{ "paper_id": "2021", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T01:13:09.952585Z" }, "title": "Moses and the Character-Based Random Babbling Baseline: CoAStaL at AmericasNLP 2021 Shared Task", "authors": [ { "first": "Marcel", "middle": [], "last": "Bollmann", "suffix": "", "affiliation": {}, "email": "marcel@di.ku.dk" }, { "first": "Rahul", "middle": [], "last": "Aralikatte", "suffix": "", "affiliation": {}, "email": "" }, { "first": "H\u00e9ctor", "middle": [], "last": "Ricardo", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Murrieta", "middle": [], "last": "Bello", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Daniel", "middle": [], "last": "Hershcovich", "suffix": "", "affiliation": {}, "email": "" }, { "first": "Anders", "middle": [], "last": "S\u00f8gaard", "suffix": "", "affiliation": { "laboratory": "", "institution": "University of Copenhagen", "location": {} }, "email": "soegaard@di.ku.dk" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "We evaluated a range of neural machine translation techniques developed specifically for low-resource scenarios. Unsuccessfully. In the end, we submitted two runs: (i) a standard phrase-based model, and (ii) a random babbling baseline using character trigrams. We found that it was surprisingly hard to beat (i), in spite of this model being, in theory, a bad fit for polysynthetic languages; and more interestingly, that (ii) was better than several of the submitted systems, highlighting how difficult low-resource machine translation for polysynthetic languages is.", "pdf_parse": { "paper_id": "2021", "_pdf_hash": "", "abstract": [ { "text": "We evaluated a range of neural machine translation techniques developed specifically for low-resource scenarios. Unsuccessfully. In the end, we submitted two runs: (i) a standard phrase-based model, and (ii) a random babbling baseline using character trigrams. We found that it was surprisingly hard to beat (i), in spite of this model being, in theory, a bad fit for polysynthetic languages; and more interestingly, that (ii) was better than several of the submitted systems, highlighting how difficult low-resource machine translation for polysynthetic languages is.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Abstract", "sec_num": null } ], "body_text": [ { "text": "Shared tasks on machine translation are often conducted on large parallel training corpora: for example, the majority of datasets used in the WMT20 shared tasks have sentence pairs in the hundred thousands, often even millions (Barrault et al., 2020) . In contrast, the AmericasNLP 2021 shared task (Mager et al., 2021) provided us with as little as 3,883 sentence pairs (for Ashaninka), and with the exception of Quechua (125k pairs), all languages had fewer than 30k sentence pairs. Additionally, many of these languages are polysynthetic, which is known to provide additional challenges for machine translation (Klavans et al., 2018; Mager et al., 2018b) .", "cite_spans": [ { "start": 227, "end": 250, "text": "(Barrault et al., 2020)", "ref_id": null }, { "start": 299, "end": 319, "text": "(Mager et al., 2021)", "ref_id": "BIBREF23" }, { "start": 614, "end": 636, "text": "(Klavans et al., 2018;", "ref_id": "BIBREF18" }, { "start": 637, "end": 657, "text": "Mager et al., 2018b)", "ref_id": "BIBREF22" } ], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "We initially focused our efforts on two areas: (i) obtaining more data, both parallel and monolingual (Sec. 2); and (ii) exploring a range of different neural machine translation techniques, particular those specifically developed for low-resource scenarios, to find a promising system to build on and tweak further. Unfortunately, we were wholly unsuccessful in the latter (Sec. 5). All neural models that we tried performed extremely poorly when compared to a standard statistical phrase-based model (Sec. 3.1). The overall low performance of all our models further prompted us to implement a \"random babbling\" baseline (Sec. 3.2): a model that outputs plausible-looking n-grams in the target language without any actual relation to the source sentences. This baseline, together with the phrasebased model, were the only two systems we ended up submitting. Our main findings are:", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "\u2022 It was surprisingly hard to beat a standard phrase-based model, as evidenced not only by our own failed attempts, but also by this system taking third place on three languages in the official evaluation (track 1).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "\u2022 It is apparently challenging for many MT systems to even produce well-formed outputs in the target languages, as our random babbling baseline outperformed at least one other system on nine of the languages, and even took fifth place out of 12 on Ashaninka (track 2).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Introduction", "sec_num": "1" }, { "text": "We train models for all languages provided by the shared task, using their official training datasets (cf. Table 1 ). As the shared task allowed for using external datasets, we also tried to find more data sources to use for model training.", "cite_spans": [], "ref_spans": [ { "start": 107, "end": 114, "text": "Table 1", "ref_id": "TABREF1" } ], "eq_spans": [], "section": "Data", "sec_num": "2" }, { "text": "We gathered parallel Spanish-totarget datasets for the following languages which should not overlap with the data provided by the shared task organizers: Aymara from JW300 (Agi\u0107 and Vuli\u0107, 2019) ; Guarani from Tatoeba; and Nahuatl and Quechua from the Bible corpus by Christodouloupoulos and Steedman (2015) . We note that for the Bible corpus, the Nahuatl portion is from a narrower dialectal region (NHG \"Tetelcingo Nahuatl\") than the data in the shared task, and it also covers a different variant of Quechua (QUW \"Kichwa\" vs. QUY \"Ayacucho Quechua\"), but we hoped that in this extremely low-resource scenario, this would still prove useful. All datasets were obtained from OPUS 1 (Tiedemann, 2012) .", "cite_spans": [ { "start": 172, "end": 194, "text": "(Agi\u0107 and Vuli\u0107, 2019)", "ref_id": "BIBREF0" }, { "start": 268, "end": 307, "text": "Christodouloupoulos and Steedman (2015)", "ref_id": "BIBREF9" }, { "start": 684, "end": 701, "text": "(Tiedemann, 2012)", "ref_id": "BIBREF35" } ], "ref_spans": [], "eq_spans": [], "section": "Parallel data", "sec_num": null }, { "text": "Monolingual data Wikipedias exist for Aymara, Guaran\u00ed, Nahuatl, and Quechua. We use WikiExtractor (Attardi, 2015) to obtain text data from their respective dumps, 2 then use a small set of regular expressions to clean them from XML tags and entities. This gives us between 28k and 100k lines of text per language. We obtain further monolingual data from several online sources in PDF format. For Nahuatl and H\u00f1\u00e4h\u00f1u, we use a book provided by the Mexican government; 3 for Quechua, we use two books: The Little Prince (Saint-Exup\u00e9ry, 2018) and Antonio Raimondi's Once upon a time.. in Peru (Villacorta, 2007) . The Mexican government also publishes the series Languages from Mexico which contains books based on short stories in Nahuatl (Gustavo et al., 2007) , Raramuri (Arvizu Castillo, 2002) , H\u00f1\u00e4h\u00f1u (Mondrag\u00f3n et al., 2002b) , and Wix\u00e1rika (Mondrag\u00f3n et al., 2002a) . Finally, we also use the Bible translated to Quechua, Guarani, and Aymara. We extract the text for all of these resources with the Google OCR API. 4", "cite_spans": [ { "start": 98, "end": 113, "text": "(Attardi, 2015)", "ref_id": null }, { "start": 589, "end": 607, "text": "(Villacorta, 2007)", "ref_id": "BIBREF36" }, { "start": 736, "end": 758, "text": "(Gustavo et al., 2007)", "ref_id": "BIBREF15" }, { "start": 778, "end": 793, "text": "Castillo, 2002)", "ref_id": "BIBREF1" }, { "start": 803, "end": 828, "text": "(Mondrag\u00f3n et al., 2002b)", "ref_id": "BIBREF26" }, { "start": 844, "end": 869, "text": "(Mondrag\u00f3n et al., 2002a)", "ref_id": "BIBREF25" } ], "ref_spans": [], "eq_spans": [], "section": "Parallel data", "sec_num": null }, { "text": "We first describe the two models we submitted: a standard phrase-based model (CoAStaL-1) and a random babbling baseline (CoAStaL-2). Other models that we experimented with but did not submit for evaluation are discussed later in Sec. 5.