File size: 100,226 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:07:25.833520Z"
    },
    "title": "Word-Level Alignment of Paper Documents with their Electronic Full-Text Counterparts",
    "authors": [
        {
            "first": "Mark-Christoph",
            "middle": [],
            "last": "M\u00fcller",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg Institute for Theoretical Studies gGmbH",
                "location": {
                    "settlement": "Heidelberg",
                    "country": "Germany"
                }
            },
            "email": "mark-christoph.mueller@h-its.org"
        },
        {
            "first": "Sucheta",
            "middle": [],
            "last": "Ghosh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg Institute for Theoretical Studies gGmbH",
                "location": {
                    "settlement": "Heidelberg",
                    "country": "Germany"
                }
            },
            "email": "sucheta.ghosh@h-its.org"
        },
        {
            "first": "Ulrike",
            "middle": [],
            "last": "Wittig",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg Institute for Theoretical Studies gGmbH",
                "location": {
                    "settlement": "Heidelberg",
                    "country": "Germany"
                }
            },
            "email": "ulrike.wittig@h-its.org"
        },
        {
            "first": "Maja",
            "middle": [],
            "last": "Rey",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Heidelberg Institute for Theoretical Studies gGmbH",
                "location": {
                    "settlement": "Heidelberg",
                    "country": "Germany"
                }
            },
            "email": "maja.rey@h-its.org"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre-and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe a simple procedure for the automatic creation of word-level alignments between printed documents and their respective full-text versions. The procedure is unsupervised, uses standard, off-the-shelf components only, and reaches an F-score of 85.01 in the basic setup and up to 86.63 when using pre-and post-processing. Potential areas of application are manual database curation (incl. document triage) and biomedical expression OCR.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Even though most research literature in the life sciences is born-digital nowadays, manual data curation (International Society for Biocuration, 2018) from these documents still often involves paper. For curation steps that require close reading and markup of relevant sections, curators frequently rely on paper printouts and highlighter pens (Venkatesan et al., 2019) . Figure 1a shows a page of a typical document used for manual curation. The potential reasons for this can be as varied as merely sticking to a habit, ergonomic issues related to reading from and interacting with a device, and functional limitations of that device (Buchanan and Loizides, 2007; K\u00f6pper et al., 2016; Clinton, 2019) . Whatever the reason, the consequence is a two-fold media break in many manual curation workflows: first from electronic format (either PDF or full-text XML) to paper, and then back from paper to the electronic format of the curation database. Given the above arguments in favor of paper-based curation, removing the first media break from the curation workflow does not seem feasible. Instead, we propose to bridge the gap between paper and electronic media by automatically creating an alignment between the words on the printed document pages and their counterparts in an electronic fulltext version of the same document.",
                "cite_spans": [
                    {
                        "start": 344,
                        "end": 369,
                        "text": "(Venkatesan et al., 2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 636,
                        "end": 665,
                        "text": "(Buchanan and Loizides, 2007;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 666,
                        "end": 686,
                        "text": "K\u00f6pper et al., 2016;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 687,
                        "end": 701,
                        "text": "Clinton, 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 372,
                        "end": 381,
                        "text": "Figure 1a",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our approach works as follows: We automatically create machine-readable versions of printed paper documents (which might or might not contain markup) by scanning them, applying optical character recognition (OCR), and converting the resulting semi-structured OCR output text into a flexible XML format for further processing. For this, we use the multilevel XML format of the annotation tool MMAX2 1 (M\u00fcller and Strube, 2006) . We retrieve electronic full-text counterparts of the scanned paper documents from PubMedCentral \u00ae in .nxml format 2 , and also convert them into MMAX2 format. By using a shared XML format for the two heterogeneous text sources, we can capture their content and structural information in a way that provides a compatible, though often not identical, word-level tokenization. Finally, using a sequence alignment algorithm from bioinformatics and some pre-and post-processing, we create a word-level alignment of both documents. Aligning words from OCR and full-text documents is challenging for several reasons. The OCR output contains various types of recognition errors, many of which involve special symbols, Greek letters like \u00b5 or sub-and superscript characters and numbers, which are particularly frequent in chemical names, formulae, and measurement units, and which are notoriously difficult for OCR (Ohyama et al., 2019) . If the printed paper document is based on PDF, it usually has an explicit page layout, which is different from the way the corresponding full-text XML document is displayed in a web browser. Differences include double-vs. single-column layout, but also the way in which tables and figures are rendered and positioned. Finally, printed papers might contain additional content in headers or footers (like e.g. download timestamps). Also, while the references/bibliography section is an integral part of a printed paper and will be covered by OCR, in XML documents it is often structurally kept apart from the actual document text. Given these challenges, attempting data extraction from document images if the documents are available in PDF or even full-text format may seem unreasonable. We see, however, the following useful applications: 1. Manual Database Curation As mentioned above, manual database curation requires the extraction, normalization, and database insertion of scientific content, often from paper documents. Given a paper document in which a human expert curator has manually marked a word or sequence of words for insertion into the database, having a link from these words to their electronic counterparts can eliminate or at least reduce error-prone and time-consuming steps like manual re-keying. Also, already existing annotations of the electronic fulltext 3 would also be accessible and could be used to inform the curation decision or to supplement the database entry.",
                "cite_spans": [
                    {
                        "start": 400,
                        "end": 425,
                        "text": "(M\u00fcller and Strube, 2006)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1334,
                        "end": 1355,
                        "text": "(Ohyama et al., 2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Triage Database curation candidate papers are identified by a process called document triage (Buchanan and Loizides, 2007; Hirschman et al., 2012) which, despite some attempts towards automation (e.g. Wang et al. (2020) ), remains a mostly manual process. In a nut shell, triage normally involves querying a literature database (like PubMed 4 ) for specific terms, skimming the list of search results, selecting and skim-reading some papers, and finally downloading and printing the PDF versions of the most promising ones for curation (Venkatesan et al., 2019) . Here, the switch from searching in the electronic full-text (or abstract) to printing the PDF brings about a loss of information, because the terms that caused the paper to be retrieved will have to be located again in the print-out. A word-level alignment between the full-text and the PDF version would allow to create an enhanced version of the PDF with highlighted search term occurrences before printing. 3. Biomedical Expression OCR Current state-ofthe-art OCR systems are very accurate at recognizing standard text using Latin script and baseline typography, but, as already mentioned, they are less reliable for more typographically complex expressions like chemical formulae. In order to develop specialized OCR systems for these types of expressions, ground-truth data is required in which image regions containing these expressions are labelled with the correct characters and their positional information (see also Section 5). If aligned documents are available, this type of data can easily be created at a large scale.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 122,
                        "text": "(Buchanan and Loizides, 2007;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 123,
                        "end": 146,
                        "text": "Hirschman et al., 2012)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 201,
                        "end": 219,
                        "text": "Wang et al. (2020)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 536,
                        "end": 561,
                        "text": "(Venkatesan et al., 2019)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic PDF Highlighting for Manual",
                "sec_num": "2."
