from pathlib import Path import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {speech-emotion-recognition-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The audio dataset consists of a collection of texts spoken with four distinct emotions. These texts are spoken in English and represent four different emotional states: **euphoria, joy, sadness and surprise**. Each audio clip captures the tone, intonation, and nuances of speech as individuals convey their emotions through their voice. The dataset includes a diverse range of speakers, ensuring variability in age, gender, and cultural backgrounds*, allowing for a more comprehensive representation of the emotional spectrum. The dataset is labeled and organized based on the emotion expressed in each audio sample, making it a valuable resource for emotion recognition and analysis. Researchers and developers can utilize this dataset to train and evaluate machine learning models and algorithms, aiming to accurately recognize and classify emotions in speech. """ _NAME = 'speech-emotion-recognition-dataset' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class SpeechEmotionRecognitionDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo(description=_DESCRIPTION, features=datasets.Features({ 'set_id': datasets.Value('string'), 'euphoric': datasets.Audio(), 'joyfully': datasets.Audio(), 'sad': datasets.Audio(), 'surprised': datasets.Audio(), 'text': datasets.Value('string'), 'gender': datasets.Value('string'), 'age': datasets.Value('int8'), 'country': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): audio = dl_manager.download_and_extract(f"{_DATA}audio.zip") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") audio = dl_manager.iter_files(audio) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "audio": audio, 'annotations': annotations }), ] def _generate_examples(self, audio, annotations): annotations_df = pd.read_csv(annotations, sep=';') audio = list(audio) audio = [audio[i:i + 4] for i in range(0, len(audio), 4)] for idx, set in enumerate(audio): for audio_file in set: if 'euphoric' in audio_file: euphoric = audio_file elif 'joyfully' in audio_file: joyfully = audio_file elif 'sad' in audio_file: sad = audio_file elif 'surprised' in audio_file: surprised = audio_file set_id = Path(set[0]).parent.name yield idx, { 'set_id': set_id, 'euphoric': euphoric, 'joyfully': joyfully, 'sad': sad, 'surprised': surprised, 'text': annotations_df.loc[annotations_df['set_id'] == set_id] ['text'].values[0], 'gender': annotations_df.loc[annotations_df['set_id'] == set_id] ['gender'].values[0], 'age': annotations_df.loc[annotations_df['set_id'] == set_id] ['age'].values[0], 'country': annotations_df.loc[annotations_df['set_id'] == set_id] ['country'].values[0] }