File size: 130,639 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
{
    "paper_id": "O06-5005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:07:41.042587Z"
    },
    "title": "A Pragmatic Chinese Word Segmentation Approach Based on Mixing Models 1",
    "authors": [
        {
            "first": "Wei",
            "middle": [],
            "last": "Jiang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "addrLine": "Heilongjiang Province",
                    "postCode": "150001",
                    "country": "P. R. China"
                }
            },
            "email": "jiangwei@insun.hit.edu.cn"
        },
        {
            "first": "Yi",
            "middle": [],
            "last": "Guan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "addrLine": "Heilongjiang Province",
                    "postCode": "150001",
                    "country": "P. R. China"
                }
            },
            "email": ""
        },
        {
            "first": "Xiao-Long",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harbin Institute of Technology",
                "location": {
                    "addrLine": "Heilongjiang Province",
                    "postCode": "150001",
                    "country": "P. R. China"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "A pragmatic Chinese word segmentation approach is presented in this paper based on mixing language models. Chinese word segmentation is composed of several hard sub-tasks, which usually encounter different difficulties. The authors apply the corresponding language model to solve each special sub-task, so as to take advantage of each model. First, a class-based trigram is adopted in basic word segmentation, which applies the Absolute Discount Smoothing algorithm to overcome data sparseness. The Maximum Entropy Model (ME) is also used to identify Named Entities. Second, the authors propose the application of rough sets and average mutual information, etc. to extract special features. Finally, some features are extended through the combination of the word cluster and the thesaurus. The authors' system participated in the Second International Chinese Word Segmentation Bakeoff, and achieved 96.7 and 97.2 in F-measure in the PKU and MSRA open tests, respectively.",
    "pdf_parse": {
        "paper_id": "O06-5005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "A pragmatic Chinese word segmentation approach is presented in this paper based on mixing language models. Chinese word segmentation is composed of several hard sub-tasks, which usually encounter different difficulties. The authors apply the corresponding language model to solve each special sub-task, so as to take advantage of each model. First, a class-based trigram is adopted in basic word segmentation, which applies the Absolute Discount Smoothing algorithm to overcome data sparseness. The Maximum Entropy Model (ME) is also used to identify Named Entities. Second, the authors propose the application of rough sets and average mutual information, etc. to extract special features. Finally, some features are extended through the combination of the word cluster and the thesaurus. The authors' system participated in the Second International Chinese Word Segmentation Bakeoff, and achieved 96.7 and 97.2 in F-measure in the PKU and MSRA open tests, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The word is a logical semantic and syntactic unit in natural language. Unlike English, there is no delimiter to mark word boundaries in Chinese language, so, in most Chinese NLP tasks, word segmentation is the foundational task which transforms the Chinese character string into a word sequence. It is a prerequisite to POS tagging, parser or further applications, such as Information Extraction, and the Question Answer system. than two decades. Various methods have been proposed, which fall into two main categories. The first category is made up of rule-based approaches that make use of linguistic knowledge. Cheng [1999] and Liang [1993] described Maximum Forward Match and Maximum Backward Match segmentation. Hockenmaier [1998] and Palmer [1997] used transformation-based error-driven learning. Wu [1998] combined segmentation with a parser and word segmentation became a by-product of the sentence parser. The second category is made up of statistical methods that make use of machine learning algorithms and training on corpus. The typical language model is n-gram [Gao 2002] . Zhang [2003] used the Hierarchical Hidden Markov Model (HMM). In addition, there are some other machine learning methods, such as EM [Peng and Schuurmans 2001] , and the channel noise model [Gao 2003 ]. Sproat [1996] used the WFST method. At present, many state-of-the-art systems use hybrid approaches. Gao [2004] proposed a unified method via the class-based model, and Zhang [2003] presented a unified approach using the Hierarchical Hidden Markov Model. Xue [2003] used Maximum Entropy. Peng [2004] used the Conditional Random Fields model. Though many methods have been proposed and many improvements have been achieved, as a challenge task, word segmentation is not well-performed. The disambiguation and the out-of-vocabulary (OOV) identification are the main bottlenecks. Due to Zipf's Law, the sparse data problem is rarely avoided, while this problem brings great difficulties in improving the performance of the disambiguation and OOV identification. A meaningful direction for exploration to overcome the sparse data problem is to collect more linguistic knowledge or features and incorporate them into the processing systems.",
                "cite_spans": [
                    {
                        "start": 614,
                        "end": 626,
                        "text": "Cheng [1999]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 631,
                        "end": 643,
                        "text": "Liang [1993]",
                        "ref_id": null
                    },
                    {
                        "start": 717,
                        "end": 735,
                        "text": "Hockenmaier [1998]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 740,
                        "end": 753,
                        "text": "Palmer [1997]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 803,
                        "end": 812,
                        "text": "Wu [1998]",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1075,
                        "end": 1085,
                        "text": "[Gao 2002]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1088,
                        "end": 1100,
                        "text": "Zhang [2003]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1221,
                        "end": 1247,
                        "text": "[Peng and Schuurmans 2001]",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1278,
                        "end": 1287,
                        "text": "[Gao 2003",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1291,
                        "end": 1304,
                        "text": "Sproat [1996]",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1392,
                        "end": 1402,
                        "text": "Gao [2004]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1460,
                        "end": 1472,
                        "text": "Zhang [2003]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1546,
                        "end": 1556,
                        "text": "Xue [2003]",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1579,
                        "end": 1590,
                        "text": "Peng [2004]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In this paper, the authors propose to solve the Chinese word segmentation task based on mixing models. The \"No Free Lunch Theorem\" and \"Ugly Duckling Theorem\" in Machine Learning theory have indicated that domain knowledge is essential for improving the processing performance. For this reason, different language models will be applied to solve each special sub-task, which is classified according to its linguistic phenomenon and the Natural Language Processing (NLP) technology used in the word segmentation. Another consideration is the pragmatic attribution, e.g. some successive processing may require different kinds of balance between precision and efficiency. So, this approach is a pragmatic one, which may incorporate several delicate processing modules, some of which can improve precision by introducing complicated models and utilizing more linguistic knowledge. However, this does result in a decrease in efficiency. Based on the assumption that more delicate linguistic knowledge or some fine linguistic statistical phenomenon can bring information gain to the segmentation task, the authors propose to apply Rough Set Theory and Average Mutual Information, etc. to extract complicated and long distance features. and the authors will also explore combining the word cluster and the thesaurus to extend the features so as to overcome the sparse data problem. This system participated in the Second International Chinese Word Segmentation Bakeoff (SIGHAN 2005) , and a simplified version participated in the SIGHAN 2006.",
                "cite_spans": [
                    {
                        "start": 1462,
                        "end": 1475,
                        "text": "(SIGHAN 2005)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Section 2 describes the structure of the system. Section 3 describes in detail Named Entity Recognition, which is one of the difficult tasks in word segmentation. Section 4 presents experimental results obtained with the authors' system. Finally, some conclusions will be drawn and direction for future work will be given in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "All words in this system are categorized into five types: Lexicon words (LW), Factoid words (FT), Morphological derived words (MDW), Named entities (NE), and New words (NW). Table 1 shows the tag, description, and some examples for each word type. To the sentence \"\u540c\u5b66\u4eec\u4e0b\u5348\u4e24\u70b9\u4e09\u5341\u5206\u5230\u5b59\u6842\u5e73\u5bb6\u505a\u5ba2\" (Some students visit Sun Gui-Ping in his home at 2:30 p.m.), the segmentation result is \"{\u540c\u5b66\u4eec/[MR_Suffix]} {\u4e0b\u5348 \u4e24\u70b9\u4e09\u5341\u5206/[TIME]} {\u5230} {\u5b59\u6842\u5e73/[PER]} {\u5bb6} {\u505a\u5ba2}\". where the word \"\u540c\u5b66\u4eec /[MR_Suffix]\" is a morphologically derived word, and \"\u4e0b\u5348\u4e24\u70b9\u4e09\u5341\u5206/[TIME]\" is a factoid word, all of which can be detected by Segmentation module while \"\u5b59\u6842\u5e73/[PER]\" is a named entity, and detected in NE Recognition module. Figure 1 shows the structure of this system.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 174,
                        "end": 181,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 673,
                        "end": 681,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "System Description",
                "sec_num": "2."
