import xml.etree.ElementTree as ET import datasets import pandas as pd from huggingface_hub import hf_hub_url logger = datasets.logging.get_logger(__name__) class LaCourConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(LaCourConfig, self).__init__(**kwargs) class LaCourDataset(datasets.GeneratorBasedBuilder): """ A class used to represent a Dataset. ... Attributes ---------- VERSION : datasets.Version a version number for the dataset BUILDER_CONFIGS : list a list of BuilderConfig instances Methods ------- _info(): Returns the dataset information. _split_generators(download_manager: datasets.DownloadManager): Returns SplitGenerators. _generate_examples(): Yields examples. """ # Version history # 0.1.0 initial release VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="transcripts", version=VERSION, description="transcript dataset based on xml files", ), datasets.BuilderConfig( name="documents", version=VERSION, description="linked documents associated with the webcast" ) ] DEFAULT_CONFIG_NAME = "transcripts" def _info(self): """ Returns the dataset information. ... Returns ------- datasets.DatasetInfo a DatasetInfo instance containing information about the dataset """ if self.config.name == "transcripts": return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("int32"), "webcast_id": datasets.Value("string"), "segment_id": datasets.features.Value("int32"), "speaker_name": datasets.features.Value("string"), "speaker_role": datasets.features.Value("string"), "data": datasets.features.Sequence({ "begin": datasets.features.Value("float32"), "end": datasets.features.Value("float32"), "language": datasets.features.Value("string"), "text": datasets.features.Value("string"), }) } ), supervised_keys=None, ) else: return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("int32"), "webcast_id": datasets.Value("string"), "hearing_title": datasets.Value("string"), "hearing_date": datasets.Value("string"), "hearing_type": datasets.Value("string"), "application_number": datasets.features.Sequence(datasets.Value("string")), "case_id": datasets.Value("string"), "case_name": datasets.Value("string"), "case_url": datasets.Value("string"), "ecli": datasets.Value("string"), "type": datasets.Value("string"), "document_date": datasets.Value("string"), "importance": datasets.Value("int32"), "articles": datasets.features.Sequence(datasets.Value("string")), "respondent_government": datasets.features.Sequence(datasets.Value("string")), "issue": datasets.Value("string"), "strasbourg_caselaw": datasets.Value("string"), "external_sources": datasets.Value("string"), "conclusion": datasets.Value("string"), "separate_opinion": datasets.Value("bool") } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """ Returns SplitGenerators. Parameters ---------- download_manager : datasets.DownloadManager a DownloadManager instance Returns ------- list a list of SplitGenerator instances """ base_url_xml = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacourxml.tar.gz", repo_type="dataset") base_url_json = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacour_linked_documents.json", repo_type="dataset") if self.config.name == "transcripts": path = dl_manager.download(base_url_xml) xmlpath = dl_manager.iter_archive(path) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": xmlpath}), ] else: jsonpath = dl_manager.download(base_url_json) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": jsonpath}), ] def _generate_examples(self, filepaths): """ This method reads the files in the provided transcripts, parses the data, and yields it in a structured format. For the configuration "xml", it reads XML files and extracts speaker segments and associated metadata. Parameters ---------- filepaths : list A list of filepaths to the data files. Yields ------ tuple A tuple containing an ID and a dictionary with the data. The dictionary keys include 'id' and 'data'. 'data' is a list of lists, where each inner list contains a key and a value extracted from the data file. """ if self.config.name == "transcripts": id_ = 0 for fpath, file in filepaths: logger.info("generating examples from = %s", fpath) tree = ET.parse(file) root = tree.getroot() segment_id = 0 for speakerSegment in root.findall('SpeakerSegment'): text_segments = [] for segment in speakerSegment.findall('Segment'): meta_data = segment.find('meta_data') text_segments.append({ "begin": meta_data.findtext('TimestampBegin', ''), "end": meta_data.findtext('TimestampEnd', ''), "language": meta_data.findtext('Language', ''), "text": segment.findtext('text', '').strip(), }) feature = id_, { "id": id_, "webcast_id": fpath.split('_')[1] + "_" + fpath.split('_')[2].split('.')[0], "segment_id": segment_id, "speaker_role": meta_data.findtext('Role', ''), "speaker_name": meta_data.findtext('Name', ''), "data": text_segments } yield feature id_ += 1 segment_id += 1 elif self.config.name == "documents": id_ = 0 df = pd.read_json(filepaths, orient="index", dtype={"webcast_id": str}) logger.info("generating examples from = %s", filepaths) cols = df.columns.tolist() cols.remove('appno') # group appnos to avoid duplicates df = df.groupby(cols)['appno'].apply(';'.join).reset_index() for _, row in df.iterrows(): feature = id_,{ "id": id_, "webcast_id": row["webcast_id"], "hearing_title": row["hearing_title"], "hearing_date": row["hearing_date"], "hearing_type": row["hearing_type"], "application_number": row["appno"].split(';'), "case_id": row["case_id"], "case_name": row["case_name"], "case_url": row["case_url"], "ecli": row["ecli"], "type": row["type"], "document_date": row["document_date"], "importance": row["importance"], "articles": row["articles"].split(';'), "respondent_government": row["respondent"].split(';'), "issue": row["issue"], "strasbourg_caselaw": row["strasbourg_caselaw"], "external_sources": row["external_sources"], "conclusion": row["conclusion"], "separate_opinion": row["separate_opinion"] } yield feature id_ += 1