            },
            {
                "text": "The remainder of this paper is structured as follows. In Section 2, we describe our data set and how it was converted into the shared XML format. Section 3 deals with the actual alignment procedure, including a description of the optional preand post-processing measures. In Section 4, we present experiments in which we evaluate the performance of the implemented procedure, including an ablation of the effects of the individual pre-and post-processing measures. Quantitative evaluation alone, however, does not convey a realistic idea of the actual usefulness of the procedure, which ultimately needs to be evaluated in the context of real applications including, but not limited to, database curation. Section 4.2, therefore, briefly presents examples of the alignment and highlighting detection functionality and the biomedical expression OCR use case mentioned above. Section 5 discusses relevant related work, and Section 6 summarizes and concludes the paper with some future work. All the tools and libraries we use are freely available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic PDF Highlighting for Manual",
                "sec_num": "2."
            },
            {
                "text": "In addition, our implementation can be found at https://github.com/ nlpAThits/BioNLP2021.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic PDF Highlighting for Manual",
                "sec_num": "2."
            },
            {
                "text": "For the alignment of a paper document with its electronic full-text counterpart, what is minimally required is an image of every page of the document, and a full-text XML file of the same document. The document images can either be created by scanning or by directly converting the corresponding PDF into an image. The latter method will probably yield images of a better quality, because it completely avoids the physical printing and subsequent scanning step, while the output of the former method will be more realistic. We experiment with both types of images (see Section 2.1). We identify a document by its DOI, and refer to the different versions as DOI xml (from the full-text XML), DOI conv , and DOI scan . Whenever a distinction between DOI conv and DOI scan is not required, we refer to these versions collectively as DOI ocr . Printable PDF documents and their associated .nxml files are readily available at PMC-OAI. 5 In our case, however, printed paper versions were already available, as we have access to a collection of more than 6.000 printed scientific papers (approx. 30.000 pages in total) that were created in the SABIO-RK 6 Biochemical Reaction Kinetics Database project (Wittig et al., 2017 (Wittig et al., , 2018 . These papers contain manual highlighter markup at different levels of granularity, including the word, line, and section level. Transferring this type of markup from printed paper to the electronic medium is one of the key applications of our alignment procedure. Our paper collection spans many publication years and venues. For our experiments, however, it was required that each document was freely available both as PubMedCentral \u00ae full-text XML and as PDF. While this leaves only a fraction of (currently) 68 papers, the data situation is still sufficient to demonstrate the feasibility of our procedure. Even more importantly, the procedure is unsupervised, i.e. it does not involve learning and does not require any training data.",
                "cite_spans": [
                    {
                        "start": 931,
                        "end": 932,
                        "text": "5",
                        "ref_id": null
                    },
                    {
                        "start": 1196,
                        "end": 1216,
                        "text": "(Wittig et al., 2017",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1217,
                        "end": 1239,
                        "text": "(Wittig et al., , 2018",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "2"
            },
            {
                "text": "Since we want to compare downstream effects of input images of different quality, we created both a converted and a scanned image version for every document in our data set. For the DOI conv version, we used pdftocairo to create a high-resolution (600 DPI) PNG file for every PDF page. Figure 1c shows an example. The DOI scan versions, on the other hand, were extracted from 'sandwich' PDFs which had been created earlier by a professional scanning service provider. The choice of a service provider for this task was only motivated by the large number of pages to process, and not by expected quality or other considerations. A sandwich PDF contains, among other data, the document plain text (as recognized by the provider's OCR software) and a background image for each page. This background image is a by-product of the OCR process in which pixels that were recognized as parts of a character are inpainted, i.e. removed by being overwritten with colors of neighbouring regions. Figure 1b shows the background image corresponding to the page in Figure 1a . Note how the image retains the highlighting. We used pdfimages to extract the background images (72 DPI) from the sandwich PDF for use in highlighting extraction (see Section 2.1.1 below). We refer to these versions as DOI scan_bg . For the actual DOI scan versions, we again used pdftocairo to create a high-resolution (600 DPI) PNG file for every scanned page. OCR was then performed on the DOI conv and the DOI scan versions with tesseract 4.1.1 7 , using default recognition settings (-oem 3 -psm 3) and specifying hOCR 8 with character-level bounding boxes as output format. In order to maximize recognition accuracy (at the expense of processing speed), the default language models for English were replaced with optimized LSTM models 9 . No other modification or re-training of tesseract was performed. In a final step, the hOCR output from both image versions was converted into the MMAX2 (M\u00fcller and Strube, 2006) multilevel XML annotation format, using words as tokenization granularity, and storing word-and characterlevel confidence scores and bounding boxes as MMAX2 attributes. 10",
                "cite_spans": [
                    {
                        "start": 1959,
                        "end": 1984,
                        "text": "(M\u00fcller and Strube, 2006)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 286,
                        "end": 295,
                        "text": "Figure 1c",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 984,
                        "end": 993,
                        "text": "Figure 1b",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1050,
                        "end": 1059,
                        "text": "Figure 1a",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Document Image to Multilevel XML",
                "sec_num": "2.1"
            },
            {
                "text": "Highlighting detection and subsequent extraction can be performed if the scanned paper documents contain manual markup. In its current state, the detection procedure described in the following requires inpainted OCR background images which, in our case, were produced by the third-party OCR software used by the scanning service provider. tesseract, on the other hand, does not produce these images. While it would be desirable to employ free software only, this fact does not severely limit the usefulness of our procedure, because 1) other software (either free or commercial) with the same functionality might exist, and 2) even for document collections of medium size, employing an external service provider might be the most economical solution even in academic / research settings, anyway. What is more, inpainted backgrounds are only required if highlighting detection is desired: For text-only alignment, plain scans are sufficient. 7 https://github.com/tesseract-ocr/ tesseract 8 http://kba.cloud/hocr-spec/1.2/ 9 https://github.com/tesseract-ocr/ tessdata_best",
                "cite_spans": [
                    {
                        "start": 941,
                        "end": 942,
                        "text": "7",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Highlighting Detection",
                "sec_num": "2.1.1"
            },
            {
                "text": "10 See the lower part of Figure A .1 in the Appendix. The actual highlighting extraction works as follows (see M\u00fcller et al. (2020) for details): Since document highlighting comes mostly in strong colors, which are characterized by large differences among their three component values in the RGB color model, we create a binarized version of each page by going over all pixels in the background image and setting each pixel to 1 if the pairwise differences between the R, G, and B components are above a certain threshold (50), and to 0 otherwise. This yields an image with regions of higher and lower density of black pixels. In the final step, we iterate over the word-level tokens created from the hOCR output and converted into MMAX2 format earlier, compute for each word its degree of highlighting as the percentage of black pixels in the word's bounding box, and store that percentage value as another MMAX2 attribute if it is at least 50%. An example result will be presented in Section 4.2.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 131,
