# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments import datasets import json from typing import List import pandas as pd _LICENSE = "http://www.apache.org/licenses/LICENSE-2.0" _HOMEPAGE='https://huggingface.co/datasets/THUIR/T2Ranking' _DESCRIPTION = 'T2Ranking: A large-scale Chinese benchmark for passage retrieval.' _CITATION = """ @article{sigir2023, title={T2Ranking}, author={Qian Dong}, volume={2023}, number={2}, pages={99-110}, year={2022} } """ _URLS_DICT = { "collection": "data/collection.tsv", "qrels.train": "data/qrels.train.tsv", "qrels.dev": "data/qrels.dev.tsv", "qrels.retrieval.train": "qrels.retrieval.train.tsv", "qrels.retrieval.dev": "qrels.retrieval.dev.tsv", "queries.train": "data/queries.train.tsv", "queries.test": "data/queries.test.tsv", "queries.dev": "data/queries.dev.tsv", "train.bm25.tsv": "data/train.bm25.tsv", "train.mined.tsv": "data/train.mined.tsv", } _FEATURES_DICT = { 'collection': { "pid": datasets.Value("int64"), "text": datasets.Value("string"), }, 'qrels.train': { "qid": datasets.Value("int64"), "-": datasets.Value("int64"), "pid": datasets.Value("int64"), "rel": datasets.Value("int64"), }, 'qrels.retrieval.train': { "qid": datasets.Value("int64"), "pid": datasets.Value("int64"), }, 'qrels.dev': { "qid": datasets.Value("int64"), "-": datasets.Value("int64"), "pid": datasets.Value("int64"), "rel": datasets.Value("int64"), }, 'qrels.retrieval.dev': { "qid": datasets.Value("int64"), "pid": datasets.Value("int64"), }, 'queries.train': { "qid": datasets.Value("int64"), "text": datasets.Value("string"), }, 'queries.dev': { "qid": datasets.Value("int64"), "text": datasets.Value("string"), }, 'queries.test': { "qid": datasets.Value("int64"), "text": datasets.Value("string"), }, "train.bm25.tsv": { "qid": datasets.Value("int64"), "pid": datasets.Value("int64"), "score": datasets.Value("float32"), }, "train.mined.tsv": { "qid": datasets.Value("int64"), "pid": datasets.Value("int64"), "index": datasets.Value("int64"), "score": datasets.Value("float32"), }, } class T2RankingConfig(datasets.BuilderConfig): """BuilderConfig for T2Ranking.""" def __init__(self, splits, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.splits = splits class T2Ranking(datasets.GeneratorBasedBuilder): """The T2Ranking benchmark.""" BUILDER_CONFIGS = [ T2RankingConfig( name="collection", splits=['train'], ), T2RankingConfig( name="qrels.train", splits=['train'], ), T2RankingConfig( name="qrels.dev", splits=['train'], ), T2RankingConfig( name="queries.train", splits=['train'], ), T2RankingConfig( name="queries.dev", splits=['train'], ), T2RankingConfig( name="queries.test", splits=['train'], ), T2RankingConfig( name="qrels.retrieval.train", splits=['train'], ), T2RankingConfig( name="qrels.retrieval.dev", splits=['train'], ), T2RankingConfig( name="train.bm25.tsv", splits=['train'], ), T2RankingConfig( name="train.mined.tsv", splits=['train'], ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(_FEATURES_DICT[self.config.name]), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: split_things = [] for split_name in self.config.splits: # print('') split_data_path = _URLS_DICT[self.config.name] # print(split_data_path) filepath = dl_manager.download(split_data_path) # print(filepath) # print('') split_thing = datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": filepath, } ) split_things.append(split_thing) return split_things def _generate_examples(self, filepath): data = pd.read_csv(filepath, sep='\t', quoting=3) keys = _FEATURES_DICT[self.config.name].keys() for idx in range(data.shape[0]): yield idx, {key: data[key][idx] for key in keys}