            },
            {
                "text": "The input character sequence is converted into one or several sentences, which is the basic dealing unit. The internal encoding is UNICODE, and the \"Code Convert\" module is used to convert the permitted encoding, such as GB2312 and BIG5, into UNICODE. \"Basic Segmentation\" is used to deal with the LW, FT, MDW words, and \"Named Entity Recognition\" is used to detect NW words. The authors adopt the New Word Detection algorithm to detect suffix-based new words. The \"Disambiguation\" module is performed to classify complicated ambiguous words, and all the above results are connected to the final result, namely \"word sequence\", which is denoted by XML format. The sequence of each applied component is decided by the performance of the system. In the following part of this section, the authors will detail the basic theory and the implementation of the system. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Description",
                "sec_num": "2."
            },
            {
                "text": "The authors apply the Trigram model to the word segmentation task [Jiang 2005; Jiang 2007] , and make use of the Absolute Discount Smoothing algorithm to overcome the sparse data problem.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 78,
                        "text": "[Jiang 2005;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 79,
                        "end": 90,
                        "text": "Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Trigram and Smoothing Algorithm",
                "sec_num": "2.1"
            },
            {
                "text": "The Trigram model is used to convert the sentence into a word sequence. Let w = w 1 w 2 \u2026w n be a word sequence, then the most likely word sequence w* in Trigram is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Trigram and Smoothing Algorithm",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 2 2 1 1 * argmax ( | ) n n i i i i w w w P w w w \u2212 \u2212 = = \u220f w ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Trigram and Smoothing Algorithm",
                "sec_num": "2.1"
            },
            {
                "text": "where let P(w 0 |w -2 w -1 ) be P(w 0 ) and let P(w 1 |w -1 w 0 ) be P(w 1 |w 0 ), and w i represents LW or a type of FT or MDW. In order to search for the best segmentation way, all the word candidates are filled into the word lattice [Jiang 2006B ], as shown in Figure 2 , and the Viterbi algorithm is used to search for the best word segmentation path over the built word lattice.",
                "cite_spans": [
                    {
                        "start": 236,
                        "end": 248,
                        "text": "[Jiang 2006B",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 264,
                        "end": 272,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Trigram and Smoothing Algorithm",
                "sec_num": "2.1"
            },
            {
                "text": "FT and MDW need to be detected when constructing a word lattice (detailed in section 2.2). The data structure of the lexicon can affect the efficiency of word segmentation, so",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "\u5468\uf98e 1/[Number] \u7eaa\uf9a3 5 \u6708 12 \u65e5/[Date] 5 \u6708 1 2 \u65e5 \u7eaa \uf9a3 1 \u5468 \uf98e \u4e8e",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "lexicon words are represented as a set of TRIEs, which are tree-like structures. Words starting with the same character are represented as a TRIE, where the root represents the first Chinese character, and the children of the root represent the second character, and so on (detailed in section 2.3).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "When searching a word lattice, there is a zero-probability phenomenon due to the sparse data problem. For instance, if there is no co-occurrence pair \"\u6211\u4eec/\u5403/\u9999\u8549\"(we eat bananas) in the training corpus, then P(\u9999\u8549|\u6211\u4eec\uff0c\u5403) = 0. According to formula (1), the probability of the whole candidate path, which contains \"\u6211\u4eec/\u5403/\u9999\u8549\", is zero as a result of the local zero probability. In order to overcome the sparse data problem, this system has applied the Absolute Discounting Smoothing algorithm [Chen 1999 ",
                "cite_spans": [
                    {
                        "start": 484,
                        "end": 494,
                        "text": "[Chen 1999",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "]. 1 1 1 1 1 ( ) |{ : ( ) 0 }| i i i n i i n i N w w c w w \u2212 \u2212 + \u2212 + \u2212 + \u2022 = > (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "The notation N 1+ is meant to evoke the number of words that have one or more counts, and the \u2022 is meant to evoke a free variable that is summed over. The function () c represents the count of one word or the co-occurrence count of multi-words. In this case, the smoothing probability can be calculated by the Equation 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 1 1 2 1 max{ ( ) , 0} ( | ) (1 ) ( | ) ( ) i i i i i n i i n i i n i i n w c w D p w w p w w c w \u03bb \u2212 \u2212 \u2212 + \u2212 + \u2212 + \u2212 + \u2212 = +\u2212 \u2211 (3) where 1 1 1 1 1 ( ) ( ) i i i n i i n w D N w c w \u03bb \u2212 + \u2212 + \u2212 + \u239b \u239e \u239c \u239f \u2212 = \u2022 \u239c \u239f \u239d \u23a0 \u2211",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "In this trigram model, the maximum n may be 3. A fixed discount D (0 \u2264 D \u2264 1) can be set through the deleted estimation on the training data. They arrive at the estimate ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "where n 1 and n 2 are the total number of n-grams with exactly one and two counts, respectively [Jiang 2006B; Jiang 2007] .",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 109,
                        "text": "[Jiang 2006B;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 110,
                        "end": 121,
                        "text": "Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "After basic segmentation, some complicated ambiguous segmentation can be further disambiguated. In the Trigram model, only the previous two words are considered as context features, while in disambiguation processing (detailed in section 2.4), one can use the Maximum Entropy Model-fused features [Jiang 2006A ] or a rule-based method.",
                "cite_spans": [
                    {
                        "start": 297,
                        "end": 309,
                        "text": "[Jiang 2006A",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 2. The class-based word lattice in the segmentation task",
                "sec_num": null
            },
            {
                "text": "As all of the Factoid words can be represented as regular expressions, the detection of factoid words can be achieved by Finite State Automaton (FSA).The categories of factoid words, which can be detected [Jiang 2006B; Jiang 2006D] Deterministic FSA (DFA) is efficient because a unique \"next state\" is determined when given an input symbol and the current state. However, it is common for a linguist to write rules, which can be represented directly as a non-deterministic FSA (NFA), i.e. which allow several \"next states\" to follow a given input and state.",
                "cite_spans": [
                    {
                        "start": 205,
                        "end": 218,
                        "text": "[Jiang 2006B;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 219,
                        "end": 231,
                        "text": "Jiang 2006D]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Factoid and Morphological Words",
                "sec_num": "2.2"
            },
            {
                "text": "Since every NFA has an equivalent DFA, an FT rule compiler was build to convert all the FT generative rules into a DFA [Jiang 2007] . The rule description is in Table 3 .",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 131,
                        "text": "[Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 161,
                        "end": 168,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Factoid and Morphological Words",
                "sec_num": "2.2"
            },
            {
                "text": "<digit> -> [0..9]| [\uff10..\uff19];",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "//define Arabic numerals <integer> ::= {<digit>+}; // define Arabic Integer <real> ::= <integer>(.|\uff0e|\u2022|\u70b9)<integer>; // decimal fraction <day> -> <integer>\u65e5; // define day <month> -> <integer>\u6708; // define month <year> -> <digit><integer>\uf98e; // define year <date> ::= <year><month><day>; // define date In order to provide a kind of convenient and powerful description ability, some meta descriptions are assigned to the meta language. Transferred meaning : if the token in the meta rule is the terminator, one needs to transfer its meaning, so one can use double quotation marks to bracket the terminator when it present ambiguity. e.g. \"(\", \"|\", \")\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "Rule type: \"->\" is a temporary generative rule, and \"::=\" is a real generative rule or a detected rule. This method makes the rule easily written.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "The authors built an FT rule compiler to convert all the FT generative rules into a DFA. Obviously, this method makes the system easy to be transferred into a different word segmentation definition, such as from PKU to MSRA. In fact, the authors have used it in SIGHAN 2005 and SIGHAN 2006 . Correspondingly, the DFA is represented by the matrix [Jiang 2007] , and a run API is provided to make this method easily used. FT detection is important in building the word lattice in word segmentation and also important in the POS tagging task.",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 277,
                        "text": "SIGHAN 2005 and",
                        "ref_id": null
                    },
                    {
                        "start": 278,
                        "end": 289,
                        "text": "SIGHAN 2006",
                        "ref_id": null
                    },
                    {
                        "start": 346,
                        "end": 358,
                        "text": "[Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "The proposed system tries to deal with five main categories of morphologically derived words in real application, the same as Wu [2003] and Gao [2004] : 1) Affixation : \uf934\u5e08\u4eec (teachers), \u670b\u53cb\u4eec(friends); 2) Reduplication: \u9ad8\u9ad8\u5174\u5174(happily); 3) Splitting:\u73a9\u4f1a\u7403(play ball for a while)\uff0c\u6d17\uf9ba\u6fa1(already wash), \u5403\uf9ba\u996d(already ate); 4) Merging: \"\u8fdb\u51fa\u53e3\" comes from \"\u8fdb\u53e3\"(importation)and \"\u51fa\u53e3\"(exportation); 5) Head Particle: \"\u8d70\u51fa\u53bb\"comes from \"\u8d70\"(walk) and \"\u51fa\u53bb\"(out).",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 135,
                        "text": "Wu [2003]",
                        "ref_id": null
                    },
                    {
                        "start": 140,
                        "end": 150,