                        "text": "M\u00fcller et al. (2020)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 33,
                        "text": "Figure A",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Highlighting Detection",
                "sec_num": "2.1.1"
            },
            {
                "text": "The .nxml format employed for PubMedCentral \u00ae full-text documents uses the JATS scheme 11 which supports a rich meta data model, only a fraction of which is of interest for the current task. In principle, however, all information contained in JATS-conformant documents can also be represented in the multilevel XML format of MMAX2. The .nxml data provides precise infor-11 https://jats.nlm.nih.gov/archiving/ mation about both the textual content (including correctly encoded special characters) and its wordand section-level layout. At present, we only extract content from the <article-meta> section (<article-title>, <surname>, <given-names>, <xref>, <email>, <aff>, and <abstract>), and from the <body> (<sec>, <p>, <tr>, <td>, <label>, <caption>, and <title>). These sections cover the entire textual content of the document. We also extract the formatting tags <italic>, <bold>, <underline>, and in particular <sup> and <sub>. The latter two play a crucial role in the chemical formulae and other domain-specific expressions. Converting the .nxml data to our MMAX2 format is straightforward. 12 In some cases, the .nxml files contain embedded LaTex code in <tex-math> tags. If this tag is encountered, its content is processed as follows: LaTex Math encodings for sub-and superscript, _{} and\u02c6{}, are removed, their content is extracted and re-inserted with JATS-conformant <sub>...</sub> and <sup>...</sup> elements. Then, the resulting LaTex-like string is sent through the detex tool to remove any other markup. While this obviously cannot handle layouts like e.g. fractions, it still preserves many simpler expressions that would otherwise be lost in the conversion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "PMC \u00ae .nxml to Multilevel XML",
                "sec_num": "2.2"
            },
            {
                "text": "The actual word-level alignment of the DOI xml version with the DOI ocr version of a document operates on lists of < token, id > tuples which are created from each version's MMAX2 annotation. These lists are characterized by longer and shorter stretches of tuples with matching tokens, which just happen to start and end at different list indices. These stretches are interrupted at times by (usually shorter) sequences of tuples with non-matching tokens, which mostly exist as the result of OCR errors (see below). Larger distances between stretches of tuples with matching tokens, on the other hand, can be caused by structural differences between the DOI xml and the DOI ocr version, which can reflect actual layout differences, but which can also result from OCR errors like incorrectly joining two adjacent lines from two columns. The task of the alignment is to find the correct mapping on the token level for as many tuples as possible. We use the align.globalxx method from the Bio.pairwise2 module of Biopython (Cock et al., 2009) , which provides pairwise sequence alignment using a dynamic programming algorithm (Needleman and Wunsch, 1970) . While this library supports the definition of custom similarity functions for minimizing the alignment cost, we use the most simple version which just applies a binary (=identity) matching scheme, i.e. full matches are scored as 1, all others as 0. This way, we keep full control of the alignment, and can identify and locally fix non-matching sequences during post-processing (cf. Section 3.2 below). The result of the alignment (after optional pre-and post-processing) is an n-to-m mapping between < token, id > tuples from the DOI xml and the DOI ocr version of the same document. 13",
                "cite_spans": [
                    {
                        "start": 1020,
                        "end": 1039,
                        "text": "(Cock et al., 2009)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1123,
                        "end": 1151,
                        "text": "(Needleman and Wunsch, 1970)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Outline of the Alignment Procedure",
                "sec_num": "3"
            },
            {
                "text": "The main difference between pre-and postprocessing is that the former operates on two still unrelated tuple lists of different lengths, while for the latter the tuple lists have the same length due to padding entries (\u00abGAP\u00bb) that were inserted by the alignment algorithm in order to bridge sequences of non-alignable tokens. Pre-processing aims to smooth out trivial mismatches and thus to help alignment. Both pre-and post-processing, however, only modify the tokens in DOI ocr , but never those in DOI xml , which are considered as gold-standard.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "Pre-compress matching sequences [pre_compress=p] The space complexity of the Needleman-Wunsch algorithm is O(mn), where m and n are the numbers of tuples in each document. Given the length of some documents, the memory consumption of the alignment can quickly become critical. In order to reduce the number of tuples to be compared, we apply a simple pre-compression step which first identifies sequences of p tuples (we use p = 20 in all experiments) with perfectly identical tokens in both documents, and then replaces them with single tuples where the token and id part consist of concatenations of the individual tokens and ids. After the alignment, these compressed tuples are expanded again.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "While pre-compression was always performed, the pre-and post-processing measures described in the following are optional, and their individual effects on the alignment will be evaluated in Section 4.1. De-hyphenate DOI ocr tokens [dehyp] Sometimes, words in the DOI ocr versions are hyphenated due to layout requirements which, in principle, do not exist in the DOI xml versions. These words appear as three consecutive tuples with either the '-' or '\u00ac' token in the center tuple. For de-hyphenation, we search the tokens in the tuple list for DOI ocr for single hyphen characters and reconstruct the potential un-hyphenated word by concatenating the tokens immediately before and after the hyphen. If this word exists anywhere in the list of DOI xml tokens, we simply substitute the three original < token, id > DOI ocr tuples with one merged tuple. De-hyphenation (like all other pre-and post-processing measures) is completely lexicon-free, because the decision whether the unhyphenated word exists is only based on the content of the DOI xml document.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "Diverging tokenizations in the DOI xml and DOI ocr document versions are a common cause of local mismatches. Assuming the tokenization in DOI xml to be correct, tokenizations can be fixed by either joining or splitting tokens in DOI ocr . Join incorrectly split DOI ocr tokens [pre_join] We apply a simple rule to detect and join tokens that were incorrectly split in DOI ocr . We move a window of size 2 over the list of DOI ocr tuples and concatenate the two tokens. We then iterate over all tokens in the DOI xml version. If we find the reconstructed word in a matching context (one immediately preceeding and following token), we replace, in the DOI ocr version, the first original tuple with the concatenated one, assigning the concatenated ID as new ID, and remove the second tuple from the list. Consider the following example.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "< phen , word_3084 >n < y l , word_3085 >n+1 =\u21d2 < p h e n y l , word_3084 + word_3085 >n This process (and the following one) is repeated until no more modifications can be performed. Split incorrectly joined DOI ocr tokens [pre_split] In a similar fashion, we identify and split incorrectly joined tokens. We move a window of size 2 over the list of DOI xml tuples, concatenate the two tokens, and try to locate a corresponding single token, in a matching context, in the list of DOI ocr tuples. If found, we replace the respective tuple in that list with two new tuples, one with the first token from the DOI xml tuple and one with the second one. Both tuples retain the ID from the original DOI ocr tuple. In the following example, the correct tokenization separates the trailing number 3 from the rest of the expression, because it needs to be typeset in subscript in order for the formula to be rendered correctly.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "< KHSO3 , word_3228 >n =\u21d2 < KHSO,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "word_3228 >n < 3 , word_3228 >n+1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-Processing",
                "sec_num": "3.1"
