# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Yoruba BBC News Topic Classification dataset.""" from __future__ import absolute_import, division, print_function import csv import datasets _DESCRIPTION = """\ A collection of news article headlines in Yoruba from BBC Yoruba. Each headline is labeled with one of the following classes: africa, entertainment, health, nigeria, politics, sport or world. The dataset was presented in the paper: Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages (EMNLP 2020). """ _CITATION = """\ @inproceedings{hedderich-etal-2020-transfer, title = "Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages", author = "Hedderich, Michael A. and Adelani, David and Zhu, Dawei and Alabi, Jesujoba and Markus, Udia and Klakow, Dietrich", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", year = "2020", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.204", doi = "10.18653/v1/2020.emnlp-main.204", } """ _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/yoruba_newsclass/train_clean.tsv" _VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/yoruba_newsclass/dev.tsv" _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/yoruba_newsclass/test.tsv" class YorubaBBCTopics(datasets.GeneratorBasedBuilder): """Yoruba BBC Topic Classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "news_title": datasets.Value("string"), "label": datasets.features.ClassLabel( names=["africa", "entertainment", "health", "nigeria", "politics", "sport", "world"] ), "date": datasets.Value("string"), "bbc_url_id": datasets.Value("string"), } ), homepage="https://github.com/uds-lsv/transfer-distant-transformer-african", citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), ] def _generate_examples(self, filepath): """Generate Yoruba BBC News Topic examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.DictReader(csv_file, delimiter="\t") for id_, row in enumerate(csv_reader): yield id_, { "news_title": row["news_title"], "label": row["label"], "date": row["date"], "bbc_url_id": row["bbc_url_id"], }