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Models", "sec_num": "3" }, { "text": "We train a statistical phrase-based model with Moses (Koehn et al., 2007) using default settings, following the guidelines for training a baseline. 5 We do minimal preprocessing: we use the provided cleaning script and rely on plain whitespace tokenization, with the only exception that we also insert spaces around square brackets. The language model is trained with 5-grams instead of 3-grams, as this improved the results very slightly on the development sets. We train a separate model for each language and use the respective development set for tuning before translating the test set.", "cite_spans": [ { "start": 53, "end": 73, "text": "(Koehn et al., 2007)", "ref_id": "BIBREF19" }, { "start": 148, "end": 149, "text": "5", "ref_id": null } ], "ref_spans": [], "eq_spans": [], "section": "Phrase-Based MT", "sec_num": "3.1" }, { "text": "The models we submitted did, mistakenly, not make use of the additional parallel data we gathered (cf. Sec. 2). We evaluated the same system trained with this additional data after the deadline, but unfortunately did not observe an improvement; we present results for both variants in Sec. 4.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Phrase-Based MT", "sec_num": "3.1" }, { "text": "Since we observed very low scores for all the models we tried, we wanted to compare with a baseline that generates text based only on (i) n-gram distributions in the target language, and (ii) lengths of the source sentences. We call this baseline random babbling because it is in no way conditioned on the actual words in the source sentences.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Random Babbling Baseline", "sec_num": "3.2" }, { "text": "Concretely, we \"train\" our baseline by extracting and counting all character trigrams in the training file of the target language. Characters were chosen over words as the official evaluation metric of the shared task, chrF, is character-based. We also calculate the average length ratio of the sentence pairs in order to determine the desired length of our \"translation\" at test time. To generate output, we simply choose the top n most frequent character trigrams, with n chosen so that the desired sentence length is reached. 6 Lastly, we perform a few tweaks to disguise this babbling as an actual translation: (i) we randomize the order of the chosen trigrams, (ii) reduce multiple consecutive whitespace characters to a single space, (iii) lowercase all characters that are not word-initial and uppercase the sentence-initial Table 2 : Results for our submitted models on DEV and TEST sets. All TEST results are from the official evaluation except for the \"Phrase-based + extra data\" setting, which we evaluated after the deadline.", "cite_spans": [ { "start": 529, "end": 530, "text": "6", "ref_id": null } ], "ref_spans": [ { "start": 832, "end": 839, "text": "Table 2", "ref_id": null } ], "eq_spans": [], "section": "Random Babbling Baseline", "sec_num": "3.2" }, { "text": "character, and (iv) if the sequence does not end in a punctuation mark but the Spanish source sentence did, we copy and add this punctuation character from the source side.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Random Babbling Baseline", "sec_num": "3.2" }, { "text": "Results of our models are shown in Table 2 , both for our own evaluation on the development sets and for the official evaluation on the test sets (Ebrahimi et al., 2021) .", "cite_spans": [ { "start": 146, "end": 169, "text": "(Ebrahimi et al., 2021)", "ref_id": "BIBREF23" } ], "ref_spans": [ { "start": 35, "end": 42, "text": "Table 2", "ref_id": null } ], "eq_spans": [], "section": "Results", "sec_num": "4" }, { "text": "Phrase-Based MT Our phrase-based model (Sec. 3.1) was ranked in track 1 of the shared task evaluation as it makes use of the development sets for tuning. Compared to the other systems evaluated in this track, we observe a solid average performance of our model-it usually ranks in the middle of the field, with the best placement being 3rd on Bribri, H\u00f1\u00e4h\u00f1u, and Shipibo-Konibo, and the worst ranking being 8th out of 11 on Guarani. In terms of chrF score, the model ranges between 0.159 (on Raramuri) and 0.297 (on Shipibo-Konibo), but we note that there is a noticeable gap to the bestperforming system, Helsinki-2, which outperforms ours by about +0.09 chrF on average.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Results", "sec_num": "4" }, { "text": "Random Babbling Our random babbling baseline (Sec. 3.2) did not make use of the development sets and was therefore ranked in track 2 of the official evaluation. Amazingly, it almost never ranks last and even takes 5th place out of 12 on Ashaninka. It also outperforms the official baseline on eight of the languages. In terms of BLEU score, on the other hand, this model usually scores close to zero. This is because we based it on character trigrams; if we wanted to optimize for BLEU, we could have chosen word-based babbling instead.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Results", "sec_num": "4" }, { "text": "Comparing across the tracks with our first, phrasebased system, we observe that the latter scores consistently better, which is reassuring.