            },
            {
                "text": "Force-align [post_force_align] The most frequent post-processing involves cases where single tokens of the same length and occurring in the same context are not aligned automatically. In the following, the left column contains the DOI ocr and the right the DOI xml tuples. In the first example, the \u03b2 was not correctly recognized and substituted with a B. We identify force-align candidates like these by looking for sequences of s consecutive tuples with a \u00abGAP\u00bb token in one list, followed by a similar sequence of the same length in the other. Then, if both the context and the number of characters matches, we force-align the two sequences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Post-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "< m e t a l l o , word_853> < m e t a l l o , word_546> < \u2212 , word_854>",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Post-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "< \u2212 , word_547> <B , word_855> <<<GAP> > , \u2212> <<<GAP> > , \u2212> < \u03b2 , word_548> < \u2212 , word_856>",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Post-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "< \u2212 , word_549> < l a c t a m a s e , word_857> < l a c t a m a s e , word_550> =\u21d2 . . . <B , word_855> < \u03b2 , word_548> . . . For s = 2, force-align will also fix the following.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Post-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "< a c i d , word_1643> < a c i d , word_997> < , , word_1644> < , , word_998> <1 t , word_1645> <<<GAP> > , \u2212> <1 s , word_1646> <<<GAP> > , \u2212> <<<GAP> > , \u2212> < i t , word_999> <<<GAP> > , \u2212> < i s , word_1000> < p u r i f i e d , word_1647> < p u r i f i e d , word_1001> < u s i n g , word_1648> < u s i n g , word_1002> =\u21d2 . . . <1 t , word_1645> < i t , word_999> <1 s , word_1646> < i s , word_1000> . . .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Alignment Post-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "We evaluate the system on our 68 DOI xml -DOI ocr document pair data set by computing P, R, and F for the task of aligning tokens from DOI xml (the gold-standard) to tokens in DOI ocr . By defining the evaluation task in this manner, we take into account that the DOI ocr version usually contains more tokens, mostly because it includes the bibliography, which is generally not included in the DOI xml version. Thus, an alignment is perfect if every token in DOI xml is correctly aligned to a token in DOI ocr , regardless of there being additional tokens in DOI ocr . In order to compute P and R, the number of correct alignments (=TP) among all alignments needs to be determined. Rather than inspecting and checking all alignments manually, we employ a simple heuristic: Given a pair of automatically aligned tokens, we create two KWIC string representations, KWIC xml and KWIC ocr , with a left and right context of 10 tokens each. Then, we compute the normalized Levenshtein similarity lsim between each pair ct1 and ct2 of left and right contexts, respectively, as 1 \u2212 levdist(ct1, ct2)/max(len(ct1), len(ct2))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Quantitative Evaluation",
                "sec_num": "4.1"
            },
            {
                "text": "We count the alignment as correct (=TP) if lsim of both the two left and the two right contexts is >= .50, and as incorrect (=FP) otherwise. 14 The number of missed alignments (=FN) can be computed by substracting the number of TP from the number of all tokens in DOI xml . Based on these counts, we compute precision (P), recall (R), and F-score (F) in the standard way. Results are provided in Table 1 . For each parameter setting (first column), there are two result columns with P, R, and F each. The column DOI xml -DOI conv contains alignment results for which OCR was Table 1 : Alignment Scores (micro-averaged, n=68). All results using pre_compress=20. Max. values in bold.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 396,
                        "end": 403,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 575,
                        "end": 582,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Quantitative Evaluation",
                "sec_num": "4.1"
            },
            {
                "text": "performed on the converted PDF pages, while results in column DOI xml -DOI scan are based on scanned print-outs. Differences between these two sets of results are due to the inferior quality of the images used in the latter. The top row in Table  1 contains the result of using only the alignment without any pre-or post-processing. Subsequent rows show results for all possible combinations of pre-and post-processing measures (cf. Section 3.1). Note that pre_split and pre_join are not evaluated separately and appear combined as pre. The first observation is that, for DOI xml -DOI conv and DOI xml -DOI scan , precision is very high, with max. values of 95.04 and 93.59, respectively. This is a result of the rather strict alignment method which will align two tokens only if they are identical (rather than merely similar). At the same time, precision is very stable across experiments, i.e. indifferent to changes in pre-and post-processing. This is because, as described in Section 3.1, pre-and post-processing exclusively aim to improve recall by either smoothing out trivial mismatches before alignment, or adding missing alignments afterwards. In fact, preand post-processing actually introduce precision errors, since they relax this alignment condition somewhat: This is evident in the fact that the two top precision scores result from the setup with no pre-or post-processing at all, and even though the differences across experiments are extremly small, the pattern is still clear. Table 1 also shows the intended positive effect of the different pre-and post-processing measures on recall. Without going into much detail, we can state the following: For DOI xml -DOI conv and DOI xml -DOI scan , the lowest recall results from the setup without pre-or post-processing. When pre-and post-processing measures are added, recall increases constantly, at the expense of small drops in precision. However, the positive effect consistently outweighs the negative, causing the F-score to increase to a max. score of 86.63 and 85.20, respectively, when all pre-and post-processing measures are used. Finally, as expected, the inferior quality of the data in DOI scan as compared to DOI conv is nicely reflected in consistently lower scores across all measurements. The absolute differences, however, are very small, amounting to only about 1.5 points. This might be taken to indicate that converted (rather than printed and scanned) PDF documents can be functionally equivalent as input for tasks like OCR ground-truth data generation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 240,
                        "end": 248,
                        "text": "Table  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Quantitative Evaluation",
                "sec_num": "4.1"
            },
            {
                "text": "This section complements the quantitative evaluation with some illustrative examples. Figure 2 shows two screenshots in which DOI scan (left) and DOI xml (right) are displayed in the MMAX2 annotation tool. The left image shows that the off-theshelf text recognition accuracy of tesseract is very good for standard text, but lacking, as expected, when it comes to recognising special characters and subscripts (like \u00b5, ZnCl 2 , or k obs in the example). For the highlighting detection, the yellow text background was chosen as visualization in MMAX2 in order to mimick the physical highlighting of the printed paper. Note that since the highlighting detection is based on layout position only (and not anchored to text), manually highlighted text is recognized as highlighted regardless of whether the actual underlying text is recognized correctly. The right image shows the rendering of the correct text extracted from the original PMC \u00ae full-text XML. The rendering of the title as bold and underlined is based on typographic information that was extracted at conversion time (cf. Section 2.2). The same is true for the subscripts, which are correctly rendered both in terms of the content and the position. Table 2 displays a different type of result, i.e. a small selection of a much larger set of OCR errors with their respective images and the correct recognition result. This data, automatically identi- fied by the alignment post-processing, is a valuable resource for the development of biomedical expression OCR systems.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 86,
                        "end": 94,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1210,
                        "end": 1217,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Qualitative Evaluation and Examples",
                "sec_num": "4.2"
            },
            {
                "text": "Agyg5 \u2206\u03b5 265 \"UM \u00b5M kyps k obs 7 + 1 7 \u00b1 1 DH50 DH5\u03b1 ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "OCR PMC \u00ae",
