---
language:
- vi
dataset_info:
features:
- name: text
dtype: string
- name: id
dtype: string
- name: domain
dtype: string
splits:
- name: train
num_bytes: 65506190827
num_examples: 12169131
download_size: 34648619492
dataset_size: 65506190827
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
### Dataset Description
Vietnamese Curated Text Dataset. This dataset is collected from multiple open Vietnamese datasets, and curated with [NeMo Curator](https://github.com/NVIDIA/NeMo-Curator)
- **Developed by:** Viettel Solution
- **Language:** Vietnamese
### Details
#### Data Collection
We utilize a combination of datasets that contain samples in Vietnamese language, ensuring a robust and representative text corpus. These datasets include:
- The Vietnamese subset of the [C4 dataset](https://huggingface.co/datasets/allenai/c4/viewer/vi) .
- The Vietnamese subset of the [OSCAR dataset, version 23.01](https://huggingface.co/datasets/oscar-corpus/OSCAR-2301/tree/main/vi_meta).
- [Wikipedia's Vietnamese articles](https://huggingface.co/datasets/wikimedia/wikipedia/viewer/20231101.vi).
- [Binhvq's Vietnamese news corpus](https://huggingface.co/datasets/jetaudio/binhvq_news).
#### Preprocessing
We use [NeMo Curator](https://github.com/NVIDIA/NeMo-Curator) to curate the collected data. The data curation pipeline includes these key steps:
1. Unicode Reformatting: Texts are standardized into a consistent Unicode format to avoid encoding issues.
2. Exact Deduplication: Removes exact duplicates to reduce redundancy.
3. Quality Filtering:
4. Heuristic Filtering: Applies rules-based filters to remove low-quality content.
5. Classifier-Based Filtering: Uses machine learning to classify and filter documents based on quality.
#### Dataset Statistics
**Content diversity**
**Character based metrics**
**Token count distribution**
**Embedding visualization**
*UMAP visualization of 5% of the dataset*