--- license: cc-by-sa-4.0 --- # Dataset ## Topic-exclusive split The training dataset contains popular topics (instances), while other topics are in the test and validation datasets. * test_diff.json * training_diff.json * validation_diff.json ## Topic-independent split Topics are randomly selected in datasets. For a common purpose, we suggest THESE DATASETS. * test_random.json * training_random.json * validation_random.json # GitHub * https://github.com/declare-lab/WikiDes/ # Citation ## APA Ta, H. T., Rahman, A. B. S., Majumder, N., Hussain, A., Najjar, L., Howard, N., ... & Gelbukh, A. (2022). WikiDes: A Wikipedia-based dataset for generating short descriptions from paragraphs. *Information Fusion*. ## BibTeX ``` @article{Ta_2022, doi = {10.1016/j.inffus.2022.09.022}, url = {https://doi.org/10.1016%2Fj.inffus.2022.09.022}, year = 2022, month = {sep}, publisher = {Elsevier {BV}}, author = {Hoang Thang Ta and Abu Bakar Siddiqur Rahman and Navonil Majumder and Amir Hussain and Lotfollah Najjar and Newton Howard and Soujanya Poria and Alexander Gelbukh}, title = {{WikiDes}: A Wikipedia-based dataset for generating short descriptions from paragraphs}, journal = {Information Fusion}} ``` # Paper links * https://doi.org/10.1016%2Fj.inffus.2022.09.022 * https://arxiv.org/abs/2209.13101 # Contact Hoang Thang Ta, tahoangthang@gmail.com