year
stringclasses 1
value | day
stringclasses 25
values | part
stringclasses 2
values | question
stringclasses 50
values | answer
stringclasses 49
values | solution
stringlengths 143
12.8k
| language
stringclasses 3
values |
---|---|---|---|---|---|---|
2024 | 11 | 1 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times? | 193607 | stones = open('input.txt').read().strip().split(' ')
stones = [int(x) for x in stones]
def get_next_stones():
for i in range(len(stones)):
if stones[i] == 0:
stones[i] = 1
elif len(str(stones[i])) % 2 == 0:
num = str(stones[i])
# print(num)
stones[i] = int(num[:len(num)//2])
stones.append(int(num[len(num)//2:]))
else:
stones[i] *= 2024
for i in range(25):
# print(stones)
get_next_stones()
print(len(stones)) | python |
2024 | 11 | 1 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times? | 193607 | def rules(n):
if n == 0:
return [1]
s = str(n)
if len(s) % 2 == 0:
l = len(s) // 2
return [int(s[:l]), int(s[l:])]
return [n * 2024]
def calc(stone, blinks):
if blinks == 0:
return 1
new = rules(stone)
return sum(calc(num, blinks - 1) for num in new)
res = 0
stones = list(map(int, open('i.txt').read().split()))
for stone in stones:
res += calc(stone, 25)
print(res) | python |
2024 | 11 | 1 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times? | 193607 | def blink(stones):
newStones = []
for stone in stones:
if stone == 0:
newStones.append(1)
continue
n = len(str(stone))
if n % 2 == 0:
newStones.append(int(str(stone)[:(n//2)]))
newStones.append(int(str(stone)[(n//2):]))
continue
newStones.append(stone * 2024)
return newStones
def get_num_stones(stones):
for _ in range(25):
stones = blink(stones)
return len(stones)
if __name__ == "__main__":
# Open file 'day11-1.txt' in read mode
with open('day11-1.txt', 'r') as f:
stones = []
for line in f:
stones = [int(val) for val in line.strip().split()]
print("Number of Stones: " + str(get_num_stones(stones))) | python |
2024 | 11 | 1 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times? | 193607 | def get_next_array(stones):
res = []
for stone in stones:
if stone == 0:
res.append(1)
elif len(str(stone)) % 2 == 0:
stone_str = str(stone)
res.append(int(stone_str[0:len(stone_str)//2]))
res.append(int(stone_str[len(stone_str)//2:]))
else:
res.append(stone * 2024)
return res
with open('input.txt') as f:
stones = [int(s) for s in f.read().split()]
for i in range(25):
stones = get_next_array(stones)
print(len(stones)) | python |
2024 | 11 | 1 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times? | 193607 | from functools import cache
@cache
def blink(value, times):
if times == 0:
return 1
if value == 0:
return blink(1, times - 1)
digits = len(str(value))
if digits % 2 == 0:
return blink(int(str(value)[:digits // 2]), times - 1) + blink(
int(str(value)[digits // 2:]), times - 1)
return blink(value * 2024, times - 1)
with open("input.txt") as file:
stones = file.read().strip().split()
result = sum([blink(int(stone), 25) for stone in stones])
print(result) | python |
2024 | 11 | 2 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times?
Your puzzle answer was 193607.
--- Part Two ---
The Historians sure are taking a long time. To be fair, the infinite corridors are very large.
How many stones would you have after blinking a total of 75 times? | 229557103025807 | from functools import cache
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
@cache
def stones_created(num, rounds):
if rounds == 0:
return 1
elif num == 0:
return stones_created(1, rounds - 1)
elif len(str(num)) % 2 == 0:
return stones_created(
int(str(num)[: len(str(num)) // 2]), rounds - 1
) + stones_created(int(str(num)[len(str(num)) // 2 :]), rounds - 1)
else:
return stones_created(num * 2024, rounds - 1)
nums = [int(x) for x in input_text[0].split()]
print(sum(stones_created(x, 75) for x in nums)) | python |
2024 | 11 | 2 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times?
Your puzzle answer was 193607.
--- Part Two ---
The Historians sure are taking a long time. To be fair, the infinite corridors are very large.
How many stones would you have after blinking a total of 75 times? | 229557103025807 | from functools import cache
@cache
def blink(value, times):
if times == 0:
return 1
if value == 0:
return blink(1, times - 1)
digits = len(str(value))
if digits % 2 == 0:
return blink(int(str(value)[:digits // 2]), times - 1) + blink(
int(str(value)[digits // 2:]), times - 1)
return blink(value * 2024, times - 1)
with open("input.txt") as file:
stones = file.read().strip().split()
result = sum([blink(int(stone), 75) for stone in stones])
print(result) | python |
2024 | 11 | 2 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times?
Your puzzle answer was 193607.
--- Part Two ---
The Historians sure are taking a long time. To be fair, the infinite corridors are very large.
How many stones would you have after blinking a total of 75 times? | 229557103025807 | from functools import lru_cache
def is_even(num):
count = 0
a = num
while a:
a //= 10
count += 1
return count % 2 == 0
@lru_cache(maxsize=1000_000)
def check_stone(stone):
if stone == 0:
return (1, -1)
if is_even(stone):
s = str(stone)
l = s[: len(s) // 2]
r = s[len(s) // 2 :]
return (int(l), int(r))
return (stone * 2024, -1)
in_date = ""
with open("input.txt") as f:
in_date = f.read()
init_stones = [int(i) for i in in_date.strip().split()]
total_nums = {}
for i in init_stones:
res = total_nums.get(i, 0) + 1
total_nums[i] = res
for iter in range(75):
new_total_nums = {}
for n, c in total_nums.items():
l, r = check_stone(n)
if r != -1:
r_count = new_total_nums.get(r, 0)
new_total_nums[r] = r_count + (1 * c)
l_count = new_total_nums.get(l, 0)
new_total_nums[l] = l_count + (1 * c)
total_nums = new_total_nums
total = sum(total_nums.values())
print(total) | python |
2024 | 11 | 2 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times?
Your puzzle answer was 193607.
--- Part Two ---
The Historians sure are taking a long time. To be fair, the infinite corridors are very large.
How many stones would you have after blinking a total of 75 times? | 229557103025807 | from collections import defaultdict
import sys
sys.setrecursionlimit(2**30)
with open("./day_11.in") as fin:
raw_nums = list(map(int, fin.read().strip().split()))
nums = defaultdict(int)
for x in raw_nums:
nums[x] += 1
def blink(nums: dict):
new_nums = defaultdict(int)
for x in nums:
l = len(str(x))
if x == 0:
new_nums[1] += nums[0]
elif l % 2 == 0:
new_nums[int(str(x)[:l//2])] += nums[x]
new_nums[int(str(x)[l//2:])] += nums[x]
else:
new_nums[x * 2024] += nums[x]
return new_nums
for i in range(75):
nums = blink(nums)
ans = 0
for x in nums:
ans += nums[x]
print(ans) | python |
2024 | 11 | 2 | --- Day 11: Plutonian Pebbles ---
The ancient civilization on Pluto was known for its ability to manipulate spacetime, and while The Historians explore their infinite corridors, you've noticed a strange set of physics-defying stones.
At first glance, they seem like normal stones: they're arranged in a perfectly straight line, and each stone has a number engraved on it.
The strange part is that every time you blink, the stones change.
Sometimes, the number engraved on a stone changes. Other times, a stone might split in two, causing all the other stones to shift over a bit to make room in their perfectly straight line.
As you observe them for a while, you find that the stones have a consistent behavior. Every time you blink, the stones each simultaneously change according to the first applicable rule in this list:
If the stone is engraved with the number 0, it is replaced by a stone engraved with the number 1.
If the stone is engraved with a number that has an even number of digits, it is replaced by two stones. The left half of the digits are engraved on the new left stone, and the right half of the digits are engraved on the new right stone. (The new numbers don't keep extra leading zeroes: 1000 would become stones 10 and 0.)
If none of the other rules apply, the stone is replaced by a new stone; the old stone's number multiplied by 2024 is engraved on the new stone.
No matter how the stones change, their order is preserved, and they stay on their perfectly straight line.
How will the stones evolve if you keep blinking at them? You take a note of the number engraved on each stone in the line (your puzzle input).
If you have an arrangement of five stones engraved with the numbers 0 1 10 99 999 and you blink once, the stones transform as follows:
The first stone, 0, becomes a stone marked 1.
The second stone, 1, is multiplied by 2024 to become 2024.
The third stone, 10, is split into a stone marked 1 followed by a stone marked 0.
The fourth stone, 99, is split into two stones marked 9.
The fifth stone, 999, is replaced by a stone marked 2021976.
So, after blinking once, your five stones would become an arrangement of seven stones engraved with the numbers 1 2024 1 0 9 9 2021976.
Here is a longer example:
Initial arrangement:
125 17
After 1 blink:
253000 1 7
After 2 blinks:
253 0 2024 14168
After 3 blinks:
512072 1 20 24 28676032
After 4 blinks:
512 72 2024 2 0 2 4 2867 6032
After 5 blinks:
1036288 7 2 20 24 4048 1 4048 8096 28 67 60 32
After 6 blinks:
2097446912 14168 4048 2 0 2 4 40 48 2024 40 48 80 96 2 8 6 7 6 0 3 2
In this example, after blinking six times, you would have 22 stones. After blinking 25 times, you would have 55312 stones!
Consider the arrangement of stones in front of you. How many stones will you have after blinking 25 times?
Your puzzle answer was 193607.
--- Part Two ---
The Historians sure are taking a long time. To be fair, the infinite corridors are very large.
