diff --git "a/phys hard - Лист1.csv" "b/phys hard - Лист1.csv" new file mode 100644--- /dev/null +++ "b/phys hard - Лист1.csv" @@ -0,0 +1,132 @@ +task,solution,answer,class,grade +"Небольшое тело, подвешенное на твёрдом стержне в поле силы тяжести, способно совершать колебательное (повторяющееся) движение, если отклонить его из положения равновесия на небольшой угол и отпустить. Математическим маятником называется физическая модель, описывающая процесс колебаний груза на стержне, в которой тело считается материальной точкой, масса стержня, а также все силы трения и сопротивления движению считаются пренебрежимо малыми. Время, затрачиваемое маятником на одно колебание, иначе говоря, на возвращение в исходную точку, называется периодом. Рассмотрим следующие размерные +параметры: длина стержня маятника 𝐿, масса тела 𝑚 и ускорение свободного падения 𝑔, равное 9,8 м/c 2. Исходя из соображений размерности, определите от каких параметров зависит период колебаний математического маятника. Во сколько раз изменится период колебаний маятника, если уменьшить длину подвеса в 4 раза? ","Перечисленные в условии задачи параметры 𝐿, 𝑚 и 𝑔 в СИ измеряются в м, кг и м/с 2 соответственно. Период маятника 𝑇 имеет размерность времени, которое измеряется в секундах. Существует лишь одна комбинация параметров 𝐿, 𝑚 и 𝑔, которая даёт величину, измеряемую в секундах: (𝐿/𝑔)**(1/2) . Следовательно, если уменьшить длину подвеса в 4 раза, то период колебаний уменьшится в 2 раза.",2,school,8 +"Небольшое тело, подвешенное на твёрдом стержне в поле силы тяжести, способно совершать колебательное (повторяющееся) движение, если отклонить его из положения равновесия на небольшой угол и отпустить. Математическим маятником называется физическая модель, описывающая процесс колебаний груза на стержне, в которой тело считается материальной точкой, масса стержня, а также все силы трения и сопротивления движению считаются пренебрежимо малыми. Время, затрачиваемое маятником на одно колебание, иначе говоря, на возвращение в исходную точку, называется периодом. ) Заданный интервал времени (например, минута), измеряемый маятниковыми часами, пропорционален периоду колебаний маятника. Рассмотрим маятниковые часы, в устройство которых входит маятник длиной 𝐿 = 1 м, сделанный из стали. При такой длине движение маятника в одну сторону занимает 1,00 с. Известно, что при температуре окружающей среды 𝑡1 = 5 ∘C часы показывают точное время. На сколько отстанут за сутки часы при температуре 𝑡2 = 25 ∘C? Линейное тепловое расширение тел описывается формулой 𝐿 = 𝐿0 (1 + 𝛼(𝑡 − 𝑡0 )), где 𝐿 и 𝐿0 — размер тела при температурах 𝑡 и 𝑡0 соответственно, 𝛼 — постоянный коэффициент линейного расширения, равный для стали 𝛼 = 12,5 ⋅ 10−6 1/∘C","Вследствие удлинения маятника при нагревании, увеличивается период его колебаний. Часы за сутки отстанут на время: ∆𝑇 = 𝑁(𝑇2 − 𝑇1 ), где 𝑁 – число колебаний маятника за сутки при температуре 25 ℃, а 𝑇1 и 𝑇2 – периоды колебаний маятн��ка при температурах 5 ℃ и 25 ℃ соответственно. Найдём ∆𝑇, воспользовавшись приближённой формулой, приведённой в условии задачи, ∆𝑇 = 𝑁(𝑇2 − 𝑇1 ) = 𝑇/𝑇2 * (𝑇2 − 𝑇1) = 𝑇(1 − 𝑇1/𝑇2) = 𝑇(1 − 𝐿**(1/2)/(𝐿(1+𝛼Δ𝑡))**(1/2)) = 𝑇 * 𝛼Δ𝑡/2 = 10,8 с, где 𝑇 = 86400 с.",10.8,school,8 +"Катер пересёк прямую реку шириной 90 м, всё время поддерживая курс +перпендикулярно течению. Чему равна средняя скорость катера +относительно воды, если известно, что место прибытия катера на другой +берег находится на 15 м ниже по течению от точки отправления? Скорость +течения равна 1 м/с.","Катер смещается относительно берега за счёт скорости течения, так как относительно воды катер движется перпендикулярно течению и берегу. Значит, время движения катера можно вычислить, зная его смещение по течению и скорость течения: t = 15 м / 1 м/с = 15 с. Средняя скорость катера относительно воды перпендикулярна берегу, значит: Vсред = 90 м / 15 с = 6 м/с",6,school,8 +"У Васи есть четыре одинаковых динамометра, один из которых неисправен. Вася соединил все динамометры последовательно друг за другом и подвесил к ним груз. Показания динамометров, начиная от нижнего, составили: 4 Н, 9 Н, 12 Н, 19 Н. Можно ли по этим данным определить, какой из динамометров неисправен? Если можно, то определите. Если нельзя – то объясните, почему.","Показания исправных одинаковых динамометров должны увеличиваться на одну и ту же величину при переходе к следующему более высокому динамометру, так как более высокий динамометр взвешивает, кроме груза, и все динамометры, находящиеся снизу под ним. Предположим, что неисправен нижний динамометр, тогда остальные три должны быть исправны, однако разницы их показаний не одинаковы, то есть приходим к противоречию. Аналогично убеждаемся, что верхний динамометр также должен быть исправным. Отсюда следует, что груз весит 4 Н, а три нижних динамометра весят (19 Н) – (4 Н) = (15 Н), т.е. вес одного динамометра равен 5 Н. Следовательно, неисправен третий динамометр, считая снизу, – тот, который показывает 12 Н.",3,school,8 +"Однородный кирпич, имеющий форму прямоугольного параллелепипеда, положили трижды на поверхность горизонтального стола разными гранями. В первом случае давление, которое оказывает кирпич на поверхность стола, равно 1 кПа, во втором – 2 кПа, в третьем – 4 кПа. Найдите массу кирпича, если плотность материала, из которого он изготовлен, равна 1,6 г/см**3 . Атмосферное давление не учитывать. Считайте, что g = 10 м/с**2 .","Пусть длины рёбер кирпича равны a, b и c. Тогда площади граней равны ab, bc и ac соответственно. Давление выражается через силу F^ , действующую на опору перпендикулярно к ней, и площадь S контакта с этой опорой, как P = F^/S . На опору перпендикулярно ей во всех случаях действует вес кирпича, численно равный mg, если кирпич находится в равновесии. Тогда: P1 = mg / ab = 1 кПа, P2 = mg / bc = 2 кПа, P3 = mg / ac = 4 кПа. Заметим, что если перемножить все три равенства, то получится: P1P2P3 = (mg)**3/(abc)**2 = (mg)**3/V**2 = (m/V)**2*m*g**3 = p**2 * m * g**3, откуда m = P1P2P3/(p**2 * g**3) = (1000 * 2000 * 4000) / (1600**2 * 10**3) = 3.125 кг",3.125,school,8 +"Автомобиль на пути из Москвы до Ярославля двигался с переменной скоростью: сначала половину от всего времени движения его скорость составляла 100 км/ч, потом на половине оставшегося пути – 75 км/ч, а на остатке пути – 50 км/ч. Найдите модуль средней скорости автомобиля на всём пути","Рассчитаем среднюю скорость на втором и третьем участках. Пусть пройденный на этих участках путь равен 23 S , а скорости на этих участках равны V2 = 75 км/ч и V3 = 50 км/ч соответственно. Тогда средняя скорость V23 на этих участках: V23 = S23/t23 = S23/(t2 + t3) = S23/((0.5 * S23)/V2 + (0.5 * S23)/V3) = 2/(1/V2 + 1/V3) = 2 * V1 * V2 / (V2 + V3) = 60 км/ч Теперь рассчитаем среднюю скорость за всё время движения. Пусть весь пройденный путь равен S, время, затраченное на весь путь, равно t, а скорость на первом участке равна V1 = 100 км/ч. Тогда средняя скорость Vср за всё время движения: Vср = S/t = (V1 * (t/2) + V23 * (t/2))/t = (V1 + V23)/2 = 80 км/ч.",80,school,9 +"Автомобиль, едущий по шоссе с постоянной скоростью 54 км/ч, проезжает мимо второго автомобиля, стоящего на соседней полосе. В этот момент второй автомобиль трогается с места и начинает ехать за первым, двигаясь с постоянным ускорением 5 м/с**2 . За какое время второй автомобиль догонит первый? Какую скорость он будет иметь в момент, когда поравняется с первым? Автомобили считать материальными точками.","Перемещения автомобилей с момента первой встречи до момента второй встречи равны. Пусть t – промежуток времени между встречами, S – модуль перемещения автомобилей за этот промежуток времени, V1 = 54 км/ч = 15 м/с – скорость первого автомобиля, a – ускорение второго автомобиля. Тогда: S = V1 * t = at**2/2, t = 2V1/a = 2 * 15 / 5 = 6 с",6,school,9 +"Автомобиль, едущий по шоссе с постоянной скоростью 54 км/ч, проезжает мимо второго автомобиля, стоящего на соседней полосе. В этот момент второй автомобиль трогается с места и начинает ехать за первым, двигаясь с постоянным ускорением 5 м/с**2 . Какую скорость он будет иметь в момент, когда поравняется с первым? Автомобили считать материальными точками.","Перемещения автомобилей с момента первой встречи до момента второй встречи равны. Пусть t – промежуток времени между встречами, S – модуль перемещения автомобилей за этот промежуток времени, V1 = 54 км/ч = 15 м/с – скорость первого автомобиля, a – ускорение второго автомобиля. Тогда: S = V1 * t = (a * t**2)/2, t = 2V1/a = 2 * 15 / 5 = 6 с. Скорость второго автомобиля спустя время t равна: V2 = a * t = 30 м/с = 108 км/ч.",108,school,9 +"В частных домах иногда используют проточный водонагреватель, в случае если к дому не подведены трубы с горячей водой. Температура холодной воды, идущей из крана, равна 14 °С, а температура текущей из душа воды (которая «прошла» через нагреватель), равна 40 °С. Определите объёмный расход воды в душе (в литрах в минуту), если потребляемая мощность водонагревателя 5 кВт, а его КПД ��авен 80 %. Удельная теплоёмкость воды 4200 Дж/(кг * °С), плотность воды 1000 кг/м**3 . При работе проточного водонагревателя вся втёкшая в него холодная вода подогревается и сразу же вытекает наружу","Введём обозначения: q – искомый объёмный расход воды, t – время использования душа, r – плотность воды, с – удельная теплоемкость воды, 1 2 t t , – температуры воды до и после нагревания соответственно, h – КПД бойлера, N – мощность нагревателя. Запишем уравнение теплового баланса: Qнагревателя = Qводы, h * N * t = r * c * t * (t2 - t1). Отсюда q = h * N / (r * c * (t2-t1) = (0.8 * 5000) / (1000 * 4200 * 26) = 3.66 * 10 ** (-5) м**3/с = 2.2 л/мин",2.2,school,10 +"Шайба летит в сторону движущейся поступательно тяжёлой плиты так, что их плоскости параллельны. Вектор скорости шайбы составляет угол φ = 30˚ с нормалью к поверхности плиты. Происходит столкновение. Векторы скорости шайбы до и после столкновения одинаковы по модулю и перпендикулярны друг другу. Кроме того, они лежат в одной плоскости с вектором скорости плиты. Определите минимальное и максимальное значения коэффициента трения μ, при которых возможно такое столкновение.","Свяжем импульсы шайбы до и после удара: P2 = P1 + P. вектор P образует с вертикалью (осью OY) угол 90 - 45 - 30 = 15 . Если после столкновения шайбы с плитой проекция скорости шайбы на ось OX меньше проекции скорости плиты на ту же ось, то это значит, что в течение всего времени столкновения шайба скользила по плите и, следовательно, FТр = μN . Здесь N – нормальная реакция опоры. В таком случае Px/Py = ((Px/t) / (Py/t)) = FТр./N = μ = tan15 = 0.27. Если же после столкновения шайбы с плитой проекция скорости шайбы на ось OX сравняется с проекцией скорости плиты на ту же ось, то коэффициент трения μ может быть любым большим 0.27.",0.27,region,10 +"Небольшое тело движется по вертикали в поле тяжести Земли из начальной точки, расположенной на достаточно большой высоте над поверхностью Земли. Начальная скорость тела не равна нулю. К моменту, когда путь, пройденный телом после начала движения, становится равен 15 м, абсолютная величина скорости тела увеличивается в 2 раза. Через какое время после этого абсолютная величина скорости тела возрастёт ещё в 2 раза? Ответы на вопросы задачи дайте в секундах, округлите до десятых. Начальная скорость тела направлена вниз. Считайте, что ускорение свободного падения равно 10 м/c**2. Силой сопротивления воздуха можно пренебречь. ","Пусть 𝑣0 — величина начальной скорости тела, тогда искомое время равно 2𝑣0/𝑔. В условиях первого пункта начальная скорость удовлетворяет соотношению 𝑆 = 3𝑣01**2/2𝑔 , поэтому ответ на вопрос первого пункта: 𝑡1 = (8𝑆/3𝑔)**(1/2) = 2 c.",2,school,9 +"Небольшое тело движется по вертикали в поле тяжести Земли из начальной точки, расположенной на достаточно большой высоте над поверхностью Земли. Начальная скорость тела не равна нулю. К моменту, когда путь, пройденный телом после начала движения, становится равен 15 м, абсолютная вел��чина скорости тела увеличивается в 2 раза. Через какое время после этого абсолютная величина скорости тела возрастёт ещё в 2 раза? Ответы на вопросы задачи дайте в секундах, округлите до десятых. Начальная скорость направлена вверх. Считайте, что ускорение свободного падения равно 10 м/c**2 . Силой сопротивления воздуха можно пренебречь","В условиях второго пункта следует учесть, что направление движения меняется, поэтому пройденный путь равен 𝑆 = 𝑣02**2/𝑔 + 3𝑣02**2/2𝑔 = 5𝑣02**2/ 2𝑔 . Выражая из этой формулы скорость 𝑣02 и подставляя её в формулу для времени, находим ответ: 𝑡2 = (8𝑆/5𝑔)**2 =1,5 c.",1.5,school,9 +"Три маленьких тела изначально покоятся в трёх равноудаленных точках, принадлежащих окружности длиной 3 метра. В некоторый момент они одновременно начинают