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Results", "sec_num": "4" }, { "text": "We intended our phrase-based Moses system more as a baseline for our experiments with different neural models than as an actual system submission. It was surprising to us how clearly this system outperformed our attempts at building a neural MT system, and that it already did so with its default configuration. In theory, whitespace tokenization should be a bad fit for polysynthetic languages, as a high degree of morphological complexity exacerbates the problem of data sparsity and rarely seen word forms. We experimented with different subword tokenization techniques in combination with Moses, but this always resulted in degraded performance on the development sets. The random babbling baseline was motivated by two observations: (i) performance was extremely low for all models we tried, and (ii) outputs of the neural models frequently looked very unnatural, to the point that the models had not yet learned how to form plausible-looking sentences in the target languages. This is quite typical behavior for underfitted neural models. As an example, this is an output we observed when running the official baseline system on the development set for Raramuri:", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "(1) IN:", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "Realmente no me importa si tengo un lugar para vivir. GOLD: Ke chibi ir\u00e9 mapure ke nir\u00falisaka k\u00fami ne bet\u00e9lima. PRED: ( 2 ) ( a ) k\u00e9 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 ne ga'r\u00e1 [. . . ] This prompted us to implement a baseline which, while having no relation to the actual input sentence, at least better resembles the typical distribution of character n-grams in the given language.", "cite_spans": [ { "start": 337, "end": 345, "text": "[. . . ]", "ref_id": null } ], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "Here is an example from the test set for Ashaninka with outputs from both our phrase-based (SYS-1) and random (SYS-2) model:", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "(2) IN: Todav\u00eda estoy trabajando para este d\u00eda. GOLD: Irosatitatsi nantabeeti oka kitaiteriki. SYS-1: Tekirata nosaikaki trabajando inchamenta itovantarori.\" d\u00eda. SYS-2: Iritsiri irotakntakanarishiantakiro aka.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "We can see that both system outputs bear very little resemblance to the gold translation or to each other. While Moses (SYS-1) copies a few Spanish words and includes implausibly placed punctuation marks, random babbling (SYS-2) produces output of similar length to the correct translation and overlaps with it in several observable character trigrams (e.g. iro, tsi, ant).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "Obviously, the random babbling baseline is not meant as an actual suggestion for a translation system-it literally does not \"translate\" anything. However, as the official shared task evaluation and the examples above show, it can serve as a useful \"sanity check\" for situations where the performance of actual MT systems is so low that it is unclear whether they even acquired superficial knowledge of character distributions in the target language.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Discussion", "sec_num": "4.1" }, { "text": "Here we briefly describe other ideas that we pursued, but were unfortunately not successful with, so we did not submit any systems based on these techniques for evaluation.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Things that did not work", "sec_num": "5" }, { "text": "Pre-trained Transformers Following Rothe et al. 2020, we use an auto-encoding transformer as the encoder and an auto-regressive transformer as the decoder of a sequence-to-sequence model. Out of the several configurations we experimented with, the best performance was observed when the encoder is pre-trained on the Spanish OSCAR corpus (Ortiz Su\u00e1rez et al., 2020) and the decoders are pre-trained on language-specific monolingual corpora collected from the web (cf. Sec. 2) along with the target files of the training data. However, the results were not on-par with the simpler models; averaging over all languages, we observed a chrF score of 0.12 on the dev sets, compared to 0.23 with the phrase-based model (cf. Sec. 3.1). We postulate that the training data was just not enough to train the cross-attention weights between the encoder and decoders. Note that these weights need to be trained from scratch, as opposed to the other weights which are initialized from language modelling checkpoints.", "cite_spans": [ { "start": 338, "end": 365, "text": "(Ortiz Su\u00e1rez et al., 2020)", "ref_id": "BIBREF29" } ], "ref_spans": [], "eq_spans": [], "section": "Things that did not work", "sec_num": "5" }, { "text": "In an attempt to improve the transformer-based models, we used the shared task data to train similar transformer-based models in the reverse direction, i.e. to Spanish, in order to back-translate the monolingual corpora (cf. Sec. 2). This would give us automatically translated Spanish outputs to use as the source side for additional training data (Sennrich et al., 2016; Hoang et al., 2018) . Since monolingual data in Spanish-which was used to pre-train the decoder's language model for this experiment-is abundant, we expected the machine-translated Spanish text to be of reasonably good quality. However, the models turned out to perform quite badly, with the resulting Spanish text being of very low quality and often very repetitive. We therefore decided to abandon this direction after preliminary experiments.", "cite_spans": [ { "start": 349, "end": 372, "text": "(Sennrich et al., 2016;", "ref_id": "BIBREF34" }, { "start": 373, "end": 392, "text": "Hoang et al., 2018)", "ref_id": "BIBREF17" } ], "ref_spans": [], "eq_spans": [], "section": "Back-translation", "sec_num": null }, { "text": "Character-Level NMT Since many of the languages in the shared task are polysynthetic, a character-level model might be better suited here, as it can better learn morphology (Belinkov et al., 2017) . We train fully character-level models following Lee et al. (2017) , which are based on com-bining convolutional and recurrent layers. 7 Finding a good hyperparameter configuration for this model proved very time-consuming; the best configuration we found modifies the original model by using half the number of units in the embedding layer and decoder layers (256 and 512, respectively). For Quechua, which we initially experimented on, this yielded a chrF score of 0.33 on the dev set vs. 0.27 with phrase-based MT, but we ran out of time to train models for the other languages. A post-hoc evaluation on the other languages failed to replicate this success, though. Potentially, the hyperparameter configuration is very sensitive to the language in question, or the amount of training data was not enough for the other languages (Quechua had by far the largest training set of all languages in the shared task).", "cite_spans": [ { "start": 173, "end": 196, "text": "(Belinkov et al., 2017)", "ref_id": "BIBREF6" }, { "start": 247, "end": 264, "text": "Lee et al. (2017)", "ref_id": "BIBREF20" }, { "start": 333, "end": 334, "text": "7", "ref_id": null } ], "ref_spans": [], "eq_spans": [], "section": "Back-translation", "sec_num": null }, { "text": "We train NMT models using a language model prior, following Baziotis et al. (2020) . This method allows us to make use of the additional monolingual data we gathered (cf. Sec. 2) within a neural MT framework, and we hoped that this would help the model to produce valid words in the target languages, i.e., reduce the \"babbling\" effect we saw in outputs like Example (1) above. We focused our efforts on the LSTM-based models provided by the authors 8 rather than the transformer ones, since we believe that those should be easier to train in this extremely low-resource setting. Despite experimenting with different hyperparameters (including number and size of LSTM layers), we could not exceed an average 0.16 chrF on the dev sets (compared to 0.23 with the phrase-based model).", "cite_spans": [ { "start": 60, "end": 82, "text": "Baziotis et al. (2020)", "ref_id": "BIBREF5" } ], "ref_spans": [], "eq_spans": [], "section": "Language Model Prior", "sec_num": null }, { "text": "We