                "sec_num": null
            },
            {
                "text": "The work in this paper is obviously related to automatic text alignment, with the difference that what is mostly done there is the alignment of texts in different languages (i.e. bi-lingual alignment). Gale and Church (1993) align not words but entire sentences from two languages based on statistical properties. Even if words were aligned, alignment candidates in bi-lingual corpora are not identified on the basis of simple matching, with the exception of language-independent tokens like e.g. proper names.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "Scanning and OCR is also often applied to historical documents, which are only available in paper (Hill and Hengchen, 2019; van Strien et al., 2020; Schaefer and Neudecker, 2020) . Here, OCR postcorrection attempts to map words with word-and character-level OCR errors (similar to those found in our DOI ocr data) to their correct variants, but it does so by using general language models and dictionaries, and not an aligned correct version. Many of the above approaches have in common that they employ specialized OCR models and often ML/DL models of considerable complexity.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 123,
                        "text": "(Hill and Hengchen, 2019;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 124,
                        "end": 148,
                        "text": "van Strien et al., 2020;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 149,
                        "end": 178,
                        "text": "Schaefer and Neudecker, 2020)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "The idea of using an electronic and a paper version of the same document for creating a characterlevel alignment dates back at least to Kanungo and Haralick (1999) , who worked on OCR ground-truth data generation. Like most later methods, the procedure of Kanungo and Haralick (1999) works on the graphical level, as opposed to the textual level. Kanungo and Haralick (1999) use LaTex to cre-ate what they call 'ideal document images' with controlled content. Print-outs of these images are created, which are then photocopied and scanned, yielding slightly noisy and skewed variants of the 'ideal' images. Then, corresponding feature points in both images are identified, and a projective transformation between these is computed. Finally, the actual ground-truth data is generated by applying this transformation for aligning the bounding boxes in the ideal images to their correspondences in the scanned images. Since Kanungo and Haralick (1999) have full control over the content of their 'ideal document images', extracting the groundtruth character data is trivial. The approach of van Beusekom et al. (2008) is similar to that of Kanungo and Haralick (1999) , but the former use more sophisticated methods, including Canny edge detection (Canny, 1986) for finding corresponding sections in images of the original and the scanned document, and RAST (Breuel, 2001) for doing the actual alignment. Another difference is that van Beusekom et al. (2008) use pre-existing PDF documents as the source documents from which groundtruth data is to be extracted. Interestingly, however, their experiments only use synthetic ground-truth data from the UW3 data set 15 , in which bounding boxes and the contained characters are explicitly encoded. In their conclusion, van Beusekom et al. (2008) concede that extracting ground-truth data from PDF is a non-trivial task in itself. Ahmed et al. (2016) work on automatic ground-truth data generation for camera-captured document images, which they claim pose different problems than document images created by scanning, like e.g. blur, perspective distortion, and varying lighting. Their procedure, however, is similar to that of van Beusekom et al. (2008) . They also use pre-existing PDF documents and automatically rendered 300 DPI images of these documents.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 163,
                        "text": "Kanungo and Haralick (1999)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 256,
                        "end": 283,
                        "text": "Kanungo and Haralick (1999)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 347,
                        "end": 374,
                        "text": "Kanungo and Haralick (1999)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 921,
                        "end": 948,
                        "text": "Kanungo and Haralick (1999)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1092,
                        "end": 1114,
                        "text": "Beusekom et al. (2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1137,
                        "end": 1164,
                        "text": "Kanungo and Haralick (1999)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1245,
                        "end": 1258,
                        "text": "(Canny, 1986)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1355,
                        "end": 1369,
                        "text": "(Breuel, 2001)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1767,
                        "end": 1789,
                        "text": "Beusekom et al. (2008)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1874,
                        "end": 1893,
                        "text": "Ahmed et al. (2016)",
                        "ref_id": null
                    },
                    {
                        "start": 2175,
                        "end": 2197,
                        "text": "Beusekom et al. (2008)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "In this paper, we described a completely unsupervised procedure for automatically aligning printed paper documents with their electronic full-text counterparts. Our point of departure and main motivation was the idea to alleviate the effect of the paper-to-electronic media break in manual biocuration, where printed paper is still very popular when it comes to close reading and manual 15 http://tc11.cvc.uab.es/datasets/ DFKI-TGT-2010_1 markup. We also argued that the related task of document triage can benefit from the availability of alignments between electronic full-text documents (as retrieved from a literature database) and the corresponding PDF documents. Apart from this, we identified yet another field of application, biomedical expression OCR, which can benefit from ground-truth data which can automatically be generated with our procedure. Improvements in biomedical expression OCR, then, can feed back into the other use cases, by improving the OCR step and thus the alignment, thus potentially establishing a kind of bootstrapping development. Our implementation relies on tried and tested technology, including tesseract as off-the-shelf OCR component, Biopython for the alignment, and MMAX2 as visualization and data processing platform. The most computationally complex part is the actual sequence alignment with a dynamic programming algorithm from the Biopython library, which we keep tractable even for longer documents by using a simple pre-compression method. The main experimental finding of this paper is that our approach, although very simple, yields a level of performance that we consider suitable for practical applications. In quantitative terms, the procedure reaches a very good F-score of 86.63 on converted and 85.20 on printed and scanned PDF documents, with corresponding precision scores of 94.90 and 93.47, respectively. The negligible difference in results between the two types of images is interesting, as it seems to indicate that converted PDF documents, which are very easy to generate in large amounts, are almost equivalent to the more labour-intensive scans. In future work, we plan to implement solutions for the identified use cases, and to test them in actual biocuration settings. Also, we will start creating OCR ground-truth data at a larger scale, and apply that for the development of specialised tools for biomedical OCR. In the long run, procedures like the one presented in this paper might contribute to the development of systems that support curators to work in a more natural, practical, convenient, and efficient way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "https://github.com/nlpAThits/MMAX2 2 While PubMedCentral \u00ae is an obvious choice here, other resources with different full-text data formats exist and can also be used. All that needs to be modified is the conversion step (see Section 2.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Like https://europepmc.org/Annotations 4 https://pubmed.ncbi.nlm.nih.gov/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.ncbi.nlm.nih.gov/pmc/ tools/oai/ 6 http://sabio.h-its.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "See the upper part ofFigure A.1 in the Appendix.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "See also the central part ofFigure A.1 in the Appendix.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Figure A.2 in the Appendix provides an example.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was done as part of the project Deep-Curate, which is funded by the German Federal Ministry of Education and Research (BMBF) (No. 031L0204) and the Klaus Tschira Foundation, Heidelberg, Germany. We thank the anonymous BioNLP reviewers for their helpful suggestions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            },