движение в одном направлении по окружности с постоянными скоростями: 𝑣1 = 4,0 м/с, 𝑣2 = 3,6 м/с, 𝑣3 = 3,0 м/с (индекс в обозначении скорости соответствует номеру тела на рисунке). При этом тела не сталкиваются, проходя мимо друг друга. Колонной называется наименьшая дуга окружности, содержащая три тела. Например, в начальном положении длина колонны равна 2 метра. Найдите минимальную длину колонны в процессе движения тел.","Наименьшая длина колонны достигается в тот момент времени, когда самое быстрое тело встречается с самым медленным. Действительно, за миг до этого момента 1–ое тело сокращало расстояние до 3–го тела. Где бы ни находилось в это время 2–ое тело, «впереди» 3–го тела или «позади» 1–го, длина колонны уменьшалась. Сразу после встречи 1–го и 3–го тел длина колонны будет увеличиваться, при любом положении 2–го тела. Впервые быстрое и медленное тела встретятся через время 2 м / (4 м/с − 3 м/с) = 2 с в том месте откуда стартовало третье тело. К этому моменту 2–ое тело пройдёт расстояние 7,2 м и окажется «впереди» других тел на «расстоянии» 20 см. При дальнейшем движении первое и третье тела будут встречаться через каждые 3 с в одном и том же месте — точке старта третьего тела. За 3 с второе тело проходит 3 круга и 1,8 м. Следовательно, в момент второй встречи первого и третьего тел второе тело находится на расстоянии 20 см + 180 см = 200 см по ходу движения. Длина колоны в этом случае равна 100 см. В момент третьей встречи расстояние между вторым телом и двумя другими равно 200 см + 180 см − 300 см = 80 см по ходу движения. Длина колонны равна 80 см. Аналогично рассуждая, находим длину колонны в момент четвертой, пятой и шестой встреч первого и третьего тел. В момент четвёртой встречи длина колонны равна 40 см (второе тело находится на таком расстоянии «позади» первого и третьего тел), в момент пятой встречи длина колонны равна 140 см (второе тело находится на таком расстоянии «впереди» первого и третьего тел). А в момент шестой встречи длина колоны составит 20 см и второе тело окажется в той же точке окружности, что и в момент первой встречи первого и трет��его тел. Значит, в ходе дальнейшего движения тел всё будет повторяться. Следовательно, минимальная длина колонны равна 20 см.",20,allrus,8 +"На расстоянии 600 м от пчелиного улья растёт акация, откуда каждая пчела переносит в улей 30 мм3 нектара за один полёт. При производстве мёда пчёлы испаряют часть содержащейся в нектаре воды, составляющей 60% его массы. В результате содержание воды в мёде уменьшается до 20% от его массы. Пчёлы получают энергию, необходимую для испарения воды, употребляя часть принесённого нектара. За 10 дней цветения пчелиная семья произвела 20 кг мёда. Определите среднюю мощность, затрачиваемую пчёлами только на испарение воды. Плотность нектара равна 1,2 г/см3 . Известно, что 1 кг нектара обеспечивает пчёлам 6,0 МДж энергии, а для испарения 1 кг воды пчёлам требуется затратить 2,4 МДж энергии. Считайте, что от улья до акации и обратно пчёлы летают по прямой","В 20 кг мёда содержится 4 кг воды, следовательно, масса «сухого» нектара (который не содержит воды) равна 16 кг. Пусть 𝑥 — масса нектара, из которого сделали 20 кг мёда, тогда 0.4 * 𝑥 = 16 кг. Стало быть, 𝑥 = 40 кг. Всего пчёлы испарили 40 * 0.6 − 4 = 20 кг воды, на что потребовалось 48 МДж энергии. Средняя мощность, затрачиваемая пчёлами только на испарение воды, равна 𝑃 = 20 кг * 2.4 * 10**6 Дж/кг / 10 * 24 * 3600 с = 56 Вт. ",56,allrus,8 +"На расстоянии 600 м от пчелиного улья растёт акация, откуда каждая пчела переносит в улей 30 мм3 нектара за один полёт. При производстве мёда пчёлы испаряют часть содержащейся в нектаре воды, составляющей 60% его массы. В результате содержание воды в мёде уменьшается до 20% от его массы. Пчёлы получают энергию, необходимую для испарения воды, употребляя часть принесённого нектара. За 10 дней цветения пчелиная семья произвела 20 кг мёда. Какое общее расстояние пролетели пчёлы, собирая нектар и перенося его в улей? Плотность нектара равна 1,2 г/см3 . Известно, что 1 кг нектара обеспечивает пчёлам 6,0 МДж энергии, а для испарения 1 кг воды пчёлам требуется затратить 2,4 МДж энергии. Считайте, что от улья до акации и обратно пчёлы летают по прямой","В 20 кг мёда содержится 4 кг воды, следовательно, масса «сухого» нектара (который не содержит воды) равна 16 кг. Пусть 𝑥 — масса нектара, из которого сделали 20 кг мёда, тогда 0.4 * 𝑥 = 16 кг. Стало быть, 𝑥 = 40 кг. Всего пчёлы испарили 40 * 0.6 − 4 = 20 кг воды, на что потребовалось 48 МДж энергии. Масса съеденного пчёлами нектара равна 𝑚 = 48 МДж / 6 МДж/ кг = 8 кг. Следовательно, всего пчёлы перенесли 48 кг нектара. При этом было совершено 48 кг / (1200 кг/м**3 * 30 * 10**(−9) м**3) ≈ 1.33 * 10**6 полётов. За каждый полёт пчела пролетает 1200 м, поэтому общее расстояние, которое пролетели пчёлы, равно 1200 м * 1.33 * 10**6 = 1.6 * 10**9 м.",1.6 * 10**9,allrus,8 +"При смешивании карбоната натрия (соды) массой 𝑚1 и пресной воды массой 𝑚2 получается солевой раствор. Если процентное содержание соды в растворе, равное 𝛼 = 𝑚1/(𝑚1 + 𝑚2), принимает значения от 1% до 14%, то плотность раствора карбоната натрия можно рассчитать, воспользовавшись приближенной формулой 𝜌 = 𝜌0 * (1 + 𝛼) , где 𝜌0 плотность пресной воды, равная 1 г/см**3. В лёгком цилиндрическом сосуде находится водный раствор карбоната натрия плотностью 1.12 г/см**3, уровень которого расположен на высоте 15 см от дна сосуда. В раствор добавляют некоторое количество льда, при этом уровень жидкости в сосуде поднялся на 5 см. Когда лёд растаял, жидкость перемешали, и процентное содержание карбоната натрия в растворе уменьшилось. Найдите плотность получившегося раствора.","Пусть первоначальная масса солевого раствора равна 𝑀, а давление жидкости на дно сосуда 𝑝. После добавления льда уровень жидкости поднялся с высоты 15 см на высоту 20 см от дна, следовательно, давление жидкости на дно сосуда стало равным 4/3 𝑝. Так как лёд плавает и не касается дна сосуда, стало быть, масса солевого раствора со льдом будет равна 4/3𝑀. Первоначальная концентрация соды в солевом растворе была равна 12%. После того, как лёд растает концентрация соли составит 3/4 от первоначального значения, то есть 9%. Новая плотность солевого раствора равна 1.09 г/см**3 ",1.09,allrus,8 +"При смешивании карбоната натрия (соды) массой 𝑚1 и пресной воды массой 𝑚2 получается солевой раствор. Если процентное содержание соды в растворе, равное 𝛼 = 𝑚1/(𝑚1 + 𝑚2), принимает значения от 1% до 14%, то плотность раствора карбоната натрия можно рассчитать, воспользовавшись приближенной формулой 𝜌 = 𝜌0 * (1 + 𝛼) , где 𝜌0 плотность пресной воды, равная 1 г/см**3. В лёгком цилиндрическом сосуде находится водный раствор карбоната натрия плотностью 1.12 г/см**3, уровень которого расположен на высоте 15 см от дна сосуда. В раствор добавляют некоторое количество льда, при этом уровень жидкости в сосуде поднялся на 5 см. Когда лёд растаял, жидкость перемешали, и процентное содержание карбоната натрия в растворе уменьшилось. На какой высоте расположен уровень раствора в сосуде? ","Пусть первоначальная масса солевого раствора равна 𝑀, а давление жидкости на дно сосуда 𝑝. После добавления льда уровень жидкости поднялся с высоты 15 см на высоту 20 см от дна, следовательно, давление жидкости на дно сосуда стало равным 4/3 𝑝. Так как лёд плавает и не касается дна сосуда, стало быть, масса солевого раствора со льдом будет равна 4/3𝑀. Первоначальная концентрация соды в солевом растворе была равна 12%. После того, как лёд растает концентрация соли составит 3/4 от первоначального значения, то есть 9%. Новая плотность солевого раствора равна 1.09 г/см**3 . Поскольку масса вещества в сосуде при таянии льда не меняется, то и давление на дно сосуда остаётся неизменным: 1.12 г/см3 * 20 см = 1.09 г/см**3 * 𝐻, где 𝐻 — новая высота уровня жидкости от дна сосуда. Откуда находим 𝐻 = 1.12 г/см3 * 20 см / 1.09 г/см**3 = 20.6 см",20.6,allrus,8 +"В холодильной камере при температуре 0 ∘C находится сосуд с водой и льдом. Есл�� переместить этот сосуд в помещение, то на стенках сосуда к моменту, когда весь лёд растает, образуются капельки сконденсированной воды (сосуд запотевает). Масса воды, сконденсированной на стенках сосуда, зависит от температуры воздуха в комнате. Например, если температура воздуха в комнате равна 22 ∘C, то сконденсируется 23 г воды, а при температуре 30 ∘C сконденсируется 18 г воды. Определите массу льда в сосуде. Удельная теплота плавления льда равна 330 кДж/кг, а удельная теплота парообразования воды 2,3 МДж/кг. Считайте, что конвекция отсутствует, мощность теплообмена пропорциональна разности температур сосуда с его содержимым и воздуха, а скорость образования конденсата в обоих случаях одинаковая.","Сосуд с содержимым получает тепло благодаря двум процессам: теплообмену с окружающим воздухом и конденсации воды на стенках сосуда. Количество теплоты, которое получает сосуд с его содержимым от воздуха посредством теплообмена, равно: 𝑄тепл = 𝛼 * (𝑡к − 𝑡0) * 𝜏, где 𝛼 — коэффициент пропорциональности, 𝑡к — комнатная температура, 𝑡0 = 0 ∘C, 𝜏 — время таяния льда. Так как скорость образования конденсата в обоих случаях одинаковая и постоянна, следовательно, масса конденсата на стенках сосуда пропорциональна времени процесса: 𝑚 = 𝛽 * 𝜏, где 𝛽 — коэффициент пропорциональности одинаковый для обоих процессов. Стало быть, отношение времён таяния льда при комнатной температуре 22 ∘C и при комнатной температуре 30 ∘C равно 𝜏1/𝜏2 = 𝑚1/𝑚2. Запишем уравнение теплового баланса для первого и второго процессов: 𝛼 * (𝑡к1 − 𝑡0) * 𝜏1 + 𝐿𝑚1 = 𝜆𝑀, 𝛼 * (𝑡к2 − 𝑡0) * 𝜏2 + 𝐿𝑚2 = 𝜆𝑀, где 𝑀 — масса растаявшего льда. Решая систему уравнений, получаем 𝑀 = (𝐿𝑚1𝑚2(𝑡к2 − 𝑡к1)) /𝜆(𝑚2(𝑡к2 − 𝑡0) − 𝑚1(𝑡к1 − 𝑡0)) = 680 г.",680,allrus,8 +"Однородный стержень массой 𝑚 движется по плоскости так, что в некоторый момент времени абсолютные значения ускорений концов 𝐴 и 𝐵 стержня оказываются равны 𝑎𝐴 = 2𝑎0 и 𝑎𝐵 = 𝑎0, при этом ускорения направлены вдоль параллельных прямых, а векторы скоростей концов равны друг другу. Какая внешняя сила действует на стержень в данный момент времени? Определите модуль вектора силы","Векторы скоростей всех точек твёрдого стержня в рассматриваемый момент времени равны друг другу. Чтобы через малое время Δ𝑡 проекции скоростей всех точек на направление стержня по-прежнему оставались одинаковыми, проекции ускорений на направление стержня тоже должны быть одинаковыми. Абсолютные значения ускорений концов стержня различны, но при этом ускорения направлены вдоль параллельных прямых, поэтому векторы ускорений могут давать одинаковую проекцию на направление стержня только в том случае, если векторы ускорений перпендикулярны стержню. Перейдём в инерциальную систему отсчёта, в которой в данный момент времени стержень покоится. Ускорения точек стержня не изменя�� своего значения и направления. Через бесконечно малый промежуток времени Δ𝑡 скорости точек стержня будут перпендикулярны стержню и скорость точки 𝐴 будет вдвое больше скорости точки 𝐵. Скорости остальных точек стержня будут пропорциональны расстоянию до мгновенного центра вращения. Пусть на стержне это точка 𝑂, тогда ускорения точек в начале интервала времени Δ𝑡 должны быть тоже пропорциональными расстоянию до точки 𝑂 стержня. Проведём прямые через начала ускорений 𝐴⃗𝑎 и 𝐵⃗𝑎 и через их концы. Точка стержня, которая лежит на пересечении этих прямых, имеет нулевое ускорение (точка 𝑂). Найдём ускорение центра масс стержня. Если ускорения точек 𝐴 и 𝐵 направлены в одну сторону, то ускорение центра масс равно 3/2𝑎0 и совпадает с направлением векторов 𝐴⃗𝑎 и 𝐵⃗𝑎 . Если ускорения точек 𝐴 и 𝐵 направлены в разные стороны, то ускорение центра масс равно 1/2𝑎0 и совпадает с направлением вектора 𝐴⃗𝑎 . Результирующую силу, действующую на стержень, найдём, воспользовавшись теоремой о движении центра масс. В итоге получаем, что на стержень действует либо сила 3/2𝑚𝑎0 , либо сила 1/2𝑚𝑎0. В обоих случаях вектор силы направлен в ту же сторону, что и вектор 𝐴⃗𝑎 .",3/2𝑚𝑎0,allrus,11 +"Имеются две диэлектрические равномерно заряженные полусферы с радиусами 𝑅 и 𝑟 и зарядами 𝑄 и 𝑞 соответственно. Полусферы имеют общий центр и расположены относительно друг друга так, что плоскость, закрывающая одну полусферу, перпендикулярна плоскости, закрывающей другую полусферу. Найдите энергию электростатического взаимодействия полусфер.","Задача допускает несколько способов решения. Покажем два из них. Пусть искомая энергия взаимодействия равна 𝑊. Дополним рассматриваемую систему зарядов ещё одной заряженной полусферой радиусом 𝑟, так чтобы образовалась малая заряженная сфера. Потенциал поля малой сферы во всех точках большой полусферы равен 𝑘 * 2𝑞/𝑅 , поэтому энергия взаимодействия сферы радиусом 𝑟 и полусферы радиусом 𝑅 равна 𝑘 * 2𝑞𝑄/𝑅 . С другой стороны, эта энергия равна удвоенной энергии взаимодействия большой и малой полусфер, иначе говоря, удвоенной искомой энергии, поэтому 𝑊 = 𝑘 * 𝑞𝑄/𝑅. Другой способ решения предполагает анализ распределения потенциала полусферы. Рассмотрим поле большой полусферы. Потенциал этого поля в общем центре полусфер равен 𝜑 =𝑘𝑄/𝑅. Если большую полусферу дополнить до целой сферы, то потенциал в любой точке внутри сферы будет равен 2𝜑. Отсюда следуют два утверждения. a) Во всех точках среза большой полусферы (т.