable. During our training, we skip all the input code that
is not originally executable in the first place. As for testing
and validation, we use all the data in order to compare our
approach with the baseline model.

5.2 Setup

We run the fine-tuning and reinforcement learning steps for
an instance of the CodeT5 model with 60 million parameters
and a learning rate of 2× 10−5. To reduce the training time
we run the whole process for 8 RL steps for 3 epochs. For
the training of the model, we use an NVIDIA A100 GPU
graphics card with 40GB of RAM on an Ubuntu 20.04 server
with 50 cores. Our model is trained within approximately 30
hours. Each epoch computes (i) the score of the generated
sequence (see Equation 9) and (ii) the loss for all the samples
of the dataset from the same input data. During the training
phase, we set the temperature to 1 and top_k to 50 for
random sampling.

As already mentioned, prior to running the reinforcement
learning step, we fine-tune the CodeT5 model with a one-
shot learning setting. That is to say, we feed each sample
of the dataset into the model once and compute the loss as
described in Equation 3. We set the learning rate to 5×10−5

and batch size to 32. The results are available in Table 1.

During the validation process, we use greedy sampling with
a beam search of size 4 for the input code to generate candi-
date samples. From these 4 samples, we choose the top 2
ones with the greatest accumulated probability. Then, we
set a reward value to the greedy sampling round using the
reward function r. The validated compilation rate measures
the number of rounds that pass the compilation over the total
number of input codes. The validated pass rate measures
the number of rounds that pass the execution of all the unit
tests over the total number of input codes. The validated
optimization rate measures the number of rounds that pass
the execution and have a better execution time in a single
core over the total number of input codes.

We also test our approach on 1000 samples. In the entire
process, we run the test before the RL framework to test the
current performance of the fine-tuned model and after the
RL framework in order to show the contribution of RL.

Table 1. Evaluation results of PerfRL and baseline models. The bold font indicates the evaluation results of PerfRL. The asterisk (*)
indicates the baseline model. The first block shows the results as reported in the paper of PIE (Madaan et al., 2023)

METHOD Model Size Sample strategy %OPT SP RTR

CODEGEN-16B 16B greedy and 1-shot 2.2 1.55 25.05
CODEGEN-2B 2B greedy 8.2 2.32 48.23
CODEGEN-16B 16B greedy 14.6 1.69 51.25
CODEX – greedy 14.3 2.7 53.49

CodeT5 (Before RL) 60M greedy and 0-shot 0 0 0
CodeT5 (24 Fine-tuning epoch)* 60M greedy and 0-shot 0.5 2.27 53.42
PerfRL (8 RL steps) 60M greedy and 0-shot 2.8 4.93 36.93

For our experiments, we set the reward values for the reward
function r to R1 = 0, R2 = 1, R3 = 1.3 and R4 = 2. As
already mentioned in Section 4.3.1, the actual reward values
do not affect the performance of the RL step, as long as we
assign a higher value to a much preferable sample.

5.3 Baselines

We use a fine-tuned version of the CodeT5 model with 24
epochs as our main baseline. Furthermore, we compare our
results with those of the original PIE paper, where models
from the family of CodeGen and Codex are used for their
experiments. We benchmark our approach against the main
baseline model using the evaluation metrics described in
Section 5.4.

5.4 Evaluation Metrics

We use the following evaluation metrics as also defined in
the paper of the PIE (Madaan et al., 2023) dataset:

• Percent Optimized (%OPT): The ratio of samples on
the test set that are improved by a given method.

• Speedup (SP): The actual (absolute) improvement in
execution time SP (o, n) = (on), where o and n are the
old and new execution times, respectively.

• Runtime Reduction (RTR): The normalized improve-
ment in execution time among the programs that have a
decrease in runtime and are syntactically and logically
correct, RTR(o, n) = (o−n

o × 100). We mention that
the average RTR is reported over the test set.

To measure the execution time of each generated program,
we calculate the cumulative execution time using all the unit
tests. We run each experiment three times and measure the
mean time on each set of unit tests in order to ensure that the
reduction of the execution time is not affected by random
factors.

