File size: 113,922 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:09:12.602857Z"
    },
    "title": "BERTnesia: Investigating the capture and forgetting of knowledge in BERT",
    "authors": [
        {
            "first": "Jonas",
            "middle": [],
            "last": "Wallat",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "L3S Research Center Hannover",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "wallat@l3s.de"
        },
        {
            "first": "Jaspreet",
            "middle": [],
            "last": "Singh",
            "suffix": "",
            "affiliation": {
                "laboratory": "L3S Research Center Hannover",
                "institution": "",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "singh@l3s.de"
        },
        {
            "first": "Avishek",
            "middle": [],
            "last": "Anand",
            "suffix": "",
            "affiliation": {
                "laboratory": "L3S Research Center Hannover",
                "institution": "",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "anand@l3s.de"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Probing complex language models has recently revealed several insights into linguistic and semantic patterns found in the learned representations. In this paper, we probe BERT specifically to understand and measure the relational knowledge it captures. We utilize knowledge base completion tasks to probe every layer of pre-trained as well as fine-tuned BERT (ranking, question answering, NER). Our findings show that knowledge is not just contained in BERT's final layers. Intermediate layers contribute a significant amount (17-60%) to the total knowledge found. Probing intermediate layers also reveals how different types of knowledge emerge at varying rates. When BERT is fine-tuned, relational knowledge is forgotten but the extent of forgetting is impacted by the fine-tuning objective but not the size of the dataset. We found that ranking models forget the least and retain more knowledge in their final layer. We release our code on github 1 to repeat the experiments.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Probing complex language models has recently revealed several insights into linguistic and semantic patterns found in the learned representations. In this paper, we probe BERT specifically to understand and measure the relational knowledge it captures. We utilize knowledge base completion tasks to probe every layer of pre-trained as well as fine-tuned BERT (ranking, question answering, NER). Our findings show that knowledge is not just contained in BERT's final layers. Intermediate layers contribute a significant amount (17-60%) to the total knowledge found. Probing intermediate layers also reveals how different types of knowledge emerge at varying rates. When BERT is fine-tuned, relational knowledge is forgotten but the extent of forgetting is impacted by the fine-tuning objective but not the size of the dataset. We found that ranking models forget the least and retain more knowledge in their final layer. We release our code on github 1 to repeat the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Large pre-trained language models like BERT (Devlin et al., 2019) have heralded an Imagenet moment for NLP 2 with not only significant improvements made to traditional tasks such as question answering and machine translation but also in the new areas such as knowledge base completion. BERT has over 100 million parameters and essentially trades off transparency and interpretability for performance. Loosely speaking, probing is a commonly used technique to better understand the inner workings of BERT and other complex language models (Dasgupta et al., 2018; Ettinger et al., 2018) . Probing, in general, is a procedure by which one tests for a specific pattern -like local syntax, long-range semantics or even compositional reasoningby constructing inputs whose expected output would not be possible to predict without the ability to detect that pattern. While a large body of work exists on probing BERT for linguistic patterns and semantics, there is limited work on probing these models for the factual and relational knowledge they store.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 65,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 538,
                        "end": 561,
                        "text": "(Dasgupta et al., 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 562,
                        "end": 584,
                        "text": "Ettinger et al., 2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, Petroni et al. (2019) probed BERT and other language models for relational knowledge (e.g., Trump is the president of the USA) in order to determine the potential of using language models as automatic knowledge bases. Their approach converted queries in the knowledge base (KB) completion task of predicting arguments or relations from a KB triple into a natural language cloze task, e.g., [MASK] is the president of the USA. This is done to make the query compatible with the pre-training masked language modeling (MLM) objective. They consequently showed that a reasonable amount of knowledge is captured in BERT by considering multiple relation probes. However, there are some natural questions that arise from these promising investigations: Is there more knowledge in BERT than what is reported? What happens to relational knowledge when BERT is fine-tuned for other tasks? Is knowledge gained and lost through the layers?",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 31,
                        "text": "Petroni et al. (2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 400,
                        "end": 406,
                        "text": "[MASK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our Contribution. In this paper, we study the emergence of knowledge through the layers in BERT by devising a procedure to estimate knowledge contained in every layer and not just the last (as done by Petroni et al. (2019) ). While this type of layer-by-layer probing has been conducted for syntactic, grammatical, and semantic patterns; knowledge probing has only been conducted on final layer representations. Observing only the final layer (as we will show in our experiments) (i) underestimates the amount of knowledge and (ii) does not reveal how knowledge emerges. Furthermore, we explore how knowledge is impacted when fine-tuning on knowledge-intensive tasks such as question answering and ranking. We list the key research questions we investigated and key findings corresponding to them: RQ I: Do intermediary layers capture knowledge not present in the last layer? (Section 4.1)",
                "cite_spans": [
                    {
                        "start": 201,
                        "end": 222,
                        "text": "Petroni et al. (2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We find that a substantial amount of knowledge is stored in the intermediate layers (\u2248 24% on average)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "RQ II: Does all knowledge emerge at the same rate? Do certain types of relational knowledge emerge more rapidly? (Section 4.2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We find that not all relational knowledge is captured gradually through the layers with 15% of relationship types essentially doubling in the last layer and 7% of relationship types being maximally captured in an intermediate layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "RQ III: What is the impact of fine-tuning data on knowledge capture? (Section 4.3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We find that the dataset size does not play a major role when the training objective is fixed as MLM. Fine-tuning on a larger dataset does not lead to less forgetting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "What is the impact of the fine tuning objective on knowledge capture ? (Section 4.4) Fine tuning always causes forgetting. When the size of the dataset is fixed and training objective varies, the ranking model (RANK-MSMARCO in our experiments) forgets less than the QA model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RQ IV:",
                "sec_num": null
            },
            {