How many stones would you have after blinking a total of 75 times? | 229557103025807 | try:
with open("11/input.txt", "r") as file:
data = file.read()
except Exception:
with open("input.txt", "r") as file:
data = file.read()
data = data.split(" ")
class Stone:
def __init__(self, n, ntimes = 1):
self.n = int(n)
self.ntimes = ntimes
def evolve(self):
if self.n == 0:
self.n = 1
return [self]
elif len(str(self.n)) % 2 == 0:
return [Stone(str(self.n)[:len(str(self.n))//2], self.ntimes), Stone(str(self.n)[len(str(self.n))//2:], self.ntimes)]
else:
self.n = self.n*2024
return [self]
def __str__(self):
return "{"+str(self.n)+","+str(self.ntimes)+"}"
stones = []
for i in data:
stones.append(Stone(i))
blinks = 75
for blink in range(blinks):
newstones = []
print("Blink ", blink)
#print(" ".join([x.__str__() for x in stones]))
print(len(stones))
for i in range(len(stones)):
for stone in stones[i].evolve():
newstones.append(stone)
stones = newstones
if True:
i = -1
while i < len(stones)-1:
i = i+1
j = i
while j < len(stones)-1:
j = j+1
if stones[i].n == stones[j].n:
stones[i].ntimes += stones[j].ntimes
del stones[j]
j = j-1
print("\n\n", len(stones))
res = 0
for i in stones:
res += i.ntimes
print(res) | python |
2024 | 12 | 1 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map? | 1377008 | def visit(x, y, visited):
area = 1
visited.add((x, y))
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if ((x + dx, y + dy) not in visited and 0 <= x + dx < width
and 0 <= y + dy < height and garden[y][x] == garden[y + dy][x + dx]):
d_area, _ = visit(x + dx, y + dy, visited)
area += d_area
return area, visited
def perimeter(plot):
min_x = min(plot, key=lambda p: p[0])[0]
min_y = min(plot, key=lambda p: p[1])[1]
max_x = max(plot, key=lambda p: p[0])[0]
max_y = max(plot, key=lambda p: p[1])[1]
perim = 0
for ray_x in range(min_x , max_x + 1):
is_in = False
side_count = 0
for ray_y in range(min_y, max_y + 2):
if (not is_in and (ray_x, ray_y) in plot) or (is_in and (ray_x, ray_y) not in plot):
is_in = not is_in
side_count += 1
perim += side_count
for ray_y in range(min_y , max_y + 1):
is_in = False
side_count = 0
for ray_x in range(min_x, max_x + 2):
if (not is_in and (ray_x, ray_y) in plot) or (is_in and (ray_x, ray_y) not in plot):
is_in = not is_in
side_count += 1
perim += side_count
return perim
def main():
visited = set()
result = 0
for y, row in enumerate(garden):
for x, column in enumerate(row):
if (x, y) not in visited:
area, v = visit(x, y, set())
perim = perimeter(v)
visited.update(v)
result += area * perim
print(result)
with open("12_input.txt", "r") as f:
garden = [line.strip() for line in f.readlines()]
width = len(garden[0])
height = len(garden)
if __name__ == '__main__':
main() | python |
2024 | 12 | 1 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map? | 1377008 | from collections import deque
inp = []
with open('day12-data.txt', 'r') as f:
for line in f:
inp.append(list(line.strip()))
# print(inp)
num_rows = len(inp)
num_cols = len(inp[0])
def in_bounds(rc):
r, c = rc
return (0 <= r < num_rows) and (0 <= c < num_cols)
def get_plant(rc):
r, c = rc
return inp[r][c]
def get_neighbors(rc):
r, c = rc
neighbors = []
ds = [(-1, 0), (0, 1), (1, 0), (0, -1)] # NESW
for (dr, dc) in ds:
neighbors.append((r + dr, c + dc))
return [n for n in neighbors if in_bounds(n)]
def get_plant_neighbors(rc):
neighbors = get_neighbors(rc)
return [n for n in neighbors if get_plant(n)==get_plant(rc)]
# BFS
def get_region(rc):
visited = set()
region = set()
queue = deque([rc])
while queue:
node = queue.popleft()
if node not in visited:
visited.add(node)
# visit node
region.add(node)
# add all unvisited neighbors to the queue
neighbors = get_plant_neighbors(node)
unvisited_neighbors = [n for n in neighbors if n not in visited]
# print(f'At node {node}, ns: {neighbors}, unvisited: {unvisited_neighbors}')
queue.extend(unvisited_neighbors)
return region
def calc_perimeter(region):
perimeter = 0
for rc in region:
plant = get_plant(rc)
neighbors = get_plant_neighbors(rc)
# Boundary adds to perimeter
perimeter += 4 - len(neighbors)
return perimeter
regions = []
visited = set()
for r in range(num_rows):
for c in range(num_cols):
rc = (r, c)
if rc not in visited:
region = get_region(rc)
visited |= region
regions.append(region)
# print(regions)
total_price = 0
for region in regions:
plant = get_plant(next(iter(region)))
area = len(region)
perimeter = calc_perimeter(region)
price = area * perimeter
total_price += price
# print(f'{plant} (area: {area}, perimeter: {perimeter}): {region}')
print(total_price) | python |
2024 | 12 | 1 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map? | 1377008 | input = open("day_12\input.txt", "r").read().splitlines()
directions = [(1,0), (0,1), (-1, 0), (0, -1)]
total = 0
def add_padding(matrix):
padding_row = ['!' * (len(matrix[0]) + 2)]
padded_matrix = [f"{'!'}{row}{'!'}" for row in matrix]
return padding_row + padded_matrix + padding_row
def explore(char, i, j):
global area, perimeter
if not input[i][j] == char:
perimeter += 1
return
visited.add((i,j))
global_visited.add((i, j))
area += 1
for (dy, dx) in directions:
if not (i + dy, j + dx) in visited:
explore(char, i + dy, j + dx)
input = [list(line) for line in add_padding(input)]
global_visited = set()
for i in range(len(input)):
for j in range(len(input[i])):
if not input[i][j] == "!" and not (i, j) in global_visited:
visited = set()
area = 0
perimeter = 0
explore(input[i][j], i, j)
total += area * perimeter
print(f"The total price of fencing all the regions is {total}") | python |
2024 | 12 | 1 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map? | 1377008 | from collections import deque
with open('input.txt') as f:
data = f.read().splitlines()
xmax = len(data[0])
ymax = len(data)
total_seen = set()
def calc_plot(x, y):
plant = data[y][x]
perimeter = 0
area = 0
seen = set()
q = deque()
q.append((x, y))
while q:
xi, yi = q.popleft()
if (xi, yi) in seen:
continue
if xi < 0 or xi >= xmax or yi < 0 or yi >= ymax or data[yi][xi] != plant:
perimeter += 1
continue
seen.add((xi, yi))
area += 1
q.append((xi + 1, yi))
q.append((xi - 1, yi))
q.append((xi, yi + 1))
q.append((xi, yi - 1))
total_seen.update(seen)
return area * perimeter
total = 0
for yi in range(ymax):
for xi in range(xmax):
if (xi, yi) in total_seen:
continue
total += calc_plot(xi, yi)
print(total) | python |
2024 | 12 | 1 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map? | 1377008 | from typing import List
from pprint import pprint as pprint
INPUT_FILE = "input.txt"
visited = set()
class Plot:
def __init__(self, plant: str, area: int, perimeter: int):
self.plant = plant
self.area = area
self.perimeter = perimeter
def __repr__(self):
return f"Plot({self.plant}, {self.area}, {self.perimeter})"
def __str__(self):
return f"Plot({self.plant}, {self.area}, {self.perimeter})"
def readInput() -> List[List[str]]:
with open(INPUT_FILE, 'r') as f:
return [list(line.strip()) for line in f.readlines()]
def findPlot(grid: List[List[str]], currentPlot: Plot, currentLocation: tuple[int, int]) -> Plot:
plot = Plot(currentPlot.plant, currentPlot.area, currentPlot.perimeter)
visited.add(currentLocation)
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
for direction in directions:
x = currentLocation[0] + direction[0]
y = currentLocation[1] + direction[1]
if x < 0 or x >= len(grid) or y < 0 or y >= len(grid[0]):
plot.perimeter += 1
continue
if grid[x][y] != plot.plant:
plot.perimeter += 1
continue
if (x, y) in visited:
continue
plot.area += 1
plot = findPlot(grid, plot, (x, y))
return plot
def getPlots(grid: List[List[str]]) -> List[Plot]:
plots = []
for i in range(len(grid)):
for j in range(len(grid[0])):
if (i, j) in visited:
continue
plot = findPlot(grid, Plot(grid[i][j], 1, 0), (i, j))
plots.append(plot)
return plots
def calculateCosts(plots: List[Plot]) -> int:
cost = 0
for plot in plots:
cost += plot.area * plot.perimeter
return cost
def main():
grid = readInput()
pprint(grid)
plots = getPlots(grid)
pprint(plots)
print(f'Cost: {calculateCosts(plots)}')
if __name__ == "__main__":
main() | python |
2024 | 12 | 2 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map?
Your puzzle answer was 1377008.
--- Part Two ---
Fortunately, the Elves are trying to order so much fence that they qualify for a bulk discount!
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the number of sides each region has. Each straight section of fence counts as a side, regardless of how long it is.
Consider this example again:
AAAA
BBCD
BBCC
EEEC
The region containing type A plants has 4 sides, as does each of the regions containing plants of type B, D, and E. However, the more complex region containing the plants of type C has 8 sides!
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions A through E have prices 16, 16, 32, 4, and 12, respectively, for a total price of 80.
The second example above (full of type X and O plants) would have a total price of 436.
Here's a map that includes an E-shaped region full of type E plants:
EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
The E-shaped region has an area of 17 and 12 sides for a price of 204. Including the two regions full of type X plants, this map has a total price of 236.
This map has a total price of 368:
AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
It includes two regions full of type B plants (each with 4 sides) and a single region full of type A plants (with 4 sides on the outside and 8 more sides on the inside, a total of 12 sides). Be especially careful when counting the fence around regions like the one full of type A plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two B regions touch diagonally). (The Elves would have used the M������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bius Fencing Company instead, but their contract terms were too one-sided.)
The larger example from before now has the following updated prices:
A region of R plants with price 12 * 10 = 120.
A region of I plants with price 4 * 4 = 16.
A region of C plants with price 14 * 22 = 308.
A region of F plants with price 10 * 12 = 120.
A region of V plants with price 13 * 10 = 130.
A region of J plants with price 11 * 12 = 132.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 8 = 104.
A region of I plants with price 14 * 16 = 224.
A region of M plants with price 5 * 6 = 30.
A region of S plants with price 3 * 6 = 18.
Adding these together produces its new total price of 1206.
What is the new total price of fencing all regions on your map? | 815788 | input = open("day_12\input.txt", "r").read().splitlines()
directions = [(1,0), (0,1), (-1, 0), (0, -1)]
total = 0
def add_padding(matrix):
padding_row = ['!' * (len(matrix[0]) + 2)]
padded_matrix = [f"{'!'}{row}{'!'}" for row in matrix]
return padding_row + padded_matrix + padding_row
def explore(char, i, j):
global area, sides
visited.add((i,j))
global_visited.add((i,j))
area += 1
for (dy,dx) in directions:
if input[i + dy][j + dx] != char:
sides += [((dy,dx), (i,j))]
elif not (i + dy, j + dx) in visited:
explore(char, i + dy, j + dx)
def calculate_sides(sides):
unique_sides = 0
while len(sides) > 0:
current_side = sides[0]
sides = explore_side(current_side, sides[0:])
unique_sides += 1
if current_side in sides: sides.remove(current_side)
return unique_sides
def explore_side(side, sides):
if side[0] == (1, 0) or side[0] == (-1, 0):
targets = [(side[0], (side[1][0], side[1][1] - 1)), (side[0], (side[1][0], side[1][1] + 1))]
for target in targets:
if target in sides:
sides.remove(target)
sides = explore_side(target, sides)
elif side[0] == (0, 1) or side[0] == (0, -1):
targets = [(side[0], (side[1][0] + 1, side[1][1])), (side[0], (side[1][0] - 1, side[1][1]))]
for target in targets:
if target in sides:
sides.remove(target)
sides = explore_side(target, sides)
return sides
input = [list(line) for line in add_padding(input)]
global_visited = set()
for i in range(len(input)):
for j in range(len(input[i])):
if input[i][j] != "!" and not (i, j) in global_visited:
visited = set()
area = 0
sides = []
explore(input[i][j], i, j)
total += area * calculate_sides(sides)
print(f"The total price of fencing all the regions is {total}") | python |
2024 | 12 | 2 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map?
Your puzzle answer was 1377008.
--- Part Two ---
Fortunately, the Elves are trying to order so much fence that they qualify for a bulk discount!
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the number of sides each region has. Each straight section of fence counts as a side, regardless of how long it is.
Consider this example again:
AAAA
BBCD
BBCC
EEEC
The region containing type A plants has 4 sides, as does each of the regions containing plants of type B, D, and E. However, the more complex region containing the plants of type C has 8 sides!
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions A through E have prices 16, 16, 32, 4, and 12, respectively, for a total price of 80.
The second example above (full of type X and O plants) would have a total price of 436.
Here's a map that includes an E-shaped region full of type E plants:
EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
The E-shaped region has an area of 17 and 12 sides for a price of 204. Including the two regions full of type X plants, this map has a total price of 236.
This map has a total price of 368:
AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
It includes two regions full of type B plants (each with 4 sides) and a single region full of type A plants (with 4 sides on the outside and 8 more sides on the inside, a total of 12 sides). Be especially careful when counting the fence around regions like the one full of type A plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two B regions touch diagonally). (The Elves would have used the M������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bius Fencing Company instead, but their contract terms were too one-sided.)
The larger example from before now has the following updated prices:
A region of R plants with price 12 * 10 = 120.
A region of I plants with price 4 * 4 = 16.
A region of C plants with price 14 * 22 = 308.
A region of F plants with price 10 * 12 = 120.
A region of V plants with price 13 * 10 = 130.
A region of J plants with price 11 * 12 = 132.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 8 = 104.
A region of I plants with price 14 * 16 = 224.
A region of M plants with price 5 * 6 = 30.
A region of S plants with price 3 * 6 = 18.
Adding these together produces its new total price of 1206.