            {
                "text": " Figure A .1: Conversion and alignment data model. Top: Full-text and markup (subscript, superscript) is extracted from .nxml documents. Each content token is associated with an alignment token (solid blue boxes). Bottom: Text and meta-data is extracted from the OCR result of scanned document pages. Meta-data includes bounding boxes, which link the recognized text to image regions, and numerical recognition scores, which reflect the confidence with which the OCR system recognized the respective token. (Not all meta-data is given in the ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1,
                        "end": 9,
                        "text": "Figure A",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Appendix",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Masakazu Iwamura, Andreas Dengel, and Marcus Liwicki. 2016. A generic method for automatic ground truth generation of camera-captured documents",
                "authors": [
                    {
                        "first": "Sheraz",
                        "middle": [],
                        "last": "Ahmed",
                        "suffix": ""
                    },
                    {
                        "first": "Muhammad",
                        "middle": [
                            "Imran"
                        ],
                        "last": "Malik",
                        "suffix": ""
                    },
                    {
                        "first": "Muhammad",
                        "middle": [
                            "Zeshan"
                        ],
                        "last": "Afzal",
                        "suffix": ""
                    },
                    {
                        "first": "Koichi",
                        "middle": [],
                        "last": "Kise",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sheraz Ahmed, Muhammad Imran Malik, Muham- mad Zeshan Afzal, Koichi Kise, Masakazu Iwa- mura, Andreas Dengel, and Marcus Liwicki. 2016. A generic method for automatic ground truth gen- eration of camera-captured documents. CoRR, abs/1605.01189.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A practical, globally optimal algorithm for geometric matching under uncertainty",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [
                            "M"
                        ],
                        "last": "Breuel",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Electron. Notes Theor. Comput. Sci",
                "volume": "46",
                "issue": "",
                "pages": "188--202",
                "other_ids": {
                    "DOI": [
                        "10.1016/S1571-0661(04)80986-1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas M. Breuel. 2001. A practical, globally optimal algorithm for geometric matching under uncertainty. Electron. Notes Theor. Comput. Sci., 46:188-202.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Investigating document triage on paper and electronic media",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Buchanan",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Loizides",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Research and Advanced Technology for Digital Libraries",
                "volume": "",
                "issue": "",
                "pages": "416--427",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Buchanan and Fernando Loizides. 2007. Inves- tigating document triage on paper and electronic me- dia. In Research and Advanced Technology for Dig- ital Libraries, pages 416-427, Berlin, Heidelberg. Springer Berlin Heidelberg.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A computational approach to edge detection",
                "authors": [
                    {
                        "first": "John",
                        "middle": [
                            "F"
                        ],
                        "last": "Canny",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "IEEE Trans. Pattern Anal. Mach. Intell",
                "volume": "8",
                "issue": "6",
                "pages": "679--698",
                "other_ids": {
                    "DOI": [
                        "10.1109/TPAMI.1986.4767851"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "John F. Canny. 1986. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. In- tell., 8(6):679-698.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Reading from paper compared to screens: A systematic review and meta-analysis",
                "authors": [
                    {
                        "first": "Virginia",
                        "middle": [],
                        "last": "Clinton",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Journal of Research in Reading",
                "volume": "42",
                "issue": "2",
                "pages": "288--325",
                "other_ids": {
                    "DOI": [
                        "10.1111/1467-9817.12269"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Virginia Clinton. 2019. Reading from paper compared to screens: A systematic review and meta-analysis. Journal of Research in Reading, 42(2):288-325.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Biopython: freely available python tools for computational molecular biology and bioinformatics",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "A"
                        ],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Tiago",
                        "middle": [],
                        "last": "Cock",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [
                            "T"
                        ],
                        "last": "Antao",
                        "suffix": ""
                    },
                    {
                        "first": "Brad",
                        "middle": [
                            "A"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Cymon",
                        "middle": [
                            "J"
                        ],
                        "last": "Chapman",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Cox",
                        "suffix": ""
                    },
                    {
                        "first": "Iddo",
                        "middle": [],
                        "last": "Dalke",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Friedberg",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hamelryck",
                        "suffix": ""
                    },
                    {
                        "first": "Bartek",
                        "middle": [],
                        "last": "Kauff",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wilczynski",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "L"
                        ],
                        "last": "Michiel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "De Hoon",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "25",
                "issue": "",
                "pages": "1422--1423",
                "other_ids": {
                    "DOI": [
                        "10.1093/bioinformatics/btp163"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman, Cymon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski, and Michiel J. L. de Hoon. 2009. Biopython: freely available python tools for computational molecular biology and bioinformat- ics. Bioinform., 25(11):1422-1423.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A program for aligning sentences in bilingual corpora",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [
                            "W"
                        ],
                        "last": "Gale",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Church",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "1",
                "pages": "75--102",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William A. Gale and Kenneth W. Church. 1993. A program for aligning sentences in bilingual corpora. Computational Linguistics, 19(1):75-102.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Quantifying the impact of dirty OCR on historical text analysis: Eighteenth century collections online as a case study",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Mark",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hengchen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Digit. Scholarsh. Humanit",
                "volume": "34",
                "issue": "4",
                "pages": "825--843",
                "other_ids": {
                    "DOI": [
                        "10.1093/llc/fqz024"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mark J. Hill and Simon Hengchen. 2019. Quantifying the impact of dirty OCR on historical text analysis: Eighteenth century collections online as a case study. Digit. Scholarsh. Humanit., 34(4):825-843.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Text mining for the biocuration workflow",