                "text": "In this section, we survey previous work on probing language models (LMs) with a particular focus on contextual embeddings learned by BERT. Probes have been designed for both static and contextualized word representations. Static embeddings refer to non-contextual embeddings such as GloVe (Pennington et al., 2014) . For the static case, the reader can refer to this survey by Belinkov and Glass (2019). Now we detail probing tasks for contextualized embeddings from language models.",
                "cite_spans": [
                    {
                        "start": 290,
                        "end": 315,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Initial work on probing dealt with linguistic pattern detection. Peters et al. (2018) 2019investigated BERT layer-bylayer for various syntactic and semantic patterns like part-of-speech, named entity recognition, coreference resolution, entity type prediction, semantic role labeling, etc. They all found that basic linguistic patterns like part of speech emerge at the lower layers. However, there is no consensus with regards to semantics with somewhat conflicting findings (equally spread vs final layer (Jawahar et al., 2019)). Kovaleva et al. (2019) found that the last layers of fine-tuned BERT contain the most amount of task-specific knowledge. van Aken et al. (2019) showed the same result for fined tuned QA BERT with specially designed probes. They found that the lower and intermediary layers were better suited to linguistic subtasks associated with QA. For a comprehensive survey we point the reader to (Rogers et al., 2020) Our work is similar to these studies in terms of setup. In particular, our probes function on the sentence level and are applied to each layer of a pre-trained BERT model as well as BERT finetuned on several tasks. However, we do not focus on detecting linguistic patterns and focus on relational and factual knowledge.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 85,
                        "text": "Peters et al. (2018)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 532,
                        "end": 554,
                        "text": "Kovaleva et al. (2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 917,
                        "end": 938,
                        "text": "(Rogers et al., 2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probing for syntax, semantics, and grammar",
                "sec_num": "2.1"
            },
            {
                "text": "In parallel, there have been investigations into probing for factual and world knowledge. Most recently, Petroni et al. (2019) found that LMs like BERT can be directly used for the task of knowledge base completion since they are able to memorize more facts than some automatic knowledge bases. They created cloze statement tasks for factual and commonsense knowledge and measured cloze-task performance as a proxy for the knowledge contained. However, using the same probing framework, Kassner and Sch\u00fctze (2020) showed that this factoid knowledge is influenced by surface-level stereotypes of words. For example, BERT often predicts a typically German name as a German citizen. Tangentially, Forbes et al. (2019) investigated BERT's awareness of the world. They devised object property and action probes to estimate BERT's ability to reason about the physical world. They found that BERT is relatively incapable of such reasoning but is able to memorize some properties of real-world objects. This investigation tested common sense spatial reasoning rather than pure factoid knowledge.",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 126,
                        "text": "Petroni et al. (2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 487,
                        "end": 513,
                        "text": "Kassner and Sch\u00fctze (2020)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probing for knowledge",
                "sec_num": "2.2"
            },
            {
                "text": "Rather than focusing on newer knowledge types, we focus on the true coverage of already known relations and facts in BERT. In terms of experiments, we do not focus on knowledge containment in different language models, rather focus on investigating how knowledge emerges specifically in BERT. Here, we are more interested in relative differences. To this end, we devise a procedure to adapt the layerwise probing methodology often employed for linguistic pattern detection by van Aken et al. 2019 3 Experimental Setup",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probing for knowledge",
                "sec_num": "2.2"
            },
            {
                "text": "BERT is a bidirectional text encoder built by stacking several transformer layers. BERT is often pre-trained with two tasks: next sentence classification and masked language modeling (MLM). MLM is cast as a classification task over all tokens in the vocabulary. It is realized by training a decoder that takes as input the mask token embedding and outputs a probability distribution over vocabulary tokens. In our experiments we used BERT base (12 layers) pretrained on the BooksCorpus (Zhu et al., 2015) and English Wikipedia. We use this model for fine-tuning to keep comparisons consistent. Henceforth, we refer to pre-trained BERT as just BERT. The following is a list of all fine-tuned models used in our experiments:",
                "cite_spans": [
                    {
                        "start": 486,
                        "end": 504,
                        "text": "(Zhu et al., 2015)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "3.1"
            },
            {
                "text": "1. NER-CONLL: (cased) named entity recognition model tuned on Conll-2003 (Sang and Meulder, 2003) .",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 82,
                        "text": "Conll-2003 (Sang and",
                        "ref_id": null
                    },
                    {
                        "start": 83,
                        "end": 97,
                        "text": "Meulder, 2003)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "3.1"
            },
            {
                "text": "2. QA-SQUAD-1: A question answering model (span prediction) trained on SQuAD 1 (Rajpurkar et al., 2016 ). The trained model achieved an F1 score of 88.5 on the test set.",
                "cite_spans": [
                    {
                        "start": 79,
                        "end": 102,
                        "text": "(Rajpurkar et al., 2016",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "3.1"
            },
            {
                "text": "3. QA-SQUAD-2: QA span prediction trained Squad 2 (Rajpurkar et al., 2018) . The F1 score was 67 (note: SQUAD 2 is a more challenging version of SQUAD 1).",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 74,
                        "text": "(Rajpurkar et al., 2018)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "3.1"
            },
            {
                "text": "Ranking model trained on the MSMarco passage reranking task (Nguyen et al., 2016) . We used the fine-tuning procedure described in (Nogueira and Cho, 2019) to obtain a regression model that predicts a relevance score given query and passage.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 81,
                        "text": "(Nguyen et al., 2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 131,
                        "end": 155,
                        "text": "(Nogueira and Cho, 2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RANK-MSMARCO:",
                "sec_num": "4."
            },
            {
                "text": "5. MLM-MSMARCO: BERT fine-tuned on the passages from the MSMarco dataset using the masked language modeling objective as per (Devlin et al., 2019) . 15% of the tokens masked at random.",
                "cite_spans": [
                    {
                        "start": 125,
                        "end": 146,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RANK-MSMARCO:",
                "sec_num": "4."
            },
            {
                "text": "6. MLM-SQUAD: BERT fine-tuned on text from SQUAD using the masked language modeling objective as per Devlin et al. (2019) . 15% of the tokens masked at random.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 121,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RANK-MSMARCO:",
                "sec_num": "4."
