import json from pathlib import Path import datasets import numpy as np import pandas as pd import PIL.Image import PIL.ImageOps _CITATION = """\ @InProceedings{huggingface:dataset, title = {facial-emotion-recognition-dataset}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of images capturing people displaying 7 distinct emotions (anger, contempt, disgust, fear, happiness, sadness and surprise). Each image in the dataset represents one of these specific emotions, enabling researchers and machine learning practitioners to study and develop models for emotion recognition and analysis. The images encompass a diverse range of individuals, including different genders, ethnicities, and age groups*. The dataset aims to provide a comprehensive representation of human emotions, allowing for a wide range of use cases. """ _NAME = 'facial-emotion-recognition-dataset' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class FacialEmotionRecognitionDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo(description=_DESCRIPTION, features=datasets.Features({ 'set_id': datasets.Value('int32'), 'neutral': datasets.Image(), 'anger': datasets.Image(), 'contempt': datasets.Image(), 'disgust': datasets.Image(), "fear": datasets.Image(), "happy": datasets.Image(), "sad": datasets.Image(), "surprised": datasets.Image(), "age": datasets.Value('int8'), "gender": datasets.Value('string'), "country": datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(f"{_DATA}images.zip") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_files(images) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "images": images, 'annotations': annotations }), ] def _generate_examples(self, images, annotations): annotations_df = pd.read_csv(annotations, sep=';') images = sorted(images) images = [images[i:i + 8] for i in range(0, len(images), 8)] for idx, images_set in enumerate(images): set_id = int(images_set[0].split('/')[2]) data = {'set_id': set_id} for file in images_set: if 'neutral' in file.lower(): data['neutral'] = file elif 'anger' in file.lower(): data['anger'] = file elif 'contempt' in file.lower(): data['contempt'] = file elif 'disgust' in file.lower(): data['disgust'] = file elif 'fear' in file.lower(): data['fear'] = file elif 'happy' in file.lower(): data['happy'] = file elif 'sad' in file.lower(): data['sad'] = file elif 'surprised' in file.lower(): data['surprised'] = file data['age'] = annotations_df.loc[annotations_df['set_id'] == set_id]['age'].values[0] data['gender'] = annotations_df.loc[annotations_df['set_id'] == set_id]['gender'].values[0] data['country'] = annotations_df.loc[annotations_df['set_id'] == set_id]['country'].values[0] yield idx, data