                        "text": "Gao [2004]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "The authors collate the possible MDW into a morphological dictionary from a large corpus, according to the morphological categories mentioned above. Then, some manual selections are needed to select fitting MDW words. As the segmentation specifications of all kinds of corpora are usually different, one needs to collect the corresponding MDW words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Table 3. The demonstration of partial ELUSLex rules",
                "sec_num": null
            },
            {
                "text": "The data structure of a lexicon affects the efficiency of word segmentation, as the word candidate in the word lattice is generated through searching the lexicon. When given a sentence string, the candidate comes from matching the substring (starting from the current Chinese character), and judging whether this substring exists in the lexicon. The authors represent lexicon words as a set of TRIEs, which is a tree-like structure. Words starting with the same character are represented as a TRIE, where the root represents the first Chinese character, and the children of the root represent the second characters, and so on, as shown in Figure 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 639,
                        "end": 647,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "The Data Structure of Lexicon",
                "sec_num": "2.3"
            },
            {
                "text": "The lexical word starts from the \"Start state\", and ends in the \"End state\". When matching the input sentence and generating the word candidate in the word lattice, each time \"End State\" is passed, a word candidate is formed and the properties of the current word represented in the \"End State\" are filled into word lattice. Since each Chinese character in the input sentence needs to match the word candidate, the authors build many TRIEs, as shown in Figure 3 , to form a lexicon. The example in Figure  3 , \"\u793e\u4f1a\u4e3b\u4e49\" (socialism), is a word, and this tree is used to match the candidate from the start to the end in the sentence. If one constructs a word lattice in the opposite direction, the tree needs to be built correspondingly, e.g. \"\u4e49\u4e3b\u4f1a\u793e\". This data structure can improve speed in generating the word lattice.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 453,
                        "end": 461,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 498,
                        "end": 507,
                        "text": "Figure  3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "The Data Structure of Lexicon",
                "sec_num": "2.3"
            },
            {
                "text": "It is necessary to effectively exploit the context in the disambiguation process. The authors have proposed using rough sets to extract complicated features and long distance features for disambiguation, which has been reported in previous work [Jiang 2006A] . In that paper, the authors proposed introducing a variable precision Rough Set in feature extraction, in order to acquire a balance of features in disambiguation processing, along with attempting to process complicated and consecutive ambiguity segmentation in the paper. In this paper, the ambiguity segmentations come from the error-total results after evaluating the system.",
                "cite_spans": [
                    {
                        "start": 245,
                        "end": 258,
                        "text": "[Jiang 2006A]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "In Rough Set theory, knowledge is represented via relational tables. An Information System can be defined as follows: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "( , , , ) a a a A I U A V f \u2208 = ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "| | ( ) : | | x X X x x \u03b8 \u03b8 \u03b1 \u03b8 \u03b1 \u03b8 \u23a7 \u23ab = \u2265 \u23a8 \u23ac \u23a9 \u23ad \u2229 \u222a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": ", where \u03b1 is an external parameter [Jiang 2006A] .",
                "cite_spans": [
                    {
                        "start": 35,
                        "end": 48,
                        "text": "[Jiang 2006A]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "When extracting features, \u03b1 -Approximation will probably cause unbalanced support, since each segmentation of the ambiguities possibly has disproportionate distribution. In order to let all the features that were added in provide more evidence in guiding toward the correct segmentation, \u03bb -Approximation is introduced in this model. Let filter parameter",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "[0,1] d \u03b1 \u2208",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": ", and the n-order rough rule set of keyword t be noted as n t R , then",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": ", n t tn R G \u2208",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": ", and defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "{ } ( ) , , | ( ) i n t tn d d R r G r X \u03b8 \u03b1 = \u2208 \u2208 , where 1 f n A = \u2212 , [1, ] i K \u2208 and , t n G",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "represents generalized LIT. In In order to make effective use of contextual knowledge, the authors adopt the Maximum Entropy model (ME), which is a conditional probabilistic model, and relax the feature independent assumption. Disambiguation is regarded as a classifying problem in ambiguous words by the Maximum Entropy model, which is defined over H\u00d7T in segmentation disambiguation, where H is the set of possible contexts around the target word that will be tagged, and T is the set of allowable tags. Then, the model's conditional probability is defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "' ( , ) ( | ) ( , ') t T p h t p t h p h t \u2208 = \u2211",
                        "eq_num": "(6)"
                    }
                ],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "where, It has been pointed out that two kinds of ambiguities were dealt with. One is the simple two categories problem, such as \"\u4ece/\u5c0f\u5b66\"(from elementary school) and \"\u4ece\u5c0f/\u5b66\"(study since youth), where the tags are 0 and 1; here 0 represents the first segmentation and 1 represents the second. H includes the near context and long distance context. The former is comprised of two words around the target word, and the latter features can be obtained by Average Mutual Information, Information Gain, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "In fact, a rough statistical result showed that the \"one segmentation error\" occupied more than 90% of all errors when not considering the errors caused by Named Entity Recognition. Here, \"one segmentation error\" means that the segmentations surrounding this segmentation error are correct. So, the authors focus on \"one segmentation error\", which may be seen in two types of Chinese segmentation ambiguities: overlapping ambiguity and combining ambiguity. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Disambiguation",
                "sec_num": "2.4"
            },
            {
                "text": "New word (NW) in this system refers to the out-of-vocabulary word that isn't an FT word, MDW word or NE word. The authors do not try to detect all the NW words, since the precision is not satisfactory based on the existing methods in some applications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Suffix Based New Word Detection",
                "sec_num": "2.5"
            },
            {
                "text": "On the other hand, in some applications, it is meaningful to recognize some special new words. For instance, \"\u666f\u89c2+\u706f\" (sightseeing light), \"\u6d77\u98ce+\u724c\" (Sea Breeze brand). Since some prefixes or some suffixes are paid attention to by this system, such as \"\u73b0\u4ee3 + \u5316\"(modernization), \"x + \u5f0f\"(x + way), \"x + \u706f\"(x + light), the authors propose to apply a variance algorithm to acquire the prefix or suffix candidate, leaving some minor manual selections possibly required. Hereafter, this paper takes the suffix as an instance, and collects the new words, e.g. \"\u65e5\u5149+\u706f\" (sunlight), \"\u9713\u8679+\u706f\" (neon light), \"\u666f\u89c2+\u706f\" (sightseeing light), etc. Table 4 illustrates the method. Use S 1 ..S m to represent m candidate suffixes, W 1 ..W n represent n remained word with the suffix being razed. e.g. S 1 is \"\u706f\" (light), then W 1 represents \"\u666f\u89c2\" (sightseeing), W 1 S 1 is the W 1 +S 1 =\"\u666f\u89c2\u706f\" (sightseeing light). Now, suppose C xy =Count(S x ,W y ) 2 , and N xy is the existence of a co-occurring pair (S x ,W y ) 3 , then, one gets the following formula:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 620,
                        "end": 627,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "The Suffix Based New Word Detection",
                "sec_num": "2.5"
            },
            {
                "text": "m x x i i 1 CV(S ) = N = \u2211 , m x x i i 1 Sum(S )= C = \u2211 , avg(S x )= Sum(S x )/CV(S x ), p xi =C xi /Sum(S x ),V xi =p xi *(C xi -avg(S x )) *(C xi -avg(S x )) So, the variance V (S x )= m xi i 1 V = \u2211 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Suffix Based New Word Detection",
                "sec_num": "2.5"
            },
            {
                "text": "Besides the variance, one also needs to consider two other factors: (1) the occurrence count in the corpus; (2) the type count that this suffix has constructed words in the lexicon. By considering the above two factors in Sighan2005 evaluation [Jiang 2005 ], the researchers selected 25 new word suffixes, e.g. \u5236 (method), \u724c(brand), \u578b (type)\u3001\u5f0f (way). These suffixes also seem to be useful in the Information Retrieval task.",
                "cite_spans": [
                    {
                        "start": 244,
                        "end": 255,
                        "text": "[Jiang 2005",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Suffix Based New Word Detection",
                "sec_num": "2.5"
            },
            {
                "text": "The detection process adopts the Local Maximum Entropy Model, and this process is similar to the NER module [Jiang 2007 ].",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 119,
                        "text": "[Jiang 2007",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Suffix Based New Word Detection",
                "sec_num": "2.5"
            },
            {
                "text": "Named Entity Recognition (NER) is one of the common message understanding tasks. The objective is to identify and categorize all members of certain categories of \"proper names\". In MUC-7, there are seven categories: person, organization, location, date, time, percentage, and monetary amount. Named Entities (NE) are broadly distributed in original texts from many domains. In this work, the authors only focus on those more difficult, yet commonly used categories: PER, LOC and ORG. Other NE, such as times and quantities can be recognized simply via Finite State Automata (Section 2.2), and do not need to be aided by a disambiguation algorithm (Section 2.4).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named Entity Recognition",
                "sec_num": "3."
