import csv import os import json import datasets from datasets.utils.py_utils import size_str from tqdm import tqdm from scipy.io.wavfile import read, write import io #from .release_stats import STATS _CITATION = """\ @inproceedings{demint2024, author = {Pérez-Ortiz, Juan Antonio and Esplà-Gomis, Miquel and Sánchez-Cartagena, Víctor M. and Sánchez-Martínez, Felipe and Chernysh, Roman and Mora-Rodríguez, Gabriel and Berezhnoy, Lev}, title = {{DeMINT}: Automated Language Debriefing for English Learners via {AI} Chatbot Analysis of Meeting Transcripts}, booktitle = {Proceedings of the 13th Workshop on NLP for Computer Assisted Language Learning}, month = october, year = {2024}, url = {https://aclanthology.org/volumes/2024.nlp4call-1/}, } """ class SesgeConfig(datasets.BuilderConfig): def __init__(self, name, version, **kwargs): self.language = kwargs.pop("language", None) self.release_date = kwargs.pop("release_date", None) """ description = ( f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. " f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data " f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. " f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}." ) """ super(SesgeConfig, self).__init__( name=name, **kwargs, ) class Sesge(): BUILDER_CONFIGS = [ SesgeConfig( name="sesge", version=1.0, language='eng', release_date="2024-10-8", ) ] def _info(self): total_languages = 1 total_valid_hours = 1 description = ( "Common Voice is Mozilla's initiative to help teach machines how real people speak. " f"The dataset currently consists of {total_valid_hours} validated hours of speech " f" in {total_languages} languages, but more voices and languages are always added." ) features = datasets.Features( { "audio": datasets.features.Audio(sampling_rate=48_000), "sentence": datasets.Value("string"), } ) def _generate_examples(self, local_extracted_archive_paths, archives, meta_path, split): archives = os.listdir(archives) print(archives) metadata = {} with open(meta_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter=";", quoting=csv.QUOTE_NONE) for row in tqdm(reader): metadata[row["file_name"]] = row #print(metadata) for i, path in enumerate(archives): #for path, file in audio_archive: _, filename = os.path.split(path) file = os.path.join("data", split, filename) #print(filename) if file in metadata: result = dict(metadata[file]) print("Result: ", result) with open(os.path.join(local_extracted_archive_paths, filename), 'rb') as wavfile: input_wav = wavfile.read() rate, data = read(io.BytesIO(input_wav)) # data is a numpy ND array representing the audio data. Let's do some stuff with it reversed_data = data[::-1] #reversing it #then, let's save it to a BytesIO object, which is a buffer for bytes object bytes_wav = bytes() byte_io = io.BytesIO(bytes_wav) write(byte_io, rate, reversed_data) output_wav = byte_io.read() # set the audio feature and the path to the extracted file path = os.path.join(local_extracted_archive_paths[i], path) result["audio"] = {"path": path, "bytes": data} result["path"] = path yield path, result else: print("No file found") yield None, None if __name__ == '__main__': data = Sesge() gen = data._generate_examples("/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/datos/", "/Users/rafael/Desktop/TFM/Transformes/Demint/Base de datos/COnver/metadata.csv", "train") print(next(gen))