What is the new total price of fencing all regions on your map? | 815788 | def add_to_region_from(grid, loc, region, visited):
region.add(loc)
visited.add(loc)
neighbors = [(loc[0] - 1, loc[1]), (loc[0] + 1, loc[1]), (loc[0], loc[1] - 1), (loc[0], loc[1] + 1)]
neighbors = [pt for pt in neighbors if pt[0] in range(len(grid)) and pt[1] in range(len(grid))]
for neighbor in neighbors:
if grid[loc[0]][loc[1]] == grid[neighbor[0]][neighbor[1]] and not neighbor in visited:
add_to_region_from(grid, neighbor, region, visited)
def get_area(region):
return len(region)
def get_sides(region):
sides = 0
visited_edges = set()
sorted_region = sorted(list(region))
for loc in sorted_region:
above = (loc[0] - 1, loc[1])
if above not in region:
visited_edges.add((above, 'bottom'))
if ((above[0], above[1] - 1), 'bottom') not in visited_edges and ((above[0], above[1] + 1), 'bottom') not in visited_edges:
sides += 1
below = (loc[0] + 1, loc[1])
if below not in region:
visited_edges.add((below, 'top'))
if ((below[0], below[1] - 1), 'top') not in visited_edges and ((below[0], below[1] + 1), 'top') not in visited_edges:
sides += 1
left = (loc[0], loc[1] - 1)
if left not in region:
visited_edges.add((left, 'right'))
if ((left[0] - 1, left[1]), 'right') not in visited_edges and ((left[0] + 1, left[1]), 'right') not in visited_edges:
sides += 1
right = (loc[0], loc[1] + 1)
if right not in region:
visited_edges.add((right, 'left'))
if ((right[0] - 1, right[1]), 'left') not in visited_edges and ((right[0] + 1, right[1]), 'left') not in visited_edges:
sides += 1
return sides
def get_corners(region):
corners = 0
for loc in region:
outer_top_left = [((0, -1), False), ((-1, 0), False)]
outer_top_right = [((0, 1), False), ((-1, 0), False)]
outer_bottom_right = [((0, 1), False), ((1, 0), False)]
outer_bottom_left = [((0, -1), False), ((1, 0), False)]
inner_top_left = [((0, 1), True), ((1, 0), True), ((1, 1), False)]
inner_top_right = [((0, -1), True), ((1, 0), True), ((1, -1), False)]
inner_bottom_right = [((0, -1), True), ((-1, 0), True), ((-1, -1), False)]
inner_bottom_left = [((0, 1), True), ((-1, 0), True), ((-1, 1), False)]
all_neighbors = [outer_top_left, outer_top_right, outer_bottom_right, outer_bottom_left, inner_top_left, inner_top_right, inner_bottom_right, inner_bottom_left]
corners += sum([all([((loc[0] + pt[0][0], loc[1] + pt[0][1]) in region) == pt[1] for pt in neighbor]) for neighbor in all_neighbors])
return corners
def get_perimeter(region):
perimeter = 0
for loc in region:
neighbors = [(loc[0] - 1, loc[1]), (loc[0] + 1, loc[1]), (loc[0], loc[1] - 1), (loc[0], loc[1] + 1)]
perimeter += len([pt for pt in neighbors if pt not in region])
return perimeter
with open('input.txt') as f:
grid = [[c for c in line] for line in f.read().splitlines()]
visited = set()
regions = []
for i in range(len(grid)):
for j in range(len(grid[i])):
if not (i, j) in visited:
region = set()
add_to_region_from(grid, (i, j), region, visited)
regions.append(region)
visited.add((i, j))
total_price = 0
for region in regions:
price = get_area(region) * get_corners(region)
total_price += price
print(total_price) | python |
2024 | 12 | 2 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map?
Your puzzle answer was 1377008.
--- Part Two ---
Fortunately, the Elves are trying to order so much fence that they qualify for a bulk discount!
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the number of sides each region has. Each straight section of fence counts as a side, regardless of how long it is.
Consider this example again:
AAAA
BBCD
BBCC
EEEC
The region containing type A plants has 4 sides, as does each of the regions containing plants of type B, D, and E. However, the more complex region containing the plants of type C has 8 sides!
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions A through E have prices 16, 16, 32, 4, and 12, respectively, for a total price of 80.
The second example above (full of type X and O plants) would have a total price of 436.
Here's a map that includes an E-shaped region full of type E plants:
EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
The E-shaped region has an area of 17 and 12 sides for a price of 204. Including the two regions full of type X plants, this map has a total price of 236.
This map has a total price of 368:
AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
It includes two regions full of type B plants (each with 4 sides) and a single region full of type A plants (with 4 sides on the outside and 8 more sides on the inside, a total of 12 sides). Be especially careful when counting the fence around regions like the one full of type A plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two B regions touch diagonally). (The Elves would have used the M������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bius Fencing Company instead, but their contract terms were too one-sided.)
The larger example from before now has the following updated prices:
A region of R plants with price 12 * 10 = 120.
A region of I plants with price 4 * 4 = 16.
A region of C plants with price 14 * 22 = 308.
A region of F plants with price 10 * 12 = 120.
A region of V plants with price 13 * 10 = 130.
A region of J plants with price 11 * 12 = 132.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 8 = 104.
A region of I plants with price 14 * 16 = 224.
A region of M plants with price 5 * 6 = 30.
A region of S plants with price 3 * 6 = 18.
Adding these together produces its new total price of 1206.
What is the new total price of fencing all regions on your map? | 815788 | from collections import deque
with open('input.txt') as f:
data = f.read().splitlines()
xmax = len(data[0])
ymax = len(data)
total_seen = set()
def count_corners(plant, x, y):
up = data[y - 1][x] if y - 1 >= 0 else None
down = data[y + 1][x] if y + 1 < ymax else None
left = data[y][x - 1] if x - 1 >= 0 else None
right = data[y][x + 1] if x + 1 < xmax else None
count = sum(1 for i in (up, down, left, right) if i == plant)
corners = 0
if count == 0:
return 4
if count == 1:
return 2
if count == 2:
if left == right == plant or up == down == plant:
return 0
corners += 1
if up == left == plant and (y - 1 >= 0 and x - 1 >= 0) and data[y - 1][x - 1] != plant:
corners += 1
if up == right == plant and (y - 1 >= 0 and x + 1 < xmax) and data[y - 1][x + 1] != plant:
corners += 1
if down == left == plant and (y + 1 < ymax and x - 1 >= 0) and data[y + 1][x - 1] != plant:
corners += 1
if down == right == plant and (y + 1 < ymax and x + 1 < xmax) and data[y + 1][x + 1] != plant:
corners += 1
return corners
def calc_plot(x, y):
plant = data[y][x]
perimeter = 0
area = 0
corners = 0
seen = set()
q = deque()
q.append((x, y))
while q:
xi, yi = q.popleft()
if (xi, yi) in seen:
continue
if xi < 0 or xi >= xmax or yi < 0 or yi >= ymax or data[yi][xi] != plant:
perimeter += 1
continue
seen.add((xi, yi))
area += 1
corners += count_corners(plant, xi, yi)
q.append((xi + 1, yi))
q.append((xi - 1, yi))
q.append((xi, yi + 1))
q.append((xi, yi - 1))
total_seen.update(seen)
return area * corners
total = 0
for yi in range(ymax):
for xi in range(xmax):
if (xi, yi) in total_seen:
continue
total += calc_plot(xi, yi)
print(total) | python |
2024 | 12 | 2 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map?
Your puzzle answer was 1377008.
--- Part Two ---
Fortunately, the Elves are trying to order so much fence that they qualify for a bulk discount!
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the number of sides each region has. Each straight section of fence counts as a side, regardless of how long it is.
Consider this example again:
AAAA
BBCD
BBCC
EEEC
The region containing type A plants has 4 sides, as does each of the regions containing plants of type B, D, and E. However, the more complex region containing the plants of type C has 8 sides!
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions A through E have prices 16, 16, 32, 4, and 12, respectively, for a total price of 80.
The second example above (full of type X and O plants) would have a total price of 436.
Here's a map that includes an E-shaped region full of type E plants:
EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
The E-shaped region has an area of 17 and 12 sides for a price of 204. Including the two regions full of type X plants, this map has a total price of 236.
This map has a total price of 368:
AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
It includes two regions full of type B plants (each with 4 sides) and a single region full of type A plants (with 4 sides on the outside and 8 more sides on the inside, a total of 12 sides). Be especially careful when counting the fence around regions like the one full of type A plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two B regions touch diagonally). (The Elves would have used the M������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bius Fencing Company instead, but their contract terms were too one-sided.)
The larger example from before now has the following updated prices:
A region of R plants with price 12 * 10 = 120.
A region of I plants with price 4 * 4 = 16.
A region of C plants with price 14 * 22 = 308.
A region of F plants with price 10 * 12 = 120.
A region of V plants with price 13 * 10 = 130.
A region of J plants with price 11 * 12 = 132.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 8 = 104.
A region of I plants with price 14 * 16 = 224.
A region of M plants with price 5 * 6 = 30.
A region of S plants with price 3 * 6 = 18.
Adding these together produces its new total price of 1206.
What is the new total price of fencing all regions on your map? | 815788 | def visit(x, y, visited):
area = 1
visited.add((x, y))
for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
if ((x + dx, y + dy) not in visited and 0 <= x + dx < width
and 0 <= y + dy < height and garden[y][x] == garden[y + dy][x + dx]):
d_area, _ = visit(x + dx, y + dy, visited)
area += d_area
return area, visited
def perimeter(plot):
min_x = min(plot, key=lambda p: p[0])[0]
min_y = min(plot, key=lambda p: p[1])[1]
max_x = max(plot, key=lambda p: p[0])[0]
max_y = max(plot, key=lambda p: p[1])[1]
# vertical rays
hits = {}
for ray_x in range(min_x - 1, max_x + 1):
is_in = False
hits[ray_x] = []
for ray_y in range(min_y - 1, max_y + 2):
if (not is_in and (ray_x, ray_y) in plot) or (is_in and (ray_x, ray_y) not in plot):
is_in = not is_in
hits[ray_x].append((ray_y, is_in))
side_count = 0
for i, hit_x in enumerate(hits):
if i > 0:
for (y, is_in) in hits[hit_x]:
if (y, is_in) not in hits[hit_x - 1]:
side_count += 1
# horizontal rays
hits = {}
for ray_y in range(min_y - 1, max_y + 1):
is_in = False
hits[ray_y] = []
for ray_x in range(min_x - 1, max_x + 2):
if (not is_in and (ray_x, ray_y) in plot) or (is_in and (ray_x, ray_y) not in plot):
is_in = not is_in
hits[ray_y].append((ray_x, is_in))
for i, hit_y in enumerate(hits):
if i > 0:
for (y, is_in) in hits[hit_y]:
if (y, is_in) not in hits[hit_y - 1]:
side_count += 1
return side_count
def main():
visited = set()
result = 0
for y, row in enumerate(garden):
for x, column in enumerate(row):
if (x, y) not in visited:
area, v = visit(x, y, set())
perim = perimeter(v)
visited.update(v)
result += area * perim
print(result)
with open("12_input.txt", "r") as f:
garden = [line.strip() for line in f.readlines()]
width = len(garden[0])
height = len(garden)
if __name__ == '__main__':
main() | python |
2024 | 12 | 2 | --- Day 12: Garden Groups ---
Why not search for the Chief Historian near the gardener and his massive farm? There's plenty of food, so The Historians grab something to eat while they search.
You're about to settle near a complex arrangement of garden plots when some Elves ask if you can lend a hand. They'd like to set up fences around each region of garden plots, but they can't figure out how much fence they need to order or how much it will cost. They hand you a map (your puzzle input) of the garden plots.
Each garden plot grows only a single type of plant and is indicated by a single letter on your map. When multiple garden plots are growing the same type of plant and are touching (horizontally or vertically), they form a region. For example:
AAAA
BBCD
BBCC
EEEC
This 4x4 arrangement includes garden plots growing five different types of plants (labeled A, B, C, D, and E), each grouped into their own region.
In order to accurately calculate the cost of the fence around a single region, you need to know that region's area and perimeter.
The area of a region is simply the number of garden plots the region contains. The above map's type A, B, and C plants are each in a region of area 4. The type E plants are in a region of area 3; the type D plants are in a region of area 1.
Each garden plot is a square and so has four sides. The perimeter of a region is the number of sides of garden plots in the region that do not touch another garden plot in the same region. The type A and C plants are each in a region with perimeter 10. The type B and E plants are each in a region with perimeter 8. The lone D plot forms its own region with perimeter 4.
Visually indicating the sides of plots in each region that contribute to the perimeter using - and |, the above map's regions' perimeters are measured as follows:
+-+-+-+-+
|A A A A|
+-+-+-+-+ +-+
|D|
+-+-+ +-+ +-+
|B B| |C|
+ + + +-+
|B B| |C C|
+-+-+ +-+ +
|C|
+-+-+-+ +-+
|E E E|
+-+-+-+
Plants of the same type can appear in multiple separate regions, and regions can even appear within other regions. For example:
OOOOO
OXOXO
OOOOO
OXOXO
OOOOO
The above map contains five regions, one containing all of the O garden plots, and the other four each containing a single X plot.
The four X regions each have area 1 and perimeter 4. The region containing 21 type O plants is more complicated; in addition to its outer edge contributing a perimeter of 20, its boundary with each X region contributes an additional 4 to its perimeter, for a total perimeter of 36.