е. во всех точках круга, дополняющего полусферу до замкнутой поверхности) потенциал равен 𝜑. б) Если рассмотреть две точки 𝐴 и 𝐵, симметричные относительно среза большой полусферы, то потенциалы в этих точках равны 𝜑−𝛿 и 𝜑+𝛿, где 𝛿 - некоторая величина, зависящая от расположения точек 𝐴 и 𝐵. Из утве��ждения б) следует, что если в точки 𝐴 и 𝐵 поместить равные заряды Δ𝑞, то их суммарная энергия взаимодействия с внешней сферой будет равна 2𝜑Δ𝑞. А поскольку внутренняя полусфера симметрична относительно среза внешней полусферы, то её можно разбить на пары одинаковых малых зарядов Δ𝑞. Отсюда следует, что полная энергия взаимодействия внутренней полусферы с внешней равна 𝑊 = 𝜑𝑞 = 𝑘𝑄𝑞/𝑅.",𝑘𝑄𝑞/𝑅,allrus,11 +"Палочка 𝐴𝐵 движется так, что в любой момент времени в процессе движения она касается неподвижного кубика. Конец 𝐴 палочки скользит по горизонтальной поверхности с постоянной скоростью 𝑣𝐴 = 12 см/с. Найдите скорость 𝑣𝐵 конца 𝐵 палочки в тот момент времени, когда палочка касается кубика в такой точке 𝐶, что длина отрезка 𝐴𝐶 вдвое меньше длины отрезка 𝐵𝐶, при этом угол 𝜑 в этот момент оказывается равен 45∘ . Ответ выразите в см/с, округлите до целого","Обозначим 𝐴𝐶 = 𝑥, тогда мгновенный центр вращения палочки лежит на вертикальной прямой, проходящей через точку 𝐴, на расстоянии 𝑆𝐴 = 𝑥 * 2**(1/2) от неё. Можно показать, что расстояние от мгновенного центра вращения до точки 𝐵 равно 𝑆𝐵 = 𝑥 * 5**(1/2) , следовательно, искомая скорость равна 𝑣𝐵 = 𝑣𝐴 ⋅ 𝑆𝐵/𝑆𝐴 ≈ 19 см/с",19,school,9 +"Металлический шарик после выстрела из игрушечной пушки движется вертикально вверх в поле тяжести Земли. Начальная скорость шарика равна 28 м/с. Считая, что ускорение свободного падения равно 10 м/с**2 , найдите, через какое время после начала движения мгновенная скорость шарика станет равна средней путевой скорости. Сопротивлением воздуха можно пренебречь. Средняя путевая скорость (по определению) есть отношение пройденного пути к времени его прохождения. Ответ выразите в секундах, округлите до целого.","Легко видеть, что искомое время 𝑡 удовлетворяет неравенству 𝑡 > 𝑣0 𝑔 . Тогда пройденный за время 𝑡 путь равен 𝐿(𝑡) = 𝑣0 ** 2/𝑔 + 𝑔𝑡**2/2 − 𝑣0*𝑡, а мгновенная скорость равна 𝑣(𝑡) = 𝑔𝑡 − 𝑣0 . Приравняв среднюю путевую скорость 𝑣𝐿 = 𝐿(𝑡)/𝑡 мгновенной, получим уравнение, решив которое найдём ответ: 𝑡 = 𝑣0/𝑔 * 2**(1/2) = 4 с",4,school,9 +"В просторном хорошо проветриваемом помещении на столе стоят три одинаковые банки. В каждой банке содержится смесь воды и льда. Масса смеси в каждой банке — одинаковая, и масса льда в каждой банке тоже одинаковая. Три одинаковых нагревательных элемента погружены в банки. Элемент, погружённый в первую банку, соединён через ключ с аккумулятором с напряжением 𝑈 на выводах, элемент, погружённый во вторую банку, соединён через ключ с аккумулятором с напряжением 2𝑈, а погружённый в третью — с аккумулятором с напряжением 3𝑈. Внутреннее сопротивление аккумуляторов пренебрежимо мало. Ключи одновременно замыкают. Известно, что в третьей банке лёд полностью растаял через 7 минут после замыкания ключа, а во второй — через 17 минут. Через какое время 𝑡1 л��д в первой банке растаял полностью? Считайте, что во время таяния льда смесь в каждой из банок перемешивается, так что температуры смеси в разных точках одной банки оказываются равны. Мощность теплоотдачи пропорциональна разности температур банки и окружающей среды. В ответе к задаче укажите значение времени 𝑡1.","Обозначим через 𝑃 мощность теплоотдачи (одинаковую для всех банок) в окружающую среду. Тогда справедливо соотношение 17 * (4𝑈**2/𝑅 − 𝑃) = 7 * (9𝑈**2/𝑅 − 𝑃) , из которого следует равенство 𝑈**2/𝑅 = 2𝑃. Искомое время находится из уравнения (𝑡3 = 17 мин) 𝑡3 * (4𝑈**2/𝑅 − 𝑃) = 𝑡1 * (𝑈**2/𝑅 − 𝑃) , которое легко решается с учётом найденного равенства. Ответ: 𝑡1 = 7 * 17 мин = 119 мин",119,school,9 +"В механической системе, изображённой на рисунке, блок идеальный, нить невесомая и нерастяжимая, масса любого маленького кубика равна массе большого куба. Пусть трение между маленькими кубиками и большим кубом отсутствует. При каких значениях коэффициента трения 𝜇 между горизонтальной поверхностью и большим кубом он будет оставаться в покое при движении маленьких кубиков?","Критическое значение коэффициента трения находится +из условия равенства горизонтальной составляющей силы давления +на ось блока и максимальной силы трения покоя, действующей на +большой куб. Это рассуждение приводит к соотношению 𝜇𝑎(𝑚𝑔 + 𝑚𝑔 + 𝑇𝑎) = 𝑇𝑎, в котором 𝑇𝑎 — сила натяжения нити, удовлетворяющая равенству 𝑇𝑎 = 𝑚𝑎𝑎 = 𝑚 * 𝑚𝑔/2𝑚 = 𝑚𝑔/2. Таким образом, искомый коэффициент трения равен 𝜇𝑎 = 0.2",0.2,school,10 +"В механической системе, изображённой на рисунке, блок идеальный, нить невесомая и нерастяжимая, масса любого маленького кубика равна массе большого куба. Пусть коэффициент трения между верхним маленьким кубиком и большим кубом равен 0,25. При каких значениях коэффициента трения 𝜇 между горизонтальной поверхностью и большим кубом последний будет оставаться в покое при движении маленьких кубиков?","В условиях задачи уравнение, из которого находится коэффициент трения, изменяется (следует учесть, что на большой куб дополнительно будет действовать сила трения со стороны верхнего маленького кубика): 𝜇𝑎 (𝑚𝑔 + 𝑚𝑔 + 𝑇𝑏) = 𝑇𝑏 − 𝑚𝑔/4. Значение силы натяжения в этом случае равно 𝑇𝑏 = 𝑚𝑎𝑏 + 𝑚𝑔/4 = 𝑚 * (𝑚𝑔 − 𝑚𝑔/4)/2𝑚 + 𝑚𝑔/4 = 5𝑚𝑔/8. Таким образом, предельное значение коэффициента трения оказывается равно 𝜇𝑏 = 1/7 ≈ 0.142",0.142,school,10 +"На гладкой горизонтальной поверхности лежат две маленькие деревянные шайбы массами 𝑚 и 2𝑚, связанные лёгкой нерастяжимой ниткой длиной 10 см, при этом нитка не провисает. В шайбу массой 𝑚 попадает кусочек пластилина массой 𝑚 и прилипает к нему. Скорость пластилина перед попаданием в шайбу направлена перпендикулярно нитке и равна 𝑣 = 10 см/с. Через какое минимальное время скорость шайбы массой 2𝑚 достигнет максимума? Ответ выразите в секундах, округлите до целого.","После попадания пластилина в шайбу центр масс образовавшейся системы (располагающийся в середине нитки) движется с постоянной скоростью, равной 𝑣 4 = 2,5 см/с, при этом шайбы в системе центра масс вращаются с угловой скоростью 𝜔 = 𝑣 2𝑙 = 0,5 рад/c, где 𝑙 — длина нитки. Скорость шайбы массой 2𝑚 достигает максимума за время, равное половине периода: 𝑡 = 𝜋/𝜔 ≈ 6 с",6,school,10 +"На гладкой горизонтальной поверхности лежат две маленькие деревянные шайбы массами 𝑚 и 2𝑚, связанные лёгкой нерастяжимой ниткой длиной 10 см, при этом нитка не провисает. В шайбу массой 𝑚 попадает кусочек пластилина массой 𝑚 и прилипает к нему. Скорость пластилина перед попаданием в шайбу направлена перпендикулярно нитке и равна 𝑣 = 10 см/с. Найдите максимальное значение скорости шайбы массой 2𝑚. Ответ выразите в см/с. ","После попадания пластилина в шайбу центр масс образовавшейся системы (располагающийся в середине нитки) движется с постоянной скоростью, равной 𝑣 4 = 2,5 см/с, при этом шайбы в системе центра масс вращаются с угловой скоростью 𝜔 = 𝑣 2𝑙 = 0,5 рад/c, где 𝑙 — длина нитки. Скорость шайбы массой 2𝑚 достигает максимума за время, равное половине периода: 𝑡 = 𝜋/𝜔 ≈ 6 с. Максимальное значение скорости шайбы массой 2𝑚 при этом оказывается равно 𝑣/2 = 5 см/c.",5,school,10 +"В вертикальном сосуде под тяжёлым поршнем находится некоторое количество двухатомного газа. Сосуд обладает хорошей теплопроводностью, температура окружающей среды снаружи сосуда постоянна и равна 𝑇0 . Молярную теплоёмкость газа при постоянном объёме можно считать равной 5𝑅/2 , пренебрегая вкладом колебательных степеней свободы. Молекулы газа медленно и необратимо диссоциируют на атомы. Для разрыва химической связи между атомами в молекуле необходима энергия, равная 𝑊0 = 𝑘𝑇0 , где 𝑘 — постоянная Больцмана (𝑘𝑁A = 𝑅). Начальные значения давления и объёма газа равны: 𝑝0 = 10**5 Па и 𝑉0 = 1 л соответственно. Чему будет равен объём 𝑉 газа после окончания процесса диссоциации?","После полной диссоциации двухатомного газа количество вещества +в сосуде увеличится в два раза, следовательно при постоянном давлении в два раза увеличится объём. ",2,school,11 +"В вертикальном сосуде под тяжёлым поршнем находится некоторое количество двухатомного газа. Сосуд обладает хорошей теплопроводностью, температура окружающей среды снаружи сосуда постоянна и равна 𝑇0 . Молярную теплоёмкость газа при постоянном объёме можно считать равной 5𝑅/2 , пренебрегая вкладом колебательных степеней свободы. Молекулы газа медленно и необратимо диссоциируют на атомы. Для разрыва химической связи между атомами в молекуле необходима энергия, равная 𝑊0 = 𝑘𝑇0 , где 𝑘 — постоянная Больцмана (𝑘𝑁A = 𝑅). Начальные значения давления и объёма газа равны: 𝑝0 = 10**5 Па и 𝑉0 = 1 л соответственно. Определите количество теплоты 𝑄, полученное газом от ок��ужающей среды за большое время после начала процесса.","Потенциальная энергия химической связи в двухатомной молекуле меньше нуля и по абсолютной величине равна 𝑊0, поэтому после диссоциации одной двухатомной молекулы суммарная энергия двух атомов оказывается больше энергии молекулы на величину Δ𝐸, удовлетворяющую соотношению Δ𝐸 = 2 * 3𝑘𝑇0/2 − 5𝑘𝑇0/2 + 𝑊0 = 3𝑘𝑇0/2. Таким образом, изменение внутренней энергии газа в сосуде после полной диссоциации молекул на атомы оказывается равно Δ𝑈 = 3/2 * 𝜈𝑅𝑇0, где 𝜈 начальное количество двухатомного газа. Учитывая, что газ также совершает работу, равную 𝐴 = 𝑝0𝑉0, для количества теплоты из первого начала термодинамики имеем равенство 𝑄 = 3/2 * 𝜈𝑅𝑇0 + 𝑝0𝑉0 = 5/2 * 𝑝0𝑉0 = 250 Дж",250,school,11 +"В горизонтально расположенной теплоизолированной трубе между двумя подвижными теплоизолирующими поршнями находятся в состоянии теплового равновесия при температуре 310 K две порции идеального одноатомного газа, разделённые жёсткой, неподвижной, хорошо проводящей тепло перегородкой. Поршни могут двигаться вдоль оси трубы, не испытывая сопротивления. Снаружи поршней находится воздух при атмосферном давлении. Количество газа в каждой порции равно 1 моль. К правому поршню прикладывается сила (меняющаяся со временем), и поршень медленно перемещается, температура газа при этом квазистатически уменьшается на 30 К. Универсальная газовая постоянная 𝑅 равна 8,3 Дж/(моль * К). Найдите теплоёмкость порции газа, располагающейся справа от перегородки, в начале и в конце процесса охлаждения","Изменение состояния газа слева и справа от перегородки +происходит таким образом, что температура обоих порций остаётся одинаковой. Газ, располагающийся слева от перегородки, сжимается, поскольку его температура уменьшается при постоянном давлении, отдавая при изменении температуры на 𝑑𝑇 количество теплоты 𝛿𝑄𝐿 = 𝑐p𝑑𝑇. (1) В формуле (1) считается, что 𝑑𝑇 < 0 и 𝛿𝑄𝐿 < 0. Теплота (1) отдаётся порции газа в правом отсеке, которая получает количество теплоты, равное 𝛿𝑄𝑅 = −𝛿𝑄𝐿 = −𝑐p𝑑𝑇 только от газа в левом отсеке, поэтому теплоёмкость этой порции в любой момент в процессе охлаждения равна 𝑐 = 𝛿𝑄𝑅/𝑑𝑇 = −𝑐𝑝𝑑𝑇/𝑑𝑇 = −𝑐𝑝 = −5𝑅/2.",−5𝑅/2,allrus,11 +"В горизонтально расположенной теплоизолированной трубе между двумя подвижными теплоизолирующими поршнями находятся в состоянии теплового равновесия при температуре 310 K две порции идеального одноатомного газа, разделённые жёсткой, неподвижной, хорошо проводящей тепло перегородкой. Поршни могут двигаться вдоль оси трубы, не испытывая сопротивления. Снаружи поршней находится воздух при атмосферном давлении. Количество газа в каждой порции равно 1 моль. К правому поршню прикладывается сила (меняющаяся со временем), и поршень медленно перемещается, температура газа при этом квазистатически уме��ьшается на 30 К. Универсальная газовая постоянная 𝑅 равна 8,3 Дж/(моль * К) Какую работу 𝐴г cовершает газ, располагающийся справа от перегородки, в процессе охлаждения? ","Изменение состояния газа слева и справа от перегородки +происходит таким образом, что температура обоих порций остаётся одинаковой. Газ, располагающийся слева от перегородки, сжимается, поскольку его температура уменьшается при постоянном давлении, отдавая при изменении температуры на 𝑑𝑇 количество теплоты 𝛿𝑄𝐿 = 𝑐p𝑑𝑇. (1) В формуле (1) считается, что 𝑑𝑇 < 0 и 𝛿𝑄𝐿 < 0. Теплота (1) отдаётся порции газа в правом отсеке, которая получает количество теплоты, равное 𝛿𝑄𝑅 = −𝛿𝑄𝐿 = −𝑐p𝑑𝑇 только от газа в левом отсеке, поэтому теплоёмкость этой порции в любой момент в