import datasets import numpy as np import pandas as pd import PIL.Image import PIL.ImageOps _CITATION = """\ @InProceedings{huggingface:dataset, title = {face_masks}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ Dataset includes 250 000 images, 4 types of mask worn on 28 000 unique faces. All images were collected using the Toloka.ai crowdsourcing service and validated by TrainingData.pro """ _NAME = 'face_masks' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" def exif_transpose(img): if not img: return img exif_orientation_tag = 274 # Check for EXIF data (only present on some files) if hasattr(img, "_getexif") and isinstance( img._getexif(), dict) and exif_orientation_tag in img._getexif(): exif_data = img._getexif() orientation = exif_data[exif_orientation_tag] # Handle EXIF Orientation if orientation == 1: # Normal image - nothing to do! pass elif orientation == 2: # Mirrored left to right img = img.transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 3: # Rotated 180 degrees img = img.rotate(180) elif orientation == 4: # Mirrored top to bottom img = img.rotate(180).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 5: # Mirrored along top-left diagonal img = img.rotate(-90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 6: # Rotated 90 degrees img = img.rotate(-90, expand=True) elif orientation == 7: # Mirrored along top-right diagonal img = img.rotate(90, expand=True).transpose(PIL.Image.FLIP_LEFT_RIGHT) elif orientation == 8: # Rotated 270 degrees img = img.rotate(90, expand=True) return img def load_image_file(file, mode='RGB'): # Load the image with PIL img = PIL.Image.open(file) if hasattr(PIL.ImageOps, 'exif_transpose'): # Very recent versions of PIL can do exit transpose internally img = PIL.ImageOps.exif_transpose(img) else: # Otherwise, do the exif transpose ourselves img = exif_transpose(img) img = img.convert(mode) return np.array(img) class FaceMasks(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo(description=_DESCRIPTION, features=datasets.Features({ 'photo_1': datasets.Image(), 'photo_2': datasets.Image(), 'photo_3': datasets.Image(), 'photo_4': datasets.Image(), 'worker_id': datasets.Value('string'), 'age': datasets.Value('int8'), 'country': datasets.Value('string'), 'sex': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(f"{_DATA}images.zip") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_files(images) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "images": images, 'annotations': annotations }), ] def _generate_examples(self, images, annotations): annotations_df = pd.read_csv(annotations, sep=',') images_data = pd.DataFrame(columns=['Link', 'Path']) for idx, image_path in enumerate(images): images_data.loc[idx] = { 'Link': '/'.join(image_path.split('/')[-2:]), 'Path': image_path } annotations_df = pd.merge(annotations_df, images_data, how='left', on=['Link']) for idx, worker_id in enumerate(pd.unique(annotations_df['WorkerId'])): annotation: pd.DataFrame = annotations_df.loc[ annotations_df['WorkerId'] == worker_id] annotation = annotation.sort_values(['Link']) data = { f'photo_{row[5]}': load_image_file(row[7]) for row in annotation.itertuples() } age = annotation.loc[annotation['Type'] == 1]['Age'].values[0] country = annotation.loc[annotation['Type'] == 1]['Country'].values[0] sex = annotation.loc[annotation['Type'] == 1]['Sex'].values[0] data['worker_id'] = worker_id data['age'] = age data['country'] = country data['sex'] = sex yield idx, data