                "authors": [
                    {
                        "first": "Lynette",
                        "middle": [],
                        "last": "Hirschman",
                        "suffix": ""
                    },
                    {
                        "first": "Gully",
                        "middle": [],
                        "last": "Burns",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Krallinger",
                        "suffix": ""
                    },
                    {
                        "first": "Cecilia",
                        "middle": [],
                        "last": "Arighi",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "Alfonso",
                        "middle": [],
                        "last": "Valencia",
                        "suffix": ""
                    },
                    {
                        "first": "Cathy",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Chatr-Aryamontri",
                        "suffix": ""
                    },
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Dowell",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Huala",
                        "suffix": ""
                    },
                    {
                        "first": "An\u00e1lia",
                        "middle": [],
                        "last": "Lourenco",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Nash",
                        "suffix": ""
                    },
                    {
                        "first": "Anne-Lise",
                        "middle": [],
                        "last": "Veuthey",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wiegers",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Winter",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Database : the journal of biological databases and curation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1093/database/bas020"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lynette Hirschman, Gully Burns, Martin Krallinger, Cecilia Arighi, Kevin Cohen, Alfonso Valencia, Cathy Wu, Andrew Chatr-Aryamontri, Karen Dow- ell, Eva Huala, An\u00e1lia Lourenco, Robert Nash, Anne-Lise Veuthey, Thomas Wiegers, and Andrew Winter. 2012. Text mining for the biocuration work- flow. Database : the journal of biological databases and curation, 2012:bas020.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Biocuration: Distilling data into knowledge",
                "authors": [],
                "year": 2018,
                "venue": "International Society for Biocuration",
                "volume": "16",
                "issue": "4",
                "pages": "1--8",
                "other_ids": {
                    "DOI": [
                        "10.1371/journal.pbio.2002846"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "International Society for Biocuration. 2018. Biocura- tion: Distilling data into knowledge. PLOS Biology, 16(4):1-8.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "An automatic closed-loop methodology for generating character groundtruth for scanned documents",
                "authors": [
                    {
                        "first": "Tapas",
                        "middle": [],
                        "last": "Kanungo",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "M"
                        ],
                        "last": "Haralick",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "IEEE Trans. Pattern Anal. Mach. Intell",
                "volume": "21",
                "issue": "2",
                "pages": "179--183",
                "other_ids": {
                    "DOI": [
                        "10.1109/34.748827"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tapas Kanungo and Robert M. Haralick. 1999. An automatic closed-loop methodology for generating character groundtruth for scanned documents. IEEE Trans. Pattern Anal. Mach. Intell., 21(2):179-183.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Reading from computer screen versus reading from paper: does it still make a difference?",
                "authors": [
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "K\u00f6pper",
                        "suffix": ""
                    },
                    {
                        "first": "Susanne",
                        "middle": [],
                        "last": "Mayr",
                        "suffix": ""
                    },
                    {
                        "first": "Axel",
                        "middle": [],
                        "last": "Buchner",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Ergonomics",
                "volume": "59",
                "issue": "5",
                "pages": "615--632",
                "other_ids": {
                    "DOI": [
                        "10.1080/00140139.2015.1100757"
                    ],
                    "PMID": [
                        "26736059"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maja K\u00f6pper, Susanne Mayr, and Axel Buchner. 2016. Reading from computer screen versus reading from paper: does it still make a difference? Ergonomics, 59(5):615-632. PMID: 26736059.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Multilevel annotation of linguistic data with MMAX2",
                "authors": [
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Corpus Technology and Language Pedagogy: New Resources, New Tools, New Methods",
                "volume": "",
                "issue": "",
                "pages": "197--214",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christoph M\u00fcller and Michael Strube. 2006. Multi- level annotation of linguistic data with MMAX2. In Sabine Braun, Kurt Kohn, and Joybrato Mukher- jee, editors, Corpus Technology and Language Ped- agogy: New Resources, New Tools, New Methods, pages 197-214. Peter Lang, Frankfurt a.M., Ger- many.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Reconstructing manual information extraction with db-to-document backprojection: Experiments in the life science domain",
                "authors": [
                    {
                        "first": "Mark-Christoph",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Sucheta",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "Rey",
                        "suffix": ""
                    },
                    {
                        "first": "Ulrike",
                        "middle": [],
                        "last": "Wittig",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Strube",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the First Workshop on Scholarly Document Processing, SDP@EMNLP 2020",
                "volume": "",
                "issue": "",
                "pages": "81--90",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.sdp-1.9"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mark-Christoph M\u00fcller, Sucheta Ghosh, Maja Rey, Ul- rike Wittig, Wolfgang M\u00fcller, and Michael Strube. 2020. Reconstructing manual information extrac- tion with db-to-document backprojection: Experi- ments in the life science domain. In Proceedings of the First Workshop on Scholarly Document Pro- cessing, SDP@EMNLP 2020, Online, November 19, 2020, pages 81-90. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A general method applicable to the search for similarities in the amino acid sequence of two proteins",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sb Needleman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wunsch",
                        "suffix": ""
                    }
                ],
                "year": 1970,
                "venue": "Journal of molecular biology",
                "volume": "48",
                "issue": "3",
                "pages": "443--453",
                "other_ids": {
                    "DOI": [
                        "10.1016/0022-2836(70)90057-4"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "SB Needleman and CD Wunsch. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3):443-453.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Detecting mathematical expressions in scientific document images using a u-net trained on a diverse dataset",
                "authors": [
                    {
                        "first": "Wataru",
                        "middle": [],
                        "last": "Ohyama",
                        "suffix": ""
                    },
                    {
                        "first": "Masakazu",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "Seiichi",
                        "middle": [],
                        "last": "Uchida",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "7",
                "issue": "",
                "pages": "144030--144042",
                "other_ids": {
                    "DOI": [
                        "10.1109/ACCESS.2019.2945825"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wataru Ohyama, Masakazu Suzuki, and Seiichi Uchida. 2019. Detecting mathematical expressions in scientific document images using a u-net trained on a diverse dataset. IEEE Access, 7:144030- 144042.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A twostep approach for automatic OCR post-correction",