процессе охлаждения равна 𝑐 = 𝛿𝑄𝑅/𝑑𝑇 = −𝑐𝑝𝑑𝑇/𝑑𝑇 = −𝑐𝑝 = −5𝑅/2(2). Таким образом, с газом в правом отсеке совершается политропический процесс с показателем политропы 𝑛 = (𝑐 − 𝑐𝑝)/(𝑐 − 𝑐𝑉) = 5𝑅/4𝑅 = 5/4. Работа газа, находящегося в правом отсеке, может быть найдена из первого начал термодинамики. С учётом полученного значения теплоёмкости (2) имеем формулу 𝐴г = 𝑄 − Δ𝑈 = −𝑐𝑝Δ𝑇 − 𝑐𝑉Δ𝑇 = 1000 Дж",1000,allrus,11 +"В горизонтально расположенной теплоизолированной трубе между двумя подвижными теплоизолирующими поршнями находятся в состоянии теплового равновесия при температуре 310 K две порции идеального одноатомного газа, разделённые жёсткой, неподвижной, хорошо проводящей тепло перегородкой. Поршни могут двигаться вдоль оси трубы, не испытывая сопротивления. Снаружи поршней находится воздух при атмосферном давлении. Количество газа в каждой порции равно 1 моль. К правому поршню прикладывается сила (меняющаяся со временем), и поршень медленно перемещается, температура газа при этом квазистатически уменьшается на 30 К. Универсальная газовая постоянная 𝑅 равна 8,3 Дж/(моль * К). Какую работу 𝐴𝐹 при этом совершает приложенная к поршню внешняя сила?","Изменение состояния газа слева и справа от перегородки +происходит таким образом, что температура обоих порций остаётся одинаковой. Газ, располагающийся слева от перегородки, сжимается, поскольку его температура уменьшается при постоянном давлении, отдавая при изменении температуры на 𝑑𝑇 количество теплоты 𝛿𝑄𝐿 = 𝑐p𝑑𝑇. (1) В формуле (1) считается, что 𝑑𝑇 < 0 и 𝛿𝑄𝐿 < 0. Теплота (1) отдаётся порции газа в правом отсеке, которая получает количество теплоты, равное 𝛿𝑄𝑅 = −𝛿𝑄𝐿 = −𝑐p𝑑𝑇 только от газа в левом отсеке, поэтому теплоёмкость этой порции в любой момент в процессе охлаждения равна 𝑐 = 𝛿𝑄𝑅/𝑑𝑇 = −𝑐𝑝𝑑𝑇/𝑑𝑇 = −𝑐𝑝 = −5𝑅/2(2). Таким образом, с газом в правом отсеке совершается политропический процесс с показателем политропы 𝑛 = (𝑐 − 𝑐𝑝)/(𝑐 − 𝑐𝑉) = 5𝑅/4𝑅 = 5/4. Работа газа, находящегося в правом отсеке, может быть найдена из первого начал термодинамики. С учётом полученного значения теплоёмкости (2) имеем формулу 𝐴г = 𝑄 − Δ𝑈 = −𝑐𝑝Δ𝑇 − 𝑐𝑉Δ𝑇 = 1000 Дж (3). где Δ𝑇 = −30 K. Для того, чтобы вычислить работу внешней силы, определим сначала конечный объём порции газа, расположенной справа от перегородки. Это можно сделать двумя способами. Используя уравнение политропического процесса 𝑝𝑉𝑛 = const, где 𝑛 = 5/4 — показатель политропы, найденный выше, а также уравнение состояния идеального газа, имеем равенство 𝑇**4𝑉 = const, из которого следует формула для объёма в конце процесса охлаждения 𝑉1 = 𝑉0 * (𝑇0/(𝑇0 + Δ𝑇))**4. (4) С другой стороны, можно было бы записать соотношение, отражающее первое начало термодинамики для газа, расположенного справа от перегородки −𝑐𝑝𝑑𝑇 = 𝑐𝑉𝑑𝑇 + 𝑅𝑇/𝑉 * 𝑑𝑉, Из этого соотношения после преобразований и подстановки значений теплоёмкостей следует дифференциальное уравнение −4 * 𝑑𝑇/𝑇 = 𝑑𝑉/𝑉, интегрируя которое, получаем равенство −4 * ln(𝑇/𝑇0) = ln(𝑉/𝑉0) и далее формулу (4) для объёма. Теперь можно перейти к определению работы внешней силы. Поскольку правый поршень перемещается очень медленно, суммарная работа всех сил, действующих на него, равна нулю, следовательно справедливо равенство 𝐴г + 𝐴𝐹 − 𝑝0 * (𝑉1 − 𝑉0) = 0, подставляя в которое объём из формулы (4) и работу газа из формулы (3), получаем ответ 300 Дж",300,allrus,11 +"Специальные пиротехнические ракеты вылетают каждую секунду из одной точки на поверхности земли и далее движутся вдоль вертикальной прямой. В течение секунды после старта ускорение каждой ракеты направлено вверх и равно 2𝑔, где 𝑔 = 10 м/с 2 — ускорение свободного падения. Через секунду после старта пороховой заряд, обеспечивавший ускорение ракеты сгорает, и она продолжает двигаться, светясь, с ускорением 𝑔, направленным вертикально вниз. Через 4,9 c после начала движения ракета сгорает полностью. Сколько ракет (𝑁) встретит каждая ракета на своём пути, пока не сгорит?","Через секунду после начала движения ракета находится на высоте 10 м, +выше неё движутся три ракеты. Рассматриваемая ракета встречается с +этими тремя (стартовавшими раньше неё), а также с тремя ракетами, +стартовавшими позже. 𝑁 = 6.",6,school,9 +"Для того, чтобы покупателям было удобнее рассматривать обувь во время примерки, зеркало 𝑀 в обувном отделе магазина наклоняют так, что его плоскость составляет небольшой угол 𝜑 = 15∘ с вертикальной стеной. Чему равно максимальное расстояние по горизонтали 𝐿max от нижнего края зеркала до человека ростом ℎ = 185 см, при котором он ещё видит изображение носков своих ботинок в зеркале? Считайте, что расстояние по вертикали между глазами человека и макушкой равно 12 см, размером подошв можно пренебречь. Ответ дайте в метрах, округлите до целого.","В предельном случае изображение носков ботинок лежит на прямой, +проходящей через глаз человека и нижнюю точку зеркала. 𝐿max ≈ 3 м.",3,school,9 +"Двухступенчатый блок состоит из лёгких, жёстко соединённых дисков, которые могут вращаться без трения вокруг оси 𝑂 пренебрежимо малой массы. Диаметры дисков отличаются в два раза. К концам лёгких нерастяжимых нитей, намотанных на диски блока, присоединены грузы массой: 𝑚1 = 0,5 кг и 𝑚2 = 0,4 кг. Система находится на гладком горизонтальном столе. К оси блока приложена сила, равная 𝐹 = 1,8 Н. Найдите ускорение оси блока 𝑎𝑂. Ответ дайте в м/с**2 .","Поскольку блок не имеет массы, силы натяжения нитей равны: 𝑇1 = 𝐹/3 и 𝑇2 = 2𝐹/3 . Уравнение кинематической связи записывается в системе отсчёта, связанной с блоком: 𝑎0 − 𝑎1 = 2𝑎2 − 2𝑎0 . Ответ: 2.4 м/c**2",2.4,school,11 +"В газонепроницаемой оболочке, которая может свободно растягиваться (так что давление снаружи оболочки всегда равно давлению внутри) содержится моль гелия при температуре 𝑇0 = 100 K. Оболочка располагается внутри жёсткой сферы объёмом 2𝑉, в которой сделаны многочисленные маленькие сквозные отверстия. В начальный момент объём гелия равен 𝑉, оболочка находится в равновесии. Систему медленно нагревают, увеличивая её температуру в три раза. Какое количество теплоты 𝑄 сообщается гелию при этом? Универсальная газовая постоянная равна 𝑅 = 8.3 Дж/(моль * К). Ответ дайте в кДж, округлите до десятых.","Сначала тепло подводится при постоянном давлении, затем при постоянном объёме. Ответ: 𝑄 = 4𝜈𝑅𝑇0 = 3.3 кПа.",3.3,school,11 +В герметичном сосуде при температуре 𝑡1 = 47 ∘C и давлении 𝑝1 = 16 кПа находится одинаковое число молей воздуха и водяного пара. Сосуд медленно охлаждают до температуры 𝑡2 = 7∘C. Чему равно давление 𝑝2 в сосуде при температуре 𝑡2 ?,Пар в конце процесса будет насыщенным: 𝑝2 = 1 кПа+ 7/8 * 𝑝1/2 = 8 кПа.,,school,11 +"Одинаковые металлические пластины: 1, 2, 3 и 4 площадью 𝑆 = 100 см**2 располагаются на расстоянии 𝑑 = 0,1 мм друг от друга. Значение ЭДС равно E = 4,0 В. Электрическая постоянная равна 𝜀0 = 8,85 * 10**(−12) Ф/м. В начальный момент ключи 𝐾1 и 𝐾2 разомкнуты и пластины не заряжены. Замыкают ключ 𝐾1 и после того, как ток через батарею с ЭДС E станет равен нулю, замыкают ключ 𝐾2. Найдите количество теплоты 𝑄1, выделяющееся в цепи до замыкания ключа 𝐾2. Ответы дайте в нДж (1 нДж = 10**(−9) Дж). Округлите до десятых.","До замыкания ключа 𝐾2 выделяется количество теплоты, равное 𝑄1 = (𝐶/2 * E**2) / 2 = 3.5 нДж, при этом 𝐶 = 8,85 * 10**(−10) Ф — ёмкость конденсатора, образованного двумя соседними пластинами.",3.5,school,11 +"Одинаковые металлические пластины: 1, 2, 3 и 4 площадью 𝑆 = 100 см**2 располагаются на расстоянии 𝑑 = 0,1 мм друг от друга. Значение ЭДС равно E = 4,0 В. Электрическая постоянная равна 𝜀0 = 8,85 * 10**(−12) Ф/м. В начальный момент ключи 𝐾1 и 𝐾2 разомкнуты и пластины не заряжены. Замыкают ключ 𝐾1 и после того, как ток через батарею с ЭДС E станет равен нулю, замыкают ключ 𝐾2.Какое количество теплоты 𝑄2 выделяется в цепи после замыкания ключа 𝐾2? Ответы дайте в нДж (1 нДж = 10**(−9) Дж). Округлите до десятых. ","После замыкания ключа 𝐾2 и окончания переходного процесса заряды пластин 1 и 3 станут равны нулю. Количество теплоты находится по закону сохранения энергии, при этом первая батарея совершает отрицательную работу. 𝑄2 = 3𝐶E**2/4 = 10.6 нДж.",10.6,school,11 +"На конце невесомого достаточно длинного стержня закреплён небольшой, но тяжёлый шарик. Сначала стержень располагается вертикально на шероховатой горизонтальной поверхности стола в состоянии неустойчивого равновесия. От незначительного толчка стержень с шариком приходят в движение. Чему равно минимальное значение коэффициента трения 𝜇 между стержнем и горизонтальной поверхностью, если в процессе движения стержень по столу не проскальзывает по крайней мере до тех пор, пока не повернётся на угол, равный 𝜑 = 𝜋/6 ?",𝜇 = tg 𝜑 = 0.6,0.6,school,11 +"Согласно техническому паспорту, Васиной машине предназначены 15- +дюймовые колёсные диски с диаметром шин 627 мм. Когда пришло время сменить машине +шины, Вася решил покрасоваться, и он купил 16-дюймовые диски с диаметром шин 652 мм. +На сколько секунд изменится время прохождения 1 км с новыми шинами, если машина +едет, согласно спидометру, со скоростью 90 км/ч? Спидометр машины измеряет скорость +по числу оборотов колеса.","Когда колеса автомобиля совершают один полный оборот, автомобиль проходит расстояние равное 𝜋𝑑1, где 𝑑1 - диаметр «правильных» колес. Число оборотов колес в секунду в этом случае равно 𝑛1 = 𝑣1𝑡/𝜋𝑑1, где 𝑣1 = 90 км/ч, 𝑡 = 1 с. В случае «неправильных» колес, хоть спидометр и показывает скорость 𝑣1, автомобиль движется со скоростью: 𝑣2 = 𝑛1𝜋𝑑2/𝑡 = 𝑣1 * 𝑑2/𝑑1. Таким образом, автомобиль с новыми шинами проходит 1 км быстрее на ∆𝑡 = 𝑆/𝑣1 − 𝑆/𝑣2 = 1.5 с.",1.5,school,9 +"Внутри плавающего стакана лежит гвоздь. Объём погруженной части стакана в воду равен 𝑉1 = 388 мл. Когда гвоздь вынули из стакана и опустили в воду, предварительно привязав его ниткой к дну стакана, то он повис, не касаясь дна. Объём погруженной части стакана в воду равен 𝑉2 = 372 мл. Затем нить перерезали. Объём погруженной части стакана в воду уменьшился до 𝑉3 = 220 мл. Во сколько раз плотность гвоздя больше плотности воды?","В первом и втором случаях объём вытесненной воды одинаков, ведь по закону Архимеда её вес равен суммарному весу гвоздя и стакана. Если V объём гвоздя, то 𝑉 + 𝑉2 = 𝑉1. Во первом и третьем случае масса вытесненной воды отличается на массу гайки, то есть 𝜌𝑉 = 𝜌0(𝑉1 – 𝑉3), где 𝜌 – плотность гвоздя, а 𝜌0 – воды. Окончательно получаем 𝜌/𝜌0 = (𝑉1 – 𝑉3)/(𝑉1 – 𝑉2) = 10.5 ",10.5,school,9 +"Закрытый сосуд с водой массой m поставили на нагревательный элемент в результате чего, температура жидкости повысилась от 70℃ до 71℃ за 7 с. Если увеличить массу воды в два раза, а мощность нагревательного элемента в три раза, то изменение температуры от 70℃ до 71℃ происходит за 4 секунды. Найдите время, за кото��ое температура воды массой 2m понизится от 71℃ до 70℃, если нагревательный элемент отключить? Теплоёмкостью самого сосуда пренебречь.","Считаем, что в указанном интервале температур ежесекундный отток тепла q одинаков – во всех случаях «охлаждение» происходит с поверхности сосуда. Тогда тепловой баланс даёт следующие соотношения: 𝐶∆𝑇 = (𝑁 – 𝑞)𝑡1, 2𝐶∆𝑇 = (3𝑁 – 𝑞)𝑡2, 2𝐶∆𝑇 = 𝑞𝑡3, где 𝑡1 = 7 с, 𝑡2 = 4 с, 𝐶 – теплоемкость воды массой m. Отсюда находим 𝑡3 = 56 с.",56,school,9 +"Моторная лодка плывёт из пункта A вверх по течению в пункт В, который находится от пункта А на расстоянии 𝑠 = 10 км, за время 𝑡1 = 4 ч. При возвращении в пункт А через 𝑡 = 24 мин (с момента старта из пункта В) у лодки заканчивается топливо, и дальше лодку сносит течением. На обратный путь лодка суммарно затратила время 𝑡2 = 2 ч. На каком расстоянии от пункта A была лодка, когда у неё закончилось топливо?","При движении из пункта А в пункт В: 𝑣 − 𝑢 = 𝑠/𝑡1 , где 𝑣 – скорость лодки относительно реки, 𝑢 – скорость течения. Пусть L – расстояние от пункта A, на котором была лодка, когда у неё закончилось топливо. Тогда 𝑣 + 𝑢 = (𝑠 − 𝐿)/𝑡 , 𝑢 = 𝐿/(𝑡2 − 𝑡) . Решая систему уравнений, получаем: (𝑠 − 𝐿)/𝑡 − 𝑠/𝑡1 = 2 * 𝐿/𝑡2−𝑡 ⟹ 𝐿 = (𝑠/𝑡 − 𝑠/𝑡1)/(1/𝑡 +2 * (1/(𝑡2−𝑡)) = 6 км.",6,school,8 +"На чаши рычажных весов поставили два одинаковых стакана. В один стакан насыпали до краёв маленькие медные шарики, а во второй – такие же по размеру кадмиевые шарики. Когда в стакан с кадмиевыми шариками налили воду до краёв, весы пришли в равновесие, а чаши оказались на одном уровне. Найдите, какую часть от полного объёма стакана занимают шарики. Плотность воды 1,0 г/см**3 , плотность меди 8,9 г/см**3 , плотность кадмия 8,7 г/см**3 .","Пусть V – объём стакана, 𝑉ш – объём шариков в одном стакане, 𝑚к – масса кадмиевых шариков, 𝑚м – масса медных шариков, 𝑚в – масса воды. Тогда 𝑚к = 𝜌к𝑉ш, 𝑚м = 𝜌м𝑉ш, 𝑚в = 𝜌в (𝑉 − 𝑉ш). В итоге массы содержимого стаканов равны: 𝑚м = 𝑚к + 𝑚в ⟹ 𝜌м𝑉ш = 𝜌к𝑉ш + 𝜌в (𝑉 − 𝑉ш). Из последнего уравнения находим: 𝛼 = 𝑉ш/𝑉 = 𝜌в/(𝜌м + 𝜌в − 𝜌к) = 0.83.",0.83,school,8 +"При подъёме груза кран работал