experiment with graph convolutional encoders using the framework by Bastings et al. (2017) . Thus, we train NMT systems that operate directly over graphs; in our case, syntactic annotations of the source sentences following the Universal Dependencies (UD) scheme (Nivre et al., 2020) . We parsed the all the source sentences from training set provided by the task organizer with Stanza (Qi et al., 2020) . We were initially motivated to follow this approach because UD annotation can provide extra information to the encoder to generate better translations, ideally with less data. Even though we tested several configurations, not even our best architecture-two layers of GCN encoder with 250 units, and LSTM decoder with 250 units, trained for 5 epochs, with a vocabulary of 5000 words in source and targetwas able to outperform the random babbling system. We hypothesize that with this amount of examples, UD's external information is not sufficient to produce an efficient encoder.", "cite_spans": [ { "start": 71, "end": 93, "text": "Bastings et al. (2017)", "ref_id": "BIBREF4" }, { "start": 266, "end": 286, "text": "(Nivre et al., 2020)", "ref_id": "BIBREF27" }, { "start": 389, "end": 406, "text": "(Qi et al., 2020)", "ref_id": "BIBREF31" } ], "ref_spans": [], "eq_spans": [], "section": "Graph Convolutional Encoders", "sec_num": null }, { "text": "The (relative) success of our random babbling baseline shows that many MT systems fail to reproduce even superficial characteristics of word formation and character distribution in the target languages; a result that was confirmed by our own failed attempts at training a competitive neural MT model.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Conclusion", "sec_num": "6" }, { "text": "Out of the neural models we tried, purely character-level MT was among the more promising ones. We speculate that in the Spanish-to-target setting, a model that combines a strong pre-trained Spanish encoder with a purely character-level decoder might be a promising direction for further experiments.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Conclusion", "sec_num": "6" }, { "text": "We also note that there are several languagespecific resources, such as morphological segmentation tools, 9 that might be worth using. We focused our efforts here on finding a broadly applicable architecture without any language-specific components, but would be curious to see if including such components can yield significant improvements on individual languages.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Conclusion", "sec_num": "6" }, { "text": "https://opus.nlpl.eu/ 2 https://dumps.wikimedia.org/ 3 https://www.gob.mx/inpi/documentos/ libros-en-lenguas-indigenas 4 https://cloud.google.com/vision/docs/ pdf", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "http://www.statmt.org/moses/?n=Moses. Baseline6 We also tried random baseline models with other n-gram lengths, sampling from the distribution (instead of always picking the most frequent items), and training a simple language model, but found nothing that significantly improved on this approach on the development set.", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "We use our own reimplementation of the authors' code. 8 https://github.com/cbaziotis/ lm-prior-for-nmt", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null } ], "back_matter": [ { "text": "Marcel Bollmann was funded from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement No. 845995. Rahul Aralikatte and Anders S\u00f8gaard were funded by a Google Focused Research Award. Miryam de Lhoneux was funded by the Swedish Research Council (grant 2020-00437).", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "Acknowledgements", "sec_num": null } ], "bib_entries": { "BIBREF0": { "ref_id": "b0", "title": "JW300: A widecoverage parallel corpus for low-resource languages", "authors": [ { "first": "\u017deljko", "middle": [], "last": "Agi\u0107", "suffix": "" }, { "first": "Ivan", "middle": [], "last": "Vuli\u0107", "suffix": "" } ], "year": 2019, "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", "volume": "", "issue": "", "pages": "3204--3210", "other_ids": { "DOI": [ "10.18653/v1/P19-1310" ] }, "num": null, "urls": [], "raw_text": "\u017deljko Agi\u0107 and Ivan Vuli\u0107. 2019. JW300: A wide- coverage parallel corpus for low-resource languages. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3204-3210, Florence, Italy. Association for Compu- tational Linguistics.", "links": null }, "BIBREF1": { "ref_id": "b1", "title": "Relatos tarahumaras = Ki'\u00e1 ra'ichaala rar\u00e1muli. CNCA-Direcci\u00f3n Gen-9 e.g. Apertium for Guarani", "authors": [ { "first": "Teresa Arvizu", "middle": [], "last": "Castillo", "suffix": "" } ], "year": 2002, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Teresa Arvizu Castillo. 2002. Relatos tarahumaras = Ki'\u00e1 ra'ichaala rar\u00e1muli. CNCA-Direcci\u00f3n Gen- 9 e.g. Apertium for Guarani: https://github.com/ apertium/apertium-grn eral de Culturas Populares e Ind\u00edgenas, Ciudad de Mexico.", "links": null }, "BIBREF3": { "ref_id": "b3", "title": "Proceedings of the Fifth Conference on Machine Translation", "authors": [ { "first": "Lo\u00efc", "middle": [], "last": "Barrault", "suffix": "" }, { "first": "Magdalena", "middle": [], "last": "Biesialska", "suffix": "" }, { "first": "Ond\u0159ej", "middle": [], "last": "Bojar", "suffix": "" }, { "first": "Marta", "middle": [ "R" ], "last": "Costa-Juss\u00e0", "suffix": "" }, { "first": "Christian", "middle": [], "last": "Federmann", "suffix": "" }, { "first": "Yvette", "middle": [], "last": "Graham", "suffix": "" }, { "first": "Roman", "middle": [], "last": "Grundkiewicz", "suffix": "" }, { "first": "Barry", "middle": [], "last": "Haddow", "suffix": "" }, { "first": "Matthias", "middle": [], "last": "Huck", "suffix": "" }, { "first": "Eric", "middle": [], "last": "Joanis", "suffix": "" }, { "first": "Tom", "middle": [], "last": "Kocmi", "suffix": "" }, { "first": "Philipp", "middle": [], "last": "Koehn", "suffix": "" }, { "first": "Chi-Kiu", "middle": [], "last": "Lo", "suffix": "" }, { "first": "Nikola", "middle": [], "last": "Ljube\u0161i\u0107", "suffix": "" }, { "first": "Christof", "middle": [], "last": "Monz", "suffix": "" }, { "first": "Makoto", "middle": [], "last": "Morishita", "suffix": "" }, { "first": "Masaaki", "middle": [], "last": "Nagata", "suffix": "" }, { "first": "Toshiaki", "middle": [], "last": "Nakazawa", "suffix": "" } ], "year": null, "venue": "", "volume": "", "issue": "", "pages": "1--55", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lo\u00efc Barrault, Magdalena Biesialska, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljube\u0161i\u0107, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshi- aki Nakazawa, Santanu Pal, Matt Post, and Marcos Zampieri. 