            },
            {
                "text": "The extensive evaluation of NER systems in recent years (such as CoNLL-2002 and CoNLL-2003) indicates the best statistical systems are typically achieved by using a linear (or log-linear) classification algorithm, such as the Maximum Entropy model, together with a vast amount of carefully designed linguistic features. This still seems true at present in terms of statistics based methods.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 79,
                        "text": "CoNLL-2002 and",
                        "ref_id": null
                    },
                    {
                        "start": 80,
                        "end": 91,
                        "text": "CoNLL-2003)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named Entity Recognition",
                "sec_num": "3."
            },
            {
                "text": "In this section, the authors adopt the ME model, which is a linear (or log-linear) classification, to identify the Named Entities, and the focus will be on the utilization of the features [Jiang 2006C ]. In addition, the authors propose to build double-layer fixing models to detect the Named Entities, which has also been reported in another paper [Jiang 2007 ].",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 200,
                        "text": "[Jiang 2006C",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 349,
                        "end": 360,
                        "text": "[Jiang 2007",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named Entity Recognition",
                "sec_num": "3."
            },
            {
                "text": "The authors use w i (i=0,1,\u2026n) to denote the input sequence, then every token w i should be assigned a tag t i . B-I-O encoding, e.g., B-CPN, I-CPN as the beginning of Chinese person's name and the continued part of person's name, respectively, is adopted. Furthermore, in order to improve the ability of describing the rich tagging knowledge, part of the role tags [Zhang 2003 ] is appended, including the Named Entity prefix, suffix and infix. For example: (FPN) . In addition, the authors do not distinguish the type of infix, so the tag number for NER in this system is: 4 * 4 + 1 (O) + 1 (INFIX) = 18.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 377,
                        "text": "[Zhang 2003",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 459,
                        "end": 464,
                        "text": "(FPN)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Named Entity Recognition",
                "sec_num": "3."
            },
            {
                "text": "The \"Ugly Duckling Theorem\" has denoted that there is no generic feature extraction method suitable for all kinds of tasks. The basic feature template is shown in Table 5 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 163,
                        "end": 170,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "w i-2 , w i-1 , w i , w i+1 , w i+2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "two order feature w i-1:i , w i:i+1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "NER tag feature",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "t i-1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "In addition, in order to solve the unstable feature collection problem caused by having no delimiters to separate Chinese words, inspired by the term extraction in text classification, the authors construct a novel feature template of \"word->tag\" to extract the trigger features, which have a flexible distance between the two units [Jiang 2006C ].",
                "cite_spans": [
                    {
                        "start": 333,
                        "end": 345,
                        "text": "[Jiang 2006C",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "Mutual Information (MI) measures the interdependence between a trigger word and a NE type, being defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "P(W C) MI(W, C) log P(W) P(C) \u039b = \u00d7 (9)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "where P(W) represents the probability of the trigger word, and P(C) is the probability of the corresponding NE category. However, this method does not consider the influence of lacking one point. In contrast, average mutual information (AMI) is defined as: P(C|W) AMI(W, C) P(W, C)log P(C) = P(C|W) P(W, C)log P(C) + P(C|W) P(W, C)log P(C) + P(C|W) P(W, C)log P(C) +",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "MI in fact is point wise information, while AMI can look like a Kullback-Leibler (KL) divergence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "AMI(X,Y) D(P(X,Y)||P(X) P(Y)) = \u00d7",
                        "eq_num": "(11)"
                    }
                ],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "Equation 11 measures the two different probability distributions between P(X,Y) and P(Y) P(X) \u00d7 . However, MI is only a point in the whole set of distributions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "Let m be the number of the possible categories count, the average mutual information is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "m avg i i i 1 AMI (W) P(C ) AMI(W, C ) = = \u00d7 \u2211",
                        "eq_num": "(12)"
                    }
                ],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "or another optional formula adopted in this paper:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "m max i 1 i AMI (W) MAX AMI(W, C ) = = (13)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "The authors select the top triggers with higher AMI value, and acquire the trigger words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Context Features",
                "sec_num": "3.1"
            },
            {
                "text": "Besides context features, entity features are also very important in the NER task, such as the suffix of Location or Organization. The authors performed statistical analysis of foreign resources, including the corpora and the collected entity name on the Internet. The authors built 8 kinds of dictionaries: Table 6 gives several kinds of resource dictionaries used in this system. Take the \"Suffix of ORG\" as an example, the suffix \"\u5c40\", \"\u7ec4\u7ec7\" is a good hint to detect the Organization Name, so the authors collected them into a \"Suffix of ORG\" dictionary. When used in the Maximum Entropy Model, this dictionary is used to judge the existing cases of the specified context feature.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 308,
                        "end": 315,
                        "text": "Table 6",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "The Entity Features",
                "sec_num": "3.2"
            },
            {
                "text": "Feature extension is used to overcome the sparse data problem and to increase robustness. In addition, semantic and pragmatic knowledge is useful in language processing, e.g., if one knows \"\u6559\u6388\" (professor) is a good hint to label a person's name, the similar words {\uf934\u5e08 teacher), \u52a9\u6559(assistant), \u8bb2\u5e08(lecturer)}, should have the same effect. So, one can build a semantic class by combining word clusters and using a thesaurus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Feature Extension",
                "sec_num": "3.3"
            },
            {
                "text": "A vector for word w is derived from the close neighbors of w in the corpus. Close neighbors are all words that co-occur with w in a sentence or a larger context. The entry for word v in the vector for w records the number of times that word v occurs close to w in the corpus. The authors refer this vector space to as Word Space. Figure 4 gives a schematic example of two words being represented in a two-dimensional space. This vector representation captures the typical topic or subject matter of a word. By looking at the amount of overlap between two vectors, one can roughly determine how closely they are related semantically. This is because related meanings are often expressed by similar sets of words. Semantically related words will, therefore, co-occur with similar neighbors and their vectors will have considerable overlap.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 330,
                        "end": 338,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Feature Extension",
                "sec_num": "3.3"
            },
            {
                "text": "The authors combine the basic semantic word in a thesaurus --HOWNET2005 --with the TF-IDF algorithm [Zhao 2005B] , and use a frequency cutoff to select the 2000 words to serve as the dimensions of Word Space. Compared with the traditional TF-IDF method, this method increases the taxonomical information, so this method can give a better measure of the word similarity.",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 112,
                        "text": "[Zhao 2005B]",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 4. A demonstration of word vectors",
                "sec_num": null
            },
            {
                "text": "After constructing word vectors, the similarity can be measured by the cosine between two vectors. The cosine is equivalent to the normalized correlation coefficient:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 4. A demonstration of word vectors",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 2 2 1 1 ( , ) N i i i N N i i i i v w corr v w v w = = = = \u2211 \u2211 \u2211",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Figure 4. A demonstration of word vectors",
                "sec_num": null
            },
            {
                "text": "The word cluster algorithm in the word vectors is used to measure the similarity by totaling the pragmatic knowledge from the corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 4. A demonstration of word vectors",
                "sec_num": null
            },
            {
                "text": "The authors evaluated the system with two kinds of corpora: 1) The corpora in the International Chinese Word Segmentation Bakeoff; 2) The prior six-month corpora of Peoples' Daily (China) in 1998, which came from Peking University, and have been annotated with lexical tags, including word segmentation, POS tagging, and Named Entity Recognition tags. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation and Discussion",
                "sec_num": "4."
