import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {plantations_segmentation}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consist of screenshots from videos of basketball games with the ball labeled with a bounging box. The dataset can be used to train a neural network in ball control recognition. The dataset is useful for automating the camera operator's work during a match, allowing the ball to be efficiently kept in frame. """ _NAME = 'plantations_segmentation' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class PlantationsSegmentation(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ 'image_id': datasets.Value('int32'), 'image': datasets.Image(), 'class_segmentation': datasets.Image(), 'object_segmentation': datasets.Image(), 'shapes': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") class_segmentation_masks = dl_manager.download( f"{_DATA}class_segmentation.tar.gz") object_segmentation_masks = dl_manager.download( f"{_DATA}object_segmentation.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_archive(images) class_segmentation_masks = dl_manager.iter_archive( class_segmentation_masks) object_segmentation_masks = dl_manager.iter_archive( object_segmentation_masks) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, 'class_segmentation_masks': class_segmentation_masks, 'object_segmentation_masks': object_segmentation_masks, 'annotations': annotations }), ] def _generate_examples(self, images, class_segmentation_masks, object_segmentation_masks, annotations): annotations_df = pd.read_csv(annotations) for idx, ((image_path, image), (class_segmentation_path, class_segmentation), (object_segmentation_path, object_segmentation)) in enumerate( zip(images, class_segmentation_masks, object_segmentation_masks)): yield idx, { 'image_id': annotations_df.loc[ annotations_df['image_name'] == image_path] ['image_id'].values[0], "image": { "path": image_path, "bytes": image.read() }, "class_segmentation": { "path": class_segmentation_path, "bytes": class_segmentation.read() }, "object_segmentation": { "path": object_segmentation_path, "bytes": object_segmentation.read() }, 'shapes': annotations_df.loc[ annotations_df['image_name'] == image_path] ['shapes'].values[0] }