2020. Findings of the 2020 conference on machine translation (WMT20). In Proceedings of the Fifth Conference on Machine Translation, pages 1-55, Online. Association for Computational Lin- guistics.", "links": null }, "BIBREF4": { "ref_id": "b4", "title": "Graph convolutional encoders for syntax-aware neural machine translation", "authors": [ { "first": "Jasmijn", "middle": [], "last": "Bastings", "suffix": "" }, { "first": "Ivan", "middle": [], "last": "Titov", "suffix": "" }, { "first": "Wilker", "middle": [], "last": "Aziz", "suffix": "" }, { "first": "Diego", "middle": [], "last": "Marcheggiani", "suffix": "" }, { "first": "Khalil", "middle": [], "last": "Sima", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing", "volume": "", "issue": "", "pages": "1957--1967", "other_ids": { "DOI": [ "10.18653/v1/D17-1209" ] }, "num": null, "urls": [], "raw_text": "Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima'an. 2017. Graph convolutional encoders for syntax-aware neural ma- chine translation. In Proceedings of the 2017 Con- ference on Empirical Methods in Natural Language Processing, pages 1957-1967, Copenhagen, Den- mark. Association for Computational Linguistics.", "links": null }, "BIBREF5": { "ref_id": "b5", "title": "Language model prior for low-resource neural machine translation", "authors": [ { "first": "Christos", "middle": [], "last": "Baziotis", "suffix": "" }, { "first": "Barry", "middle": [], "last": "Haddow", "suffix": "" }, { "first": "Alexandra", "middle": [], "last": "Birch", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", "volume": "", "issue": "", "pages": "7622--7634", "other_ids": { "DOI": [ "10.18653/v1/2020.emnlp-main.615" ] }, "num": null, "urls": [], "raw_text": "Christos Baziotis, Barry Haddow, and Alexandra Birch. 2020. Language model prior for low-resource neu- ral machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Lan- guage Processing (EMNLP), pages 7622-7634, On- line. Association for Computational Linguistics.", "links": null }, "BIBREF6": { "ref_id": "b6", "title": "What do neural machine translation models learn about morphology?", "authors": [ { "first": "Yonatan", "middle": [], "last": "Belinkov", "suffix": "" }, { "first": "Nadir", "middle": [], "last": "Durrani", "suffix": "" }, { "first": "Fahim", "middle": [], "last": "Dalvi", "suffix": "" }, { "first": "Hassan", "middle": [], "last": "Sajjad", "suffix": "" }, { "first": "James", "middle": [], "last": "Glass", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics", "volume": "", "issue": "", "pages": "861--872", "other_ids": { "DOI": [ "10.18653/v1/P17-1080" ] }, "num": null, "urls": [], "raw_text": "Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has- san Sajjad, and James Glass. 2017. What do neu- ral machine translation models learn about morphol- ogy? In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 861-872, Vancouver, Canada. Association for Computational Linguistics.", "links": null }, "BIBREF7": { "ref_id": "b7", "title": "Diccionario Raramuri-Castellano (Tarahumara)", "authors": [ { "first": "David", "middle": [], "last": "Brambila", "suffix": "" } ], "year": 1976, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "David Brambila. 1976. Diccionario Raramuri- Castellano (Tarahumara). Obra Nacional de la Buena Prensa, Mexico.", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Development of a Guarani -Spanish parallel corpus", "authors": [ { "first": "Luis", "middle": [], "last": "Chiruzzo", "suffix": "" }, { "first": "Pedro", "middle": [], "last": "Amarilla", "suffix": "" }, { "first": "Adolfo", "middle": [], "last": "R\u00edos", "suffix": "" }, { "first": "Gustavo", "middle": [ "Gim\u00e9nez" ], "last": "Lugo", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 12th Language Resources and Evaluation Conference", "volume": "", "issue": "", "pages": "2629--2633", "other_ids": {}, "num": null, "urls": [], "raw_text": "Luis Chiruzzo, Pedro Amarilla, Adolfo R\u00edos, and Gus- tavo Gim\u00e9nez Lugo. 2020. Development of a Guarani -Spanish parallel corpus. In Proceedings of the 12th Language Resources and Evaluation Con- ference, pages 2629-2633, Marseille, France. Euro- pean Language Resources Association.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "A massively parallel corpus: the Bible in 100 languages. Language Resources and Evaluation", "authors": [ { "first": "Christos", "middle": [], "last": "Christodouloupoulos", "suffix": "" }, { "first": "Mark", "middle": [], "last": "Steedman", "suffix": "" } ], "year": 2015, "venue": "", "volume": "49", "issue": "", "pages": "375--395", "other_ids": { "DOI": [ "10.1007/s10579-014-9287-y" ] }, "num": null, "urls": [], "raw_text": "Christos Christodouloupoulos and Mark Steedman. 2015. A massively parallel corpus: the Bible in 100 languages. Language Resources and Evalua- tion, 49(2):375-395.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "Tsunkua -corpus paralelo otom\u00ed-espa\u00f1ol", "authors": [ { "first": "Comunidad", "middle": [], "last": "Elotl", "suffix": "" } ], "year": 2021, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Comunidad Elotl. 2021. Tsunkua -corpus paralelo otom\u00ed-espa\u00f1ol.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "\u00d1aantsipeta ash\u00e1ninkaki birakochaki. Diccionario Ash\u00e1ninka-Castellano. Versi\u00f3n preliminar", "authors": [ { "first": "Cushimariano", "middle": [], "last": "Rub\u00e9n", "suffix": "" }, { "first": "", "middle": [], "last": "Romano", "suffix": "" }, { "first": "C", "middle": [], "last": "Richer", "suffix": "" }, { "first": "Q", "middle": [], "last": "Sebasti\u00e1n", "suffix": "" } ], "year": 2008, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Rub\u00e9n Cushimariano Romano and Richer C. Se- basti\u00e1n Q. 2008. \u00d1aantsipeta ash\u00e1ninkaki bi- rakochaki. Diccionario Ash\u00e1ninka-Castellano. Ver- si\u00f3n preliminar. http://www.lengamer. org/publicaciones/diccionarios/.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "Americasnli: Evaluating zero-shot natural language understanding of pretrained multilingual models", "authors": [ { "first": "Abteen", "middle": [], "last": "Ebrahimi", "suffix": "" }, { "first": "Manuel", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Arturo", "middle": [], "last": "Oncevay", "suffix": "" }, { "first": "Vishrav", "middle": [], "last": "Chaudhary", "suffix": "" }, { "first": "Luis", "middle": [], "last": "Chiruzzo", "suffix": "" }, { "first": "Angela", "middle": [], "last": "Fan", "suffix": "" }, { "first": "John", "middle": [], "last": "Ortega", "suffix": "" }, { "first": "Ricardo", "middle": [], "last": "Ramos", "suffix": "" }, { "first": "Annette", "middle": [], "last": "Rios", "suffix": "" }, { "first": "Ivan", "middle": [], "last": "Vladimir", "suffix": "" }, { "first": "Gustavo", "middle": [ "A" ], "last": "Gim\u00e9nez-Lugo", "suffix": "" }, { "first": "Elisabeth", "middle": [], "last": "Mager", "suffix": "" } ], "year": null, "venue": "Ngoc Thang Vu, and Katharina Kann. 2021", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Abteen Ebrahimi, Manuel Mager, Arturo Oncevay, Vishrav Chaudhary, Luis Chiruzzo, Angela Fan, John Ortega, Ricardo Ramos, Annette Rios, Ivan Vladimir, Gustavo A. Gim\u00e9nez-Lugo, Elisabeth Mager, Graham Neubig, Alexis Palmer, Rolando A. Coto Solano, Ngoc Thang Vu, and Katharina Kann. 2021. Americasnli: Evaluating zero-shot nat- ural language understanding of pretrained multilin- gual models in truly low-resource languages.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "Neural machine translation models with back-translation for the extremely low-resource indigenous language Bribri", "authors": [ { "first": "Isaac", "middle": [], "last": "Feldman", "suffix": "" }, { "first": "Rolando", "middle": [], "last": "Coto-Solano", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 28th International Conference on Computational Linguistics", "volume": "", "issue": "", "pages": "3965--3976", "other_ids": { "DOI": [ "10.18653/v1/2020.coling-main.351" ] }, "num": null, "urls": [], "raw_text": "Isaac Feldman and Rolando Coto-Solano. 