            },
            {
                "text": "This system participated in the Second International Chinese Word Segmentation Bakeoff (SIGHAN-2005) held in 2005, and also participated in SIGHAN-2006. The performance of ELUS in the SIGHAN-2005 bakeoff is presented in Table 7 and  Table 8 respectively, in terms of Recall (R), Precision (P) and F score in percentages. The score software is standard and open by SIGHAN. This good performance in the R iv is due to the class-based Trigram, Absolute Discount Smoothing and Word Disambiguation module with the rough rule features. In this bakeoff, the Name Entity Recognition is a two layer mixing approach, which is reported in detail in a previous paper [Jiang 2007] . The Maximum Entropy Model in the mixing method is similar to that found in Section 3.",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 100,
                        "text": "(SIGHAN-2005)",
                        "ref_id": null
                    },
                    {
                        "start": 140,
                        "end": 152,
                        "text": "SIGHAN-2006.",
                        "ref_id": null
                    },
                    {
                        "start": 655,
                        "end": 667,
                        "text": "[Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 220,
                        "end": 240,
                        "text": "Table 7 and  Table 8",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "The performance of this system in the SIGHAN-2006 bakeoff is presented in Table 9 . The system has good performance in terms of R iv measure. The R iv measure in a closed test and in an open test was 99.1% and 98.9%, respectively. This good performance is due to a class-based Trigram with the Absolute Smoothing and Word Disambiguation algorithm.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 74,
                        "end": 81,
                        "text": "Table 9",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "In this system, the following reasons illustrate why the open test had better performance than the closed test:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "(1) Named Entity Recognition module is added into the open test system. And Named Entities, including PER, LOC, ORG, occupy the most of the out-of-vocabulary words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "(2) The system of closed test can only use the dictionary that is collected from the given training corpus, while the system of open test can use a better dictionary, which includes the words that exist in MSRA training corpus in SIGHAN-2005. As is known, the dictionary is one of the important factors that affects the performance, because the LW candidates in the word lattice are generated from the dictionary.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 242,
                        "text": "SIGHAN-2005.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "As for the dictionary, the authors compare the two collections in SIGHAN-2005 and SIGHAN2006 , and in evaluating the SIGHAN-2005 MSRA closed test. There are less training sentences in SIGHAN-2006 . As a result, there is at least a 1.2% performance decrease. So, this result indicates that the dictionary can have an important impact in a system.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 81,
                        "text": "SIGHAN-2005 and",
                        "ref_id": null
                    },
                    {
                        "start": 82,
                        "end": 92,
                        "text": "SIGHAN2006",
                        "ref_id": null
                    },
                    {
                        "start": 184,
                        "end": 195,
                        "text": "SIGHAN-2006",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The International Chinese Word Segmentation Bakeoff",
                "sec_num": "4.1"
            },
            {
                "text": "In this section, some detailed evaluation results are presented. The authors mainly focus on two difficult sub-tasks in the word segmentation task, namely disambiguation and Named Entity Recognition. The measurements in the following experiments include: the precision P = the right count / the model count, the recall rate R = the right count / the corpus count, and F-measure = (2 * P * R) / (P + R). The authors firstly evaluate the disambiguation performance. Training was done with the preceding five month's Corpus of the People's Daily Newspaper, 1998, including 664,805 sentences, and the test corpus was the sixth month corpus, including 136,647 sentences. The authors applied the Rough Set (RS) theory to extract the rough rule features, and fused this theory into the Maximum Entropy Model. The basic feature templates are the w i-2 , w i-1 , w i , w i+1 , w i+2 , furthermore, the rough rule features were fused into the ME disambiguation model [Jiang 2006A] , the results are shown in Table 10 . Table 10 demonstrates that RS model may achieve improvement over the baseline ME model. There are at least two main advantages in the proposed method: 1) As a conditional probabilistic model, ME can be fused to more effective features, which relaxes the features independent assumption that is suffered from by the N-Gram model; 2) The authors apply the rough set theory to extract complicated and long distance features. Due to how more effective features are utilized, the new method overcomes the sparse data problem to a certain extent. Now, the authors evaluate the second group of difficult sub-tasks, namely, the NER module. The experimental corpora also came from the Chinese People's Daily Newspaper in the first half-year of 1998. The overview of the entity distribution is shown in Table 11 . Figure 5 shows that the distribution of the entities complies with the Zipf's law. As a result, the entities exhibit the sparse property; thereby bringing trouble to the model. The authors compared several Named Entity Recognition Models, and Table 12 gives the evaluation result. The baseline result is obtained by selecting the NER tag that is most frequently associated with the current word. The authors add several tags in the tag set (Called adding \"role\"), including the entity prefix, infix and suffix. These tags are used to enhance the ability of the context repetition. In this experiment, HMM is one order model, and ME, CRF use the feature template:W -2 ,W -1 ,W 0 ,W 1 ,W 2 ,W -1:0 ,W 0:1 ,T -1 . Table 12 indicates that the ME + Role has achieved the best performance. Compared with Hidden Markov Model (HMM), ME can fuse more context features. In another experiment, the authors selected the pairs using two methods, one is to filter by the threshold, such as AMI>0.001, the other method is to select the top pair after ranking the pair in descending order, e.g. selecting the top 500 pairs, having the maximum value. The partial pairs are shown in Table 13 , including the MI, AMI value and their rank.",
                "cite_spans": [
                    {
                        "start": 528,
                        "end": 577,
                        "text": "People's Daily Newspaper, 1998, including 664,805",
                        "ref_id": null
                    },
                    {
                        "start": 957,
                        "end": 970,
                        "text": "[Jiang 2006A]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 998,
                        "end": 1006,
                        "text": "Table 10",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1009,
                        "end": 1017,
                        "text": "Table 10",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1802,
                        "end": 1810,
                        "text": "Table 11",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 1813,
                        "end": 1821,
                        "text": "Figure 5",
                        "ref_id": "FIGREF9"
                    },
                    {
                        "start": 2056,
                        "end": 2064,
                        "text": "Table 12",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 2524,
                        "end": 2532,
                        "text": "Table 12",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 2978,
                        "end": 2986,
                        "text": "Table 13",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "The Detailed Evaluation of the System",
                "sec_num": "4.2"
            },
            {
                "text": "Then, the trigger features were collected, respectively, from above corpora. Taking AMI as an example, after being put in descending order, the top 500 features were selected. Table  14 shows the compared performance with trigger selected by AMI. Table 14 gives the detailed comparison between ME and ME with AMI trigger features. The overall improvement is 2.21% in terms of F-measure. Another experiment is done to compare ME with ME + MI model trained by five month corpora. The result is exhibited in Figure 6 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 176,
                        "end": 185,
                        "text": "Table  14",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 247,
                        "end": 255,
                        "text": "Table 14",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 505,
                        "end": 513,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Detailed Evaluation of the System",
                "sec_num": "4.2"
            },
            {
                "text": "The effectiveness of the proposed method has been confirmed. A similar result is also achieved for the IG approach. Experimental results show that the new method is more efficient.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 6. The comparison about MI in F-measure",
                "sec_num": null
            },
            {
                "text": "In the last part of this section, the authors evaluate the word cluster performance. The word vectors method is performed in the large-scale corpora, in the 1998 and 2000 People's Daily Newspaper, the window of size k =8 being used in this experiment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 6. The comparison about MI in F-measure",
                "sec_num": null
            },
            {