в два этапа. Сначала он совершил четверть всей работы, развивая некоторую мощность 𝑁1, а затем оставшуюся работу совершил, развивая мощность 𝑁2 = 2000 Вт. Оказалось, что средняя мощность подъёмного крана за время совершения всей работы равна 𝑁 = 1600 Вт. Найдите мощность 𝑁1.","Пусть t – время, за которое совершена вся работа. Тогда полная работа крана равна 𝐴 = 𝑁𝑡. На первом этапе работы: 𝑁1𝑡1 = 0,25𝑁𝑡 ⟹ 𝑡1 = 𝑁𝑡/4𝑁1 . На втором этапе: 𝑁2𝑡2 = 0,75𝑁𝑡 ⟹ 𝑡2 = 3𝑁𝑡/4𝑁2 . Средняя мощность равна: 𝑁 = 𝑁𝑡/(𝑡1 + 𝑡1) = 𝑁𝑡/(𝑁𝑡/4𝑁1 + 3𝑁𝑡/4𝑁2) ⟹ 𝑁 = 4𝑁1𝑁2/(3𝑁1 + 𝑁2) ⟹ 𝑁1 = 𝑁𝑁2/(4𝑁2 − 3𝑁) = 1000 Вт.",1000,school,8 +"Ученик 8-го класса решил экспериментально проверить закон Архимеда, который он изучил раньше, когда учился в седьмом классе. Он взял прямоугольный лист пенопласта толщиной h = 11 см и положил его на поверхность воды. Затем ученик поставил на пенопласт оловянного солдатика и измерил высоту верхней грани листа над поверхностью воды, которая оказалась равной h1 = 8 см. Когда ученик поставил на пенопласт второго такого же солдатика, высота верхней грани листа над поверхностью воды стала равной h2 = 7 см. Найдите по результатам этого опыта отношение n массы пенопласта к массе солдатика.","Обозначим через M массу пенопласта, через m - массу солдатика, а через S – площадь листа пенопласта. Условия плавания пенопласта с одним и двумя солдатиками имеют вид соответственно (M + m)g = 𝜌0 * S * (h - h1)g , (M + 2m)g = 𝜌0 * S * (h - h2)g . Здесь 𝜌0 – плотность воды. Отсюда находим, что m = 𝜌0 * S * (h1 - h2), M = 𝜌0 * S * (h - 2h1 + h2) . Следовательно, 𝑛 = M/m = (h - 2h1 + h2)/(h1 - h2). Подставляя числа, получаем значение 𝑛 = 2.",2,school,8 +"Электрический нагреватель находится внутри бака с водой. При включении на время t1 = 30 c нагревателя мощности N1 = 1 кВт температура воды в идеально теплоизолированном баке поднялась от 𝑇0 = 17℃ до 𝑇1 = 37℃. Тепловую изоляцию сняли, а мощность нагревателя уменьшили до N2 = 0,9 кВт, из-за чего температура воды в баке за время t2 = 20 c выросла от 𝑇1 = 37℃ до 𝑇2 = 47℃. Какое количество тепла в килоджоулях за время t2 ушло через стенки бака?","Поступившее от нагревателя тепло при идеальной теплоизоляции идёт на повышение температуры бака и воды. Связь повышения температуры и полученного тепла можно установить через теплоёмкость. Пусть С - теплоёмкость бака с водой, тогда уравнение теплового баланса в первом случае: 𝑁1𝑡1 = 𝐶(𝑇1 − 𝑇0) ⟹ 𝐶 = 𝑁1𝑡1/(𝑇1−𝑇0). Во втором случае полученное тепло идёт как на повышение температуры, так и на утечку тепла через стенки бака: 𝑁2𝑡2 = 𝐶(𝑇2 − 𝑇1) + 𝑄 ⟹ 𝑄 = 𝑁2𝑡2 − 𝐶(𝑇2 − 𝑇1) = 3 кДж.",3,school,10 +"В теплоизолированном цилиндре слева от поршня находится один моль идеального одноатомного газа, справа — вакуум. В начальный момент поршень закреплён и пружина недеформирована. Затем поршень отпускают, и газ занимает объём, вдвое больший первоначального. Во сколько раз изменятся температура и давление газа в новом состоянии равновесия? Теплоёмкостями поршня и цилиндра пренебречь.","Запишем первое начало термодинамики: 𝑄 = ∆𝑈 + 𝐴 ⟹ 0 = 𝑐𝑉 (𝑇2 − 𝑇1) + (𝑘𝑥**2)/2 , где 𝑐𝑉 = 3/2 𝑅, 𝑇2 – конечная температура, 𝑇1 – начальная температура, 𝑥 – деформация пружины в конечном состоянии, 𝑘 – жёсткость пружины. Поршень в конечном состоянии находится в равновесии, следовательно, 𝑝2𝑆 = 𝑘𝑥, где 𝑝2 – давление газа в конечном состоянии, 𝑆 – площадь поршня. Преобразуем данное уравнение:𝑝2𝑆 = 𝑘𝑥 ⟹ 𝑝2𝑆𝑥 = 𝑘𝑥**2 ⟹ 𝑝2∆𝑉/2 = (𝑘𝑥**2)/2 ⟹ 𝑝2𝑉1/2 = (𝑘𝑥**2)/2 ⟹ 𝑝2𝑉2/4 = (𝑘𝑥**2)/2, где ∆𝑉 – изменение объёма, 𝑉1 – начальный объём газа, 𝑉2 – конечный объём газа. Из уравнения состояния следует: (𝑘𝑥**2)/2 = 𝑝2𝑉2/4 = 𝑅𝑇2/4. Следовательно, 0 = 3/2 * 𝑅(𝑇2 − 𝑇1) + 𝑅𝑇2/4 ⟹ 𝑇2/𝑇1 = 6/7 ⟹ 𝑝2/��1 = 𝑇2/𝑉2 * 𝑉1/𝑇1 = 3/7.",3/7,school,10 +"Карлсон прилетел к Малышу за 10 минут, передвигаясь со средней скоростью 8 м/с. Под конец пути запас сладкого у Карлсона закончился, поэтому оказалось, что последние 2 минуты его средняя скорость составила 3 м/с. Определите среднюю скорость Карлсона за первые 8 минут движения.","Средняя скорость Карлсона на всем участке пути равна 𝑣𝑐𝑝 = (𝑣1𝑡1+𝑣2𝑡2)/𝑡 (1), где 𝑣1, 𝑣2 – средние скорости на первом и втором участке пути соответственно. Выразим искомую величину из формулы (1) 𝑣1 = (𝑣𝑐𝑝𝑡 − 𝑣2𝑡2)/𝑡1 и подставим численные значения. Окончательно получаем 𝑣1 = 9.25 м/с",9.25,school,8 +"В пол-литровую кружку, доверху заполненную водой, погрузили грузик массой 200 г. Определите, на сколько изменится плотность содержимого кружки? Плотность воды 1 г/см**3 , плотность груза 11ю3 г/см**3 .","Так как кружка заполнена доверху, то после погружения грузика часть воды выльется. Формула для плотности «смеси» будет иметь следующий вид: 𝜌см = (𝑚в1+𝑚гр)/ (𝑉в1+𝑉гр) , где 𝑚в1 и 𝑉в1 – масса и объём оставшейся воды после погружения груза в кружку. Объём груза равен 𝑉гр = 𝑚гр/𝜌гр = 17.7 см**3 . Значит, 𝑉в1 = 𝑉 − 𝑉гр = 482.3 см3 , где 𝑉 = 0.5 л. Плотность смеси равна 𝜌см = 1,36 г/см**3 . Окончательно определяем разность 𝜌см − 𝜌в = 0.36 г/см**3",0.36,school,9 +"Кубик внутри пустого стакана покоится на сжатой пружине, величина деформации которой равна 1 см. В стакан наливают воду до тех пор, пока длина пружины не перестает изменяться. Найдите плотность кубика, если деформация пружины в конечном состоянии равна 2 см. Плотность воды равна 1 г/см**3 .","Запишем второй закон Ньютона для случая, когда пружина сжата: 𝑚𝑔 = 𝑘𝛥𝑥1, где 𝛥𝑥1 – деформация пружины в первом случае. По мере наполнения стакана водой пружина начинает разжиматься и в итоге будет растянута на 𝛥𝑥2 = 2 см, то есть направление силы упругости сменится на противоположное. Запишем второй закон Ньютона для конечного положения кубика с учётом того, что на него действует выталкивающая сила со стороны воды 𝑚𝑔 + 𝑘𝛥𝑥2 = 𝜌в𝑔*𝑚/𝜌к , где 𝜌в , 𝜌к – плотности воды и кубика соответственно. Подставляя во второе уравнение значение 𝑘𝛥𝑥1 вместо 𝑚𝑔, получаем выражение 𝑘(𝛥𝑥1 + 𝛥𝑥2 ) = 𝜌в𝑔*𝑚/𝜌к . Решая систему уравнений, получаем: 𝜌𝑘 = 𝜌в𝛥𝑥1/(𝛥𝑥1 + 𝛥𝑥2) = 0.33 г/см**3 .",0.33,school,9 +"Два тела покоятся на невесомом стержне. После того, как тела полностью погрузили в воду, для сохранения равновесия стержня их пришлось поменять местами. Найти плотность 𝜌1, если 𝜌2⁄𝜌1 = 2. Плотность воды равна 1 г/см**3 .","Запишем уравнение моментов относительно оси вращения стержня: 𝜌2𝑔𝑉2 * 6𝑎 = 𝜌1𝑔𝑉1 * 4𝑎 ⟹ 3𝑉2 = 𝑉1. Запишем уравнение моментов для второго случая с учётом того, что на погруженные тела действует сила Архимеда: 𝑔𝑉1 (𝜌1 − 𝜌в ) * 6𝑎 = 𝑔𝑉2 (𝜌2 − 𝜌в ) * 4𝑎. Решая систему уравнений, получаем 𝜌1 = 7/5*𝜌в = 1.4 г/см**3 ",1.40,school,9 +"В калориметр налили 𝑚 = 2 кг воды, имеющей температуру 𝑡1 = 50 ℃, и добавили лед при температуре 𝑡2 = −20 ℃. Сколько могло быть добавлено льда, если после установления теплового равновесия температура содержимого калориметра оказалась равной 𝑡 = 0 ℃? 𝑐в = 4,2 кДж/кг*℃, 𝑐л = 2,1 кДж/кг℃, 𝜆 = 330 кДж/кг. Теплоемкостью калориметра и потерями пренебречь.","Рассмотрим вариант, когда весь лёд растаял. Запишем для этого случая уравнение теплового баланса: 𝑄охл.воды + 𝑄плавл.льда + 𝑄нагр.льда = 0 ⟹ 𝑐в𝑚в*(𝑡 − 𝑡1) + 𝜆𝑚л1 + 𝑐л𝑚л1(𝑡 − 𝑡2) = 0. Отсюда следует, что минимально возможная масса льда равна 𝑚л1 = (𝑐в𝑚в*(𝑡1−𝑡))/(𝜆+𝑐л(𝑡−𝑡2)) = 1.13 кг. Рассмотрим теперь случай, когда вся вода замёрзла. Уравнение теплового баланса будет выглядеть следующим образом: 𝑄охл.воды + 𝑄крист.воды + 𝑄нагр.льда = 0 ⟹ 𝑐в𝑚в(𝑡 − 𝑡1) − 𝜆𝑚в + 𝑐л𝑚л2(𝑡 − 𝑡2) = 0. Значит, максимально возможная масса льда равна 𝑚л2 = (𝜆𝑚в−𝑐в𝑚в*(𝑡−𝑡1))/(𝑐л (𝑡−𝑡2 )) = 25.71 кг.",25.71,school,9 +"Два тела покоятся на невесомом стержне. После того, как тела полностью погрузили в воду, для сохранения равновесия стержня их пришлось поменять местами. Найти плотность 𝜌2, если 𝜌2⁄𝜌1 = 3. Плотность воды равна 1 г/см**3 .","Запишем уравнение моментов относительно оси вращения стержня: 𝜌2𝑔𝑉2 ∙* 6𝑎 = 𝜌1𝑔𝑉1 * 4𝑎 ⟹ 4,5𝑉2 = 𝑉1. Запишем уравнение моментов для второго случая с учётом того, что на погруженные тела действует сила Архимеда: 𝑔𝑉1(𝜌1 − 𝜌в) * 6𝑎 = 𝑔𝑉2(𝜌2 − 𝜌в) * 4𝑎. Решая систему уравнений, получаем 𝜌1 = 23/15 * 𝜌в = 1.53 г/см**3, 𝜌2 = 69/15 * 𝜌в = 4.60 г/см**3 .",4.60,school,9 +"Два тела покоятся на невесомом стержне. После того, как тела полностью погрузили в воду, для сохранения равновесия стержня их пришлось поменять местами. Найти плотность 𝜌1, если 𝜌2⁄𝜌1 = 4. Плотность воды равна 1 г/см**3 .","Запишем уравнение моментов относительно оси вращения стержня: 𝜌2𝑔𝑉2 * 6𝑎 = 𝜌1𝑔𝑉1 * 4𝑎 ⟹ 6𝑉2 = 𝑉1. Запишем уравнение моментов для второго случая с учётом того, что на погруженные тела действует сила Архимеда: 𝑔𝑉1(𝜌1 − 𝜌в) * 6𝑎 = 𝑔𝑉2(𝜌2 − 𝜌в) * 4𝑎. Решая систему уравнений, получаем 𝜌1 = 4/3 * 𝜌в = 1.33 г/см**3 .",1.33,school,9 +"С каким и в какую сторону направленным ускорением нужно двигать средний блок, чтобы левый груз, имеющий массу 2 кг, оставался неподвижным? Массой нити и блоков можно пренебречь. Нить нерастяжима, трение отсутствует. g = 10 м/с**2 .","Пусть m – масса правого груза. Чтобы левый груз оставался в покое, натяжение нити должно равняться 𝑇 = 2𝑚𝑔. Тогда правый груз будет двигаться вверх с ускорением 𝑎1 = (2𝑚𝑔−𝑚𝑔) / 𝑚 = 𝑔. Поскольку левый конец нити неподвижен, средний блок должен двигаться вниз с ускорением 𝑎 = 𝑔/2 = 5 м/с**2 .",5,school,10 +"На пружине жёсткостью 𝑘 = 100 Н/м, прикреплённой к потолку, покоится тело массой 𝑚 = 2 кг. На него начинает действовать направленная вертикально вниз сила 𝐹 = 30 Н. Найти первоначальную деформацию пружины и работу силы 𝐹 к тому моменту, когда груз опустится на в��соту ℎ = 10 см. g = 10 м/с**2 .","Из второго закона Ньютона находим первоначальную деформацию пружины: 𝑘𝑥 = 𝑚𝑔 ⟹ 𝑥 = 20 см. По определению работы силы 𝐴𝐹 = 𝐹ℎ = 3 Дж. Жёсткость пружины и масса тела определяют лишь изменения потенциальной и кинетической энергий тела, которые в сумме всегда дают искомую работу.",3,school,10 +"Для поддержания температуры воды в бассейне 𝑡0 = 25 ℃ используется встроенный в стенки нагреватель, имеющий мощность 𝑁1 = 50 кВт и температуру 𝑡1 = 50 ℃. Тепловой поток от нагревателя к бассейну прямо пропорционален разности температур между ними. Для увеличения температуры воды в бассейне до 𝑡 = 28 ℃, пришлось увеличить мощность нагревателя до 𝑁2 = 60 кВт. Какой при этом стала температура нагревателя? Тепловым потоком, рассеивающимся от нагревателя в окружающую среду, можно пренебречь.","Тепловой поток от нагревателя к бассейну прямо пропорционален разности температур между ними, следовательно, 𝑁1 = 𝛼(𝑡1 − 𝑡0), 𝑁2 = 𝛼(𝑡2 − 𝑡), где α – коэффициент пропорциональности. Разделив первое уравнение на второе, получаем 𝑡2 = ((𝑡1−𝑡0)*𝑁2)/𝑁1 + 𝑡. Подставляя численные значения, найдём искомую температуру 𝑡2 = 58℃.",58,school,10 +"С каким и в какую сторону направленным ускорением нужно двигать средний блок, чтобы левый груз, имеющий массу 3 кг, оставался неподвижным? Массой нити и блоков можно пренебречь. Нить нерастяжима, трение отсутствует. g = 10 м/с**2 .","Пусть m – масса правого груза. Чтобы левый груз оставался в покое, натяжение нити должно равняться 𝑇 = 3𝑚𝑔. Тогда правый груз будет двигаться вверх с ускорением 𝑎1 = (3𝑚𝑔 − 𝑚𝑔) / 𝑚 = 2𝑔. Поскольку левый конец нити неподвижен, средний блок должен двигаться вниз с ускорением 𝑎 = 𝑔 = 10 м/с**2",10,school,10 +"На пружине жёсткостью 𝑘 = 200 Н/м, прикреплённой к потолку, покоится тело массой 𝑚 = 1 кг. На него начинает действовать направленная вертикально вниз сила 𝐹 = 20 Н. Найти первоначальную деформацию пружины и работу силы 𝐹 к тому моменту, когда груз опустится на высоту ℎ = 8 см. g = 10 м/с**2 .","Из второго закона Ньютона находим первоначальную деформацию пружины: 𝑘𝑥 = 𝑚𝑔 ⟹ 𝑥 = 5 см. По определению работы силы 𝐴𝐹 = 𝐹ℎ = 1.6 Дж. Жёсткость пружины и масса тела определяют лишь изменения потенциальной и кинетической энергий тела, которые в сумме всегда дают искомую работу.",1.6,school,10 +"Для поддержания температуры воды в бассейне 𝑡0 = 25 ℃ используется встроенный в стенки нагреватель, имеющий мощность 𝑁1 = 60 кВт и температуру 𝑡1 = 55 ℃. Тепловой поток от нагревателя к бассейну прямо пропорционален разности температур между ними. Для увеличения температуры воды в бассейне до 𝑡 = 28 ℃, пришлось увеличить мощность нагревателя до 𝑁2 = 80 кВт. Какой при этом стала температура нагревателя? Тепловым потоком, рассеивающимся от нагревателя в окружающую среду, можно пренебречь.","Тепловой поток от нагревателя к бассейну прямо пропорционален разнос��и температур между ними, следовательно, 𝑁1 = 𝛼(𝑡1 − 𝑡0), 𝑁2 = 𝛼(𝑡2 − 𝑡), где α – коэффициент пропорциональности. Разделив первое уравнение на второе, получаем 𝑡2 = ((𝑡1 − 𝑡0) * 𝑁2) / 𝑁1 + 𝑡. Подставляя численные значения, найдём искомую температуру 𝑡2 = 68℃",68,school,10 +"С каким и в какую сторону направленным ускорением нужно двигать средний блок, чтобы левый груз, имеющий массу 3 кг, оставался неподвижным? Массой нити и блоков можно пренебречь. Нить нерастяжима, трение