Due to "modern" business practices, the price of fence required for a region is found by multiplying that region's area by its perimeter. The total price of fencing all regions on a map is found by adding together the price of fence for every region on the map.
In the first example, region A has price 4 * 10 = 40, region B has price 4 * 8 = 32, region C has price 4 * 10 = 40, region D has price 1 * 4 = 4, and region E has price 3 * 8 = 24. So, the total price for the first example is 140.
In the second example, the region with all of the O plants has price 21 * 36 = 756, and each of the four smaller X regions has price 1 * 4 = 4, for a total price of 772 (756 + 4 + 4 + 4 + 4).
Here's a larger example:
RRRRIICCFF
RRRRIICCCF
VVRRRCCFFF
VVRCCCJFFF
VVVVCJJCFE
VVIVCCJJEE
VVIIICJJEE
MIIIIIJJEE
MIIISIJEEE
MMMISSJEEE
It contains:
A region of R plants with price 12 * 18 = 216.
A region of I plants with price 4 * 8 = 32.
A region of C plants with price 14 * 28 = 392.
A region of F plants with price 10 * 18 = 180.
A region of V plants with price 13 * 20 = 260.
A region of J plants with price 11 * 20 = 220.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 18 = 234.
A region of I plants with price 14 * 22 = 308.
A region of M plants with price 5 * 12 = 60.
A region of S plants with price 3 * 8 = 24.
So, it has a total price of 1930.
What is the total price of fencing all regions on your map?
Your puzzle answer was 1377008.
--- Part Two ---
Fortunately, the Elves are trying to order so much fence that they qualify for a bulk discount!
Under the bulk discount, instead of using the perimeter to calculate the price, you need to use the number of sides each region has. Each straight section of fence counts as a side, regardless of how long it is.
Consider this example again:
AAAA
BBCD
BBCC
EEEC
The region containing type A plants has 4 sides, as does each of the regions containing plants of type B, D, and E. However, the more complex region containing the plants of type C has 8 sides!
Using the new method of calculating the per-region price by multiplying the region's area by its number of sides, regions A through E have prices 16, 16, 32, 4, and 12, respectively, for a total price of 80.
The second example above (full of type X and O plants) would have a total price of 436.
Here's a map that includes an E-shaped region full of type E plants:
EEEEE
EXXXX
EEEEE
EXXXX
EEEEE
The E-shaped region has an area of 17 and 12 sides for a price of 204. Including the two regions full of type X plants, this map has a total price of 236.
This map has a total price of 368:
AAAAAA
AAABBA
AAABBA
ABBAAA
ABBAAA
AAAAAA
It includes two regions full of type B plants (each with 4 sides) and a single region full of type A plants (with 4 sides on the outside and 8 more sides on the inside, a total of 12 sides). Be especially careful when counting the fence around regions like the one full of type A plants; in particular, each section of fence has an in-side and an out-side, so the fence does not connect across the middle of the region (where the two B regions touch diagonally). (The Elves would have used the M������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bius Fencing Company instead, but their contract terms were too one-sided.)
The larger example from before now has the following updated prices:
A region of R plants with price 12 * 10 = 120.
A region of I plants with price 4 * 4 = 16.
A region of C plants with price 14 * 22 = 308.
A region of F plants with price 10 * 12 = 120.
A region of V plants with price 13 * 10 = 130.
A region of J plants with price 11 * 12 = 132.
A region of C plants with price 1 * 4 = 4.
A region of E plants with price 13 * 8 = 104.
A region of I plants with price 14 * 16 = 224.
A region of M plants with price 5 * 6 = 30.
A region of S plants with price 3 * 6 = 18.
Adding these together produces its new total price of 1206.
What is the new total price of fencing all regions on your map? | 815788 | from collections import deque
def get_total_cost(farm):
n = len(farm)
m = len(farm[0])
def in_bounds(r, c):
return (0 <= r < n) and (0 <= c < m)
def get_val(r, c):
return farm[r][c]
def get_neighbours(r, c):
neighbours = []
dirs = [(1, 0), (0, 1), (-1, 0), (0, -1)]
for (dr, dc) in dirs:
neighbours.append((r + dr, c + dc))
return [neighbour for neighbour in neighbours if in_bounds(neighbour[0], neighbour[1])]
def get_val_neighbours(r, c):
neighbours = get_neighbours(r, c)
return [neighbour for neighbour in neighbours if get_val(neighbour[0], neighbour[1]) == get_val(r, c)]
def get_region(r, c):
visited = set()
region = set()
queue = deque([(r, c)])
while queue:
node = queue.popleft()
if node not in visited:
visited.add(node)
region.add(node)
neighbours = get_val_neighbours(node[0], node[1])
neighbours = [neighbour for neighbour in neighbours if neighbour not in visited]
queue.extend(neighbours)
return region
def calc_edges(region):
edges = 0
for (r, c) in region:
if ((r - 1, c) not in region):
if not (((r, c - 1) in region) and ((r - 1, c - 1) not in region)):
edges += 1
if ((r + 1, c) not in region):
if not (((r, c - 1) in region) and ((r + 1, c - 1) not in region)):
edges += 1
if ((r, c - 1) not in region):
if not (((r - 1, c) in region) and ((r - 1, c - 1) not in region)):
edges += 1
if ((r, c + 1) not in region):
if not (((r - 1, c) in region) and ((r - 1, c + 1) not in region)):
edges += 1
return edges
regions = []
visited = set()
for i in range(n):
for j in range(m):
if (i, j) not in visited:
region = get_region(i, j)
visited |= region
regions.append(region)
cost = 0
for region in regions:
nextRegion = next(iter(region))
val = get_val(nextRegion[0], nextRegion[1])
area = len(region)
edges = calc_edges(region)
price = area * edges
cost += price
return cost
if __name__ == "__main__":
# Open file 'day12-2.txt' in read mode
with open('day12-2.txt', 'r') as f:
farm = []
for line in f:
farm.append(line.strip())
print("Total fencing cost: " + str(get_total_cost(farm))) | python |
2024 | 13 | 1 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 34787 | with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
total = 0
for problem in range((len(input_text) + 1) // 4):
button_a_move_x, button_a_move_y = (
input_text[problem * 4].removeprefix("Button A: ").split(", ")
)
button_a_move = (
int(button_a_move_x.removeprefix("X+")),
int(button_a_move_y.removeprefix("Y+")),
)
button_b_move_x, button_b_move_y = (
input_text[problem * 4 + 1].removeprefix("Button B: ").split(", ")
)
button_b_move = (
int(button_b_move_x.removeprefix("X+")),
int(button_b_move_y.removeprefix("Y+")),
)
target_x, target_y = input_text[problem * 4 + 2].removeprefix("Prize: ").split(", ")
target = (int(target_x.removeprefix("X=")), int(target_y.removeprefix("Y=")))
min_cost = float("inf")
for a_presses in range(101):
for b_presses in range(101):
if (
a_presses * button_a_move[0] + b_presses * button_b_move[0],
a_presses * button_a_move[1] + b_presses * button_b_move[1],
) == target:
min_cost = min(min_cost, a_presses * 3 + b_presses)
if min_cost < float("inf"):
total += min_cost
print(total) | python |
2024 | 13 | 1 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 34787 | import re
with open("./day_13.in") as fin:
lines = fin.read().strip().split("\n\n")
def parse(x):
lines = x.split("\n")
a = list(map(int, re.findall(r"Button A: X\+(\d+), Y\+(\d+)", lines[0])[0]))
b = list(map(int, re.findall(r"Button B: X\+(\d+), Y\+(\d+)", lines[1])[0]))
p = list(map(int, re.findall(r"Prize: X=(\d+), Y=(\d+)", lines[2])[0]))
return a, b, p
prices = []
for a, b, p in [parse(line) for line in lines]:
def test(i, j):
x = a[0] * i + b[0] * j
y = a[1] * i + b[1] * j
return (x, y) == tuple(p)
va = 1<<30
for i in range(100):
for j in range(100):
if test(i, j):
va = min(va, 3*i + j)
if va < 1<<30:
prices.append(va)
spent = 0
print(sum(prices)) | python |
2024 | 13 | 1 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 34787 | from typing import List
from pprint import pprint as pprint
from functools import cache
INPUT_FILE = "input.txt"
MAX_PRIZE = 401
class Button:
def __init__(self, price: int, d_x: int, d_y: int):
self.price = price
self.d_x = d_x
self.d_y = d_y
def __repr__(self):
return f"Button({self.price}, {self.d_x}, {self.d_y})"
def __str__(self):
return f"Button({self.price}, {self.d_x}, {self.d_y})"
class Prize:
def __init__(self, x: int, y: int):
self.x = x
self.y = y
def __repr__(self):
return f"Price({self.x}, {self.y})"
def __str__(self):
return f"Price({self.x}, {self.y})"
def readInput() -> List[str]:
with open(INPUT_FILE, 'r') as f:
return f.read().split('\n\n')
def parseInput(data: str) -> tuple[Prize, tuple[Button, Button]]:
a, b, prize = data.splitlines()
button_a = Button(3, int(a.split("X+")[1].split(",")[0]), int(a.split("Y+")[1]))
button_b = Button(1, int(b.split("X+")[1].split(",")[0]), int(b.split("Y+")[1]))
prize = Prize(int(prize.split("X=")[1].split(",")[0]), int(prize.split("Y=")[1]))
return (prize, (button_a, button_b))
@cache
def getCost(prize: Prize, buttons: tuple[Button, Button]) -> int:
# lowest_cost = MAX_PRIZE
for a in range(100):
for b in range(100):
if prize.x == buttons[0].d_x*a+buttons[1].d_x*b and prize.y == buttons[0].d_y*a+buttons[1].d_y*b:
return a * buttons[0].price + b * buttons[1].price
return 0
def costs(machines: List[tuple[Prize, tuple[Button, Button]]]) -> List[int]:
costs = []
for machine in machines:
costs.append(getCost(machine[0], machine[1]))
return costs
def main():
data = readInput()
# pprint(data)
machines = [parseInput(line) for line in data]
# pprint(machines)
costs_list = costs(machines)
# pprint(costs_list)
print(f"Result: {sum(costs_list)}")
if __name__ == "__main__":
main() | python |
2024 | 13 | 1 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 34787 | f = open("input.txt")
machines = [elem.split("\n") for elem in f.read().split("\n\n")]
def find_solution(A_button, B_button, prize):
X_a, Y_a = A_button
X_b, Y_b = B_button
X_prize, Y_prize = prize
b = (X_prize * Y_a - Y_prize * X_a) / (X_b * Y_a - X_a * Y_b)
a = (X_prize * Y_b - Y_prize * X_b) / (X_a * Y_b - X_b * Y_a)
if (int(a) == a and a <= 100 and int(b) == b and b <= 100):
return (a,b)
return ()
def get_cost(solution):
return solution[0]*3 + solution[1]
total = 0
for machine in machines:
A_button = tuple([int(text[3:]) for text in machine[0].split(":")[1].split(",")])
B_button = tuple([int(text[3:]) for text in machine[1].split(":")[1].split(",")])
prize = tuple([int(text[3:]) for text in machine[2].split(":")[1].split(",")])
solution = find_solution(A_button, B_button, prize)
if solution != ():
cost = get_cost(solution)
total += cost
print(total) | python |
2024 | 13 | 1 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 34787 | import os
def reader():
return open(f"input.txt", 'r').read().splitlines()
def part1():
f = list(map(lambda s: s.split('\n'), '\n'.join(reader()).split('\n\n')))
M = []
for l in f:
Ax = int(l[0][(l[0].find('X+') + 2):l[0].find(',')])
Ay = int(l[0][(l[0].find('Y+') + 2):])
Bx = int(l[1][(l[1].find('X+') + 2):l[1].find(',')])
By = int(l[1][(l[1].find('Y+') + 2):])
X = int(l[2][(l[2].find('X=') + 2):l[2].find(',')])
Y = int(l[2][(l[2].find('Y=') + 2):])
M.append([(Ax, Ay), (Bx, By), (X, Y)])
t = 0
for m in M:
l = -1, 0
for i in range(101):
for j in range(101):
cost = 3 * i + j
pos = i * m[0][0] + j * m[1][0], i * m[0][1] + j * m[1][1]
if pos == m[2]:
l = (0, cost) if l[0] == -1 else (0, min(l[1], cost))
if l[0] == 0:
t += l[1]
print(t)
part1() | python |
2024 | 13 | 2 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes?