                "text": "The hierarchical cluster analysis or other cluster analysis methods can be used to obtain the word cluster result. Table 15 demonstrates the proximity matrix, and Figure 7 gives its corresponding hierarchical cluster result. The authors used a synonym dictionary \"Word Forest of The Synonym\" to reduce the cluster space and increase prior knowledge. For instance, there are about 63 synonyms to the word \"\u6559\u6388\" (professor).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 115,
                        "end": 123,
                        "text": "Table 15",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 163,
                        "end": 171,
                        "text": "Figure 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Figure 6. The comparison about MI in F-measure",
                "sec_num": null
            },
            {
                "text": "Though it is helpful to build the word classes for the NER task by combining the word cluster and the thesaurus, some manual correction is also needed, because the linguistic phenomenon is too complicated, therefore making it impossible to acquire all the perfect word ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 6. The comparison about MI in F-measure",
                "sec_num": null
            },
            {
                "text": "Based on the analysis of the errors, one finds that the sparse data problem is the main problem [Jiang 2006A; Jiang 2007] . In this paper, the authors apply the Smoothing Algorithm, Word Cluster Method, etc. to overcome the sparse data problem.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 109,
                        "text": "[Jiang 2006A;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 110,
                        "end": 121,
                        "text": "Jiang 2007]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 7. The demonstration about hierarchical cluster",
                "sec_num": null
            },
            {
                "text": "A pragmatic Chinese word segmentation approach having balance between the precision, efficiency and model complication is described in this paper. The disambiguation and out-of-vocabulary detection are the two main difficulties found in the Word Segmentation task. Accordingly, a lot of work is done in order to improve the performance of the above two problems. The contributions of this research are: 1) Apply multiple models to build a word segmentation model, and a special sub-task can be effectively solved via an optimized language model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "2) The authors propose to apply Average Mutual Information, etc. to extract stable entity features, and also present a novel method to provide an auxiliary function in extending the features by combining the word cluster and the thesaurus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "3) Rough Set theory is present to extract the complicated features and the long distance features for the segmentation disambiguation and for the Named Entity Recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "The work in the future will concentrate on two sides: improving the NER performance and exploring New Word Detection Algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "Here, Count(x,y) represents taking count of the co-occurrence of pair (x,y).3 Namely, if C xy >0 then N xy is 1, else N xy is 0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u5b66\u751f student, \u6559\u6388 professor, \u526f\u6559\u6388 associate professor, \u5bfc\u5e08 tutor, \u5927\u5b66\u751f undergraduate, \u4e2d \u5b66\u751f middle school student.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The authors thank Dr. Yan Zhao and Dr. Jian Zhao for their valuable suggestions in the proposed system. The authors also thank the members of the Natural Language Computing Group at School of Computer Science and Technology of the Harbin Institute of Technology. The authors especially thank the anonymous reviewers for their insightful comments and suggestions, based on which the paper has been improved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "An empirical study of smoothing techniques for language modeling",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "F"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Computer Speech and Language",
                "volume": "13",
                "issue": "4",
                "pages": "359--394",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen, S. F., and J. Goodman, \"An empirical study of smoothing techniques for language modeling,\" Computer Speech and Language, 13(4) 1999, pp. 359-394.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A study on word-based and integral-bit Chinese text compression algorithms",
                "authors": [
                    {
                        "first": "K.-S",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "K.-F",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Journal of the American Society for Information Science",
                "volume": "50",
                "issue": "3",
                "pages": "218--228",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cheng, K.-S., G. Young, K.-F Wong, \"A study on word-based and integral-bit Chinese text compression algorithms,\" Journal of the American Society for Information Science, 50(3) 1999, pp. 218-228.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Chinese word segmentation and named entity recognition: a pragmatic approach in Computational Linguistics",
                "authors": [
                    {
                        "first": "J.-F",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "A.-D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "C.-N",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "4",
                "pages": "531--574",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gao, J.-F., A.-D. Wu, M. Li, and C.-N. Huang, \"Chinese word segmentation and named entity recognition: a pragmatic approach in Computational Linguistics,\" Computational Linguistics, 31(4) 2005, pp.531-574.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Chinese Word Segmentation: A Pragmatic Approach",
                "authors": [
                    {
                        "first": "J.-F",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "A.-D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "C.-N",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Microsoft Research",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gao, J.-F., M. Li, A.-D. Wu, and C.-N. Huang, \"Chinese Word Segmentation: A Pragmatic Approach,\" Microsoft Research,Technical Report: MSR-TR-2004-123, November 2004.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Toward a unified approach to statistical language modeling for Chinese",
                "authors": [
                    {
                        "first": "J.-F",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "K.-F",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "ACMTrans, Asian Language Information Process",
                "volume": "1",
                "issue": "1",
                "pages": "3--33",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gao, J.-F., J. Goodman, M. Li, and K.-F. Lee, \"Toward a unified approach to statistical language modeling for Chinese,\" ACMTrans, Asian Language Information Process, 1(1) 2002, pp. 3-33.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Improved source-channel model for Chinese word segmentation",
                "authors": [
                    {
                        "first": "J.-F",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "C.-N",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "the 41nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "272--279",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gao, J.-F., M. Li, and C.-N. Huang, \"Improved source-channel model for Chinese word segmentation,\" In the 41nd Annual Meeting of the Association for Computational Linguistics, 2003, Sapporo, Japan, pp. 272-279.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Error-driven Learning of Chinese word segmentation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Brew",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "the 12th Pacific Conference on Language and Information",
                "volume": "",
                "issue": "",
                "pages": "218--229",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hockenmaier, J., and C. Brew, \"Error-driven Learning of Chinese word segmentation,\" In the 12th Pacific Conference on Language and Information, 1998, Singapore, pp. 218-229.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Research on Chinese Lexical Analysis System by Fusing Multiple Knowledge Sources",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Chinese Journal of Computer",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., X.-L. Wang, Y. Guan, and J. Zhao, \"Research on Chinese Lexical Analysis System by Fusing Multiple Knowledge Sources,\" Chinese Journal of Computer, January, 2007.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Applying Rough Sets in Word Segmentation Disambiguation Based on Maximum Entropy Model",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "G.-H",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Journal of Harbin Institute of Technology (New Series)",
                "volume": "13",
                "issue": "1",
                "pages": "94--98",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., X.-L. Wang, Y. Guan, and G.-H. Liang, \"Applying Rough Sets in Word Segmentation Disambiguation Based on Maximum Entropy Model,\" Journal of Harbin Institute of Technology (New Series), 13(1) 2006A, pp. 94-98.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Chinese Word Segmentation based on Mixing Model",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "Z.-M",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "The 4th SIGHAN Workshop",
                "volume": "",
                "issue": "",
                "pages": "180--182",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., J. Zhao, Y. Guan, and Z.-M. Xu, \"Chinese Word Segmentation based on Mixing Model,\" In The 4th SIGHAN Workshop, 2005, Jeju Island, Korea, pp. 180-182.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A Pragmatic Chinese Word Segmentation System",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "189--192",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., Y. Guan, and X.-L. Wang, \"A Pragmatic Chinese Word Segmentation System,\" In proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing, 2006B, Sydney, pp. 189-192.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improving Feature extraction in Named Entity Recognition based on Maximum Entropy Model",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "the 2006 International Conference on Machine Learning and Cybernetics (ICMLC2006)",