            },
            {
                "text": "When fine-tuning, our goal was to not only achieve good performance but also to minimize the number of extra parameters added. More parameters outside BERT may increase the chance of knowledge being stored elsewhere leading to unreliable measurement. We used the Huggingface transformers library (Wolf et al., 2019) for implementing all models in our experiments. More details on hyperparameters and training can be found in the Appendix.",
                "cite_spans": [
                    {
                        "start": 296,
                        "end": 315,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RANK-MSMARCO:",
                "sec_num": "4."
            },
            {
                "text": "We utilized the existing suite of LAMA knowledge probes suggested in (Petroni et al., 2019) 3 for our experiments. 1825, and place-of-death (766 instances). The date-of-birth is a strict numeric prediction that is not covered by T-REx. Finally, Squad uses context insensitive questions from SQuAD that has been manually rewritten to cloze-style statements. Note that this is the same dataset used to train QA-SQUAD-1 and QA-SQUAD-2.",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 91,
                        "text": "(Petroni et al., 2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Knowledge probes",
                "sec_num": "3.2"
            },
            {
                "text": "Our goal is to measure the knowledge stored in BERT via knowledge probes. LAMA probes rely on the MLM decoding head to complete cloze statement tasks. Note that this decoder is only trained for the mask token embedding of the final layer and is unsuitable if we want to probe all layers of BERT. To overcome this we train a new decoding head for each layer of a BERT model under investigation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probing Procedure",
                "sec_num": "3.3"
            },
            {
                "text": "Training: We train a new decoding head for each layer the same way as standard pre-training using MLM. We also used Wikipedia (WikiText-2 data) -sampling passages at random and then randomly masking 15% of the tokens in each. Our decoding head uses the same architecture as proposed by Devlin et al. (2019) -a fully connected layer with GELU activation and layer norm (epsilon of 1e-12) resulting in a new 768 dimension embedding. This embedding is then fed to a linear layer with softmax activation to output a probability distribution over the 30K vocabulary terms. In total, the decoding head possesses \u223c24M parameters. We froze BERT's parameters and trained the the decoding head only for every layer using the same training data. We initialized the new decoding heads with the parameters of the pretrained decoding and then fine-tuned it. Our experiments with random initialization yielded no significant difference. We used a batch size of 8 and trained until validation loss was minimized using the Adam optimizer (Kingma and Ba, 2015). With the new decoding heads, the LAMA probes can be applied to every layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probing Procedure",
                "sec_num": "3.3"
            },
            {
                "text": "We convert the probability distribution output of the decoding head to a ranking with the most probable token at rank 1. The amount of knowledge stored at each layer is measured by precision at rank 1 (P@1 for short).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measuring Knowledge",
                "sec_num": null
            },
            {
                "text": "We use P@1 as the main metric in all our experiments. Since rank depth of 1 is a strict metric, we also measured P@10 and P@100. We found the trends to be similar across varying rank depths. For completeness, results for P@10 and P@100 can be found in the appendix. Additionally, we measure the total amount of knowledge contained in BERT by",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measuring Knowledge",
                "sec_num": null
            },
            {
                "text": "P@1 = max({P l @1| \u2200l \u2208 L})",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measuring Knowledge",
                "sec_num": null
            },
            {
                "text": "where L is the set of all layers and P l @1 is the P@1 for a given layer l. In our experiments |L| = 12. This metric allows us to consider knowledge captured at all layers of BERT, not just a specific layer. If knowledge is always best captured at one specific layer l then P@1 = P l @1. If the last layer always contains the most information then total knowledge is equal to the knowledge stored in the last layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measuring Knowledge",
                "sec_num": null
            },
            {
                "text": "Note that BERT, MLM-MSMARCO, and MLM-SQUAD are trained for the task of masked word prediction which is exactly the same task as our probes. The last layers of BERT have shown to contain mostly task-specific knowledge -how to predict the masked word in this case (Kovaleva et al., 2019) . Hence, good performance in our probes at the last layers for MLM models can be partially attributed to task-based knowledge.",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 285,
                        "text": "(Kovaleva et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Caveats of probing with cloze statements:",
                "sec_num": null
            },
            {
                "text": "In contrast to existing work, we want to analyze relation knowledge across layers to measure the total knowledge contained in BERT and observe the evolution of relational knowledge through the layers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4"
            },
            {
                "text": "The first question we tackle is -Does knowledge reside strictly in the last layer of BERT? Figure 1 compares the fraction of correct predictions in the last layer as against all the correct predictions computed at any intermediate layer in terms of P@1. It is immediately evident that a significant amount of knowledge is stored in the intermediate layers. While the last layer does contain a reasonable amount of knowledge, a considerable proportion of relations seem to be forgotten and the intermediate layers contain relational knowledge that is absent in the final layer. Specifically, 18% for T-REx and 33% approximately for the others are forgotten by BERTs last layer. For instance, the answer to Rocky Balboa was born in [MASK] is correctly predicted as Philadelphia by Layer 10 whereas the rank of Philadelphia in the last layer drops to 26 for BERT.",
                "cite_spans": [
                    {
                        "start": 730,
                        "end": 736,
                        "text": "[MASK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 91,
                        "end": 99,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Intermediate Layers Matter",
                "sec_num": "4.1"
            },
            {
                "text": "The intermediary layers also matter for finetuned models. Models with high P@1 tend to have a smaller fraction of knowledge of stored in the intermediate layers -20% for RANK-MSMARCO on T-REx. In other cases, the amount of knowledge lost in the final layer is more drastic -3\u00d7 for QA-SQUAD-2 on Google-RE.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Intermediate Layers Matter",
                "sec_num": "4.1"
            },
            {
                "text": "We also measured the fraction of relationship types in T-REx that are better captured in the intermediary layers (Table 2) . On average, 7% of all relation types in T-REx are forgotten in the last layer for BERT. RANK-MSMARCO forgets the least amount of relation types (2%) whereas QA-SQUAD-1 forgets the most (43%) in T-REx, while also being the least knowledgeable (lowest or second-lowest P@1 in all probes). This is further proof of our claim that BERT's overall capacity can be better estimated by probing all layers. Surprisingly, RANK-MSMARCO is able to consistently store nearly all of its knowledge in the last layer. We postulate that for ranking in particular, relational knowledge is a key aspect of the task specific knowledge commonly found in the last layers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 113,
                        "end": 122,
                        "text": "(Table 2)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Intermediate Layers Matter",
                "sec_num": "4.1"
            },
            {
