import datasets import PIL.Image import PIL.ImageOps _CITATION = """\ @InProceedings{huggingface:dataset, title = {generated-usa-passeports-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ Data generation in machine learning involves creating or manipulating data to train and evaluate machine learning models. The purpose of data generation is to provide diverse and representative examples that cover a wide range of scenarios, ensuring the model's robustness and generalization. Data augmentation techniques involve applying various transformations to existing data samples to create new ones. These transformations include: random rotations, translations, scaling, flips, and more. Augmentation helps in increasing the dataset size, introducing natural variations, and improving model performance by making it more invariant to specific transformations. The dataset contains **GENERATED** USA passports, which are replicas of official passports but with randomly generated details, such as name, date of birth etc. The primary intention of generating these fake passports is to demonstrate the structure and content of a typical passport document and to train the neural network to identify this type of document. Generated passports can assist in conducting research without accessing or compromising real user data that is often sensitive and subject to privacy regulations. Synthetic data generation allows researchers to develop and refine models using simulated passport data without risking privacy leaks. """ _NAME = 'generated-usa-passeports-dataset' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" def exif_transpose(img): if not img: return img exif_orientation_tag = 274 # Check for EXIF data (only present on some files) if hasattr(img, "_getexif") and isinstance( img._getexif(), dict) and exif_orientation_tag in img._getexif(): exif_data = img._getexif() orientation = exif_data[exif_orientation_tag] # Handle EXIF Orientation if orientation == 1: # Normal image - nothing to do! pass elif orientation == 2: # Mirrored left to right img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 3: # Rotated 180 degrees img = img.rotate(180) elif orientation == 4: # Mirrored top to bottom img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 5: # Mirrored along top-left diagonal img = img.rotate(-90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 6: # Rotated 90 degrees img = img.rotate(-90, expand=True) elif orientation == 7: # Mirrored along top-right diagonal img = img.rotate(90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 8: # Rotated 270 degrees img = img.rotate(90, expand=True) return img def load_image_file(file, mode='RGB'): # Load the image with PIL img = PIL.Image.open(file) if hasattr(PIL.ImageOps, 'exif_transpose'): # Very recent versions of PIL can do exit transpose internally img = PIL.ImageOps.exif_transpose(img) else: # Otherwise, do the exif transpose ourselves img = exif_transpose(img) img = img.convert(mode) return img class GeneratedUsaPasseportsDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ 'original': datasets.Image(), 'us_pass_augmentated_1': datasets.Image(), 'us_pass_augmentated_2': datasets.Image(), 'us_pass_augmentated_3': datasets.Image() }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): original = dl_manager.download_and_extract(f"{_DATA}original.zip") augmentation = dl_manager.download_and_extract( f"{_DATA}augmentation.zip") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") original = dl_manager.iter_files(original) augmentation = dl_manager.iter_files(augmentation) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "original": original, 'augmentation': augmentation, 'annotations': annotations }), ] def _generate_examples(self, original, augmentation, annotations): original = list(original) augmentation = list(augmentation) augmentation = [ augmentation[i:i + 3] for i in range(0, len(augmentation), 3) ] for idx, (org, aug) in enumerate(zip(original, augmentation)): yield idx, { 'original': load_image_file(org), 'us_pass_augmentated_1': load_image_file(aug[0]), 'us_pass_augmentated_2': load_image_file(aug[1]), 'us_pass_augmentated_3': load_image_file(aug[2]) }