                "volume": "",
                "issue": "",
                "pages": "2630--2635",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., Y. Guan, and X.-L. Wang, \"Improving Feature extraction in Named Entity Recognition based on Maximum Entropy Model,\" In the 2006 International Conference on Machine Learning and Cybernetics (ICMLC2006), 2006C, China, pp. 2630-2635.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "An Improved Unknown Word Recognition Model based on Multi-Knowledge Source Method",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "the 6th International Conference on Intelligent Systems Design and Applications (ISDA'06)",
                "volume": "2",
                "issue": "",
                "pages": "825--830",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiang, W., Y. Guan, and X.-L. Wang, \"An Improved Unknown Word Recognition Model based on Multi-Knowledge Source Method,\" In the 6th International Conference on Intelligent Systems Design and Applications (ISDA'06), vol 2, 2006D, China, pp. 825-830",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "automatic word segmentation in written Chinese and an auto match word segmentation system-CDWS",
                "authors": [
                    {
                        "first": "N.-Y",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Journal of Chinese information processing",
                "volume": "1",
                "issue": "2",
                "pages": "44--52",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liang, N.-Y., \"automatic word segmentation in written Chinese and an auto match word segmentation system-CDWS,\" (in Chinese) Journal of Chinese information processing, 1(2), 1987, pp. 44-52.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A trainable rule-based algorithm to word segmentation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "proceedings of the 35th Annual Meeting of the Association of Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "321--328",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Palmer, D., \"A trainable rule-based algorithm to word segmentation,\" In proceedings of the 35th Annual Meeting of the Association of Computational Linguistics, 1997, Madrid, Spain, pp. 321-328.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Chinese segmentation and new word detection using conditional random fields",
                "authors": [
                    {
                        "first": "F.-C",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "F.-F",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 20th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "562--568",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peng, F.-C., F.-F Feng, and A. McCallum, \"Chinese segmentation and new word detection using conditional random fields,\" In Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), 2004, Geneva, Switzerland, pp. 562-568.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A hierarchical EM approach to word segmentation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "C"
                        ],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Schuurmans",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "6th Natural Language Processing Pacific Rim Symposium (NLPRS-2001)",
                "volume": "",
                "issue": "",
                "pages": "475--480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peng, F.C., and D. Schuurmans, \"A hierarchical EM approach to word segmentation,\" In 6th Natural Language Processing Pacific Rim Symposium (NLPRS-2001), 2001, pp. 475-480.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Automatic word sense discrimination",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Schutze",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Computational Linguistics",
                "volume": "24",
                "issue": "1",
                "pages": "97--123",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schutze, H.. \"Automatic word sense discrimination,\" Computational Linguistics, 24(1) 1998, pp. 97-123.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A Stochastic Finite-State Word-Segmentation Algorithm for Chinese",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational linguistics",
                "volume": "22",
                "issue": "3",
                "pages": "377--404",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sproat, R. C. Shih, G. William, and N. Chang, \"A Stochastic Finite-State Word-Segmentation Algorithm for Chinese,\" Computational linguistics, 22(3) 1996, pp. 377-404.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Word Segmentation in Sentence Analysis",
                "authors": [
                    {
                        "first": "A.-D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Z.-X",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "1998 International Conference on Chinese Information Processing",
                "volume": "",
                "issue": "",
                "pages": "169--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wu, A.-D., and Z.-X. Jiang, \"Word Segmentation in Sentence Analysis,\" In 1998 International Conference on Chinese Information Processing, 1998, Beijing, China, pp. 169-180.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Chinese Word Segmentation as LMR Tagging",
                "authors": [
                    {
                        "first": "N.-W",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "L.-B",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "the Second SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "176--179",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xue, N.-W., and L.-B. Shen, \"Chinese Word Segmentation as LMR Tagging,\" In the Second SIGHAN Workshop on Chinese Language Processing, 2003, Japan, pp. 176-179.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Chinese Lexical Analysis Using Hierarchical Hidden Markov Model",
                "authors": [
                    {
                        "first": "H.-P",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "X.-Q",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H.-K",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "the Second SIGHAN workshop affiliated with 4th ACL",
                "volume": "",
                "issue": "",
                "pages": "63--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhang, H.-P., Q. Liu, X.-Q. Cheng, H. Zhang, and H.-K. Yu, \"Chinese Lexical Analysis Using Hierarchical Hidden Markov Model,\" In the Second SIGHAN workshop affiliated with 4th ACL, 2003, Sapporo Japan, pp. 63-70.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Research on Conditional Probabilistic Model and Its Application in Chinese Named Entity Recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhao, J., \"Research on Conditional Probabilistic Model and Its Application in Chinese Named Entity Recognition,\" PhD thesis, Harbin Institute of Technology, China, 2006.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Research on Chinese Morpheme Analysis Based on Statistic Language Model",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhao, Y., \"Research on Chinese Morpheme Analysis Based on Statistic Language Model,\" PhD thesis, Harbin Institute of Technology, China, 2005A.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Solution Strategies for Word Sense Problems Based On Vector Space Model and Maximum Entropy Model",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "X.-L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "B.-Q",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Guan",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Chinese High Technology Letters",
                "volume": "15",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhao, Y., X.-L. Wang, B.-Q. Liu, and Y. Guan, \"Solution Strategies for Word Sense Problems Based On Vector Space Model and Maximum Entropy Model,\" (In Chinese), Chinese High Technology Letters, 15(1) 2005B, pp. 1-6.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "The structure of the proposed system",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "Permitted meta rules: <Non-terminator>, terminator, {Loop block}, {Loop block+}, {Loop block*}, [Range block] (e.g. [a..z], [\"a\"..\"z\"]), |, (Optional block), (Optional block +), (Optional block *).",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "The example of data structure in the lexicon (TRIEs)",
                "uris": null,
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "text": "objects are merged, the objects of each equivalence classes are counted and potential rule precision is calculated. If one lets each d \u03b1 have the same value, namely, let d \u03b1 \u03b1 = to the decision attribute d, then \u03bb -Approximation will revert back to the conventional definition of \u03b1 -Approximation.",
                "uris": null,
                "num": null
            },
            "FIGREF6": {
                "type_str": "figure",
                "text": "Rough rule features are added in the ME model as a new kind of feature: = represents that the conditional attribute of r can be reconstructed in the current context, and a d = represents the decision attribute of d is equal to the tag of ambiguous word. (More details were reported in the paper \"[Jiang 2006A]\".)",
                "uris": null,
                "num": null
            },
            "FIGREF7": {
                "type_str": "figure",
                "text": "\uf981\u58eb/B-PER_SUFFIX (Note: It's my honor to visit Ms. Sun Gui-Ping.) As there are distinct differences between a Chinese person's name and the translation of the person's name in terms of the person construction, the person name is divided into Chinese Person Name (CPN) and the Translation Person Name",
                "uris": null,
                "num": null
            },
            "FIGREF9": {
                "type_str": "figure",
                "text": "The entities that exhibit Zipf's law",
                "uris": null,
                "num": null
            },
            "FIGREF10": {
                "type_str": "figure",