                "text": "Next, we study the evolution of relational knowledge through the BERT layers presented in Figure 2 that reports P@1 at different layers.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 96,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "We observe that the amount of relational knowledge captured increases steadily with each additional layer. While some relations are easier to capture early on, we see an almostexponential growth of relational knowledge after Layer 8. This indicates that relational knowledge is predominantly stored in the last few layers as against low-level linguistic patterns are learned at the lower layers (similar to van Aken et al. (2019)). In Figure 3 we inspect relationship types that show uncharacteristic growth or loss in T-REx.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 435,
                        "end": 443,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "While member of is forgotten in the last layers, the relation diplomatic relation is never learned at all, and official language of is only identifiable in the last two layers. Note that the majority of relations follow the nearly exponential growth curve of the mean performance in Figure 2 (see line T-REx). From our calculations, nearly 15% of relationship types double in mean P@1 at the last layer.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 283,
                        "end": 291,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "We now analyze evolution in fine-tuned models to understand the impact of fine-tuning on the knowledge contained through the layers. There are two effects at play once BERT is fine-tuned. First, during fine-tuning BERT observes additional task-specific data and hence has either opportunity to monotonically increase its relational knowledge or replace relational knowledge with more task-specific information. Second, the taskspecific loss function might be misaligned with the MLM probing task. This means that fine-tuning might result in difficulties in retrieving the actual knowledge using the MLM head. In the following, we first look at the overall results and then focus on specific effects thereafter. Figure 4 shows the evolution of knowledge in 3 different models when compared to BERT.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 711,
                        "end": 719,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "All models possess nearly the same amount of knowledge until layer 6 but then start to grow at different rates. Most surprisingly, RANK-MSMARCO's evolution is closest to BERT whereas the other models forget information rapidly. With previous studies indicating that the last layers make way for task-specific knowledge (Kovaleva et al., 2019) , the ranking model can retain a larger amount of knowledge when compared to other fine-tuning tasks in our experiments.",
                "cite_spans": [
                    {
                        "start": 319,
                        "end": 342,
                        "text": "(Kovaleva et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "These results raise the question: Is RANK-MSMARCO able to retain more knowledge because MSMarco is a bigger dataset or is it because Figure 1 : P@k (upper value) vs last layer P@k (lower value) for all models for each LAMA probe. the ranking objective is better suited to knowledge retention as compared to QA, MLM or NER?",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 133,
                        "end": 141,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "4.2"
            },
            {
                "text": "To isolate the effect of the fine-tuning dataset, we first fix the fine-tuning objective. We experimented with an MLM and a QA span prediction objective. For MLM, we used models trained on fine-tuning task data of varying size -BERT, MLM-MSMARCO (\u223c 8.8 million unique passages) and MLM-SQUAD (\u223c 500+ unique articles). For the QA objective, we experimented with QA-SQUAD-1 and QA-SQUAD-2 which utilize the same dataset of passages but QA-SQUAD-2 is trained on 50K extra unanswerable questions. Figure 1 shows the total knowledge and Figure 5 shows the evolution of knowledge for both MLM models as compared to BERT. When finetuning, BERT seemingly tends to forget some relational knowledge to accommodate for more domain-specific knowledge. We suspect it forgets certain relations (found in the probe) to make way for other knowledge not detectable by our probes. In the case where the probe is aligned with the fine tuning data (Squad), MLM-SQUAD learns more about its domain and outperforms BERT but only by a small margin (< 5%). Even though MLM-MSMARCO uses a different dataset it is able to retain a similar level of knowledge in Squad. The evolution trends in Figure 5 further confirm that fine tuning leads to forgetting mostly in the last layers. Since the fine tuning objective and probing tasks are aligned, it is more evident in these experiments that relational knowledge is being forgotten or replaced.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 493,
                        "end": 501,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 532,
                        "end": 540,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 1165,
                        "end": 1173,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Effect of fine-tuning data",
                "sec_num": "4.3"
            },
            {
                "text": "When observing P@1 and P @1, according to T-REx and Google-RE in particular, MLM-MSMARCO forgets a large amount of knowledge but retains common sense knowledge (ConceptNet). MLM-SQUAD contains substantially more knowledge overall according to 2/4 probes and nearly the same in the others as compared to MLM-MSMARCO. Seemingly, the amount of knowledge contained in fine tuned models is not directly correlated with the size of the dataset. There can be several contributing factors to this phenomenon potentially related to the data distribution and alignment of the probes with the fine tuning data. We leave these avenues open to future work. Considering the QA span prediction objective, we first see that the total amount of knowledge stored (P@1) in QA-SQUAD-2 is higher for 3/4 knowledge probes (from Figure 1) . Figure 6 shows the evolution of knowledge captured for QA-SQUAD-1 vs QA-SQUAD-2. QA-SQUAD-2 captures more knowledge at the last layer in 3/4 probes with both models showing similar knowledge emergence trends. This result hints to the fact that a more difficult task (SQUAD2) on the same dataset forces BERT to remember more relational knowledge in its final layers as compared to the relatively simpler SQUAD1. This point is further emphasized in Table 2 . Only 17% of relation types are better captured in the intermediary layers of QA-SQUAD-2 as compared to 43% for QA-SQUAD-1.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 806,
                        "end": 815,
                        "text": "Figure 1)",
                        "ref_id": null
                    },
                    {
                        "start": 818,
                        "end": 826,
                        "text": "Figure 6",
                        "ref_id": null
                    },
                    {
                        "start": 1265,
                        "end": 1272,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Effect of fine-tuning data",
                "sec_num": "4.3"
            },
            {
                "text": "The second effect that we previously discussed is the effect of the task objective function that might be misaligned with the probing procedure. To study this effect, we conducted 2 ex- Table 2 : Fraction of relationship types (of the 41 T-REx) that are forgotten in the last layer. If mean P 12 @1 < mean P l @1 for a particular relation type then that relation is considered to be forgotten at the last layer.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 186,
                        "end": 193,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Effect of fine tuning objective",
                "sec_num": "4.4"
            },
            {