5.5 Evaluation Results

Table 1 presents the mean %OPT, SP, and RTR scores of
the proposed method as well as that of the baseline model.
Although PerfRL relies on a model with fewer parameters,
it manages to perform equally or even better with respect
to the greedy and 1-shot versions of the CodeGen-16B and
CodeGen-2B models. Furthermore, as illustrated in Fig-
ure 3, both the pass and optimization rate increase propor-
tional to the RL steps. Thus, we argue that the utilization
of an RL step enables smaller models to learn easily the
task of source code optimization in a less resource and time-
consuming manner. More specifically, we train our model
for 30 hours as opposed to the baseline CodeGen which is
trained for approximately 3 days and requires a stronger
machine (i.e. 2 × NVIDIA A6000 for CodeGen-2B and 4
× NVIDIA A6000 for CodeGen-16B).

In order to determine whether our RL step is able to generate
good candidates by random or greedy sampling during the
training, we measure the compilation, pass, and optimiza-
tion rate as shown in Figure 4. Considering our sampling
strategy that concatenates the target program with the gener-
ated samples, we empirically observe that the threshold for
these three values is approximately 20% (red dashed line).
Since these three rates are always above the threshold, they
denote that our model generates meaningful candidates by
itself other than purely based on the target program.

5.6 Discussion

Our framework shows that an RL-based strategy for fine-
tuning is able to tune a model more effectively compared to
simple fine-tuning. Especially, for source code optimization,
it is crucial for the model to have the ability to explore the
search space by itself. However, codes that are functionally
equivalent are hard to learn if their semantics are drastically
different for LLM tokenizers to understand the structure of
the code on limited data. Our approach encourages LLMs
to make minor modifications to the input source code. How-
ever, we believe ML techniques with structure information

0 1 2 3 4 5 6 7
RL steps

0

1

2

3

4

%

Pass Rate
Optimization Rate

Figure 3. Pass rate and optimization rate on validation data over
RL steps on the fine-tuned CodeT5 model.

0 1 2 3 4 5 6 7
RL steps

0

20

40

60

80

100

%

Compilation Rate
Pass Rate
Optimization Rate

Figure 4. Compilation, pass, and optimization rate per RL step
for the generated programs using the fine-tuned CodeT5 model.
All the rates are calculated by the number of compiled, passed,
or optimized generated programs over the total number of the
generated programs.

of code can improve the ability of LLMs to understand the
complicated structure difference between two source codes.

6 CONCLUSION

In this paper, we propose a novel framework for the task of
code optimization, called PerfRL. Our framework combines
techniques from LLMs and RL, and it allows language mod-
els to take into consideration feedback from unit tests during
their fine-tuning process. To demonstrate the applicability
of our framework, we fine-tuned the CodeT5 model on the
PIE dataset. We benchmark the proposed approach against
a list of baseline models that rely solely on simple fine-
tuning, while ignoring logical and syntactical correctness
of the generated code. The evaluation results demonstrate
that by adopting our framework, one can reach state-of-art
performance using a smaller language model with fewer pa-
rameters, which in turn results in lower energy consumption,
something that is critical on edge computing devices.

Future work directions include (i) the integration of graph
representations for code such as ProGraML (Cummins et al.,
2020), (ii) the combination of graph neural networks and
LLMs to capture both structural and language characteris-
tics of the different parts of code, (iii) the implementation
of more sophisticated scoring and reward functions for RL,
(iv) the investigation of the applicability of the suggested
approach to edge computing systems with strict power or
energy budgets (v) the evaluation of our framework using
models with different architectures but with a similar num-
ber of parameters.

REFERENCES

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernan-
dez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L.,
Nanda, N., Olsson, C., Amodei, D., Brown, T., Clark, J.,
McCandlish, S., Olah, C., Mann, B., and Kaplan, J. Train-
ing a helpful and harmless assistant with reinforcement
learning from human feedback, 2022.

Bunel, R., Desmaison, A., Kumar, M. P., Torr, P. H. S., and
Kohli, P. Learning to superoptimize programs. CoRR,
abs/1611.01787, 2016. URL http://arxiv.org/
abs/1611.01787.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings, D.,

http://arxiv.org/abs/1611.01787
http://arxiv.org/abs/1611.01787

Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss, A.,
Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating large language models trained on code,
2021.

Cummins, C., Fisches, Z. V., Ben-Nun, T., Hoefler, T., and
Leather, H. Programl: Graph-based deep learning for
program optimization and analysis, 2020.

Gottschlich, J., Solar-Lezama, A., Tatbul, N., Carbin, M.,
Rinard, M., Barzilay, R., Amarasinghe, S., Tenenbaum,
J. B., and Mattson, T. The three pillars of machine pro-
gramming. In Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Pro-
gramming Languages, pp. 69–80, 2018a.