                "text": "making statistical analysis of some corpora.",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "content": "<table><tr><td>TAG</td><td>Description</td><td>Examples</td></tr><tr><td>LW</td><td>The word in the Lexicon</td><td>\u6700\u8fd1(recent),\u535a\u58eb(doctor), \u5b66\u4f4d(degree)</td></tr><tr><td>FT</td><td>Number, Date, Time etc.</td><td>2910, 46.12%, 2004\uf98e05\u670812\u65e5, 01:06</td></tr><tr><td>MDW</td><td>Morphological derived words</td><td>\u670b\u53cb\u4eec(friends), \u9ad8\u9ad8\u5174\u5174(happily), \u8fdb\u51fa\u53e3(imports and exports)</td></tr><tr><td>NE</td><td>Named Entities</td><td>\u5b59\u6842\u5e73(Sun Gui-Ping), \u54c8\u5c14\u6ee8(harbin)</td></tr><tr><td>NW</td><td>The other OOV except FT, MDW, NE</td><td>\u6d77\u98ce\u724c(sea breeze brand), \u53e4\u5178\u5f0f (classical), \u666f\u89c2\u706f(sighting lamp)</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF1": {
                "content": "<table><tr><td>FT type</td><td>Factoid word description</td><td>Examples</td></tr><tr><td>Number</td><td>Integer, percent, real etc.</td><td>2203, 25.78%, \uf9b2\u70b9\u4e94, 20.542</td></tr><tr><td>Date</td><td>Date</td><td>2004 \uf98e 5 \u6708 12 \u65e5, 2004-06-06</td></tr><tr><td>Time</td><td>Time</td><td>8:00, \u5341\u70b9\u4e8c\u5341\u5206, \u665a\u4e0a 6 \u70b9</td></tr><tr><td>English</td><td>English word,</td><td>Hello, How, are, you</td></tr><tr><td>www</td><td>Website, IP address</td><td>http://www.hit.edu.cn; 192.168.140.133</td></tr><tr><td>email</td><td>Email</td><td>jiangwei@insun.hit.edu.cn</td></tr><tr><td>phone</td><td>Phone, fax</td><td>+86-451-86413322; (0451)86413322</td></tr></table>",
                "text": "by this system, are shown inTable 2.",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF2": {
                "content": "<table><tr><td/><td/><td/><td/><td/><td>\u2208 , there is an</td></tr><tr><td colspan=\"5\">attribute value a V set and an information function</td><td>: f U V a a \u2192 . An equivalence \u03b8 on set</td></tr><tr><td colspan=\"6\">U is called an indiscernible relation, and lower approximation for an object set X U \u2286 is</td></tr><tr><td>defined as</td><td>X</td><td>{ \u03b8 \u03b8 \u03b8 : x x X = \u2286</td><td>}</td><td>.</td></tr></table>",
                "text": "where U is a non-empty set of objects; A is a non-empty set of attribute a 's; for each attribute a A However, this formula is too strict to fit the requirements of Natural Language Processing. For this reason, the concept of \u03b1 -approximation is provided:",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td/><td>S 1</td><td>S 2</td><td>\u2026</td><td>S m</td></tr><tr><td>W 1</td><td>c 11</td><td>c 21</td><td>\u2026</td><td>S m1</td></tr><tr><td>W 2</td><td>c 12</td><td>c 22</td><td>\u2026</td><td>S m2</td></tr><tr><td>\u2026.</td><td>\u2026</td><td>\u2026</td><td>\u2026</td><td>\u2026</td></tr><tr><td>W n</td><td>c 1n</td><td>c 2n</td><td>\u2026</td><td>S mn</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "content": "<table><tr><td>Type</td><td>Feature Template</td></tr><tr><td>one order feature</td><td/></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF5": {
                "content": "<table><tr><td>List Type</td><td>Lexicon</td><td>Examples</td></tr><tr><td>Word list</td><td>Place lexicon Chinese surname</td><td>\uf963\u4eac, \u7ebd\u7ea6, \u9a6c\u5bb6\u6c9f \u5f20, \u738b, \u8d75, \u6b27\u9633</td></tr><tr><td/><td>Prefix of PER</td><td>\uf934, \u963f, \u5c0f</td></tr><tr><td>String list</td><td>Suffix of PLA</td><td>\u5c71, \u6e56, \u5bfa, \u53f0, \u6d77</td></tr><tr><td/><td>Suffix of ORG</td><td>\u4f1a, \u8054\u76df, \u7ec4\u7ec7, \u5c40</td></tr><tr><td/><td>Character for CPER</td><td>\u519b,\u521a, \u83b2, \u8335, \u5029</td></tr><tr><td>Character list</td><td>Character for FPER</td><td>\u79d1, \u66fc, \u65af, \u5a03, \u8d1d</td></tr><tr><td/><td>Rare character</td><td>\u6ed7, \u80e8, \u8585</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF6": {
                "content": "<table><tr><td>Closed</td><td>R</td><td>P</td><td>F</td><td>OOV</td><td>R oov</td><td>R iv</td></tr><tr><td>PKU</td><td>95.4</td><td>92.7</td><td>94.1</td><td>5.8</td><td>51.8</td><td>98.1</td></tr><tr><td>MSR</td><td>97.3</td><td>94.5</td><td>95.9</td><td>2.6</td><td>32.3</td><td>99.1</td></tr><tr><td>CITYU</td><td>93.4</td><td>86.5</td><td>89.8</td><td>7.4</td><td>24.8</td><td>98.9</td></tr><tr><td>AS</td><td>94.3</td><td>89.5</td><td>91.8</td><td>4.3</td><td>13.7</td><td>97.9</td></tr></table>",
                "text": "This system has good performance in terms of F-measure in the simplified Chinese open test, including the PKU and MSR open tests. In addition, its In-vocabulary word (IV, namely, Lexical words) identification performance is remarkable, ranging from 97.7% to 99.1%, standing at the top or near the top in all the tests in which it has participated.",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF7": {
                "content": "<table><tr><td>Open</td><td>R</td><td>P</td><td>F</td><td>OOV</td><td>R oov</td><td>R iv</td></tr><tr><td>PKU</td><td>96.8</td><td>96.6</td><td>96.7</td><td>5.8</td><td>82.6</td><td>97.7</td></tr><tr><td>MSR</td><td>98.0</td><td>96.5</td><td>97.2</td><td>2.6</td><td>59.0</td><td>99.0</td></tr><tr><td>CITYU</td><td>94.6</td><td>89.8</td><td>92.2</td><td>7.4</td><td>41.7</td><td>98.9</td></tr><tr><td>AS</td><td>95.2</td><td>92.0</td><td>93.6</td><td>4.3</td><td>35.4</td><td>97.9</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF8": {
                "content": "<table><tr><td colspan=\"5\">MSRA test in SIGHAN2006 (%)</td><td/><td/></tr><tr><td>MSRA</td><td>R</td><td>P</td><td>F</td><td>OOV</td><td>R oov</td><td>R iv</td></tr><tr><td>Close</td><td>96.3</td><td>91.8</td><td>94.0</td><td>3.4</td><td>17.5</td><td>99.1</td></tr><tr><td>Open</td><td>97.7</td><td>96.0</td><td>96.8</td><td>3.4</td><td>62.4</td><td>98.9</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF9": {
                "content": "<table><tr><td>Ambiguity</td><td>Type</td><td>Train Count</td><td>Test Count</td><td>ME Precision</td><td>RS model Precision</td></tr><tr><td>\u624d\u80fd</td><td>\u624d\u80fd \u624d/\u80fd</td><td>704 7612</td><td>190 300</td><td>90%</td><td>93%</td></tr><tr><td>\uf967\u8981</td><td>\uf967\u8981 \uf967/\u8981</td><td>1421 497</td><td>150 80</td><td>91%</td><td>95%</td></tr><tr><td>\u4ece\u5c0f\u5b66</td><td>\u4ece\u5c0f/\u5b66 \u4ece/\u5c0f\u5b66</td><td>170 260</td><td>40 70</td><td>88%</td><td>91%</td></tr><tr><td>\u5c06\u6765</td><td>\u5c06\u6765 \u5c06/\u6765</td><td>1200 35</td><td>200 10</td><td>92%</td><td>97%</td></tr><tr><td>\u4e2a\u4eba</td><td>\u4e2a\u4eba \u4e2a/\u4eba</td><td>1016 819</td><td>150 120</td><td>89%</td><td>94%</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF10": {
                "content": "<table><tr><td>Named Entity</td><td>CPN</td><td>FPN</td><td>LOC</td><td>ORG</td></tr><tr><td>By entities</td><td>27.54%</td><td>8.86%</td><td>41.53%</td><td>22.07%</td></tr><tr><td>By corpus</td><td>1.29%</td><td>0.41%</td><td>1.94%</td><td>1.03%</td></tr><tr><td>Occur Count</td><td>92941</td><td>29912</td><td>140162</td><td>74483</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF11": {
                "content": "<table><tr><td colspan=\"2\">Model</td><td colspan=\"2\">Precision</td><td>Recall</td><td/><td colspan=\"2\">F-measure</td></tr><tr><td colspan=\"2\">BaseLine</td><td colspan=\"2\">68.99%</td><td>73.54%</td><td/><td colspan=\"2\">71.19%</td></tr><tr><td colspan=\"2\">HMM</td><td colspan=\"2\">79.20%</td><td>79.96%</td><td/><td colspan=\"2\">79.58%</td></tr><tr><td/><td>ME</td><td colspan=\"2\">84.77%</td><td>83.23%</td><td/><td colspan=\"2\">83.99%</td></tr><tr><td colspan=\"2\">HMM + Role</td><td colspan=\"2\">83.68%</td><td>85.20%</td><td/><td colspan=\"2\">84.43%</td></tr><tr><td colspan=\"2\">ME + Role</td><td colspan=\"2\">87.95%</td><td>84.62%</td><td/><td colspan=\"2\">86.25%</td></tr><tr><td colspan=\"5\">Table 13. Trigger pairs draw from corpus</td><td/><td/></tr><tr><td/><td>Pair</td><td>Value</td><td>AMI</td><td>Rank</td><td>Value</td><td>MI</td><td>Rank</td></tr><tr><td colspan=\"2\">\u540c\u5fd7 CPN</td><td>3.9e-4</td><td/><td>6</td><td>2.71</td><td/><td>144</td></tr><tr><td>\u8bf4</td><td>CPN</td><td>2.3e-4</td><td/><td>11</td><td>1.85</td><td/><td>885</td></tr><tr><td colspan=\"2\">\u4e3b\u4efb ORG</td><td>1.2e-4</td><td/><td>23</td><td>2.63</td><td/><td>181</td></tr><tr><td colspan=\"2\">\u4f1a\u89c1 CPN</td><td>1.1e-4</td><td/><td>27</td><td>2.43</td><td/><td>269</td></tr><tr><td colspan=\"2\">\u4e3e\ufa08 LOC</td><td>9.5e-5</td><td/><td>34</td><td>1.61</td><td/><td>1279</td></tr><tr><td colspan=\"2\">\uf963\u90e8 LOC</td><td>3.9e-5</td><td/><td>80</td><td>2.45</td><td/><td>271</td></tr><tr><td colspan=\"2\">\u4f1a\u8bae ORG</td><td>3.8e-5</td><td/><td>83</td><td>1.39</td><td/><td>1650</td></tr><tr><td colspan=\"2\">\u6559\u6388 CPN</td><td>3.1e-5</td><td/><td>96</td><td>2.21</td><td/><td>463</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF12": {
                "content": "<table><tr><td>Entity type</td><td>P</td><td>ME (%) R</td><td>F</td><td>P</td><td>ME+AMI(%) R</td><td>F</td></tr><tr><td>CPN</td><td colspan=\"6\">84.54 77.71 80.98 86.36 82.41 84.34</td></tr><tr><td>FPN</td><td colspan=\"6\">73.27 53.21 61.65 78.50 56.90 65.97</td></tr><tr><td>LOC</td><td colspan=\"6\">86.95 76.53 81.41 87.57 77.62 82.30</td></tr><tr><td>ORG</td><td colspan=\"6\">74.87 55.29 63.61 74.08 60.95 66.88</td></tr><tr><td>Overall</td><td colspan=\"6\">82.81 69.74 75.71 83.60 72.97 77.92</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            },
            "TABREF13": {
                "content": "<table><tr><td>Case</td><td>\u5b66\u751f</td><td colspan=\"5\">Cosine of Vectors of Values \u6559\u6388 \u526f\u6559\u6388 \u5bfc\u5e08 \u5927\u5b66\u751f \u4e2d\u5b66\u751f</td></tr><tr><td>\u5b66\u751f</td><td>1.000</td><td>.352</td><td>.280</td><td>.288</td><td>.433</td><td>.331</td></tr><tr><td>\u6559\u6388</td><td>.352</td><td>1.000</td><td>.722</td><td>.815</td><td>.310</td><td>.174</td></tr><tr><td>\u526f\u6559\u6388</td><td>.280</td><td>.722</td><td>1.000</td><td>.641</td><td>.216</td><td>.136</td></tr><tr><td>\u5bfc\u5e08</td><td>.288</td><td>.815</td><td>.641</td><td>1.000</td><td>.226</td><td>.139</td></tr><tr><td>\u5927\u5b66\u751f</td><td>.433</td><td>.310</td><td>.216</td><td>.226</td><td>1.000</td><td>.674</td></tr><tr><td>\u4e2d\u5b66\u751f</td><td>.331</td><td>.174</td><td>.136</td><td>.139</td><td>.674</td><td>1.000</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table",
                "num": null
            }
        }
    }
}