                "text": "periments where we fixed the dataset and compared the MLM objective (MLM-MSMARCO) vs the ranking objective RANK-MSMARCO and MLM-SQUAD vs the span prediction objective (QA-SQUAD-2). Figure 8 shows the evolution of knowledge captured for MLM-MSMARCO vs RANK-MSMARCO. We observe that RANK-MSMARCO performs quite similar to MLM-MSMARCO across all probes and layers. Although MLM-MSMARCO has the same training objective as the probe, the ranking model can retain nearly the same amount of knowledge. We hypothesize that this is because the downstream fine-tuning task is sensitive to relational information. Specifically, ranking passages for open-domain QA is a task that relies heavily on identifying pieces of knowledge that are strongly related -For example, given the query: How do you mow the lawn?, RANK-MSMARCO must effectively identify concepts and relations in candidate passages that are related to lawn mowing (like types of grass and lawnmowers) to estimate relevance. Reading comprehension /span prediction (QA) however seems to be a less knowledge-intensive task both in terms of total knowledge and at the last layer (Figure 1) . In Figure 7 we see that the final layers are the most impacted here as well. From Table 2 we observe that MLM-SQUAD forgets less in its final layer (12% vs 17%), with QA-SQUAD-2 seemingly forgoing relational knowledge for span prediction task knowledge.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 181,
                        "end": 189,
                        "text": "Figure 8",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 1128,
                        "end": 1138,
                        "text": "(Figure 1)",
                        "ref_id": null
                    },
                    {
                        "start": 1144,
                        "end": 1152,
                        "text": "Figure 7",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 1223,
                        "end": 1230,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Effect of fine tuning objective",
                "sec_num": "4.4"
            },
            {
                "text": "In this paper, we introduce a framework to probe all layers of BERT for knowledge. We experimented on a variety of probes and fine-tuning tasks and found that BERT contains more knowledge than was reported earlier. Our experiments shed light on the hidden knowledge stored in BERT and also some important implications to model building. Since intermediate layers contain knowledge that is forgotten by the final layers to make way for task-specific knowledge, our probing procedure can more accurately characterize the knowledge stored.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and Conclusion",
                "sec_num": "5"
            },
            {
                "text": "We show that factual knowledge, like syntactic and semantic patterns, is also forgotten at the last layers due to fine-tuning. However, the last layer can also make way for more domain specific knowledge when the fine tuning objective is the same as the pretraining objective (MLM) as observed in Squad. Interestingly, forgetting is not mitigated by larger datasets which potentially con-tain more factual knowledge (MLM-MSMARCO < MLM-SQUAD as measured by P@1). Instead, we find that knowledge-intensive tasks like ranking do mitigate forgetting compared to span prediction. Although the fine-tuned models always contain less knowledge, with significant (and expected) forgetting in the last layers, RANK-MSMARCO remembers relatively more relationship types than BERT (2% vs 7% forgotten) in its last layer (Table 2) . This result can partially explain findings in where they found that pretraining BERT with inverse cloze tasks aids it's transferability to a retrieval and ranking setting. Essentially, ranking tasks encourage the retention of factual knowledge (as measured by cloze tasks) since they are seemingly required for reasoning between the relative relevance of documents to a query.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 807,
                        "end": 816,
                        "text": "(Table 2)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Discussion and Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Our results have direct implications on the use of BERT as a knowledge base. By effectively choosing layers to query and adopting early exiting strategies knowldge base completion can be improved. The performance of RANK-MSMARCO also warrants further investigation into ranking models with different training objectives -pointwise (regression) vs pairwise vs listwise. More knowledge-intensive QA models like answer generation models may also show a similar trend as ranking tasks but require investigation. We also believe that our framework is well suited to studying variants of BERT architecture and pretraining methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and Conclusion",
                "sec_num": "5"
            },
            {
                "text": "https://github.com/jwallat/knowledge-probing 2 https://thegradient.pub/nlp-imagenet/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/facebookresearch/LAMA",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "\u2022 BERT: Off the shelf \"bert-base-uncased\" from the huggingface transformers library (Wolf et al., 2019) \u2022 QA-SQUAD-1: Both SQuAD QA models are trained with the huggingface question answering training script 4 . This adds a span prediction head to the default BERT, I.e. a linear layer that computes logits for the span start and span end. So for a given question and a context, it classifies the indices in in which the answer starts and ends. As a loss function it uses crossentropy. The model was trained on a single GPU. We used the huggingface default training script and standard parameters: 2 epochs, learning rate 3e-5, batch size 12.\u2022 QA-SQUAD-2: Single GPU, also using huggingface training script with standard parameters. Learning rate was 3e-5, batch size 12, best model after 2 epochs.\u2022 MLM-SQUAD: Fine tuned on text from SQUAD using the masked language modeling objective as per (Devlin et al., 2019) . 15% of the tokens masked at random. Trained for 4 epochs with LR 5e-5. Single GPU.\u2022 RANK-MSMARCO: Trained as described in (Nogueira and Cho, 2019) . MSMARCO, 100k iterations with batch size 128 (on a TPUv3-8).\u2022 MLM-MSMARCO: 15% of the tokens masked at random. 3 epochs, batch size 8, LR 5e-5. Single gpu.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 103,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 892,
                        "end": 913,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1038,
                        "end": 1062,
                        "text": "(Nogueira and Cho, 2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models",
                "sec_num": "6.1"
            },
            {
                "text": "\u2022 Computing infrastructure used: Everything can be run in Colab notebook with 12gb of RAM and the standard GPU. The experiments, however, have been run on a computing cluster with 6 nodes. Every node had 4 gtx 1080ti and 128gb RAM. Thus being able to parallize the probing of different layers. 4 https://github.com/huggingface/transformers\u2022 Average runtime: Circa 3 hours per layer (that is training the MLM head and probing the LAMA probes) on a single GPU.\u2022 Number of parameters: Since we use standard BERT, the base model + MLM head combined have 110,104,890 parameters. The MLM head itself has 24,459,834 parameters.\u2022 Validation performance for test results: Since we probed the data, we could not do validation on it.\u2022 Explanation of evaluation metrics used with links to code: It is done in knowledge probing/probing/metrics.py. But the one that we use are Precision @ k where we just check if the model predicts the correct token at index <= k (P@k)6.3 Hyperparameter seach:Not applicable.6.4 Datasets: \u2022 SQuAD 1.1: Can be downloaded from here: https://rajpurkar.github.io/SQuADexplorer/ . 100,000+ question answer pairs based on wikipedia articles. Produced by crowdworkers.\u2022 SQuAD 2: Can be downloaded from here: https://rajpurkar.github.io/SQuAD-explorer/ . Combines the 100,000+ question answer pairs with 50,000 unanswerable questions.\u2022 MSMARCO: Can be downlaoded from here: https://microsoft.github.io/msmarco/ . For ranking: Dataset for passage reranking was used. Given 1,000 passages, re-rank by relevance. Dataset contains 8,8m passages. For MLM training: Dataset for QA was used. It consists of over 1m queries and the 8,8m passages. Each query has 10 candidate passages. For MLM, we appended the queries with all candidate passages before feeding into BERT.6.5 Knowledge captured in BERT",
                "cite_spans": [
                    {
                        "start": 294,
                        "end": 295,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results:",
                "sec_num": "6.2"
            },
            {
                "text": "Additional precisions for Figure 4 can be found in Figure 9 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 34,
                        "text": "Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 51,
                        "end": 59,