Your puzzle answer was 34787.
--- Part Two ---
As you go to win the first prize, you discover that the claw is nowhere near where you expected it would be. Due to a unit conversion error in your measurements, the position of every prize is actually 10000000000000 higher on both the X and Y axis!
Add 10000000000000 to the X and Y position of every prize. After making this change, the example above would now look like this:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=10000000008400, Y=10000000005400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=10000000012748, Y=10000000012176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=10000000007870, Y=10000000006450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=10000000018641, Y=10000000010279
Now, it is only possible to win a prize on the second and fourth claw machines. Unfortunately, it will take many more than 100 presses to do so.
Using the corrected prize coordinates, figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 85644161121698 | def get_cheapest(machine):
A = machine[0]
B = machine[1]
prize = (machine[2][0] + 10000000000000, machine[2][1] + 10000000000000)
af = (A[1] / A[0])
bf = (B[1] / B[0])
xIntersection = round((prize[0] * af - prize[1]) / (af - bf))
if xIntersection % B[0] != 0:
return 0
b = xIntersection // B[0]
rem = ((prize[0] - B[0] * b), (prize[1] - B[1] * b))
if rem[0] % A[0] != 0:
return 0
a = rem[0] // A[0]
if ((B[0] * b) + (A[0] * a) == prize[0] and (B[1] * b) + (A[1] * a)) == prize[1]:
return b + (a * 3)
return 0
def get_fewest_tokens(machines):
tokens = 0
for machine in machines:
tokens += get_cheapest(machine)
return tokens
if __name__ == "__main__":
# Open file 'day13-2.txt' in read mode
with open('day13-2.txt', 'r') as f:
machines = []
A = (0, 0)
B = (0, 0)
prize = (0, 0)
for i, line in enumerate(f):
line = line.strip()
if i % 4 == 0:
A = (int(line[line.find('+') + 1: line.find(',')]), int(line[line.find(',') + 4:]))
elif i % 4 == 1:
B = (int(line[line.find('+') + 1: line.find(',')]), int(line[line.find(',') + 4:]))
elif i % 4 == 2:
prize = (int(line[line.find('=') + 1: line.find(',')]), int(line[line.find(',') + 4:]))
machines.append([
A,
B,
prize
])
else:
A = (0, 0)
B = (0, 0)
prize = (0, 0)
print("Fewest number of tokens: " + str(get_fewest_tokens(machines))) | python |
2024 | 13 | 2 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes?
Your puzzle answer was 34787.
--- Part Two ---
As you go to win the first prize, you discover that the claw is nowhere near where you expected it would be. Due to a unit conversion error in your measurements, the position of every prize is actually 10000000000000 higher on both the X and Y axis!
Add 10000000000000 to the X and Y position of every prize. After making this change, the example above would now look like this:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=10000000008400, Y=10000000005400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=10000000012748, Y=10000000012176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=10000000007870, Y=10000000006450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=10000000018641, Y=10000000010279
Now, it is only possible to win a prize on the second and fourth claw machines. Unfortunately, it will take many more than 100 presses to do so.
Using the corrected prize coordinates, figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 85644161121698 | f = open("input.txt")
machines = [elem.split("\n") for elem in f.read().split("\n\n")]
def find_solution(A_button, B_button, prize):
X_a, Y_a = A_button
X_b, Y_b = B_button
X_prize, Y_prize = prize
X_prize += 10000000000000
Y_prize += 10000000000000
b = (X_prize * Y_a - Y_prize * X_a) / (X_b * Y_a - X_a * Y_b)
a = (X_prize * Y_b - Y_prize * X_b) / (X_a * Y_b - X_b * Y_a)
if (int(a) == a and int(b) == b):
return (a,b)
return ()
def get_cost(solution):
return solution[0]*3 + solution[1]
total = 0
for machine in machines:
A_button = tuple([int(text[3:]) for text in machine[0].split(":")[1].split(",")])
B_button = tuple([int(text[3:]) for text in machine[1].split(":")[1].split(",")])
prize = tuple([int(text[3:]) for text in machine[2].split(":")[1].split(",")])
solution = find_solution(A_button, B_button, prize)
if solution != ():
cost = get_cost(solution)
total += cost
print(total) | python |
2024 | 13 | 2 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes?
Your puzzle answer was 34787.
--- Part Two ---
As you go to win the first prize, you discover that the claw is nowhere near where you expected it would be. Due to a unit conversion error in your measurements, the position of every prize is actually 10000000000000 higher on both the X and Y axis!
Add 10000000000000 to the X and Y position of every prize. After making this change, the example above would now look like this:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=10000000008400, Y=10000000005400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=10000000012748, Y=10000000012176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=10000000007870, Y=10000000006450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=10000000018641, Y=10000000010279
Now, it is only possible to win a prize on the second and fourth claw machines. Unfortunately, it will take many more than 100 presses to do so.
Using the corrected prize coordinates, figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 85644161121698 | import re
from typing import Tuple, List
def parse_input(file_path: str) -> List[Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]]:
"""
Parses the input file to extract button and prize coordinates.
The input file should contain lines formatted as:
"Button A: X+<int>, Y+<int> Button B: X+<int>, Y+<int> Prize: X=<int>, Y=<int>"
Args:
file_path (str): The path to the input file.
Returns:
List[Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]]: A list of tuples, each containing:
- A tuple representing the coordinates of Button A (X, Y).
- A tuple representing the coordinates of Button B (X, Y).
- A tuple representing the coordinates of the Prize (X, Y) with 10000000000000 added to each coordinate.
"""
pattern = re.compile(r"Button A: X\+(\d+), Y\+(\d+)\s+Button B: X\+(\d+), Y\+(\d+)\s+Prize: X=(\d+), Y=(\d+)")
results = []
with open(file_path, 'r') as file:
content = file.read()
matches = pattern.findall(content)
for match in matches:
button_a = (int(match[0]), int(match[1]))
button_b = (int(match[2]), int(match[3]))
prize = (int(match[4]) + 10000000000000, int(match[5]) + 10000000000000)
results.append((button_a, button_b, prize))
return results
def solve(scenario: Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]) -> int:
"""
Solves the given scenario by finding integers a and b such that the linear combination
of the vectors (ax, ay) and (bx, by) equals the target vector (tx, ty).
Args:
scenario (Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]): A tuple containing
three tuples, each representing a vector in the form (x, y). The first two tuples
are the vectors (ax, ay) and (bx, by), and the third tuple is the target vector (tx, ty).
Returns:
int: The result of the expression 3 * a + b if the linear combination is valid, otherwise 0.
"""
(ax, ay), (bx, by), (tx, ty) = scenario
b = (tx * ay - ty * ax) // (ay * bx - by * ax)
a = (tx * by - ty * bx) // (by * ax - bx * ay)
if ax * a + bx * b == tx and ay * a + by * b == ty:
return 3 * a + b
else:
return 0
if __name__ == "__main__":
file_path = 'input.txt'
parsed_data = parse_input(file_path)
results = [solve(scenario) for scenario in parsed_data]
print(sum(results)) | python |
2024 | 13 | 2 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes?
Your puzzle answer was 34787.
--- Part Two ---
As you go to win the first prize, you discover that the claw is nowhere near where you expected it would be. Due to a unit conversion error in your measurements, the position of every prize is actually 10000000000000 higher on both the X and Y axis!
Add 10000000000000 to the X and Y position of every prize. After making this change, the example above would now look like this:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=10000000008400, Y=10000000005400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=10000000012748, Y=10000000012176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=10000000007870, Y=10000000006450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=10000000018641, Y=10000000010279
Now, it is only possible to win a prize on the second and fourth claw machines. Unfortunately, it will take many more than 100 presses to do so.
Using the corrected prize coordinates, figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 85644161121698 | import re
def min_cost_for_prize(prize, a, b):
prize_x = prize[0]
prize_y = prize[1]
a_x = a[0]
a_y = a[1]
b_x = b[0]
b_y = b[1]
if (prize_x * b_y - b_x * prize_y) % (a_x * b_y - b_x * a_y) != 0:
return (False, -1)
a_val = (prize_x * b_y - b_x * prize_y) // (a_x * b_y - b_x * a_y)
if (prize_x - a_x * a_val) % b_x != 0:
return (False, -1)
b_val = (prize_x - a_x * a_val) // b_x
return (True, 3 * a_val + b_val)
with open('input.txt') as f:
claw_strs = f.read().split("\n\n")
claw_data = []
for claw_input in claw_strs:
lines = claw_input.splitlines()
claw = dict()
claw['A'] = tuple(map(int, re.match("Button A: X\\+(\\d+), Y\\+(\\d+)", lines[0]).groups()))
claw['B'] = tuple(map(int, re.match("Button B: X\\+(\\d+), Y\\+(\\d+)", lines[1]).groups()))
claw['Prize'] = tuple(map(lambda n: n + 10000000000000, map(int, re.match("Prize: X=(\\d+), Y=(\\d+)", lines[2]).groups())))
claw_data.append(claw)
total_cost = 0
for claw in claw_data:
res = min_cost_for_prize(claw['Prize'], claw['A'], claw['B'])
if res[0]:
total_cost += res[1]
print(total_cost) | python |
2024 | 13 | 2 | --- Day 13: Claw Contraption ---
Next up: the lobby of a resort on a tropical island. The Historians take a moment to admire the hexagonal floor tiles before spreading out.
Fortunately, it looks like the resort has a new arcade! Maybe you can win some prizes from the claw machines?
The claw machines here are a little unusual. Instead of a joystick or directional buttons to control the claw, these machines have two buttons labeled A and B. Worse, you can't just put in a token and play; it costs 3 tokens to push the A button and 1 token to push the B button.
With a little experimentation, you figure out that each machine's buttons are configured to move the claw a specific amount to the right (along the X axis) and a specific amount forward (along the Y axis) each time that button is pressed.
Each machine contains one prize; to win the prize, the claw must be positioned exactly above the prize on both the X and Y axes.
You wonder: what is the smallest number of tokens you would have to spend to win as many prizes as possible? You assemble a list of every machine's button behavior and prize location (your puzzle input). For example:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=8400, Y=5400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=12748, Y=12176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=7870, Y=6450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=18641, Y=10279
This list describes the button configuration and prize location of four different claw machines.
For now, consider just the first claw machine in the list:
Pushing the machine's A button would move the claw 94 units along the X axis and 34 units along the Y axis.
Pushing the B button would move the claw 22 units along the X axis and 67 units along the Y axis.
The prize is located at X=8400, Y=5400; this means that from the claw's initial position, it would need to move exactly 8400 units along the X axis and exactly 5400 units along the Y axis to be perfectly aligned with the prize in this machine.
The cheapest way to win the prize is by pushing the A button 80 times and the B button 40 times. This would line up the claw along the X axis (because 80*94 + 40*22 = 8400) and along the Y axis (because 80*34 + 40*67 = 5400). Doing this would cost 80*3 tokens for the A presses and 40*1 for the B presses, a total of 280 tokens.
For the second and fourth claw machines, there is no combination of A and B presses that will ever win a prize.
For the third claw machine, the cheapest way to win the prize is by pushing the A button 38 times and the B button 86 times. Doing this would cost a total of 200 tokens.
So, the most prizes you could possibly win is two; the minimum tokens you would have to spend to win all (two) prizes is 480.
You estimate that each button would need to be pressed no more than 100 times to win a prize. How else would someone be expected to play?
Figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes?
Your puzzle answer was 34787.
--- Part Two ---
As you go to win the first prize, you discover that the claw is nowhere near where you expected it would be. Due to a unit conversion error in your measurements, the position of every prize is actually 10000000000000 higher on both the X and Y axis!
Add 10000000000000 to the X and Y position of every prize. After making this change, the example above would now look like this:
Button A: X+94, Y+34
Button B: X+22, Y+67
Prize: X=10000000008400, Y=10000000005400
Button A: X+26, Y+66
Button B: X+67, Y+21
Prize: X=10000000012748, Y=10000000012176
Button A: X+17, Y+86
Button B: X+84, Y+37
Prize: X=10000000007870, Y=10000000006450
Button A: X+69, Y+23
Button B: X+27, Y+71
Prize: X=10000000018641, Y=10000000010279
Now, it is only possible to win a prize on the second and fourth claw machines. Unfortunately, it will take many more than 100 presses to do so.