2020. Neu- ral machine translation models with back-translation for the extremely low-resource indigenous language Bribri. In Proceedings of the 28th International Conference on Computational Linguistics, pages 3965-3976, Barcelona, Spain (Online). Interna- tional Committee on Computational Linguistics.", "links": null }, "BIBREF14": { "ref_id": "b14", "title": "Corpus creation and initial SMT experiments between Spanish and Shipibo-konibo", "authors": [ { "first": "Ana-Paula", "middle": [], "last": "Galarreta", "suffix": "" }, { "first": "Andr\u00e9s", "middle": [], "last": "Melgar", "suffix": "" }, { "first": "Arturo", "middle": [], "last": "Oncevay", "suffix": "" } ], "year": 2017, "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing", "volume": "", "issue": "", "pages": "238--244", "other_ids": { "DOI": [ "10.26615/978-954-452-049-6_033" ] }, "num": null, "urls": [], "raw_text": "Ana-Paula Galarreta, Andr\u00e9s Melgar, and Arturo On- cevay. 2017. Corpus creation and initial SMT ex- periments between Spanish and Shipibo-konibo. In Proceedings of the International Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 238-244, Varna, Bulgaria. INCOMA Ltd.", "links": null }, "BIBREF15": { "ref_id": "b15", "title": "Tepole Rivera Miguel \u00c1ngel, and Tzanahua Antonio", "authors": [ { "first": "Gustavo", "middle": [], "last": "Aguilar Guti\u00e9rrez", "suffix": "" }, { "first": "Arellano", "middle": [], "last": "Zamora Rogelio", "suffix": "" }, { "first": "Conde", "middle": [], "last": "Reyes Magdaleno", "suffix": "" } ], "year": 2007, "venue": "Relatos nahuas = Nahua zazanilli. CNCA-Direcci\u00f3n General de Culturas Populares e Ind\u00edgenas", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Aguilar Guti\u00e9rrez Gustavo, Arellano Zamora Rogelio, Conde Reyes Magdaleno, Tepole Rivera Miguel \u00c1n- gel, and Tzanahua Antonio. 2007. Relatos nahuas = Nahua zazanilli. CNCA-Direcci\u00f3n General de Cul- turas Populares e Ind\u00edgenas, Ciudad de Mexico.", "links": null }, "BIBREF16": { "ref_id": "b16", "title": "Axolotl: a web accessible parallel corpus for Spanish-Nahuatl", "authors": [ { "first": "Ximena", "middle": [], "last": "Gutierrez-Vasques", "suffix": "" }, { "first": "Gerardo", "middle": [], "last": "Sierra", "suffix": "" }, { "first": "Isaac", "middle": [], "last": "Hernandez Pompa", "suffix": "" } ], "year": 2016, "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)", "volume": "", "issue": "", "pages": "4210--4214", "other_ids": {}, "num": null, "urls": [], "raw_text": "Ximena Gutierrez-Vasques, Gerardo Sierra, and Isaac Hernandez Pompa. 2016. Axolotl: a web accessible parallel corpus for Spanish-Nahuatl. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 4210-4214, Portoro\u017e, Slovenia. European Language Resources Association (ELRA).", "links": null }, "BIBREF17": { "ref_id": "b17", "title": "Iterative backtranslation for neural machine translation", "authors": [ { "first": "Duy", "middle": [], "last": "Vu Cong", "suffix": "" }, { "first": "Philipp", "middle": [], "last": "Hoang", "suffix": "" }, { "first": "Gholamreza", "middle": [], "last": "Koehn", "suffix": "" }, { "first": "Trevor", "middle": [], "last": "Haffari", "suffix": "" }, { "first": "", "middle": [], "last": "Cohn", "suffix": "" } ], "year": 2018, "venue": "Proceedings of the 2nd Workshop on Neural Machine Translation and Generation", "volume": "", "issue": "", "pages": "18--24", "other_ids": { "DOI": [ "10.18653/v1/W18-2703" ] }, "num": null, "urls": [], "raw_text": "Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. 2018. Iterative back- translation for neural machine translation. In Pro- ceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 18-24, Mel- bourne, Australia. Association for Computational Linguistics.", "links": null }, "BIBREF18": { "ref_id": "b18", "title": "Challenges in speech recognition and translation of high-value lowdensity polysynthetic languages", "authors": [ { "first": "Judith", "middle": [], "last": "Klavans", "suffix": "" }, { "first": "John", "middle": [], "last": "Morgan", "suffix": "" }, { "first": "Stephen", "middle": [], "last": "Larocca", "suffix": "" }, { "first": "Jeffrey", "middle": [], "last": "Micher", "suffix": "" }, { "first": "Clare", "middle": [], "last": "Voss", "suffix": "" } ], "year": 2018, "venue": "Proceedings of the 13th Conference of the Association for Machine Translation in the Americas", "volume": "2", "issue": "", "pages": "283--293", "other_ids": {}, "num": null, "urls": [], "raw_text": "Judith Klavans, John Morgan, Stephen LaRocca, Jef- frey Micher, and Clare Voss. 2018. Challenges in speech recognition and translation of high-value low- density polysynthetic languages. In Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 2: User Track), pages 283-293, Boston, MA. Association for Ma- chine Translation in the Americas.", "links": null }, "BIBREF19": { "ref_id": "b19", "title": "Moses: Open source toolkit for statistical machine translation", "authors": [ { "first": "Philipp", "middle": [], "last": "Koehn", "suffix": "" }, { "first": "Hieu", "middle": [], "last": "Hoang", "suffix": "" }, { "first": "Alexandra", "middle": [], "last": "Birch", "suffix": "" }, { "first": "Chris", "middle": [], "last": "Callison-Burch", "suffix": "" }, { "first": "Marcello", "middle": [], "last": "Federico", "suffix": "" }, { "first": "Nicola", "middle": [], "last": "Bertoldi", "suffix": "" }, { "first": "Brooke", "middle": [], "last": "Cowan", "suffix": "" }, { "first": "Wade", "middle": [], "last": "Shen", "suffix": "" }, { "first": "Christine", "middle": [], "last": "Moran", "suffix": "" }, { "first": "Richard", "middle": [], "last": "Zens", "suffix": "" }, { "first": "Chris", "middle": [], "last": "Dyer", "suffix": "" }, { "first": "Ond\u0159ej", "middle": [], "last": "Bojar", "suffix": "" }, { "first": "Alexandra", "middle": [], "last": "Constantin", "suffix": "" }, { "first": "Evan", "middle": [], "last": "Herbst", "suffix": "" } ], "year": 2007, "venue": "Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions", "volume": "", "issue": "", "pages": "177--180", "other_ids": {}, "num": null, "urls": [], "raw_text": "Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ond\u0159ej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the As- sociation for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Ses- sions, pages 177-180, Prague, Czech Republic. As- sociation for Computational Linguistics.", "links": null }, "BIBREF20": { "ref_id": "b20", "title": "Fully character-level neural machine translation without explicit segmentation", "authors": [ { "first": "Jason", "middle": [], "last": "Lee", "suffix": "" }, { "first": "Kyunghyun", "middle": [], "last": "Cho", "suffix": "" }, { "first": "Thomas", "middle": [], "last": "Hofmann", "suffix": "" } ], "year": 2017, "venue": "Transactions of the Association for Computational Linguistics", "volume": "5", "issue": "", "pages": "365--378", "other_ids": { "DOI": [ "10.1162/tacl_a_00067" ] }, "num": null, "urls": [], "raw_text": "Jason Lee, Kyunghyun Cho, and Thomas Hofmann. 