Gottschlich, J., Solar-Lezama, A., Tatbul, N., Carbin, M.,
Rinard, M., Barzilay, R., Amarasinghe, S., Tenenbaum,
J. B., and Mattson, T. The three pillars of machine
programming. In Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning
and Programming Languages, MAPL 2018, pp. 69–80,
New York, NY, USA, 2018b. Association for Com-
puting Machinery. ISBN 9781450358347. doi: 10.
1145/3211346.3211355. URL https://doi.org/
10.1145/3211346.3211355.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora,
A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., and
Steinhardt, J. Measuring coding challenge competence
with apps. NeurIPS, 2021.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. CodeSearchNet challenge: Evalu-
ating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. CodeRL: Mastering code generation through pre-
trained models and deep reinforcement learning. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=WaGvb7OzySA.

Liu, J., Zhu, Y., Xiao, K., Fu, Q., Han, X., Yang, W., and Ye,
D. Rltf: Reinforcement learning from unit test feedback,
2023.

Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A.,
Blanco, A., Clement, C. B., Drain, D., Jiang, D., Tang,
D., Li, G., Zhou, L., Shou, L., Zhou, L., Tufano, M.,

Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng,
S. K., Fu, S., and Liu, S. Codexglue: A machine learning
benchmark dataset for code understanding and generation.
CoRR, abs/2102.04664, 2021.

Madaan, A., Shypula, A., Alon, U., Hashemi, M., Ran-
ganathan, P., Yang, Y., Neubig, G., and Yazdanbakhsh,
A. Learning performance-improving code edits. arXiv
preprint arXiv:2302.07867, 2023.

Nijkamp, E., Hayashi, H., Xiong, C., Savarese, S., and Zhou,
Y. Codegen2: Lessons for training llms on programming
and natural languages. ICLR, 2023a.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. ICLR, 2023b.

Puri, R., Kung, D., Janssen, G., Zhang, W., Domeniconi, G.,
Zolotov, V., Dolby, J., Chen, J., Choudhury, M., Decker,
L., Thost, V., Buratti, L., Pujar, S., Ramji, S., Finkler,
U., Malaika, S., and Reiss, F. Codenet: A large-scale ai
for code dataset for learning a diversity of coding tasks,
2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Shen, B., Zhang, J., Chen, T., Zan, D., Geng, B., Fu, A.,
Zeng, M., Yu, A., Ji, J., Zhao, J., Guo, Y., and Wang, Q.
Pangu-coder2: Boosting large language models for code
with ranking feedback, 2023.

Shojaee, P., Jain, A., Tipirneni, S., and Reddy, C. K.
Execution-based code generation using deep reinforce-
ment learning, 2023.

Song, F., Yu, B., Li, M., Yu, H., Huang, F., Li, Y., and Wang,
H. Preference ranking optimization for human alignment,
2023.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe, R.,
Voss, C., Radford, A., Amodei, D., and Christiano, P. F.
Learning to summarize from human feedback. CoRR,
abs/2009.01325, 2020. URL https://arxiv.org/
abs/2009.01325.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention

https://doi.org/10.1145/3211346.3211355
https://doi.org/10.1145/3211346.3211355
http://arxiv.org/abs/1909.09436
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA
http://arxiv.org/abs/2302.07867
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2009.01325
https://arxiv.org/abs/2009.01325

is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Wang, Y., Wang, W., Joty, S., and Hoi, S. C. CodeT5:
Identifier-aware unified pre-trained encoder-decoder mod-
els for code understanding and generation. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 8696–8708, On-
line and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi:
10.18653/v1/2021.emnlp-main.685. URL https://
aclanthology.org/2021.emnlp-main.685.

Xue, W., An, B., Yan, S., and Xu, Z. Reinforcement learning
from diverse human preferences, 2023.

Yuan, Z., Yuan, H., Tan, C., Wang, W., Huang, S., and
Huang, F. Rrhf: Rank responses to align language models
with human feedback without tears, 2023.

Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang,
X., Zhao, E., Zhang, Y., Chen, Y., Wang, L., Luu, A. T.,
Bi, W., Shi, F., and Shi, S. Siren’s song in the ai ocean: A
survey on hallucination in large language models, 2023.

http://arxiv.org/abs/1706.03762
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685