Using the corrected prize coordinates, figure out how to win as many prizes as possible. What is the fewest tokens you would have to spend to win all possible prizes? | 85644161121698 | with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
total = 0
for problem in range((len(input_text) + 1) // 4):
button_a_move_x, button_a_move_y = (
input_text[problem * 4].removeprefix("Button A: ").split(", ")
)
button_a_move = (
int(button_a_move_x.removeprefix("X+")),
int(button_a_move_y.removeprefix("Y+")),
)
button_b_move_x, button_b_move_y = (
input_text[problem * 4 + 1].removeprefix("Button B: ").split(", ")
)
button_b_move = (
int(button_b_move_x.removeprefix("X+")),
int(button_b_move_y.removeprefix("Y+")),
)
target_x, target_y = input_text[problem * 4 + 2].removeprefix("Prize: ").split(", ")
target = (
int(target_x.removeprefix("X=")) + 10000000000000,
int(target_y.removeprefix("Y=")) + 10000000000000,
)
sol_a, sol_b = (
(button_b_move[1] * target[0] - button_b_move[0] * target[1])
// (button_a_move[0] * button_b_move[1] - button_a_move[1] * button_b_move[0]),
(-button_a_move[1] * target[0] + button_a_move[0] * target[1])
// (button_a_move[0] * button_b_move[1] - button_a_move[1] * button_b_move[0]),
)
if (
(
(button_b_move[1] * target[0] - button_b_move[0] * target[1])
% (
button_a_move[0] * button_b_move[1]
- button_a_move[1] * button_b_move[0]
)
)
== 0
and (
(-button_a_move[1] * target[0] + button_a_move[0] * target[1])
% (
button_a_move[0] * button_b_move[1]
- button_a_move[1] * button_b_move[0]
)
)
== 0
and sol_a > 0
and sol_b > 0
):
total += 3 * sol_a + sol_b
print(total) | python |
2024 | 14 | 1 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed? | 219150360 | import re
def read_input():
robots = []
with open("./input.txt") as f:
while True:
line = f.readline()
if not line:
break
numbers = re.findall(r"-?\d+", line)
robots.append([int(s) for s in numbers])
return robots
def move_robot_n_step(robot, width, height, n):
x0 = robot[0]
y0 = robot[1]
vx = robot[2]
vy = robot[3]
for i in range(n):
x0 = (x0 + vx) % width
y0 = (y0 + vy) % height
return x0, y0
def move_robot_one_step(robot, width, height):
x0 = robot[0]
y0 = robot[1]
vx = robot[2]
vy = robot[3]
robot[0] = (x0 + vx) % width
robot[1] = (y0 + vy) % height
def get_quadrant(x, y, width, height):
cx = width // 2
cy = height // 2
if x < cx and y < cy:
return 4
elif x < cx and y > cy:
return 3
elif x > cx and y < cy:
return 1
elif x > cx and y > cy:
return 2
else:
return -1
def solve_part1(robots, width, height):
q = {1:0, 2:0, 3:0, 4:0, -1:0}
for robot in robots:
x,y = move_robot_n_step(robot, width, height, 100)
iq = get_quadrant(x, y, width, height)
q[iq] += 1
print(f"q1: {q[1]}, q2: {q[2]}, q3: {q[3]}, q4: {q[4]}")
return q[1] * q[2] * q[3] * q[4]
def solve_part2(robots, width, height):
best_iter = None
min_safe = float('inf')
for i in range(width * height):
q = {1:0, 2:0, 3:0, 4:0, -1:0}
for robot in robots:
x,y = move_robot_n_step(robot, width, height, 1)
robot[0] = x
robot[1] = y
iq = get_quadrant(x, y, width, height)
q[iq] += 1
safe = q[1] * q[2] * q[3] * q[4]
if safe < min_safe:
min_safe = safe
best_iter = i
if i == 99:
print("At 100 sec, ", safe)
print(f"best iter {best_iter}, min safe {min_safe}")
if __name__ == "__main__":
robots = read_input()
width = 101
height = 103
multiply = solve_part1(robots, width, height)
print(f"Part 1: the product is {multiply}")
solve_part2(robots, width, height) | python |
2024 | 14 | 1 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed? | 219150360 | from collections import Counter
import re
width = 101 #11
half_width = width // 2
height = 103 #7
half_height = height // 2
class Robot:
def __init__(self, px, py, vx, vy) -> None:
self.px = px
self.py = py
self.vx = vx
self.vy = vy
self.q = None
def move(self, seconds):
self.px = (self.px + self.vx * seconds) % width
self.py = (self.py + self.vy * seconds) % height
self.q = self.quadrant()
def quadrant(self):
quadrants = {
(True, True): 1,
(True, False): 3,
(False, True): 2,
(False, False): 4,
}
return quadrants[(self.px < half_width,
self.py < half_height)] if self.px != half_width and self.py != half_height else None
with open('input.txt') as f:
robots = [Robot(*map(int, re.findall(r'(-?\d+)', line))) for line in f]
def print_grid(robots: list[Robot]):
grid = [list('.' * width) for _ in range(height)]
for robot in robots:
val = grid[robot.py][robot.px]
grid[robot.py][robot.px] = '1' if val == '.' else str(int(val) + 1)
print('\n'.join(''.join(row) for row in grid))
quadrants = []
for robot in robots:
robot.move(100)
quadrants.append(robot.q)
counter = Counter(quadrants)
counter.pop(None)
print(counter[1] * counter[2] * counter[3] * counter[4]) | python |
2024 | 14 | 1 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed? | 219150360 | #!/usr/bin/python3
class Robot:
def __init__(self, position, velocity):
self.position = position
self.velocity = velocity
def teleport(self, pos:int, dim:int):
"""Move to opposite side rather than out of the space."""
return pos - dim if pos >= dim else dim - abs(pos) if pos < 0 else pos
def move_robot(self, width:int, height:int):
"""Move robot according to its velocity."""
self.position = [self.position[0] + self.velocity[0],
self.position[1] + self.velocity[1]]
if self.position[0] not in range(width):
self.position[0] = self.teleport(self.position[0], width)
if self.position[1] not in range(height):
self.position[1] = self.teleport(self.position[1], height)
# Get initial position and velocity for each robot.
with open("input.txt") as file:
robots = {}
for l, line in enumerate(file):
robot_name = "robot_" + str(l+1)
pos = line.split()[0].strip("p=").split(",")
vel = line.split()[1].strip("v=").split(",")
robots[robot_name] = Robot([int(pos[0]),int(pos[1])],
[int(vel[0]),int(vel[1])])
# Move robots for 100 seconds in a space 101 tiles wide and 103 tiles tall.
for robot in robots:
for sec in range(100):
robots[robot].move_robot(101, 103)
# Determine the safety factor.
quadrant_1 = [robots[robot].position for robot in robots
if robots[robot].position[0] < 50 and robots[robot].position[1] < 51]
quadrant_2 = [robots[robot].position for robot in robots
if robots[robot].position[0] > 50 and robots[robot].position[1] < 51]
quadrant_3 = [robots[robot].position for robot in robots
if robots[robot].position[0] < 50 and robots[robot].position[1] > 51]
quadrant_4 = [robots[robot].position for robot in robots
if robots[robot].position[0] > 50 and robots[robot].position[1] > 51]
print("Safety factor after 100 seconds:",
len(quadrant_1) * len(quadrant_2) * len(quadrant_3) * len(quadrant_4)) | python |
2024 | 14 | 1 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed? | 219150360 | from typing import List
EXAMPLE: bool = False
WIDTH: int = 11 if EXAMPLE else 101
HEIGHT: int = 7 if EXAMPLE else 103
INPUT_FILE: str = "e_input.txt" if EXAMPLE else "input.txt"
class Robot:
def __init__(self, x: int, y: int, v_x: int, v_y: int):
self.x = x
self.y = y
self.v_x = v_x
self.v_y = v_y
def move(self):
self.x += self.v_x
self.y += self.v_y
if self.x < 0:
self.x = WIDTH + self.x
if self.y < 0:
self.y = HEIGHT + self.y
if self.x >= WIDTH:
self.x -= WIDTH
if self.y >= HEIGHT:
self.y -= HEIGHT
def __str__(self):
return f"Robot: x={self.x}, y={self.y}, v_x={self.v_x}, v_y={self.v_y}"
def __repr__(self):
return self.__str__()
def read_input() -> List[str]:
with open(INPUT_FILE, "r") as f:
return f.read().splitlines()
def parse_input(input: List[str]) -> List[Robot]:
robots: List[Robot] = []
for line in input:
line = line.split(" ")
pos = line[0][2:].split(",")
x, y = int(pos[0]), int(pos[1])
velo = line[1][2:].split(",")
v_x, v_y = int(velo[0]), int(velo[1])
robots.append(Robot(x, y, v_x, v_y))
return robots
def predict(robots: List[Robot], seconds: int) -> List[Robot]:
for i in range(seconds):
for robot in robots:
robot.move()
return robots
def print_grid(robots: List[Robot]):
for y in range(HEIGHT):
for x in range(WIDTH):
r = 0
for robot in robots:
if robot.x == x and robot.y == y:
r += 1
if r == 0:
print(".", end="")
else:
print(str(r), end="")
print()
def safety_score(robots: List[Robot]) -> int:
quadrant_one = 0
quadrant_two = 0
quadrant_three = 0
quadrant_four = 0
for robot in robots :
if robot.x < WIDTH // 2 and robot.y < HEIGHT // 2:
quadrant_one += 1
elif robot.x > WIDTH // 2 and robot.y < HEIGHT // 2:
quadrant_two += 1
elif robot.x < WIDTH // 2 and robot.y > HEIGHT // 2:
quadrant_three += 1
elif robot.x > WIDTH // 2 and robot.y > HEIGHT // 2:
quadrant_four += 1
return quadrant_one * quadrant_two * quadrant_three * quadrant_four
def main():
robots = parse_input(read_input())
robots = predict(robots, 100)
print(safety_score(robots))
if __name__ == "__main__":
main() | python |
2024 | 14 | 1 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed? | 219150360 | import re
from functools import reduce
from operator import mul
result = 0
width = 101
height = 103
duration = 100
robots = []
with open("14_input.txt", "r") as f:
for line in f:
px, py, vx, vy = map(int, re.findall(r"(-?\d+)", line))
for sec in range(duration):
px = (px + vx) % width
py = (py + vy) % height
robots.append((px, py))
q_width = width // 2
q_height = height // 2
quadrants = {0: 0, 1: 0, 2: 0, 3: 0}
for robot in robots:
if robot[0] < q_width:
if robot[1] < q_height:
quadrants[0] += 1
elif robot[1] > q_height:
quadrants[1] += 1
elif robot[0] > q_width:
if robot[1] < q_height:
quadrants[2] += 1
elif robot[1] > q_height:
quadrants[3] += 1
print(reduce(mul, quadrants.values())) | python |
2024 | 14 | 2 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed?
Your puzzle answer was 219150360.
--- Part Two ---
During the bathroom break, someone notices that these robots seem awfully similar to ones built and used at the North Pole. If they're the same type of robots, they should have a hard-coded Easter egg: very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.
What is the fewest number of seconds that must elapse for the robots to display the Easter egg? | 8053 | from collections import defaultdict
from statistics import stdev
def read_input(file_path):
"""Read input from file and parse positions and velocities."""
positions, velocities = [], []
with open(file_path) as f:
for line in f:
p_sec, v_sec = line.split()
positions.append([int(i) for i in p_sec.split("=")[1].split(",")])
velocities.append([int(i) for i in v_sec.split("=")[1].split(",")])
return positions, velocities
def simulate_motion(positions, velocities, num_x=101, num_y=103, steps=10000):
"""Simulate motion and detect significant changes in distribution."""
for step in range(1, steps + 1):
block_counts = defaultdict(int)
new_positions = []
for pos, vel in zip(positions, velocities):
new_x = (pos[0] + vel[0]) % num_x
new_y = (pos[1] + vel[1]) % num_y
new_positions.append([new_x, new_y])
block_counts[(new_x // 5, new_y // 5)] += 1
if stdev(block_counts.values()) > 3:
print(step)
break
positions = new_positions
if __name__ == "__main__":
positions, velocities = read_input("input.txt")
simulate_motion(positions, velocities) | python |
2024 | 14 | 2 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed?
Your puzzle answer was 219150360.
--- Part Two ---
During the bathroom break, someone notices that these robots seem awfully similar to ones built and used at the North Pole. If they're the same type of robots, they should have a hard-coded Easter egg: very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.