                        "text": "Figure 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Intermediate Layers Matter",
                "sec_num": "6.5.1"
            },
            {
                "text": "Additional precisions for Figure 2 can be found in Figure 10 . Figure 11 and 12 show the P@10 and P@100 plots for Figure 5 . Respectively, Figure 13 and 14 show the same for 6.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 34,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 51,
                        "end": 60,
                        "text": "Figure 10",
                        "ref_id": null
                    },
                    {
                        "start": 63,
                        "end": 72,
                        "text": "Figure 11",
                        "ref_id": null
                    },
                    {
                        "start": 114,
                        "end": 122,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 139,
                        "end": 148,
                        "text": "Figure 13",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Relational Knowledge Evolution",
                "sec_num": "6.5.2"
            },
            {
                "text": "For comparing MLM and QA on SQuAD 7, Figure 15 and 16 show more precisions. Also, for comparing fine tune objectives on MSMARCO (Figure 8) , Figure 17 and 18 show P@10 and P@100.(a) P@1 (b) P@10 (c) P@100Figure 9: Mean performance in different precisions on T-REx sets for BERT, QA-SQUAD-2, RANK-MSMARCO, NER-CONLL.(a) P@1 (b) P@10 (c) P@100 ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 37,
                        "end": 53,
                        "text": "Figure 15 and 16",
                        "ref_id": null
                    },
                    {
                        "start": 128,
                        "end": 138,
                        "text": "(Figure 8)",
                        "ref_id": null
                    },
                    {
                        "start": 141,
                        "end": 150,
                        "text": "Figure 17",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Effect of fine tuning objective",
                "sec_num": "6.6"
            },
            {
                "text": "Google-RE T-REx ConceptNet Squad P@1 P@1 P@1 P@1 P@1 P@1 P@1 P@1 Table 3 : Mean knowledge contained in the last layer (P@1) vs knowledge contained in all layers (P@1) for each probe.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 65,
                        "end": 72,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "How does BERT answer questions?: A layer-wise analysis of transformer representations",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Betty Van Aken",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Winter",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [
                            "A"
                        ],
                        "last": "L\u00f6ser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gers",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 28th ACM International Conference on Information and Knowledge Management, CIKM 2019",
                "volume": "",
                "issue": "",
                "pages": "1823--1832",
                "other_ids": {
                    "DOI": [
                        "10.1145/3357384.3358028"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Betty van Aken, Benjamin Winter, Alexander L\u00f6ser, and Felix A. Gers. 2019. How does BERT answer questions?: A layer-wise analysis of transformer representations. In Proceedings of the 28th ACM In- ternational Conference on Information and Knowl- edge Management, CIKM 2019, Beijing, China, November 3-7, 2019, pages 1823-1832. ACM.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Analysis methods in neural language processing: A survey",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
                "volume": "1",
                "issue": "",
                "pages": "3348--3354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Belinkov and James R. Glass. 2019. Analysis methods in neural language processing: A survey. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2- 7, 2019, Volume 1 (Long and Short Papers), pages 3348-3354. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Pre-training tasks for embedding-based large-scale retrieval",
                "authors": [
                    {
                        "first": "Wei-Cheng",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Felix",
                        "suffix": ""
                    },
                    {
                        "first": "Yin-Wen",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjiv",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei-Cheng Chang, X Yu Felix, Yin-Wen Chang, Yim- ing Yang, and Sanjiv Kumar. 2019. Pre-training tasks for embedding-based large-scale retrieval. In International Conference on Learning Representa- tions.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Evaluating compositionality in sentence embeddings",
                "authors": [
                    {
                        "first": "Ishita",
                        "middle": [],
                        "last": "Dasgupta",
                        "suffix": ""
                    },
                    {
                        "first": "Demi",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Stuhlm\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Gershman",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "D"
                        ],
                        "last": "Goodman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 40th Annual Meeting of the Cognitive Science Society",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ishita Dasgupta, Demi Guo, Andreas Stuhlm\u00fcller, Samuel Gershman, and Noah D. Goodman. 2018. Evaluating compositionality in sentence embed- dings. In Proceedings of the 40th Annual Meeting of the Cognitive Science Society, CogSci 2018, Madi- son, WI, USA, July 25-28, 2018. cognitivescienceso- ciety.org.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "BERT: pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa- pers), pages 4171-4186. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "T-rex: A large scale alignment of natural language with knowledge base triples",
                "authors": [
                    {
                        "first": "Hady",
                        "middle": [],
                        "last": "Elsahar",
                        "suffix": ""
                    },
                    {
                        "first": "Pavlos",
                        "middle": [],
                        "last": "Vougiouklis",
                        "suffix": ""
                    },
                    {
                        "first": "Arslen",
                        "middle": [],
                        "last": "Remaci",
                        "suffix": ""
                    },
                    {
                        "first": "Christophe",
                        "middle": [],
                        "last": "Gravier",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathon",
                        "middle": [
                            "S"
                        ],
                        "last": "Hare",
                        "suffix": ""
                    },
                    {
                        "first": "Fr\u00e9d\u00e9rique",
                        "middle": [],
                        "last": "Laforest",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Simperl",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hady ElSahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon S. Hare, Fr\u00e9d\u00e9rique Laforest, and Elena Simperl. 2018. T-rex: A large scale alignment of natural language with knowledge base triples. In Proceedings of the Eleventh Inter- national Conference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7- 12, 2018. European Language Resources Associa- tion (ELRA).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Assessing composition in sentence vector representations",
                "authors": [
                    {
                        "first": "Allyson",
                        "middle": [],
                        "last": "Ettinger",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "Elgohary",
                        "suffix": ""
                    },
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Phillips",
                        "suffix": ""
                    },