2017. Fully character-level neural machine trans- lation without explicit segmentation. Transactions of the Association for Computational Linguistics, 5:365-378.", "links": null }, "BIBREF21": { "ref_id": "b21", "title": "Probabilistic finite-state morphological segmenter for wixarika (huichol) language", "authors": [ { "first": "Manuel", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Di\u00f3nico", "middle": [], "last": "Carrillo", "suffix": "" }, { "first": "Ivan", "middle": [], "last": "Meza", "suffix": "" } ], "year": 2018, "venue": "Journal of Intelligent & Fuzzy Systems", "volume": "34", "issue": "5", "pages": "3081--3087", "other_ids": {}, "num": null, "urls": [], "raw_text": "Manuel Mager, Di\u00f3nico Carrillo, and Ivan Meza. 2018a. Probabilistic finite-state morphological seg- menter for wixarika (huichol) language. Journal of Intelligent & Fuzzy Systems, 34(5):3081-3087.", "links": null }, "BIBREF22": { "ref_id": "b22", "title": "Lost in translation: Analysis of information loss during machine translation between polysynthetic and fusional languages", "authors": [ { "first": "Manuel", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Elisabeth", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Alfonso", "middle": [], "last": "Medina-Urrea", "suffix": "" }, { "first": "Ivan Vladimir Meza", "middle": [], "last": "Ruiz", "suffix": "" }, { "first": "Katharina", "middle": [], "last": "Kann", "suffix": "" } ], "year": 2018, "venue": "Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages", "volume": "", "issue": "", "pages": "73--83", "other_ids": {}, "num": null, "urls": [], "raw_text": "Manuel Mager, Elisabeth Mager, Alfonso Medina- Urrea, Ivan Vladimir Meza Ruiz, and Katharina Kann. 2018b. Lost in translation: Analysis of in- formation loss during machine translation between polysynthetic and fusional languages. In Proceed- ings of the Workshop on Computational Modeling of Polysynthetic Languages, pages 73-83, Santa Fe, New Mexico, USA. Association for Computational Linguistics.", "links": null }, "BIBREF23": { "ref_id": "b23", "title": "Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas", "authors": [ { "first": "Manuel", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Arturo", "middle": [], "last": "Oncevay", "suffix": "" }, { "first": "Abteen", "middle": [], "last": "Ebrahimi", "suffix": "" }, { "first": "John", "middle": [], "last": "Ortega", "suffix": "" }, { "first": "Annette", "middle": [], "last": "Rios", "suffix": "" }, { "first": "Angela", "middle": [], "last": "Fan", "suffix": "" }, { "first": "Ximena", "middle": [], "last": "Gutierrez-Vasques", "suffix": "" }, { "first": "Luis", "middle": [], "last": "Chiruzzo", "suffix": "" }, { "first": "Gustavo", "middle": [], "last": "Gim\u00e9nez-Lugo", "suffix": "" }, { "first": "Ricardo", "middle": [], "last": "Ramos", "suffix": "" }, { "first": "Anna", "middle": [], "last": "Currey", "suffix": "" }, { "first": "Vishrav", "middle": [], "last": "Chaudhary", "suffix": "" }, { "first": "Ivan Vladimir Meza", "middle": [], "last": "Ruiz", "suffix": "" }, { "first": "Rolando", "middle": [], "last": "Coto-Solano", "suffix": "" }, { "first": "Alexis", "middle": [], "last": "Palmer", "suffix": "" }, { "first": "Elisabeth", "middle": [], "last": "Mager", "suffix": "" }, { "first": "Ngoc", "middle": [ "Thang" ], "last": "Vu", "suffix": "" }, { "first": "Graham", "middle": [], "last": "Neubig", "suffix": "" }, { "first": "Katharina", "middle": [], "last": "Kann", "suffix": "" } ], "year": 2021, "venue": "Proceedings of the First Workshop on NLP for Indigenous Languages of the Americas", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Manuel Mager, Arturo Oncevay, Abteen Ebrahimi, John Ortega, Annette Rios, Angela Fan, Xi- mena Gutierrez-Vasques, Luis Chiruzzo, Gustavo Gim\u00e9nez-Lugo, Ricardo Ramos, Anna Currey, Vishrav Chaudhary, Ivan Vladimir Meza Ruiz, Rolando Coto-Solano, Alexis Palmer, Elisabeth Mager, Ngoc Thang Vu, Graham Neubig, and Katha- rina Kann. 2021. Findings of the AmericasNLP 2021 Shared Task on Open Machine Translation for Indigenous Languages of the Americas. In Proceed- ings of the First Workshop on NLP for Indigenous Languages of the Americas, Online. Association for Computational Linguistics.", "links": null }, "BIBREF24": { "ref_id": "b24", "title": "A\u00f1aani katonkosatzi parenini, El idioma del alto Peren\u00e9", "authors": [ { "first": "Elena", "middle": [], "last": "Mihas", "suffix": "" } ], "year": 2011, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Elena Mihas. 2011. A\u00f1aani katonkosatzi parenini, El idioma del alto Peren\u00e9. Milwaukee, WI: Clarks Graphics.", "links": null }, "BIBREF25": { "ref_id": "b25", "title": "Relatos huicholes = Wixarika' '\u00efxatsikayari", "authors": [ { "first": "Lucila", "middle": [], "last": "Mondrag\u00f3n", "suffix": "" }, { "first": "Jacqueline", "middle": [], "last": "Tello", "suffix": "" }, { "first": "Argelia", "middle": [], "last": "Valdez", "suffix": "" } ], "year": 2002, "venue": "CNCA-Direcci\u00f3n General de Culturas Populares e Ind\u00edgenas", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lucila Mondrag\u00f3n, Jacqueline Tello, and Argelia Valdez. 2002a. Relatos huicholes = Wixarika' '\u00efx- atsikayari. CNCA-Direcci\u00f3n General de Culturas Populares e Ind\u00edgenas, Ciudad de Mexico.", "links": null }, "BIBREF26": { "ref_id": "b26", "title": "Relatos otom\u00edes. Nfini H\u00f1\u00e4h\u00f1u. CNCA-Direcci\u00f3n General de Culturas Populares e Ind\u00edgenas", "authors": [ { "first": "Lucila", "middle": [], "last": "Mondrag\u00f3n", "suffix": "" }, { "first": "Jacqueline", "middle": [], "last": "Tello", "suffix": "" }, { "first": "Argelia", "middle": [], "last": "Valdez", "suffix": "" } ], "year": 2002, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Lucila Mondrag\u00f3n, Jacqueline Tello, and Argelia Valdez. 2002b. Relatos otom\u00edes. Nfini H\u00f1\u00e4h\u00f1u. CNCA-Direcci\u00f3n General de Culturas Populares e Ind\u00edgenas, Ciudad de Mexico.", "links": null }, "BIBREF27": { "ref_id": "b27", "title": "Universal Dependencies v2: An evergrowing multilingual treebank collection", "authors": [ { "first": "Joakim", "middle": [], "last": "Nivre", "suffix": "" }, { "first": "Marie-Catherine", "middle": [], "last": "De Marneffe", "suffix": "" }, { "first": "Filip", "middle": [], "last": "Ginter", "suffix": "" }, { "first": "Jan", "middle": [], "last": "Haji\u010d", "suffix": "" }, { "first": "Christopher", "middle": [ "D" ], "last": "Manning", "suffix": "" }, { "first": "Sampo", "middle": [], "last": "Pyysalo", "suffix": "" }, { "first": "Sebastian", "middle": [], "last": "Schuster", "suffix": "" }, { "first": "Francis", "middle": [], "last": "Tyers", "suffix": "" }, { "first": "Daniel", "middle": [], "last": "Zeman", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 12th Language Resources and Evaluation Conference", "volume": "", "issue": "", "pages": "4034--4043", "other_ids": {}, "num": null, "urls": [], "raw_text": "Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin- ter, Jan Haji\u010d, Christopher D. Manning, Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal Dependencies v2: An evergrowing multilingual treebank collection. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4034-4043, Mar- seille, France. European Language Resources Asso- ciation.", "links": null }, "BIBREF28": { "ref_id": "b28", "title": "Overcoming resistance: The normalization of an Amazonian tribal language", "authors": [ { "first": "John", "middle": [], "last": "Ortega", "suffix": "" }, { "first": "Richard", "middle": [ "Alexander" ], "last": "Castro-Mamani", "suffix": "" }, { "first": "Jaime Rafael Montoya", "middle": [], "last": "Samame", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages", "volume": "", "issue": "", "pages": "1--13", "other_ids": {}, "num": null, "urls": [], "raw_text": "John Ortega, Richard Alexander Castro-Mamani, and Jaime Rafael Montoya Samame. 2020. Overcom- ing resistance: The normalization of an Amazonian tribal language. In Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages, pages 1-13, Suzhou, China. Association for Compu- tational Linguistics.", "links": null }, "BIBREF29": { "ref_id": "b29", "title": "A monolingual approach to contextualized word embeddings for mid-resource languages", "authors": [ { "first": "Pedro Javier Ortiz", "middle": [], "last": "Su\u00e1rez", "suffix": "" }, { "first": "Laurent", "middle": [], "last": "Romary", "suffix": "" }, { "first": "Beno\u00eet", "middle": [], "last": "Sagot", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", "volume": "", "issue": "", "pages": "1703--1714", "other_ids": {}, "num": null, "urls": [], "raw_text": "Pedro Javier Ortiz Su\u00e1rez, Laurent Romary, and Beno\u00eet Sagot. 2020. A monolingual approach to contextual- ized word embeddings for mid-resource languages. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1703-1714, Online. Association for Computational Linguistics.", "links": null }, "BIBREF30": { "ref_id": "b30", "title": "Parallel Global Voices: a collection of multilingual corpora with citizen media stories", "authors": [ { "first": "Prokopis", "middle": [], "last": "Prokopidis", "suffix": "" }, { "first": "Vassilis", "middle": [], "last": "Papavassiliou", "suffix": "" }, { "first": "Stelios", "middle": [], "last": "Piperidis", "suffix": "" } ], "year": 2016, "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)", "volume": "", "issue": "", "pages": "900--905", "other_ids": {}, "num": null, "urls": [], "raw_text": "Prokopis Prokopidis, Vassilis Papavassiliou, and Ste- lios Piperidis. 2016. Parallel Global Voices: a col- lection of multilingual corpora with citizen media stories. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), pages 900-905, Portoro\u017e, Slovenia. Eu- ropean Language Resources Association (ELRA).", "links": null }, "BIBREF31": { "ref_id": "b31", "title": "Stanza: A Python natural language processing toolkit for many human languages", "authors": [ { "first": "Peng", "middle": [], "last": "Qi", "suffix": "" }, { "first": "Yuhao", "middle": [], "last": "Zhang", "suffix": "" }, { "first": "Yuhui", "middle": [], "last": "Zhang", "suffix": "" }, { "first": "Jason", "middle": [], "last": "Bolton", "suffix": "" }, { "first": "Christopher", "middle": [ "D" ], "last": "Manning", "suffix": "" } ], "year": 2020, "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning. 2020. Stanza: A Python natural language processing toolkit for many human languages. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics: System Demonstrations.", "links": null }, "BIBREF32": { "ref_id": "b32", "title": "Leveraging pre-trained checkpoints for sequence generation tasks", "authors": [ { "first": "Sascha", "middle": [], "last": "Rothe", "suffix": "" }, { "first": "Shashi", "middle": [], "last": "Narayan", "suffix": "" }, { "first": "Aliaksei", "middle": [], "last": "Severyn", "suffix": "" } ], "year": 2020, "venue": "Transactions of the Association for Computational Linguistics", "volume": "8", "issue": "", "pages": "264--280", "other_ids": { "DOI": [ "10.1162/tacl_a_00313" ] }, "num": null, "urls": [], "raw_text": "Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. 2020. Leveraging pre-trained checkpoints for se- quence generation tasks. Transactions of the Asso- ciation for Computational Linguistics, 8:264-280.", "links": null }, "BIBREF33": { "ref_id": "b33", "title": "Quyllur Llaqtayuq Wawamanta", "authors": [ { "first": "Antoine", "middle": [], "last": "De Saint-Exup\u00e9ry", "suffix": "" } ], "year": 2018, "venue": "Ediciones El Lector", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "Antoine de Saint-Exup\u00e9ry. 2018. Quyllur Llaqtayuq Wawamanta. Ediciones El Lector, Arequipa, Peru. Translated by Lydia Cornejo Endara & C\u00e9sar Itier.", "links": null }, "BIBREF34": { "ref_id": "b34", "title": "Improving neural machine translation models with monolingual data", "authors": [ { "first": "Rico", "middle": [], "last": "Sennrich", "suffix": "" }, { "first": "Barry", "middle": [], "last": "Haddow", "suffix": "" }, { "first": "Alexandra", "middle": [], "last": "Birch", "suffix": "" } ], "year": 2016, "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics", "volume": "1", "issue": "", "pages": "86--96", "other_ids": { "DOI": [ "10.18653/v1/P16-1009" ] }, "num": null, "urls": [], "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving neural machine translation mod- els with monolingual data. In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 86-96, Berlin, Germany. Association for Computa- tional Linguistics.", "links": null }, "BIBREF35": { "ref_id": "b35", "title": "Parallel data, tools and interfaces in OPUS", "authors": [ { "first": "J\u00f6rg", "middle": [], "last": "Tiedemann", "suffix": "" } ], "year": 2012, "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)", "volume": "", "issue": "", "pages": "2214--2218", "other_ids": {}, "num": null, "urls": [], "raw_text": "J\u00f6rg Tiedemann. 2012. Parallel data, tools and inter- faces in OPUS. In Proceedings of the Eighth In- ternational Conference on Language Resources and Evaluation (LREC'12), pages 2214-2218, Istanbul, Turkey. European Language Resources Association (ELRA).", "links": null }, "BIBREF36": { "ref_id": "b36", "title": "Historia y alcances de un cuento para ni\u00f1os creado en el museo", "authors": [ { "first": "Felipe", "middle": [], "last": "Luis", "suffix": "" }, { "first": "", "middle": [], "last": "Villacorta", "suffix": "" } ], "year": 2007, "venue": "Illapa Mana Tukukuq", "volume": "", "issue": "4", "pages": "101--112", "other_ids": {}, "num": null, "urls": [], "raw_text": "Luis Felipe Villacorta. 2007. \"Hab\u00eda una vez... El Per\u00fa de Antonio Raimondi\". Historia y alcances de un cuento para ni\u00f1os creado en el museo. Illapa Mana Tukukuq, (4):101-112.", "links": null } }, "ref_entries": { "TABREF1": { "type_str": "table", "num": null, "text": "", "html": null, "content": "" }, "TABREF2": { "type_str": "table", "num": null, "text": "TEST Helsinki-2 (best) 1 .", "html": null, "content": "
SetSystemTrackLanguages
AYMBZDCNIGNHCHNAHOTOQUYSHPTAR
DEVCoAStaL-1: + extra data 1.188--.242-.216-.250--
CoAStaL-2: Random2.168 .107 .212 .128 .191 .184 .101 .232 .173 .113
Baseline2.157 .068 .102 .193 .126 .157 .054 .304 .121 .039
(a) chrF
AYMBZDCNIGNHCHNAHOTOQUYSHPTAR
DEVCoAStaL-1: Phrase-based 1 CoAStaL-2: Random 22.57 3.83 2.79 2.59 0.02 0.03 0.04 0.026.81 2.33 1.44 1.73 1.14 0.02 0.02 0.023.70 1.26 0.06 0.02
Helsinki-2 (best)12.80 5.18 6.09 8.92 15.67 3.25 5.59 5.38 10.49 3.56
CoAStaL-1: Phrase-based 11.11 3.60 3.02 2.208.80 2.06 2.72 1.633.90 1.05
TEST+ extra data 11.07--2.24-2.06-1.24--
CoAStaL-2: Random20.05 0.06 0.03 0.032.07 0.03 0.03 0.020.04 0.06
Baseline20.01 0.01 0.01 0.122.20 0.01 0.00 0.050.01 0.00
(b) BLEU
" } } } }