отсутствует. g = 10 м/с**2 .","Пусть m – масса правого груза. Чтобы левый груз оставался в покое, натяжение нити должно равняться 𝑇 = 3/2𝑚𝑔. Тогда правый груз будет двигаться вверх с ускорением 𝑎1 = (3/2𝑚𝑔−𝑚𝑔)/𝑚 = 1/2𝑔. Поскольку левый конец нити неподвижен, средний блок должен двигаться вниз с ускорением 𝑎 = 1/4𝑔 = 2.5 м/с**2",2.5,school,10 +"На пружине жёсткостью 𝑘 = 240 Н/м, прикреплённой к потолку, покоится тело массой 𝑚 = 3 кг. На него начинает действовать направленная вертикально вниз сила 𝐹 = 25 Н. Найти первоначальную деформацию пружины и работу силы 𝐹 к тому моменту, когда груз опустится на высоту ℎ = 10 см. g = 10 м/с**2 .","Из второго закона Ньютона находим первоначальную деформацию пружины: 𝑘𝑥 = 𝑚𝑔 ⟹ 𝑥 = 12.5 см. По определению работы силы 𝐴𝐹 = 𝐹ℎ = 2.5 Дж. Жёсткость пружины и масса тела определяют лишь изменения потенциальной и кинетической энергий тела, которые в сумме всегда дают искомую работу.",2.5,school,10 +"Для поддержания температуры воды в бассейне 𝑡0 = 25 ℃ используется встроенный в стенки нагреватель, имеющий мощность 𝑁1 = 70 кВт и температуру 𝑡1 = 46 ℃. Тепловой поток от нагревателя к бассейну прямо пропорционален разности температур между ними. Для увеличения температуры воды в бассейне до 𝑡 = 28 ℃, пришлось увеличить мощность нагревателя до 𝑁2 = 90 кВт. Какой при этом стала температура нагревателя? Тепловым потоком, рассеивающимся от нагревателя в окружающую среду, можно пренебречь","Тепловой поток от нагревателя к бассейну прямо пропорционален разности температур между ними, следовательно, 𝑁1 = 𝛼(𝑡1 − 𝑡0), 𝑁2 = 𝛼(𝑡2 − 𝑡), где α – коэффициент пропорциональности. Разделив первое уравнение на второе, получаем 𝑡2 = ((𝑡1 − 𝑡0) * 𝑁2)/𝑁1 + 𝑡. Подставляя численные значения, найдём искомую температуру 𝑡2 = 55℃",55,school,10 +"Стержень лежит на двух горизонтальных валиках, касаясь их в точках А и В. Известны длина отрезка АВ = а и расстояние b между точкой А и центром тяжести прута О. Найдите коэффициент трения μ между валиком В и стержнем, если валик А гладкий, а прут образует с горизонтом угол α","На рисунке указаны силы, действующие на стержень. Рассмотрим пограничный случай, когда стержень покоится при минимальном значении коэффициента трения μ. Запишем уравнение моментов относительно точки пересечения линий действия сил N1 и Mg: 𝐹тр * 𝑏tg𝛼 = 𝑁2 * 𝑎. Из закона Амонтона-Кулона 𝐹тр = 𝜇𝑁2. Значит, 𝜇 = 𝑎/𝑏tg𝛼. Окончательно получаем 𝜇 ≥ 𝑎/𝑏tg𝛼.",𝑎/𝑏tg𝛼,school,11 +"На легкой пружине уравновешена гиря. Деформация пружины при этом составляет 𝑥 = 5 см. Чтобы увеличить деформацию пружины вдвое, медленно приподнимая груз в вертикальном направлении, надо совершить работу 𝐴 = 9 Дж. Найдите жесткость пружины.","Условие равновесия гири в начальный момент: 𝑚𝑔 = 𝑘𝑥, где 𝑚 – масса гирьки, 𝑘 – жёсткость пружины. Запишем закон сохранения энергии, приняв «нулевой» уровень потенциальной энергии силы тяжести в начальном положении гири: (𝑘𝑥**2)/2 + 𝐴 = 3𝑚𝑔𝑥 + 𝑘(2𝑥)**2/2 ⇒ 𝐴 = 3/2 𝑘𝑥**2 + 3𝑘𝑥**2 ⇒ 𝑘 = 2𝐴/9𝑥**2 = 800 Н/м.",800,school,11 +"В сосуде под поршнем находится некоторая масса кислорода при температуре 2T. В него закачивают ещё такую же массу водорода, а температуру понижают до Т. Найдите, во сколько раз изменился объем содержимого под поршнем. Газы считать идеальными. Молярная масса кислорода 32 г/моль, водорода 2 г/моль.","Запишем два уравнения состояния для начального состояния и для конечного: 𝑝𝑉1 = 𝑚/𝜇1 * 𝑅 * 2𝑇, 𝑝𝑉2 = ( 𝑚/𝜇1 + 𝑚/𝜇2) * 𝑅 * 𝑇. Разделив одно уравнение на другое, получаем 𝑉2/𝑉1 = (1/𝜇1 + 1/𝜇2)/(2/𝜇1) = 1/2 * (1 + 𝜇1/𝜇2 ) = 8.5.",8.5,school,11 +"На легкой пружине уравновешена гиря. Деформация пружины при этом составляет 𝑥 = 6 см. Чтобы увеличить деформацию пружины вдвое, медленно приподнимая груз в вертикальном направлении, надо совершить работу 𝐴 = 10 Дж. Найдите жесткость пружины.","Условие равновесия гири в начальный момент: 𝑚𝑔 = 𝑘𝑥, где 𝑚 – масса гирьки, 𝑘 – жёсткость пружины. Запишем закон сохранения энергии, приняв «нулевой» уровень потенциальной энергии силы тяжести в начальном положении гири: 𝑘𝑥**2/2 + 𝐴 = 3𝑚𝑔𝑥 + 𝑘(2𝑥)**2/2 ⇒ 𝐴 = 3/2 * 𝑘𝑥**2 + 3𝑘𝑥**2 ⇒ 𝑘 = 2𝐴/9𝑥**2 = 617 Н/м.",617,school,11 +"В сосуде под поршнем находится некоторая масса кислорода при температуре 3T. В него закачивают ещё такую же массу водорода, а температуру понижают до Т. Найдите, во сколько раз изменился объем содержимого под поршнем. Газы считать идеальными. Молярная масса кислорода 32 г/моль, водорода 2 г/моль.","Запишем два уравнения состояния для начального состояния и для конечного: 𝑝𝑉1 = 𝑚/𝜇1 * 𝑅 * 3𝑇, 𝑝𝑉2 = (𝑚/𝜇1 + 𝑚/𝜇2) * 𝑅 * 𝑇. Разделив одно уравнение на другое, получаем 𝑉2/𝑉1 = (1/𝜇1 + 1/𝜇2) / (2/𝜇1) = 1/3 * (1 + 𝜇1/𝜇2) = 17/3 .",17/3,school,11 +"На легкой пружине уравновешена гиря. Деформация пружины при этом составляет 𝑥 = 7 см. Чтобы увеличить деформацию пружины вдвое, медленно приподнимая груз в вертикальном направлении, надо совершить работу 𝐴 = 15 Дж. Найдите жесткость пружины.","Условие равновесия гири в начальный момент: 𝑚𝑔 = 𝑘𝑥, где 𝑚 – масса гирьки, 𝑘 – жёсткость пружины. Запишем закон сохранения энергии, приняв «нулевой» уровень потенциальной энергии силы тяжести в начальном положении гири: (𝑘𝑥**2)/2 + 𝐴 = 3𝑚𝑔𝑥 + (𝑘(2𝑥)**2)/2 ⇒ 𝐴 = 3/2 * 𝑘𝑥**2 + 3𝑘𝑥**2 ⇒ 𝑘 = 2𝐴/9𝑥**2 = 680 Н/м.",680,school,11 +"В сосуде под поршнем находится некоторая масса кислорода при температуре 4T. В него закачивают ещё такую же массу водорода, а температуру понижают до Т. Найдите, во сколько раз изменился объем содержимого под поршнем. Газы считать идеальными. Молярная масса кислорода 32 г/моль, водорода 2 г/моль.","Запишем два уравнения состояния для начального состояния и для конечного: 𝑝𝑉1 = 𝑚/𝜇1 * 𝑅 * 4𝑇, 𝑝𝑉2 = (𝑚/𝜇1 + 𝑚/𝜇2) * 𝑅 * 𝑇. Разделив одно уравнение на другое, получаем 𝑉2/𝑉1 = (1/𝜇1 + 1/𝜇2) / (2/𝜇1) = 1/4 * (1 + 𝜇1/𝜇2) = 17/4 .",17/4,school,11 +"Автомобиль первую половину времени ехал со скоростью 78 км/ч. Найдите среднюю скорость автомобиля за последние 2/3 времени его движения, если его средняя скорость за всё время движения равна 60 км/ч.","В случае, когда тело движется равные промежутки времени с некоторыми скоростями, средняя скорость за всё время движения равна их среднему арифметическому. Средняя скорость тела, с которой оно двигалось вторую половину времени: 𝑣2 = 2𝑣ср − 𝑣1 = 42 км/ч. Тело движется в течение времени 2/3𝑡 − 𝑡/2 = 𝑡/6 со скоростью 78 км/ч, где 𝑡 – всё время движения. Окончательно получаем: 𝑣cp2 = (𝑣1 * 𝑡/6 +𝑣2* 𝑡/2)/(2/3 * 𝑡) = 51 км/ч",51,school,8 +"В цилиндрическом сосуде с водой плавает льдинка с привязанной к ней детской игрушкой. Силы натяжения всех нитей одинаковы и равны T. Определите, в какую сторону и на сколько изменится уровень воды в стакане после того, как лёд растает. Площадь дна сосуда S, плотность воды ρ.","Из равенства натяжения нитей следует, что плотность игрушки равна плотности воды. Рассмотрим силы давления на дно сосуда до и после того, как лёд растаял. 1. До: 𝜌𝑔ℎ1𝑆 = (𝑚 + 𝑀)𝑔 + 𝑚л𝑔 − 𝑇, где m – масса игрушки, M – масса воды, Т – сила натяжения нити. 2. После: 𝜌𝑔ℎ2𝑆 = (𝑚 + 𝑀)𝑔 + 𝑚л𝑔, решая эти уравнения, получаем 𝛥ℎ = 𝑇/𝜌𝑔𝑆 .",𝑇/𝜌𝑔𝑆,school,8 +"Однородная доска имеет массу 2m. Массы грузов m и 3m. Блоки и нити невесомы, трения в осях блоков нет. Блоки подвешены к потолку. Система находится в равновесии. Определите силу, с которой груз m действует на доску.","Рассмотрим все силы, действующие на подставку, и запишем для неё условие равновесия: 𝑇1 + 𝑇2 = 𝐹1 + 𝐹2 + 2𝑚𝑔, где 𝐹1, 𝐹2 – силы давления грузов на подставку. Теперь запишем условия равновесия грузов: 𝑇1 = 𝑚𝑔 − 𝐹1, 𝑇2 = 3𝑚𝑔 − 𝐹2. Решая систему уравнений, получим: 𝐹2 = 𝑚𝑔 − 𝐹1. Запишем уравнение моментов относительно точки крепления левого конца левой нити: 𝐹1 + 4𝑚𝑔 − 3𝑇2 + 4𝐹2 = 0. Окончательно получаем: 𝐹1 = 𝑚𝑔/3 .",𝑚𝑔/3,school,8 +"Хорошо проводящие тепло кубики А, Б и В имеют начальные температуры 10 ℃, 100 ℃ и 20 ℃ соответственно. Кубики Б и В одинаковые, т.е. они сделаны из одного материала и имеют одинаковые размеры. После приведения в контакт кубиков А и В они через некоторое время приобрели одинаковую температуру 18 ℃. Найдите установившуюся температуру всех тел, если кубик А многократно приводится в контакт то с телом Б, то с телом В. Теплообменом с окружающей средой пренеб��ечь.","Запишем уравнение теплового баланса при первом контакте: 𝐶𝐴𝑡𝐴 + 𝐶𝐵𝑡𝐵 = (𝐶𝐴 + 𝐶𝐵)𝑡 ⟹ 𝐶𝐴 = (𝑡𝐵 − 𝑡)/(𝑡−𝑡𝐴) * 𝐶𝐵 = 2/8 * 𝐶𝐵 = 0.25𝐶𝐵, где 𝐶𝐴 – теплоёмкость тела А, 𝐶𝐵 – теплоёмкость тела В, 𝑡𝐴 = 10 ℃,𝑡𝐵 = 20 ℃,𝑡 = 18 ℃. Конечная температура тел А, Б и В станет одинаковой. Следовательно, уравнение теплового баланса после многократных контактов: 𝐶𝐴𝑡𝐴 + 𝐶Б𝑡Б + 𝐶𝐵𝑡𝐵 = (𝐶𝐴 + 𝐶Б + 𝐶𝐵)𝑡уст ⟹ 𝑡уст = ((0.25 * 𝐶𝐵 * 𝑡𝐴 + 𝐶𝐵(𝑡Б + 𝑡𝐵))/2.25 * 𝐶𝐵 = 54.4 ℃.",54.4,school,8 +"Со скалы, возвышающейся над морем на высоту ℎ = 25 м, бросили камень. Найдите время его полёта, если известно, что непосредственно перед падением в воду камень имел скорость 𝑣 = 30 м/с, направленную под углом 𝛽 = 120° к начальной скорости. Ускорение свободного падения 𝑔 = 10 м/с**2 .","Запишем закон сохранения энергии (или формулу ℎ = (𝑣**2 − 𝑣0**2)/2𝑔 ): (𝑚*𝑣0**2)/2 + 𝑚𝑔ℎ = (𝑚 * 𝑣**2) / 2 ⟹ 𝑣0 = (𝑣**2 − 2𝑔ℎ)**(1/2). Теперь в треугольнике скоростей 𝒗 = 𝒗0 + 𝒈𝑡 известны две стороны и угол между ними 𝛽. Воспользовавшись теоремой косинусов, окончательно получаем: 𝑡 = 4.4 c.",4.4,school,9 +"На гладком горизонтальном столе находится механическая система, изображённая на рисунке. Массы тел 4 кг и 1 кг. Свободный конец нити тянут в горизонтальном направлении с ускорением 14 м/c**2. Найдите силу натяжения нити. Блок невесом, нить невесома и нерастяжима, трения в оси блока нет, ускорение свободного падения равно 10 м/c 2 .","Пусть m – масса маленького тела, M – масса большого тела. Вдоль стола тела движутся с ускорением 𝐴 = 𝐹/(𝑚 + 𝑀) . Вертикальная составляющая ускорения тела массой m равна: 𝑎𝑦 = 𝐹/𝑚 − 𝑔. Запишем уравнение кинематической связи для ускорений тел: 𝑎0 − 𝐴 − 𝑎𝑦 = 0 ⟹ 𝐹 = (𝑎0 + 𝑔)/(1/(𝑚 + 𝑀) + 1/𝑚) = 20 Н, где 𝑎0 – ускорение, с которым тянут свободный конец нити.",20,school,9 +"В сосуд, наполненный до краёв водой с температурой 𝑡0 = 19 ℃, аккуратно опустили некоторое тело, плотность которого в два раза больше плотности воды, а удельная теплоёмкость в два раза меньше удельной теплоёмкости воды. После установления теплового равновесия вода и тело в сосуде приобрели температуру 𝑡1 = 26 ℃. До какого значения 𝑡2 повысилась бы температура воды в сосуде, если в этот же сосуд сразу были опущены два таких тела, а не одно? Считать, что тела полностью погружаются в воду. Теплообменом с окружающей средой пренебречь.","Запишем уравнение теплового баланса для двух случаев (с учётом соотношений плотностей и теплоёмкостей тела и воды): 𝑐(𝑚 − 𝜌𝑉)(𝑡1 − 𝑡0) = 𝑐/2 * 2𝜌𝑉(𝑡т − 𝑡1) ⟹ 𝑐𝑚𝑡1 = 𝑐𝑚𝑡0 + 𝑐𝜌𝑉(𝑡т − 𝑡0), 𝑐(𝑚 − 2𝜌𝑉)(𝑡2 − 𝑡0) = 𝑐/2 * 4𝜌𝑉(𝑡т − 𝑡2) ⟹ 𝑐𝑚𝑡2 = 𝑐𝑚𝑡0 + 2𝑐𝜌𝑉(𝑡т − 𝑡0), где 𝑡т – начальная температура тела. Решая систему уравнений, окончательно получаем: 𝑡2 = 2𝑡1 − 𝑡0 = 33 ℃.",33,school,9 +"Колесо, двигаясь по прямой равномерно с проскальзыванием, переместилось на расстояние 2 м, совершив при этом 5 оборотов. На каком расстоянии от центра колеса расположен мгновенный центр его вращения?","Скорость центра колеса равна: 𝑣 = 𝜔 * 𝑥, где 𝑥 – расстоянии от центра колеса до мгновенного центра вращения. Так как движение равномерное, следовательно, 𝑆 = 𝑣 * 𝑡, где 𝑆 – перемещение центра колеса за время 𝑡. С другой стороны: 2𝜋𝑁 = 𝜔𝑡. Решая систему уравнений, получаем: 𝑥 = 𝑆/2𝜋𝑁 = 6.4 см.",6.4,school,10 +"На гладком столе лежат два тела массой m, между которыми находится лёгкий лист бумаги. Коэффициент трения между верхним бруском и листом равен 𝜇, между нижним бруском и листом 3𝜇. С какими ускорениями начнут двигаться тела, если к нижнему приложить горизонтальную силу F <= 2𝜇𝑚g?","Так как лист лёгкий, то сумма всех сил, приложенных к нему равна нулю. Поскольку коэффициент трения снизу больше коэффициента трения сверху, то лист бумаги начнёт двигаться так же, как и нижний брусок Возможны два случая: 1. 𝐹 <= 2µ𝑚𝑔, то 𝑎в = 𝑎н = 𝐹/2𝑚 . 2. 𝐹 >= 2µ𝑚𝑔, то 𝑎н = 𝐹/𝑚 − µ𝑔; 𝑎в = µ𝑔.",𝐹/2𝑚,school,10 +"Два тела массами 100 г и 300 г, соединенные невесомой пружиной жёсткости 750 Н/м, движутся со скоростью 5 м/с по гладкому горизонтальному столу к абсолютно упругой стенке. Пружина в процессе движения горизонтальна. Найдите максимальную деформацию пружины после абсолютно упругого отражения от стенки тела массой 300 г.",В результате абсолютно упругого удара скорость тела массой 300 г меняет направление на противоположное. Пусть 𝑣 – первоначальная скорость тел до соударения. Скорость движения центра масс системы после отражения равна: 𝑉ц.м.после = (𝑚2𝑣 − 𝑚1𝑣)/(𝑚1 + 𝑚2) = 𝑣/2 (направлена от стенки). Запишем закон сохранения энергии для всей системы: ((𝑚1+𝑚2)𝑣**2)/2 = ((𝑚1+𝑚2) * (𝑣**2)/4)/2 + (𝑘𝑥**2)/2 ⟹ 𝑥 = 𝑣 * (3(𝑚1+𝑚2))/4𝑘)**(1/2) = 0.1 м.,0.1,school,10 +"Моль гелия расширяется изобарически, совершая работу 3,4 Дж, затем изохорически уменьшают его температуру, и, наконец, сжимают адиабатически, возвращая в начальное состояние. Найдите к.