What is the fewest number of seconds that must elapse for the robots to display the Easter egg? | 8053 | from collections import defaultdict
from statistics import stdev
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
num_x = 101
num_y = 103
initial_positions = []
velocities = []
for line in input_text:
p_sec, v_sec = line.split()
initial_positions.append([int(i) for i in p_sec.split("=")[1].split(",")])
velocities.append([int(i) for i in v_sec.split("=")[1].split(",")])
for counter in range(10000):
block_counts = defaultdict(int)
new_initial_positions = []
for initial_pos, velocity in zip(initial_positions, velocities):
new_position = [
(initial_pos[0] + velocity[0]) % num_x,
(initial_pos[1] + velocity[1]) % num_y,
]
new_initial_positions.append(new_position)
block_counts[(new_position[0] // 5, new_position[1] // 5)] += 1
if stdev(block_counts.values()) > 3:
print(counter + 1)
initial_positions = new_initial_positions | python |
2024 | 14 | 2 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed?
Your puzzle answer was 219150360.
--- Part Two ---
During the bathroom break, someone notices that these robots seem awfully similar to ones built and used at the North Pole. If they're the same type of robots, they should have a hard-coded Easter egg: very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.
What is the fewest number of seconds that must elapse for the robots to display the Easter egg? | 8053 | import re; L = len(M:=[*map(int, re.findall('[-\d]+', open(0).read()))])
R, C = 103, 101; B = (1, -1)
for T in range(R*C):
G = [['.']*C for _ in range(R)]
Z = [0]*4
for i in range(0, L, 4):
py, px, vy, vx = M[i:i+4]
x = (px+vx*T)%R; y = (py+vy*T)%C
G[x][y] = '#'
if x == R//2 or y == C//2: continue
Z[(x<R//2)+2*(y<C//2)] += 1
S = '\n'.join(''.join(r) for r in G)
t = B[0]
while '#'*t in S: t += 1
if t > B[0]: B = (t, T)
if T == 100: print('Part 1:', Z[0]*Z[1]*Z[2]*Z[3])
print('Part 2:', B[1]) | python |
2024 | 14 | 2 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed?
Your puzzle answer was 219150360.
--- Part Two ---
During the bathroom break, someone notices that these robots seem awfully similar to ones built and used at the North Pole. If they're the same type of robots, they should have a hard-coded Easter egg: very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.
What is the fewest number of seconds that must elapse for the robots to display the Easter egg? | 8053 | with open("Day-14-Challenge/input.txt", "r") as file:
lines = file.readlines()
WIDE = 101
TALL = 103
robots = []
for robot in lines: # format
sides = robot.split(" ")
left_side = sides[0]
right_side = sides[1]
left_sides = left_side.split(",")
Px = left_sides[0].split("=")[-1]
Py = left_sides[1]
right_sides = right_side.split(",")
Vx = right_sides[0].split("=")[-1]
Vy = right_sides[1].strip()
Px = int(Px)
Py = int(Py)
Vx = int(Vx)
Vy = int(Vy)
robots.append([Px,Py,Vx,Vy])
smallest_answer = 999999999999
found_at_second = 0
for second in range(WIDE * TALL): # pattern will repeat every WIDE * TALL times
q1 = 0
q2 = 0
q3 = 0
q4 = 0
final_grid = [[0]*WIDE for _ in range(TALL)]
for i in range(len(robots)):
Px,Py,Vx,Vy = robots[i]
new_Py, new_Px = (Px + Vx * second),(Py + Vy * second) # swap X and Y coords because its swapped in the examples too
# for matplotlib
new_Px, new_Py = (new_Px % TALL), (new_Py % WIDE)
final_grid[new_Px][new_Py] += 1
vertical_middle = WIDE // 2
horizontal_middle = TALL // 2
if new_Px < vertical_middle and new_Py < horizontal_middle:
q1 += 1
if new_Px > vertical_middle and new_Py < horizontal_middle:
q2 += 1
if new_Px < vertical_middle and new_Py > horizontal_middle:
q3 += 1
if new_Px > vertical_middle and new_Py > horizontal_middle:
q4 += 1
answer = q1 * q2 * q3 * q4 # when answer is smallest,
# robots are bunched together to draw the christmas tree, so one corner will have most robots
# so when we multiply with other quadrants answer will be smaller
# If we have 40 robots, answer is smaller if 37 are in Q1 and 1 each in rest = 37
# If they are evenly split its 10 * 10 * 10 * 10 = 10000
# So we assume that tree is drawn when smallest answer.
# Mirrored approach doesnt work
if(answer < smallest_answer): # find smallest answer
smallest_answer = answer
found_at_second = second
print("Found smallest safety factor: ", smallest_answer)
print("at second: ", found_at_second)
# Total time complexity
# O(WIDE * TALL * n) so kindof O(n) :)
# Total space complexity
# O(WIDE * TALL + n) so kindof O(n) :) | python |
2024 | 14 | 2 | --- Day 14: Restroom Redoubt ---
One of The Historians needs to use the bathroom; fortunately, you know there's a bathroom near an unvisited location on their list, and so you're all quickly teleported directly to the lobby of Easter Bunny Headquarters.
Unfortunately, EBHQ seems to have "improved" bathroom security again after your last visit. The area outside the bathroom is swarming with robots!
To get The Historian safely to the bathroom, you'll need a way to predict where the robots will be in the future. Fortunately, they all seem to be moving on the tile floor in predictable straight lines.
You make a list (your puzzle input) of all of the robots' current positions (p) and velocities (v), one robot per line. For example:
p=0,4 v=3,-3
p=6,3 v=-1,-3
p=10,3 v=-1,2
p=2,0 v=2,-1
p=0,0 v=1,3
p=3,0 v=-2,-2
p=7,6 v=-1,-3
p=3,0 v=-1,-2
p=9,3 v=2,3
p=7,3 v=-1,2
p=2,4 v=2,-3
p=9,5 v=-3,-3
Each robot's position is given as p=x,y where x represents the number of tiles the robot is from the left wall and y represents the number of tiles from the top wall (when viewed from above). So, a position of p=0,0 means the robot is all the way in the top-left corner.
Each robot's velocity is given as v=x,y where x and y are given in tiles per second. Positive x means the robot is moving to the right, and positive y means the robot is moving down. So, a velocity of v=1,-2 means that each second, the robot moves 1 tile to the right and 2 tiles up.
The robots outside the actual bathroom are in a space which is 101 tiles wide and 103 tiles tall (when viewed from above). However, in this example, the robots are in a space which is only 11 tiles wide and 7 tiles tall.
The robots are good at navigating over/under each other (due to a combination of springs, extendable legs, and quadcopters), so they can share the same tile and don't interact with each other. Visually, the number of robots on each tile in this example looks like this:
1.12.......
...........
...........
......11.11
1.1........
.........1.
.......1...
These robots have a unique feature for maximum bathroom security: they can teleport. When a robot would run into an edge of the space they're in, they instead teleport to the other side, effectively wrapping around the edges. Here is what robot p=2,4 v=2,-3 does for the first few seconds:
Initial state:
...........
...........
...........
...........
..1........
...........
...........
After 1 second:
...........
....1......
...........
...........
...........
...........
...........
After 2 seconds:
...........
...........
...........
...........
...........
......1....
...........
After 3 seconds:
...........
...........
........1..
...........
...........
...........
...........
After 4 seconds:
...........
...........
...........
...........
...........
...........
..........1
After 5 seconds:
...........
...........
...........
.1.........
...........
...........
...........
The Historian can't wait much longer, so you don't have to simulate the robots for very long. Where will the robots be after 100 seconds?
In the above example, the number of robots on each tile after 100 seconds has elapsed looks like this:
......2..1.
...........
1..........
.11........
.....1.....
...12......
.1....1....
To determine the safest area, count the number of robots in each quadrant after 100 seconds. Robots that are exactly in the middle (horizontally or vertically) don't count as being in any quadrant, so the only relevant robots are:
..... 2..1.
..... .....
1.... .....
..... .....
...12 .....
.1... 1....
In this example, the quadrants contain 1, 3, 4, and 1 robot. Multiplying these together gives a total safety factor of 12.
Predict the motion of the robots in your list within a space which is 101 tiles wide and 103 tiles tall. What will the safety factor be after exactly 100 seconds have elapsed?
Your puzzle answer was 219150360.
--- Part Two ---
During the bathroom break, someone notices that these robots seem awfully similar to ones built and used at the North Pole. If they're the same type of robots, they should have a hard-coded Easter egg: very rarely, most of the robots should arrange themselves into a picture of a Christmas tree.
What is the fewest number of seconds that must elapse for the robots to display the Easter egg? | 8053 | import pathlib
import re
import math
lines = pathlib.Path("data.txt").read_text().split("\n")
iterations = 100
width = 101
height = 103
robots = []
#example input only
#width = 11
#height = 7
for line in lines:
matches = re.findall(r"[-\d]+", line)
x, y, vx, vy = [int(i) for i in matches]
robots.append([x, y, vx, vy])
quadrants = [0, 0, 0, 0]
for x, y, vx, vy in robots:
x = (x + vx * iterations) % width
y = (y + vy * iterations) % height
mid_x = width//2
mid_y = height//2
if x < mid_x and y < mid_y:
quadrants[0] += 1
elif x < mid_x and y > mid_y:
quadrants[1] += 1
elif x > mid_x and y < mid_y:
quadrants[2] += 1
elif x > mid_x and y > mid_y:
quadrants[3] += 1
safety_factor = math.prod(quadrants)
print(safety_factor)
pictures = 0
for i in range(1, 100000):
new_robots = []
board = [[0 for j in range(width)] for j in range(height)]
for x, y, vx, vy in robots:
x = (x + vx * i) % width
y = (y + vy * i) % height
new_robots.append((x, y))
board[y][x] = 1
if len(set(new_robots)) != len(new_robots):
continue
max_sum = max((sum(row) for row in board))
#the tree picture has 31 robots in a single row
if max_sum > 30:
print(i)
break | python |
2024 | 15 | 1 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates? | 1499739 | def get_next(pos, move):
move_dict = {'^': (-1, 0), '>': (0, 1), 'v': (1, 0), '<': (0, -1)}
return tuple(map(sum, zip(pos, move_dict[move])))
grid = []
moves = []
with open('input.txt') as f:
for line in f.read().splitlines():
if line.startswith("#"):
grid += [[c for c in line]]
elif not line == "":
moves += [c for c in line]
for i in range(len(grid)):
for j in range(len(grid)):
if grid[i][j] == '@':
robot_pos = (i, j)
break
for move in moves:
next_i, next_j = get_next(robot_pos, move)
if grid[next_i][next_j] == '.':
grid[robot_pos[0]][robot_pos[1]] = '.'
grid[next_i][next_j] = '@'
robot_pos = (next_i, next_j)
elif grid[next_i][next_j] == 'O':
available = get_next((next_i, next_j), move)
while grid[available[0]][available[1]] == 'O':
available = get_next(available, move)
if grid[available[0]][available[1]] == '.':
grid[robot_pos[0]][robot_pos[1]] = '.'