                "authors": [
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Schaefer",
                        "suffix": ""
                    },
                    {
                        "first": "Clemens",
                        "middle": [],
                        "last": "Neudecker",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
                "volume": "",
                "issue": "",
                "pages": "52--57",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robin Schaefer and Clemens Neudecker. 2020. A two- step approach for automatic OCR post-correction. In Proceedings of the The 4th Joint SIGHUM Work- shop on Computational Linguistics for Cultural Her- itage, Social Sciences, Humanities and Literature, pages 52-57, Online. International Committee on Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Automated OCR ground truth generation",
                "authors": [
                    {
                        "first": "Faisal",
                        "middle": [],
                        "last": "Joost Van Beusekom",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [
                            "M"
                        ],
                        "last": "Shafait",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Breuel",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "The Eighth IAPR International Workshop on Document Analysis Systems, DAS 2008, September 16-19",
                "volume": "",
                "issue": "",
                "pages": "111--117",
                "other_ids": {
                    "DOI": [
                        "10.1109/DAS.2008.59"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Joost van Beusekom, Faisal Shafait, and Thomas M. Breuel. 2008. Automated OCR ground truth gener- ation. In The Eighth IAPR International Workshop on Document Analysis Systems, DAS 2008, Septem- ber 16-19, 2008, Nara, Japan, pages 111-117. IEEE Computer Society.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Assessing the impact of OCR quality on downstream NLP tasks",
                "authors": [
                    {
                        "first": "Kaspar",
                        "middle": [],
                        "last": "Daniel Van Strien",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Beelen",
                        "suffix": ""
                    },
                    {
                        "first": "Kasra",
                        "middle": [],
                        "last": "Mariona Coll Ardanuy",
                        "suffix": ""
                    },
                    {
                        "first": "Barbara",
                        "middle": [],
                        "last": "Hosseini",
                        "suffix": ""
                    },
                    {
                        "first": "Giovanni",
                        "middle": [],
                        "last": "Mcgillivray",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Colavizza",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th International Conference on Agents and Artificial Intelligence",
                "volume": "2020",
                "issue": "",
                "pages": "484--496",
                "other_ids": {
                    "DOI": [
                        "10.5220/0009169004840496"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel van Strien, Kaspar Beelen, Mariona Coll Ar- danuy, Kasra Hosseini, Barbara McGillivray, and Giovanni Colavizza. 2020. Assessing the impact of OCR quality on downstream NLP tasks. In Proceed- ings of the 12th International Conference on Agents and Artificial Intelligence, ICAART 2020, Volume 1, Valletta, Malta, February 22-24, 2020, pages 484- 496. SCITEPRESS.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Understanding life sciences data curation practices via user research",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Venkatesan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Karamanis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ide-Smith",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hickford",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mcentyre",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.12688/f1000research.19427.1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "A Venkatesan, N Karamanis, M Ide-Smith, J Hickford, and J McEntyre. 2019. Understanding life sciences data curation practices via user research [version 1; peer review: 1 approved, 1 approved with reserva- tions]. F1000Research, 8(1622).",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Biomedical document triage using a hierarchical attention-based capsule network",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mengying",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qishuai",
                        "middle": [],
                        "last": "Diao",
                        "suffix": ""
                    },
                    {
                        "first": "Hongfei",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Zhihao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yijia",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "BMC Bioinformatics",
                "volume": "",
                "issue": "380",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1186/s12859-020-03673-5"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jian Wang, Mengying Li, Qishuai Diao, Hongfei Lin, Zhihao Yang, and YiJia Zhang. 2020. Biomedical document triage using a hierarchical attention-based capsule network. BMC Bioinformatics, 21(380).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "SABIO-RK: an updated resource for manually curated biochemical reaction kinetics",
                "authors": [
                    {
                        "first": "Ulrike",
                        "middle": [],
                        "last": "Wittig",
                        "suffix": ""
                    },
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "Rey",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Weidemann",
                        "suffix": ""
                    },
                    {
                        "first": "Renate",
                        "middle": [],
                        "last": "Kania",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Nucleic Acids Research",
                "volume": "46",
                "issue": "D1",
                "pages": "656--660",
                "other_ids": {
                    "DOI": [
                        "10.1093/nar/gkx1065"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ulrike Wittig, Maja Rey, Andreas Weidemann, Re- nate Kania, and Wolfgang M\u00fcller. 2018. SABIO- RK: an updated resource for manually curated bio- chemical reaction kinetics. Nucleic Acids Research, 46(D1):D656-D660.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Data management and data enrichment for systems biology projects",
                "authors": [
                    {
                        "first": "Ulrike",
                        "middle": [],
                        "last": "Wittig",
                        "suffix": ""
                    },
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "Rey",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Weidemann",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Journal of biotechnology",
                "volume": "261",
                "issue": "",
                "pages": "229--237",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.jbiotec.2017.06.007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ulrike Wittig, Maja Rey, Andreas Weidemann, and Wolfgang M\u00fcller. 2017. Data management and data enrichment for systems biology projects. Journal of biotechnology., 261:229-237.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Three image renderings of the same document page: Scanned print-out w/ manual markup (a), background with markup only (b), and original PDF (c).",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "text": "DOI scan document with automatically detected, overlayed highlighting (left). DOI xml with highlighting transferred from automatically aligned DOI scan document (right).",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Pre-/Post-Processing</td><td>DOI xml -DOIconv P R F</td><td>DOI xml -DOIscan P R F</td></tr><tr><td>-</td><td>95.04</td><td/></tr></table>",
                "text": "76.90 85.01 93.59 75.29 83.45 dehyp 94.91 77.47 85.31 93.48 75.96 83.81 pre 95.04 77.40 85.32 93.57 75.83 83.77 dehyp + pre 94.90 77.97 85.61 93.47 76.52 84.15 post_force_align 95.03 78.57 86.02 93.57 76.99 84.48 dehyp + post_force_align 94.91 79.17 86.32 93.47 77.69 84.86 pre + post_force_align 95.02 79.08 86.32 93.56 77.55 84.81 dehyp + pre + post_force_align 94.90 79.68 86.63 93.47 78.27 85.20"
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "text": "Examples of image snippets (left) with incorrect (middle) and correct (right) text representation."
            }
        }
    }
}