п.д. цикла, если в адиабатическом процессе над газом была совершена работа 1,7 Дж.","Работа газа за цикл: 𝐴 = 3.4 − 1.7 = 1.7 Дж. Газ получает тепло при изобарическом расширении. Из первого начала термодинамики следует, что в изобарических процессах с одноатомным идеальным газом величины Q, ΔU и A всегда относятся соответственно, как 5:3:2. Значит, 𝑄+ = 5/2 * 𝐴12 = 2.5 * 3.4 = 8.5 Дж. К.п.д. цикла равен 𝜂 = 𝐴/𝑄+ = (3.4 − 1.7)/8.5 = 0.2.",0.2,school,10 +"Груз массой т толкнули вверх по гладкой доске массой М и длиной l, шарнирно закреплённой в точке О (см. рис.). Доска с горизонтом составляет угол 𝛼, расстояние 𝑂𝐴 = ℎ < 𝑙 2 . Какую скорость 𝑣 нужно сообщить грузу, чтобы нижний конец доски оторвался от пола?","Запишем второй закон Ньютона в проекциях на нормаль к доске для груза: 𝑁 = 𝑚𝑔 * cos𝛼, где 𝑁 – нормальная реакция опоры. Запишем уравнение моментов для доски относительно точки О (груз m на расстоянии x от точки О, доска начинает отрывается от пола): 𝑀�� * (𝑙/2 − ℎ) * cos 𝛼 = 𝑁𝑥 = 𝑚𝑔𝑥 * cos𝛼 ⟹ 𝑥 = 𝑀/𝑚 * (𝑙 − 2ℎ)/2 . 1. Если 𝑀/𝑚 * (𝑙 − 2ℎ)/2 > ℎ ⟹ 𝑀/𝑚 > 2ℎ/(𝑙 − 2ℎ) , то не существует таких скоростей, при которых доска оторвется от пола. 2. Если 𝑀/𝑚 < 2ℎ/(𝑙 − 2ℎ) , тогда из закона сохранения энергии следует (𝑚𝑣**2)/2 >= 𝑚𝑔(𝑙 − ℎ + 𝑥) sin 𝛼 ⟹ 𝑣 >= (2𝑔 * (𝑙 − ℎ + 𝑀/𝑚 * (𝑙 − 2ℎ)/2))**(1/2) * sin 𝛼.",(2𝑔 * (𝑙 − ℎ + 𝑀/𝑚 * (𝑙 − 2ℎ)/2))**(1/2) * sin𝛼,school,11 +"Над одним молем идеального одноатомного газа проводят процесс 𝑝 = 𝛼𝑉, где 𝛼 = 273 Па/м 3 . При этом оказалось, что сумма увеличения ∆𝑈 внутренней энергии газа и полученной теплоты Q равна ∆𝑈 + 𝑄 = 70 Дж. Найдите Q.","Рассмотрим процесс 𝑝 = 𝛼𝑉. Пусть объем увеличился в 𝛽 раз. Запишем первое начало термодинамики: 𝑄 = ∆𝑈 + 𝐴 = 𝑐𝑉∆𝑇 + 1/2 * (𝛼𝛽𝑉0 + 𝛼𝑉0 )(𝛽𝑉0 − 𝑉0 ) = 𝑐𝑉∆𝑇 + 1/2 * (𝛽**2 − 1)𝛼𝑉0**2 = 𝑐𝑉∆𝑇 + 1/2 * 𝑅∆𝑇 = (𝑐𝑉 + 𝑐𝑝)/2 * ∆𝑇. Т.е. это процесс с постоянной молярной теплоемкостью (политропный процесс) равной 𝑐𝛼 = (𝑐𝑉 + 𝑐𝑝)2 = 2𝑅. Так как ∆𝑈 + 𝑄 = (𝑐𝛼 + 𝑐𝑉)𝛥𝑇 ⇒ 𝛥𝑇 = (∆𝑈 + 𝑄)/(𝑐𝛼 + 𝑐𝑉) , следовательно, 𝑄 = 𝑐𝛼∆𝑇 = 𝑐𝛼 * (∆𝑈 + 𝑄)/(𝑐𝛼 + 𝑐𝑉) = 2 * 7 / 3.5 = 40 Дж.",40,school,11 +"Равномерно заряженный по объему шарик радиусом R внесли в однородное электрическое поле напряженностью 𝐸0. Максимальный угол между векторами напряженности результирующего поля и поля 𝐸0 оказался равным 60°. Найдите заряд шарика, если после его внесения во внешнее поле распределение заряда не изменилось.","Существование максимального угла, меньшего 180°, между вектором напряженности результирующего поля и вектором 𝐸0 означает, что в любой точке напряженность поля, создаваемого шариком, меньше 𝐸0 . При фиксированном значении заряда шарика максимальный угол между вектором напряженности результирующего поля и вектором 𝐸0 достигается в тех точках, где напряженность поля шара максимальна (на поверхности шарика) и ориентирована так, что результирующее поле перпендикулярно полю сферы. 𝐸сф = 𝐸0 * cos(𝜋/6) = 3 ** (1/2) / 2 * 𝐸0. Поле равномерно заряженного по объему шарика на его поверхности равно 𝐸сф = 𝑘 * 𝑄/𝑅 **2 ⟹ 𝑄 = 3 ** (1/2) / 2 * (𝐸0𝑅**2 / 𝑘) = 2 * 3**(1/2) * 𝜋𝜀0𝐸0𝑅**2 .",2 * 3**(1/2) * 𝜋𝜀0𝐸0𝑅**2,school,11 +"В цилиндрическую трубу постоянного сечения, частично заполненную толстым слоем орехов, снизу поступает вода со скоростью, w = 0.5 см/с. Орехи при этом всплывают как единое целое со скоростью u = 0.2 см/с (скорости w и u отличаются потому, что между стенками трубы и орехами есть трение). Объѐм одного ореха s = 25 см**3 , в одном литре их содержится n = 30 штук. Найдите скорость V подъѐма уровня воды внутри слоя орехов (то есть границы между сухими и мокрыми орехами). Ниже уровня воды зазоры между орехами полностью заполнены водой, а выше этого уровня – воздухом.",уровень воды внутри слоя орехов поднимается со скоростью V = (w – uns)/(1 – ns) = 1.4 см/с.,1.4,1тур,8 +"Петя и Вася поспорили, кто быстрее преодолеет расстояние l = 3,0 км от дома до поляны с земляникой. Первую час��ь пути они бежали по лесу, а вторую плыли по озеру. Петя бежал со скоростью υ1 = 10 км/ч, а Вася с υ2 = 11 км/ч, но плыл Петя с υ3 = 2,0 км/ч, а Вася с υ4 = 1,0 км/ч. Какое время Петя плыл по озеру, если до поляны мальчики добрались одновременно?","Пусть Петя проплыл расстояние s. Тогда времена движения мальчиков равны: (l - s)/v1 + s/v3 = (l - s)/v2 + s/v4, откуда s = l * ((1/v1 - 1/v2)/(1/v1 - 1/v2 - 1/v3 + 1/v4)), и t = l/v3 * ((1/v1 - 1/v2)/(1/v1 - 1/v2 - 1/v3 + 1/v4)) = 1.6 мин.",1.6,school,8 +"Масса шприца с V1 = 2 мл лекарства равна m1 = 13,5 г, а с V2 = 5 мл лекарства m2 = 18,0 г. Площадь поршня шприца S1 = 1 см**2 . Диаметр внутреннего отверстия иглы в α = 20 раз меньше диаметра поршня. Определите массу m пустого шприца, плотность ρ лекарства и среднюю скорость u, с которой лекарство выходило из иглы, если весь объем V2 был выпущен за время t = 10 c.",Плотность лекарства p = (m2 - m1)/(V2 - V1) = 1.5 г/см**3 . Масса пустого шприца m = m1 - V1p = 10.5 г. Скорость лекарства на выходе из иглы u = (α**2 * V2) / (S1 * t) = 2 м/с.,2,school,8 +"Деревянный кубик покоится на сжатой пружине. Если на него сверху положить еще такой же кубик, то высота всей конструкции не изменится. Определите жесткость пружины, если площадь всей поверхности каждого кубика S = 600 см**2 . Плотность дерева ρ = 0,80 г/см**3 .","Условие равновесия для одного кубика: mg = kx0 . Для двух кубиков 2mg = k* (x0 + a) , при этом m = a**3 * p , откуда a**2 *p * g = k, или k = Spg/6 = 80 Н/м.",80,school,8 +"На легком рычаге уравновешены два цилиндра, имеющие одинаковые размеры. При этом точка опоры делит рычаг в отношении 1 к 3, а цилиндры погружены в жидкость (левый – на треть, а правый – на две трети объема). Плотность левого цилиндра ρ1 = 4,0 г/см**3 , а правого ρ2 = 2,2 г/см**3 . Определите плотность жидкости ρ.","Правило моментов относительно точки опоры рычага: pg * 1/3 * Vl + p2gV * 3 * l = p1gVl + pg * 2/3 * 3 * l, где V – объем тела. Отсюда после упрощения получаем p = 3/5 * (3p2 - p1) = 1.56 г/см**3 .",1.56,school,9 +"В калориметр с m = 200 г воды при температуре t0 = 60 ºС поместили три кубика льда массой mл = 10 г каждый, имеющих температуры t1 = −10 ºС, t2 = −20 ºС и t3 = −30 ºС. Какая температура установится в калориметре после теплообмена? Теплоемкостью калориметра и потерями тепла можно пренебречь. Удельная теплоемкость воды св = 4200 Дж/(кг·ºС), удельная теплоемкость льда сл = 2100 Дж/(кг·ºС), удельная теплота кристаллизации воды λ = 330 кДж/кг.","Определим Q1 – количество теплоты, необходимое для нагревания до 0 ºС и плавления всего льда: Q1 = mл(cл(10 + 20 + 30) + 3λ) = 11160 Дж. Составим уравнение теплового баланса для льда и остывающей воды: mcв(t0 - tx) = Q1 + 3 * mл * cв * tx. Отсюда tx = (m * cв * t0 - Q1)/(3mл + m)cв = 40.6 ºС.",40.6,school,9 +"В калориметр сm = 200 г воды при температуре t0 = 80 ºС поместили четыре кубика льда массой mл = 10 г каждый, имеющих температуры t1 = −10 ºС, t2 = −20 ºС, t3 = −30 ºС и t4 = −40 ºС. Какая температура установится в калориметре после теплообмена? Теплоемкостью калориметра и потерями тепла можно пренебречь. Удельная теплоемкость воды св = 4200 Дж/(кг·ºС), удельная теплоемкость льда сл = 2100 Дж/(кг·ºС), удельная теплота криста��лизации воды λ = 330 кДж/кг.","Определим Q1 – количество теплоты, необходимое для нагревания до 0 ºС и плавления всего льда: Q1 = mл(cл(10 + 20 + 30 + 40) + 4λ) = 15300 Дж. Составим уравнение теплового баланса для льда и остывающей воды: mcв(t0 - tx) = Q1 + 4 * mл * cв * tx. Отсюда tx = (m * cв * t0 - Q1)/(4mл + m)cв = 51.5 ºС.",51.5,school,10 +"Груз, подвешенный на легкой пружине жесткостью k = 200 Н/м, растягивает ее на x = 2 см. Какую работу необходимо совершить вертикальной силе, приложенной к грузу, чтобы деформация пружины стала вдвое больше начальной?","Так как изначально груз в равновесии, mg = kx . Внешняя сила может как сжимать пружину, так и растягивать. Рассмотрим оба варианта. Закон сохранения энергии при увеличении растяжения имеет вид: (kx**2)/2 + A1 + mgx = (k(2x)**2)/2, и A1 = 1/2k * x**2 = 0.04 Дж. Если пружина сжимается от недеформированного состояния на 2x, и груз поднимается на 3x, то закон сохранения энергии имеет вид: (kx**2)/2 + A2 = (k(2x)**2)/2 + 3mgx, и A2 = 9/2 *kx**2 = 0.36 Дж. Во втором случае совершается большая работа. Так же большей работы потребуют варианты, в которых в конечном состоянии груз разгоняется. Следовательно, необходимой (минимальной) работой является 0.04 Дж. То, что работа при сжатии больше чем при растяжении можно объяснить и без уравнений, тем, что в конечном состоянии потенциальная энергия пружины одинакова, но потенциальная энергия в поле гравитации при подъеме явно больше.",0.04,school,11 +"Полый стальной кубик с тонкими стенками, длина ребра которого 100 мм, имеет массу 472 г. Чему равна толщина стенок кубика, если у всех стенок она одинакова? Плотность стали 𝜌𝑐 = 7800 кг/м**3","Пусть а – длина ребра кубика, b – длина ребра полости. Тогда 𝜌𝑐(𝑎**3 − 𝑏**3) = 𝑚 ⇒ 𝑏 = (𝑎**3 − 𝑚/𝜌𝑐)**(1/3) = (10**3 − 472/7.8)**(1/3) = 9.79 (см) = 98 (мм). Пусть h - толщина стенок кубика, тогда ℎ = (𝑎 − 𝑏)/2 = 1 (мм).",1,school,8 +"Однажды Красная Шапочка решила навестить бабушку. Путь ей предстоял не близкий. Сначала она треть пути не спеша шла по дорожке со скоростью 4 км/ч. Затем, проголодавшись, села на пенек и съела несколько пирожков. Потратив на еду много времени, девочка загрустила, так как уже начинало темнеть. К счастью, тут из леса выбежал Волк, который любезно согласился домчать её до бабушки со скоростью 12 км/ч. В результате получилось, что на всё путешествие девочке потребовалось столько же времени, сколько и при движении с постоянной скоростью 4 км/ч. Сколько пирожков на пеньке скушала Красная Шапочка, если на каждый пирожок она затрачивала время равное одной девятой времени всего своего путешествия?",".Если средняя скорость равна скорости на первой трети пути, значит, средняя скорость на второй части пути также равна 4 км/ч. Пусть 𝑇 – время путешествия Красной Шапочки. Тогда на «перекус» и поездку верхом на Волке Красная Шапочка потратила 2/3 * 𝑇. Пусть Красная Шапочка сидела на пеньке и ела пирожки время t. Запишем формулу средней скорости для второй части пути: 𝑣ср = (𝑣в( 2/3𝑇 − 𝑡) + 0*𝑡)/(2/3 * 𝑇) ⇒ 𝑡 = 2/3 * 𝑇 * (1 − 𝑣ср/𝑣в ) = 4/9 * 𝑇, где 𝑣ср - средняя скорость на второй части пути, 𝑣в – скорость Волка. Так как на каждый пирожок Красная Шапочка затрачивала время равное одной девятой времени всего своего путешествия, следовательно, она съела 4 пирожка.",4,school,8 +"В калориметре находится некоторое количество льда. После того, как в калориметр на время τ1 опустили нагреватель, в нём оказался лёд имеющий температуру на 2 ºС большую, чем в начале. Какое время τ2 может потребоваться для дальнейшего нагревания содержимого калориметра тем же нагревателем еще на 2 ºС? Удельная теплоемкость воды c2=4200 Дж/(кг ºС), льда c1=2100 Дж/(кг ºС), удельная теплота плавления льда 𝜆 = 330 кДж/кг. Потерями в окружающую среду и теплоёмкостью калориметра можно пренебречь. Процессы теплообмена внутри калориметра считать достаточно быстрыми.","В процессе первого нагревания льду было передано количество теплоты 𝑄 = 𝑐1𝑚(2℃). В зависимости от конечной температуры льда после первого нагревания возможны следующие предельные варианты: а) был получен лёд при температуре меньшей чем -2 0С, тогда на повторное нагревание снова понадобится количество теплоты 𝑄 и 𝜏2 = 𝜏1 . б) был получен лёд при температуре 0℃, тогда сперва придется лёд расплавить, а затем полученную воду нагреть на 2℃. Для этого потребуется количество теплоты 𝑄1 = 𝑐2𝑚(2℃) + 𝜆𝑚 = (𝑐2(2℃) + 𝜆)/(𝑐1(2℃)) * 𝑄 = 80.6𝑄. Значит, необходимое время нагревания в этом случае, 𝜏2 = 80,6𝜏1 . В промежуточных случаях (когда температура льда после первого нагревания больше −2℃, но меньше 0℃), потребуется меньшее время нагревания, так как теплоёмкость льда меньше теплоёмкости воды. Искомое время нагревания лежит в диапазоне 𝜏1 <= 𝜏2 <= 80.6𝜏1 .",80.6𝜏1,school,8 +"К бруску, лежащему на столе, с двух сторон с помощью систем из нитей и блоков прикреплены два груза (см. рисунок). Масса левого груза 𝑚1 = 2 кг и остаётся постоянной, а массу правого груза 𝑚2 можно изменять. Оказалось, что если масса правого груза больше 2 кг, но меньше 6 кг, то система находится в равновесии, в противном случае брусок начинает двигаться. Найдите коэффициент трения 𝜇 между бруском и столом, если масса бруска 10 кг. Нити невесомы и нерастяжимы, блоки невесомы и трения в осях блоков нет.","Когда система находится в равновесии, сила натяжения 𝑇1 нити, привязанной к бруску справа, равна силе тяжести, действующей на левый груз: 𝑇1 = 𝑚1𝑔; а сила натяжения 𝑇2 нити, привязанной к бруску слева равна половине