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Resnik",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1790--1801",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and Philip Resnik. 2018. Assessing composition in sen- tence vector representations. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1790-1801, Santa Fe, New Mex- ico, USA. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Do neural language representations learn physical commonsense?",
                "authors": [
                    {
                        "first": "Maxwell",
                        "middle": [],
                        "last": "Forbes",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Holtzman",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 41th Annual Meeting of the Cognitive Science Society",
                "volume": "",
                "issue": "",
                "pages": "1753--1759",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019. Do neural language representations learn physical commonsense? In Proceedings of the 41th Annual Meeting of the Cognitive Science Society, CogSci 2019: Creativity + Cognition + Computation, Mon- treal, Canada, July 24-27, 2019, pages 1753-1759. cognitivesciencesociety.org.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Assessing bert's syntactic abilities",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg. 2019. Assessing bert's syntactic abili- ties. CoRR, abs/1901.05287.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "What does BERT learn about the structure of language",
                "authors": [
                    {
                        "first": "Ganesh",
                        "middle": [],
                        "last": "Jawahar",
                        "suffix": ""
                    },
                    {
                        "first": "Beno\u00eet",
                        "middle": [],
                        "last": "Sagot",
                        "suffix": ""
                    },
                    {
                        "first": "Djam\u00e9",
                        "middle": [],
                        "last": "Seddah",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3651--3657",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1356"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ganesh Jawahar, Beno\u00eet Sagot, and Djam\u00e9 Seddah. 2019. What does BERT learn about the structure of language? In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 3651-3657, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Kassner",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "7811--7818",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nora Kassner and Hinrich Sch\u00fctze. 2020. Negated and misprimed probes for pretrained language models: Birds can talk, but cannot fly. In Proceedings of the 58th Annual Meeting of the Association for Compu- tational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7811-7818. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd Inter- national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Revealing the dark secrets of BERT",
                "authors": [
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Kovaleva",
                        "suffix": ""
                    },
                    {
                        "first": "Alexey",
                        "middle": [],
                        "last": "Romanov",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rogers",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rumshisky",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4364--4373",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1445"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. 2019. Revealing the dark secrets of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Nat- ural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4364-4373. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Linguistic knowledge and transferability of contextual representations",
                "authors": [
                    {
                        "first": "Nelson",
                        "middle": [
                            "F"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Belinkov",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
                "volume": "1",
                "issue": "",
                "pages": "1073--1094",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n19-1112"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A. Smith. 2019. Lin- guistic knowledge and transferability of contextual representations. In Proceedings of the 2019 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, NAACL-HLT 2019, Minneapo- lis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 1073-1094. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Mccoy",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Tal",
                        "middle": [],
                        "last": "Linzen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "1",
                "issue": "",
                "pages": "3428--3448",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p19-1334"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In Pro- ceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-August 2, 2019, Volume 1: Long Pa- pers, pages 3428-3448. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "MS MARCO: A human generated machine reading comprehension dataset",
                "authors": [
                    {
                        "first": "Tri",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Mir",
                        "middle": [],
                        "last": "Rosenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Xia",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Tiwary",
                        "suffix": ""
                    },
                    {
                        "first": "Rangan",
                        "middle": [],
                        "last": "Majumder",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Workshop on Cognitive Computation: Integrating neural and symbolic approaches 2016 colocated with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016)",
                "volume": "1773",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, and Li Deng. 2016. MS MARCO: A human generated machine reading comprehension dataset. In Proceedings of the Workshop on Cognitive Computation: Inte- grating neural and symbolic approaches 2016 co- located with the 30th Annual Conference on Neu- ral Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016, volume 1773 of CEUR Workshop Proceedings. CEUR-WS.org.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Passage re-ranking with BERT. CoRR",
                "authors": [
                    {
                        "first": "Rodrigo",
                        "middle": [],
                        "last": "Nogueira",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage re-ranking with BERT. CoRR, abs/1901.04085.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "50,000 lessons on how to read: a relation extraction corpus",
                "authors": [
                    {
                        "first": "Dave",
                        "middle": [],
                        "last": "Orr",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Online: Google Research Blog",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dave Orr. 2013. 50,000 lessons on how to read: a re- lation extraction corpus. Online: Google Research Blog, 11.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Glove: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/d14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christo- pher D. Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Lan- guage Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532-1543. ACL.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Dissecting contextual word embeddings: Architecture and representation",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Wen-Tau",
                        "middle": [],
                        "last": "Yih",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1499--1509",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d18-1179"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. 2018. Dissecting contextual word embeddings: Architecture and representation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 -November 4, 2018, pages 1499-1509. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Language models as knowledge bases?",
                "authors": [
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Petroni",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rockt\u00e4schel",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "H"
                        ],
                        "last": "Patrick",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yuxiang",
