import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {ocr-trains-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset is a collection of images along with corresponding bounding box annotations that are specifically curated for **detecting pigs' heads** in images. The dataset covers different *pig breeds, sizes, and orientations*, providing a comprehensive representation of pig appearances. The pig detection dataset provides a valuable resource for researchers working on pig detection tasks. It offers a diverse collection of annotated images, allowing for comprehensive algorithm development, evaluation, and benchmarking, ultimately aiding in the development of accurate and robust models. """ _NAME = "ocr-trains-dataset" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class OcrTrainsDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "image": datasets.Image(), "bboxes": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_archive(images) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, "annotations": annotations, }, ), ] def _generate_examples(self, images, annotations): annotations_df = pd.read_csv(annotations) for idx, (image_path, image) in enumerate(images): yield idx, { "id": annotations_df.loc[annotations_df["image_name"] == image_path][ "image_id" ].values[0], "image": {"path": image_path, "bytes": image.read()}, "bboxes": annotations_df["annotations"].iloc[idx], }