силы тяжести, действующей на правый груз: 𝑇2 = 𝑚2𝑔/2. На брусок по вертикали действуют сила тяжести 𝑀𝑔 и сила реакции опоры 𝑁. Из условия равновесия: 𝑁 = 𝑀𝑔. По горизонтали на брусок действуют силы натяжения нитей и сила трения 𝐹тр, из условия равновесия 𝐹тр = 𝑇1 − 𝑇2 = 𝑚1𝑔 − 𝑚2𝑔/2. Модуль силы трения не может быть больше, чем 𝜇𝑁, откуда 𝜇𝑀𝑔 = 𝑚1𝑔 − (𝑚2min𝑔)/2 = (𝑚2max𝑔)/2 − 𝑚1𝑔, 𝜇 = (2𝑚1 − 𝑚2min)/2𝑀 = (𝑚2max − 2𝑚1)/2𝑀 = 0.1",0.1,school,8 +"Какой максимальный объём масла плотностью 0,8ρ можно налить в L-образную трубку с открытыми концами, частично заполненную водой плотностью ρ? Площадь сечения вертикальных колен трубки S. Объёмом горизонтальной соединительной трубочки можно пренебречь. Размеры L-образной трубки и высота столба воды указаны на рисунке. Пунктирные метки сделаны на одинаковых расстояниях ℎ друг от друга. Затыкать открытые концы, наклонять трубку и выливать из неё воду нельзя","Простое решение – долить масло слева и справа (общей высотой столба 6h) – неверное. Надо постараться максимально использовать давление столба воды, чтобы уравновесить его столбом масла большей высоты. Для этого доливаем в левое колено масло до тех пор, пока оно не вытеснит всю воду в правое колено. При этом столб масла будет иметь высоту 2ℎ * 1.25 = 2.5ℎ. С этого момента есть две стратегии, приводящие к одинаковому результату. Можно справа и слева долить по 2h масла, а можно лить масло только в левое колено, тогда из-за меньшей плотности оно станет «пробулькивать» через воду и займет автоматически весь оставшийся объем сверху в правом колене. Окончательный ответ: 𝑉 = 6.5 * 𝑆ℎ.",6.5 * 𝑆ℎ,school,9 +"В калориметр объёмом 𝑉1 = 200 мл, до краёв заполненный водой при температуре 𝑡1 = 10℃, быстро, но аккуратно помещают стальную деталь массой 𝑚2 = 780 г, нагретую до температуры 𝑡2 = 80℃. Найдите температуру 𝑡3 , которая установится в калориметре. Теплообменом с окружающей средой можно пренебречь. Плотность воды 𝜌1 = 1,0 г/см 3 , стали 𝜌2 = 7,8 г/см 3 , удельная теплоёмкость воды 𝑐1 = 4,2 кДж/(кг ⋅ ℃), стали 𝑐2 = 0,46 кДж/(кг ⋅ ℃).","Объём детали 𝑉2 = 𝑚2/𝜌2 = 100 см**3 = 100 мл, поскольку калориметр был заполнен водой полностью, деталь вытеснит часть воды и она выльется из калориметра. Конечная масса воды в калориметре 𝑚1 = 𝜌1 (𝑉1 − 𝑉2) = 100 г. Запишем уравнение теплового баланса: 𝑚1𝑐1(𝑡3 − 𝑡1) = 𝑚2𝑐2 (𝑡2 − 𝑡3), Откуда 𝑡3 = (𝑚1𝑐1𝑡1 + 𝑚2𝑐2𝑡2) /(𝑚1𝑐1 + 𝑚2𝑐2) = 42℃.",42,school,9 +"Если в воду поместить два электрода, через которые подать электрический ток, начнётся реакция электролиза воды: на положительном электроде будет происходить реакция 2O**(−2) → O2 + 4𝑒 −, то есть из двух ионов кислорода образуются молекула газа кислорода и 4 электрона, а на отрицательном электроде будет происходить реакция 2H+ + 2𝑒− → H2 , то есть из двух ионов водорода и двух электронов образуется молекула газа водорода. В школьной лабораторной работе в течение 20 минут проводился электролиз воды, причём сила тока в цепи была постоянна. В результате выделилось 2.5 * 10**(−5) моль водорода. Какова была сила тока в цепи? Элементарный заряд 1.6 * 10**(−19) Кл, постоянная Авогадро 6.02 * 10**23 1/моль.","За 20 минут выделилось 𝑁 = 2.5 * 10**(−5) моль * 6.02 * 10**23 1/моль = 15.05 * 10**18 молекул водорода. Значит, за это время в цепи протёк заряд 2𝑒𝑁 и сила тока в цепи 𝐼 = (2 * 1.6 * 10**(−19) Кл * 15.05 * 10**18)/(20 * 60 с) = 4 мА.",4,school,9 +"Какой максимальный объём воды плотностью ρ можно налить в h-образную трубку с открытыми концами, частично заполненную маслом плотностью 0.8ρ? Площадь сечения вертикальных колен трубки S. Объёмом горизонтальной соединительной трубочки можно пренебречь. Размеры h-образной трубки и высота столба воды указаны на рисунке. Пунктирные деления на трубке сделаны через одинаковое расстояние ℎ, которое известно. Затыкать открытые концы, наклонять трубку и выливать из неё жидкости нельзя","Главное – чтобы в коротком колене осталось как можно меньше масла, тогда в высокой трубке можно будет создать столб максимальной высоты, превышающей 4h. Для этого начинаем наливать воду в правое колено. За счёт большей плотности она будет вытеснять масло в левое колено. Так будет продолжаться до высоты воды 2h в правом и высоте масла 3h в левом. Дальнейшее вытеснение масла невозможно, так как граница раздела масло/вода в правом колене станет выше соединительной трубки и в левое колено начнет поступать вода. Процесс добавления воды придется прекратить, когда верхняя граница масла в правом колене достигнет верха колена. Условие равенства давлений на уровне соединительной трубки дает: (2ℎ + 𝑥) * 0.8𝜌 = 𝜌ℎ + 0.8𝜌ℎ ⇒ 𝑥 = 0.25ℎ. Следовательно, воды удалось налить 4.25 * 𝑆ℎ.",4.25 * Sh,school,10 +"Металлический шарик подвешен к потолку на нерастяжимой нити. Шарик вращается по окружности, лежащей в горизонтальной плоскости, с постоянной по модулю скоростью 𝑣1 = 2,5 м/с, так что нить всегда составляет угол 𝛼 = 30° с вертикалью. Затем скорость шарика увеличили, и нить стала составлять угол 𝛽 = 45° с вертикалью. Найдите модуль 𝑣2 новой скорости шарика.","Запишем 2-й закон Ньютона в проекциях на вертикальную и горизонтальную оси соответственно: 𝑇cos𝛼 = 𝑚𝑔, 𝑇sin𝛼 = 𝑚 * 𝑣1 ** 2 / (𝑙sin𝛼) , где 𝑙 – длина нити. Отсюда получаем: 𝑣1 ** 2 = 𝑔𝑙sin𝛼tg𝛼. Следовательно, (𝑣2 ** 2)/(𝑣1 ** 2) = (sin𝛽tg𝛽/sin𝛼tg𝛼) ⇒ 𝑣2 = 𝑣1 * (sin𝛽tg𝛽/sin𝛼tg𝛼)**(1/2) = 3.9 (м/с).",3.29,school,10 +"В теплоизолированном сосуде находится вода при температуре t0 = 10,0 °C. Одинаковые шарики (их количество n = 100) нагревают до температуры 60,0 °C. Затем один шарик опускают в воду. Когда наступает тепловое равновесие, шарик вынимают и заменяют его вторым и так далее. Какой станет температура воды после того, как из неё достанут последний сотый шарик? Теплоёмкость одного шарика составляет 0.01 части от теплоёмкости сосуда с водой. Количество воды в сосуде всё время остается постоянным.","Запишем уравнение теплового баланса после погружения первого шарика: 𝐶(𝑡1 − 𝑡0) = 𝐶ш(𝜃 − 𝑡1) = 𝛼𝐶(𝜃 − 𝑡1) ⇒ 𝑡1 = 𝜃 + 1/(1+𝛼) * (𝑡0 − 𝜃) = 10.5 ℃, где 𝐶 – теплоёмкость сосуда с водой, 𝐶ш – теплоёмкость шарика, 𝑡1 – установившаяся температура после погружения первого шарика. Уравнение теплового баланса при втором погружении: 𝐶(𝑡2 − 𝑡1) = 𝐶ш(𝜃 − 𝑡2) = 𝛼𝐶(𝜃 − 𝑡2) ⇒ 𝑡2 = 𝜃 + 1/(1 + 𝛼) * (𝑡1 − 𝜃) = 𝜃 + (1/(1+𝛼))**2 * (𝑡0 − 𝜃) = 11 ℃. Проделав, аналогичные действия n раз, получаем: 𝑡𝑛 = 𝜃 + 1/(1 + 𝛼) * (𝑡(𝑛−1) − 𝜃) = 𝜃 + (1/(1 + 𝛼))**𝑛 * (𝑡0 − 𝜃). Значит, 𝑡100 = 41.5 ℃.",41.5,school,10 +"Закреплённая пушка, установленная на горизонтальной поверхности земли, стреляет под углом 𝛼 к горизонту, причём снаряды вылетают из пушки с начальной скоростью 𝑣0. После первого выстрела снаряд упал на расстоянии L от пушки. Второй выстрел оказался неудачным, и на некоторой высоте снаряд разорвался на два осколка массами 𝑚 и 2𝑚. Первый, легкий осколок, упал на землю на расстоянии 𝐿/2 от пушки, а второй осколок в момент падения первого осколка находился строго над ним. Определите расстояние 𝑠 между осколками к моменту падения на землю первого осколка. Получите ответ в частном случае: 𝛼 = 60°, 𝑣0 = 80 м/c, 𝑚 = 5 кг, 𝑔 = 10 м 𝑐 2 .","Центр масс двух осколков ""полетит"" по той же параболической траектории, по которой двигался снаряд при первом выстреле: его ускорение по теореме о движении центра масс определяется суммой всех сил тяжести, приложенных к осколкам, и общей их массой, т. е. тем же уравнением, что и движение целого снаряда. Как только первый осколок ударится о землю к внешним силам – силам тяжести – добавится сила реакции земли, и движение центра масс исказится. Но в нашем случае необходимо найти расстояние 𝑠 между двумя осколками к моменту падения первого осколка, когда второй находился строго над ним, а это означает, что осколки и центр масс будут лежать на одной вертикали. К этому моменту центр масс системы находится на расстоянии 𝐿/2 от пушки и на высоте 𝐻 = (𝑣0 ** 2 * sin**2(𝛼))/2𝑔 = 240 м. Значит, расстояние между двумя осколками к моменту падения первого осколка равно: 𝑠 = 3/2 * 𝐻 = 3/2 * (𝑣0 ** 2 * sin**2(𝛼))/2𝑔 = 360 (м). Так как второй осколок к моменту падения первого находился строго над ним, следовательно, горизонтальные составляющие скорости осколков после разрыва снаряда равны: 𝑣0 * cos 𝛼 = 40 м/с. в частном случае – 𝑠 = 360 (м), 𝑣1𝑥 = 𝑣2𝑥 = 40 (м/с).",360,school,11 +"Ракета удаляется от поверхности Земли с постоянной скоростью 𝑣0 = 200 м/с, направленной строго вертикально. Из неподвижного орудия под углом 𝛼 к горизонту выпускается снаряд с такой же по величине начальной скоростью 𝑣0 . В каком диапазоне должен лежать угол 𝛼, чтобы в системе отсчёта, движущейся поступательно вместе со снарядом, скорости ракеты и орудия хотя бы в какой-то момент времени были взаимно перпендикулярны? Сопротивлением воздуха пренебречь. Поверхность Земли считать плоской."," угол 𝛼 должен лежать в диапазоне от 60° (включительно) до 90° (не включительно). При 𝛼 = 60° имеем 𝑔𝜏 = 𝑣0 * sin𝛼 − 𝑣0/2 = 𝑣0 * (sin𝛼 − 1/2), откуда 𝜏 = 𝑣0/𝑔 * (sin𝛼 − 1/2) = 7.5 с.",7.5,school,11 +"Посередине длинной доски массой 𝑀 = 4 кг сидит ворона. Доска при этом на три четверти погружена в воду. После того как ворона пересела на один из её концов, верхний край доски с этого конца опустилс�� как раз до уровня воды (нижний край доски по-прежнему полностью погружен в воду). Найдите массу вороны.","Так как длина доски много больше её толщины, угол наклона доски очень мал. Светло-серая часть доски имеет вдвое меньший объем, чем у всей доски, значит, на эту часть действует сила Архимеда, равная 2/3(𝑀 + 𝑚)𝑔 (так как в первом случае, когда ворона сидела посередине доски, доска была на три четверти погружена в воду), а точка приложения этой силы расположена на расстоянии трети доски от её правого конца . Точка приложения силы Архимеда, действующей на оставшуюся погруженную часть доски, отстоит от левого конца также на треть. Запишем уравнение моментов относительно точки приложения силы 𝐹𝐴 ′ : 𝑀𝑔 * 1/6 * 𝑙 + 𝑚𝑔 * 4/6 * 𝑙 − 2/3 * (𝑀 + 𝑚)𝑔 * 1/3 * 𝑙 = 0 ⇒ 𝑚 = 𝑀/8 = 0.5 кг, где 𝑙 – длина доски, 𝑚 – масса вороны. Запишем уравнение моментов относительно точки приложения силы 2/3 * (𝑀 + 𝑚)𝑔: 𝑀𝑔 * 1/6 * 𝑙 − 𝑚𝑔 * 1/3 * 𝑙 − 𝐹𝐴 ′ * 1/3 * 𝑙 = 0 ⇒ 𝐹𝐴 ′ = 3/8 * 𝑀𝑔. Значит, суммарная сила Архимеда, действующая на доску, равна 𝐹𝐴 = 𝐹𝐴 ′ + 2/3 * (𝑀 + 𝑚)𝑔 = 3/8 * 𝑀𝑔 + 2/3 * (𝑀 + 𝑚) * 𝑔 = 27/24 * 𝑀𝑔 = 44 Н.",44,school,11 +"Три маленьких шарика находятся в космосе в углах правильного треугольника со сторонами длиной R. Шарики имеют массы m, 100m, 100m. Их электрические заряды равны соответственно 100q, q, q. В начальный момент скорости шариков равны нулю. Какой будет скорость 1 шарика через очень большое время?","В начальном состоянии энергия взаимодействия шариков равна 𝑊1 = 1/2 * (𝑞 * [𝑘 * 100𝑞/𝑅 + 𝑘 * 𝑞/𝑅 ] + 𝑞 * [𝑘 * 100𝑞/𝑅 + 𝑘 * 𝑞/𝑅 ] + 100𝑞 * [𝑘 * 𝑞/𝑅 + 𝑘 * 𝑞/𝑅 ]) = 201𝑘 * 𝑞**2 / 𝑅 (шарики маленькие, следовательно, их собственная энергия в процессе движения не поменяется). Так как масса шарика с зарядом 100q много меньше масс двух остальных шариков, он улетит на далёкие расстояния очень быстро (два остальные не успеют разогнаться), поэтому из закона сохранения энергии получаем 𝑊1 = (𝑚𝑣1 ** 2)/2 + 𝑘 * 𝑞**2/𝑅 ⇒ 𝑣1 = 10𝑞 / (𝜋𝜀0𝑚𝑅)**(1/2) , где 𝑣1 – скорость шарика с зарядом 100q. Запишем закон сохранения энергии для двух оставшихся шариков: 𝑘 * 𝑞**2/𝑅 = 2 * (100𝑚𝑣2**2)/2 ⇒ 𝑣2 = 𝑞/20 * (𝜋𝜀0𝑚𝑅)**(1/2) , где 𝑣2 – скорости шариков с зарядами q",10𝑞 / (𝜋𝜀0𝑚𝑅)**(1/2),school,11 +"Математический маятник колеблется с угловой амплитудой 𝜑0 = 0,1 рад. В момент прохождения маятником нижней точки своей траектории, скорость маятника резко увеличили в 2 раза. Найдите новую угловую амплитуду колебаний 𝜑1.","Пусть 𝑣 — скорость маятника в нижней точке траектории. Из закона сохранения энергии 𝑣**2/2 = 𝑔𝑙(1 − cos 𝜑0 ) ⇒ 𝑣 = (2𝑔𝑙(1 − cos 𝜑0))**(1/2) = 0.3 (м⁄с). После того, как скорость маятника увеличили 2𝑣**2 = 𝑔𝑙(1 − cos 𝜑1). Значит, 1 − cos𝜑1 = 4(1 − cos𝜑0) ⟹ 𝜑1 = arccos(4cos𝜑0 − 3) = 0.2 рад.",0.2,school,11 +"Герметичный сосуд заполнен двухатомным идеальным газом. После значительного повышения температуры часть молекул диссоциировала на атомы, при этом удельная теплоёмкость всего газа возросла на 10%. Какая часть молекул диссоциировала? Теплоёмкость одного моля двухатомного идеального газа при неизменном объёме 𝑐𝑉 = 2.5 𝑅.","Пусть m – масса всей смеси, 𝛼 – коэффициент диссоциации, тогда 𝛼𝑚 – масса диссоциированных молекул. Удельная теплоёмкость одноатомного газа: 𝐶1 = 3/2 * 𝑅/𝜇 , двухатомного: 𝐶2 = 5/2 * 𝑅/2𝜇 , где 𝜇 – молярная масса одноатомного газа. Удельная теплоёмкость смеси равна: 𝐶 = 𝛼𝐶1 + (1 − 𝛼)𝐶2 = 3/2 * 𝑅/𝜇 * 𝛼 + 5/2 * 𝑅/2𝜇 * (1 − 𝛼). По условию 𝐶 = 1.1 * 𝐶2. Откуда получаем: 𝛼 = 0.5. Из определения количества вещества получаем: 𝜈 = 𝑁/𝑁𝐴 = 𝑉/𝑉𝜇 ⇒ 𝑁 = 𝑉/𝑉𝜇 * 𝑁𝐴 ⇒ 𝑁дис = (𝛼 * 𝑉/𝑉𝜇) * 𝑁𝐴 = 0.67 * 𝑁𝐴.",0.67 * 𝑁𝐴,school,11 \ No newline at end of file