                        "middle": [],
                        "last": "Bakhtin",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "H"
                        ],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2463--2473",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1250"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fabio Petroni, Tim Rockt\u00e4schel, Sebastian Riedel, Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander H. Miller. 2019. Language mod- els as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, Novem- ber 3-7, 2019, pages 2463-2473. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Know what you don't know: Unanswerable questions for squad",
                "authors": [
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Rajpurkar",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018. Know what you don't know: Unanswerable ques- tions for squad. CoRR, abs/1806.03822.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Squad: 100, 000+ questions for machine comprehension of text",
                "authors": [
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Rajpurkar",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Konstantin",
                        "middle": [],
                        "last": "Lopyrev",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2383--2392",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d16-1264"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100, 000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Nat- ural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2383-2392. The Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A primer in bertology: What we know about how BERT works. CoRR, abs",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rogers",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Kovaleva",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rumshisky",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A primer in bertology: What we know about how BERT works. CoRR, abs/2002.12327.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Introduction to the conll-2003 shared task: Language-independent named entity recognition",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [
                            "F"
                        ],
                        "last": "Tjong",
                        "suffix": ""
                    },
                    {
                        "first": "Kim",
                        "middle": [],
                        "last": "Sang",
                        "suffix": ""
                    },
                    {
                        "first": "Fien",
                        "middle": [],
                        "last": "De Meulder",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the Seventh Conference on Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "142--147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the conll-2003 shared task: Language-independent named entity recognition. In Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooper- ation with HLT-NAACL 2003, Edmonton, Canada, May 31 -June 1, 2003, pages 142-147. ACL.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Representing general relational knowledge in conceptnet 5",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Speer",
                        "suffix": ""
                    },
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Havasi",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012",
                "volume": "",
                "issue": "",
                "pages": "3679--3686",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Speer and Catherine Havasi. 2012. Represent- ing general relational knowledge in conceptnet 5. In Proceedings of the Eighth International Confer- ence on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012, pages 3679-3686. European Language Resources Associ- ation (ELRA).",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "BERT rediscovers the classical NLP pipeline",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Tenney",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "1",
                "issue": "",
                "pages": "4593--4601",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p19-1452"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT rediscovers the classical NLP pipeline. In Proceedings of the 57th Conference of the Asso- ciation for Computational Linguistics, ACL 2019, Florence, Italy, July 28-August 2, 2019, Volume 1: Long Papers, pages 4593-4601. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Huggingface's transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Huggingface's trans- formers: State-of-the-art natural language process- ing. CoRR, abs/1910.03771.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Aligning books and movies: Towards story-like visual explanations by watching movies and reading books",
                "authors": [
                    {
                        "first": "Yukun",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Kiros",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [
                            "S"
                        ],
                        "last": "Zemel",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Urtasun",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Torralba",
                        "suffix": ""
                    },
                    {
                        "first": "Sanja",
                        "middle": [],
                        "last": "Fidler",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 IEEE International Conference on Computer Vision, ICCV 2015",
                "volume": "",
                "issue": "",
                "pages": "19--27",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICCV.2015.11"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In 2015 IEEE Interna- tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 19- 27. IEEE Computer Society.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "; Tenney et al. (2019); Liu et al. (2019) for the probe tasks suggested in Petroni et al. (2019)."
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Mean P@1 of BERT across all layers."
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "P@1 across all layers for BERT for select relationship types from T-REx."
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Knowledge contained per layer measured in terms of P@1 on T-REx."
            },
            "FIGREF4": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Effect of dataset size. Mean P@1 across layers for BERT, MLM-MSMARCO and MLM-SQUAD. Effect of dataset size. Mean P@1 across layers for QA-SQUAD-1 and QA-SQUAD-2."
            },
            "FIGREF5": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Effect of Fine-Tuning Objective on fixed size data: SQUAD."
            },
            "FIGREF6": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Effect of Fine-Tuning Objective on fixed size data: MSMarco."
            },
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "text": "briefly summarizes the key details. The probes are designed as cloze statements and limited to single token factual knowledge, i.e., multi-word entities and relations are not included.Each probe in LAMA is constructed to test a specific relation or type of relational knowledge. ConceptNet is designed to test for general conceptual knowledge since it masks single token objects from randomly sampled sentences whereas T-REx consists of hundreds of sentences for 41",
                "content": "<table><tr><td>Name</td><td colspan=\"3\">#Rels #Instances Example</td><td>Answer</td></tr><tr><td>ConceptNet</td><td>-</td><td>12514</td><td>Rocks are [MASK].</td><td>solid</td></tr><tr><td>T-REx</td><td>41</td><td>34017</td><td colspan=\"2\">The capital of Germany is [MASK]. Berlin</td></tr><tr><td>Google-RE</td><td>3</td><td>5528</td><td>Eyolf Kleven was born in [MASK].</td><td>Copenhagen</td></tr><tr><td>Squad</td><td>-</td><td>305</td><td>Nathan Alterman was a [MASK].</td><td>Poet</td></tr></table>",
                "html": null
            },
            "TABREF2": {
                "num": null,
                "type_str": "table",
                "text": "Knowledge probes used in the experiments.Petroni et al. (2019) subsampled ConceptNet(Speer and Havasi, 2012), T-REx (ElSahar et al., 2018), Google-RE(Orr, 2013) and Squad(Rajpurkar et al., 2016). specific relationship types like member of and language spoken. Google-RE tests for 3 specific types of factual knowledge related to people: place-of-birth (2937), date-of-birth",
                "content": "<table/>",
                "html": null
            }
        }
    }
}