import datasets import json import numpy _FEATURES = datasets.Features( { "id": datasets.Value("string"), "prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"), "video": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float64")), "description": datasets.Value("string"), "videourl": datasets.Value("string"), "categories": datasets.Value("string"), "duration": datasets.Value("float"), "full_metadata": datasets.Value("string"), } ) class FunkLoaderStream(datasets.GeneratorBasedBuilder): """TempoFunk Dataset""" def _info(self): return datasets.DatasetInfo( description="TempoFunk Dataset", features=_FEATURES, homepage="None", citation="None", license="None" ) def _split_generators(self, dl_manager): print("id_list available at:", dl_manager.download("data/id_list.json")) _ID_LIST = json.loads(open(dl_manager.download("data/id_list.json"), 'r').read()) _SHARD_LENGTH = 20 _SPLITS = [_ID_LIST[i:i + _SHARD_LENGTH] for i in range(0, len(_ID_LIST), _SHARD_LENGTH)] print("avail splits: ", _SPLITS) l=[] _split_count = 0 for split in _SPLITS: _list = [] for video_id in split: _list.append({ "frames": dl_manager.download(f"data/videos/{video_id}.npy"), "prompt": dl_manager.download(f"data/prompts/{video_id}.npy"), "metadata": dl_manager.download(f"data/metadata/{video_id}.json"), }) l.append( datasets.SplitGenerator( name=f"split_{_split_count}", gen_kwargs={ "chunk_container": _list, },) ) _split_count = _split_count + 1 print("Total Splits: ", _split_count) return l def _generate_examples(self, chunk_container): """Generate images and labels for splits.""" for video_entry in chunk_container: frames_binary = video_entry['frames'] prompt_binary = video_entry['prompt'] metadata = json.loads(open(video_entry['metadata'], 'r').read()) txt_embed = numpy.load(prompt_binary) vid_embed = numpy.load(frames_binary) # txt_embed = torch.load(open(prompt_binary, 'rb')).cpu().detach().numpy() # vid_embed = torch.load(open(frames_binary, 'rb')) print(vid_embed.shape) yield metadata['id'], { "id": metadata['id'], "prompt": txt_embed, "video": vid_embed, "description": metadata['description'], "videourl": metadata['videourl'], "categories": metadata['categories'], "duration": metadata['duration'], "full_metadata": metadata }