grid[next_i][next_j] = '@'
grid[available[0]][available[1]] = 'O'
robot_pos = (next_i, next_j)
total = 0
for i in range(len(grid)):
for j in range(len(grid)):
if grid[i][j] == 'O':
total += 100 * i + j
print(total) | python |
2024 | 15 | 1 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates? | 1499739 | pos = (0, 0)
collision = {}
directions = {
'<': (-1, 0),
'>': (1, 0),
'^': (0, -1),
'v': (0, 1),
}
commands = []
def check_spot(position, directon):
if (item := collision.get(position)) is None:
return True
if item == 'Wall':
return False
return item.can_move(directon)
def can_move(position, direction):
x, y = position
dir = directions[direction]
new_pos = (x + dir[0], y + dir[1])
return check_spot(new_pos, direction)
def move(position, direction):
dir = directions[direction]
return (position[0] + dir[0], position[1] + dir[1])
class Box:
def __init__(self, x, y):
self.x = x
self.y = y
@property
def position(self):
return (self.x, self.y)
def can_move(self, direction):
x, y = self.position
dir = directions[direction]
new_pos = (x + dir[0], y + dir[1])
return check_spot(new_pos, direction)
def move(self, direction):
dir = directions[direction]
collision[self.position] = None
self.x += dir[0]
self.y += dir[1]
box = collision.get(self.position)
if isinstance(box, Box):
box.move(direction)
collision[self.position] = self
@property
def score(self):
return self.x + (self.y * 100)
with open('input.txt') as f:
has_read = False
for yi, line in enumerate(f):
if not has_read:
for xi, c in enumerate(line):
if len(line.strip()) == 0:
has_read = True
continue
if not has_read:
if c == '#':
collision[(xi, yi)] = "Wall"
elif c == '@':
pos = (xi, yi)
elif c == 'O':
box = Box(xi, yi)
collision[(xi, yi)] = box
else:
commands.append(line.strip())
commands = ''.join(commands)
def print_grid():
mx, my = max(collision.keys())
grid = [['.'] * (mx + 1) for _ in range(my + 1)]
for k, v in collision.items():
if v is None:
continue
x, y = k
if v == 'Wall':
grid[y][x] = '#'
elif isinstance(v, Box):
bx, by = v.position
grid[by][bx] = 'O'
grid[pos[1]][pos[0]] = '@'
print('\n'.join(''.join(x) for x in grid))
for direction in commands:
if can_move(pos, direction):
pos = move(pos, direction)
if isinstance(collision.get(pos), Box):
collision[pos].move(direction)
print_grid()
boxes = set(collision[x] for x in collision if isinstance(collision[x], Box))
print(sum(x.score for x in boxes)) | python |
2024 | 15 | 1 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates? | 1499739 | import re
from typing import List, Tuple
def parse_input(file_path: str) -> Tuple[List[List[str]], List[str]]:
with open(file_path, 'r') as file:
content = file.read().strip()
grid_part, instructions_part = content.split('\n\n')
grid = [list(line) for line in grid_part.split('\n')]
instructions = list(''.join(instructions_part.split('\n')))
return grid, instructions
def find_robot_position(grid: List[List[str]]) -> Tuple[int, int]:
for y, row in enumerate(grid):
for x, cell in enumerate(row):
if cell == '@':
return x, y
return -1, -1
def move_robot(grid: List[List[str]], instructions: List[str]) -> List[List[str]]:
direction_map = {
'^': (0, -1),
'v': (0, 1),
'<': (-1, 0),
'>': (1, 0)
}
x, y = find_robot_position(grid)
for instruction in instructions:
dx, dy = direction_map[instruction]
new_x, new_y = x + dx, y + dy
if not (0 <= new_x < len(grid[0]) and 0 <= new_y < len(grid)):
continue
if grid[new_y][new_x] == '#':
continue
elif grid[new_y][new_x] == 'O':
# Check if we can push the box
box_x, box_y = new_x, new_y
while 0 <= box_x + dx < len(grid[0]) and 0 <= box_y + dy < len(grid) and grid[box_y][box_x] == 'O':
box_x += dx
box_y += dy
if not (0 <= box_x + dx < len(grid[0]) and 0 <= box_y + dy < len(grid)) or grid[box_y][box_x] == '#':
break
else:
# Move the robot and push the boxes
while (box_x, box_y) != (new_x, new_y):
box_x -= dx
box_y -= dy
grid[box_y + dy][box_x + dx] = 'O'
grid[new_y][new_x] = '@'
grid[y][x] = '.'
x, y = new_x, new_y
else:
grid[new_y][new_x] = '@'
grid[y][x] = '.'
x, y = new_x, new_y
return grid
def calculate_gps_sum(grid: List[List[str]]) -> int:
gps_sum = 0
for y, row in enumerate(grid):
for x, cell in enumerate(row):
if cell == 'O':
gps_sum += 100 * y + x
return gps_sum
if __name__ == "__main__":
file_path = 'input.txt'
grid, instructions = parse_input(file_path)
print("Initial Grid:")
for row in grid:
print(''.join(row))
grid = move_robot(grid, instructions)
print("\nFinal Grid:")
for row in grid:
print(''.join(row))
gps_sum = calculate_gps_sum(grid)
print(f"\nSum of all boxes' GPS coordinates: {gps_sum}") | python |
2024 | 15 | 1 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates? | 1499739 | input = open("day_15\input.txt", "r").read().splitlines()
warehouse_map = []
movements = ""
cur_pos = (0,0)
total = 0
movement_dict = {
"v": (1, 0),
"^": (-1, 0),
">": (0, 1),
"<": (0, -1)
}
def find_open_spot(pos, move):
while True:
pos = tuple(map(sum, zip(pos, move)))
pos_value = warehouse_map[pos[0]][pos[1]]
if pos_value == "#": return False
elif pos_value == ".": return pos
i = 0
while input[i] != "":
if "@" in input[i]:
cur_pos = (i, input[i].index("@"))
warehouse_map.append(list(input[i]))
i += 1
i += 1
while i < len(input):
movements += input[i]
i += 1
for move in movements:
destination = tuple(map(sum, zip(cur_pos, movement_dict[move])))
destination_value = warehouse_map[destination[0]][destination[1]]
if destination_value == "O":
open_spot = find_open_spot(destination, movement_dict[move])
if open_spot:
warehouse_map[open_spot[0]][open_spot[1]] = "O"
warehouse_map[destination[0]][destination[1]] = "@"
warehouse_map[cur_pos[0]][cur_pos[1]] = "."
cur_pos = destination
elif destination_value == ".":
warehouse_map[destination[0]][destination[1]] = "@"
warehouse_map[cur_pos[0]][cur_pos[1]] = "."
cur_pos = destination
for i in range(len(warehouse_map)):
for j in range(len(warehouse_map[i])):
if warehouse_map[i][j] == "O":
total += 100 * i + j
print(f"The sum of all boxes' GPS coordinates is {total}") | python |
2024 | 15 | 1 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates? | 1499739 | from collections import deque
def find_start(grid, n, m):
for i in range(n):
for j in range(m):
if grid[i][j] == '@':
return (i, j)
return (0, 0)
def in_bounds(i, j, n, m):
return (0 <= i < n) and (0 <= j < m)
def move(grid, loc, dir, n, m):
curr = (loc[0], loc[1])
addStack = deque()
addStack.append('@')
while True:
newPos = (curr[0] + dir[0], curr[1] + dir[1])
if in_bounds(newPos[0], newPos[1], n, m):
val = grid[newPos[0]][newPos[1]]
if val == '#':
return loc
elif val == 'O':
addStack.append('O')
elif val == '.':
revDir = (-dir[0], -dir[1])
while addStack:
movedVal = addStack.pop()
grid[newPos[0]] = grid[newPos[0]][:newPos[1]] + movedVal + grid[newPos[0]][newPos[1] + 1:]
newPos = (newPos[0] + revDir[0], newPos[1] + revDir[1])
grid[loc[0]] = grid[loc[0]][:loc[1]] + '.' + grid[loc[0]][loc[1] + 1:]
return (loc[0] + dir[0], loc[1] + dir[1])
else:
return loc
curr = (newPos[0], newPos[1])
def get_box_coords(grid, instructions):
n = len(grid)
m = len(grid[0])
loc = find_start(grid, n, m)
dirMap = {'^': (-1, 0), '>': (0, 1), 'v': (1, 0), '<': (0, -1)}
for instruction in instructions:
loc = move(grid, loc, dirMap.get(instruction), n, m)
total = 0
for i in range(n):
for j in range(m):
if grid[i][j] == 'O':
total += ((100 * i) + j)
return total
if __name__ == "__main__":
# Open file 'day15-1.txt' in read mode
with open('day15-1.txt', 'r') as f:
grid = []
ended = False
instructions = []
for line in f:
if line == '\n':
ended = True
line = line.strip()
if not ended:
grid.append(line)
else:
instructions.extend(list(line))
print("Final Coordinates of Boxes: " + str(get_box_coords(grid, instructions))) | python |
2024 | 15 | 2 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates?
Your puzzle answer was 1499739.
--- Part Two ---
The lanternfish use your information to find a safe moment to swim in and turn off the malfunctioning robot! Just as they start preparing a festival in your honor, reports start coming in that a second warehouse's robot is also malfunctioning.
This warehouse's layout is surprisingly similar to the one you just helped. There is one key difference: everything except the robot is twice as wide! The robot's list of movements doesn't change.
To get the wider warehouse's map, start with your original map and, for each tile, make the following changes:
If the tile is #, the new map contains ## instead.
If the tile is O, the new map contains [] instead.
If the tile is ., the new map contains .. instead.
If the tile is @, the new map contains @. instead.
This will produce a new warehouse map which is twice as wide and with wide boxes that are represented by []. (The robot does not change size.)
The larger example from before would now look like this:
####################
##....[]....[]..[]##
##............[]..##
##..[][]....[]..[]##
##....[]@.....[]..##
##[]##....[]......##
##[]....[]....[]..##
##..[][]..[]..[][]##
##........[]......##
####################
Because boxes are now twice as wide but the robot is still the same size and speed, boxes can be aligned such that they directly push two other boxes at once. For example, consider this situation:
#######
#...#.#
#.....#
#..OO@#
#..O..#
#.....#
#######
<vv<<^^<<^^
After appropriately resizing this map, the robot would push around these boxes as follows:
Initial state:
##############
##......##..##
##..........##
##....[][]@.##
##....[]....##
##..........##
##############
Move <:
##############
##......##..##
##..........##
##...[][]@..##
##....[]....##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[].@..##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.......@..##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##......@...##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.....@....##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##....@.....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##...@......##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##...@[]....##
##..........##
##..........##
##############
Move ^:
##############
##...[].##..##
##...@.[]...##
##....[]....##
##..........##
##..........##
##############
This warehouse also uses GPS to locate the boxes. For these larger boxes, distances are measured from the edge of the map to the closest edge of the box in question. So, the box shown below has a distance of 1 from the top edge of the map and 5 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 5 = 105.
##########
##...[]...
##........
In the scaled-up version of the larger example from above, after the robot has finished all of its moves, the warehouse would look like this:
####################
##[].......[].[][]##
##[]...........[].##
##[]........[][][]##
##[]......[]....[]##
##..##......[]....##
##..[]............##
##..@......[].[][]##
##......[][]..[]..##
####################
The sum of these boxes' GPS coordinates is 9021.
Predict the motion of the robot and boxes in this new, scaled-up warehouse. What is the sum of all boxes' final GPS coordinates? | 1522215 | from dataclasses import dataclass
@dataclass
class Grid:
grid: list[list[str]]
robot_pos: tuple[int, int] = None
def is_valid(self, x: int, y: int) -> bool:
return 0 <= y < len(self.grid) and 0 <= x < len(self.grid[y])
def is_wall(self, x: int, y: int) -> bool:
return self.is_valid(x, y) and self.grid[y][x] == "#"
def is_box(self, x: int, y: int) -> bool:
if self.is_valid(x, y):
if self.grid[y][x] == "O":
return True
if self.grid[y][x] == "[" or self.grid[y][x] == "]":
return True
return False
def is_empty(self, x: int, y: int) -> bool:
return self.is_valid(x, y) and self.grid[y][x] == "."
def get_robot_pos(self) -> tuple[int, int]:
if self.robot_pos != None:
return self.robot_pos
for y in range(len(self.grid)):
for x in range(len(self.grid[y])):
if self.grid[y][x] == "@":
self.set_robot_pos(x, y)
return (x, y)
return None
def set_robot_pos(self, x: int, y: int):
self.robot_pos = (x, y)
def swap(self, x1: int, y1: int, x2: int, y2: int):
if self.is_valid(x1, y1) and self.is_valid(x2, y2):
temp = self.grid[y1][x1]
self.grid[y1][x1] = self.grid[y2][x2]
self.grid[y2][x2] = temp
def __str__(self):
out = ""
for row in self.grid:
line = ""
for val in row:
line += val
out += line + "\n"
return out
def parse() -> tuple[Grid, str]:
grid_input, moves = open("input.txt").read().split("\n\n")
grid = Grid([[val for val in line] for line in grid_input.splitlines()])
return (grid, moves)
def move(grid: Grid, x: int, y: int, delta_x: int, delta_y: int) -> bool:
new_x, new_y = x + delta_x, y + delta_y
if grid.is_empty(new_x, new_y):
grid.swap(new_x, new_y, x, y)
return True
if grid.is_box(new_x, new_y):
if move(grid, new_x, new_y, delta_x, delta_y):
grid.swap(new_x, new_y, x, y)
return True
else:
return False
if grid.is_wall(new_x, new_y):
return False
return False
def can_move(grid: Grid, x: int, y: int, delta_x: int, delta_y: int) -> bool:
new_x, new_y = x + delta_x, y + delta_y
if grid.is_empty(new_x, new_y):
return True
if grid.is_box(new_x, new_y):
possible_to_move = False
if delta_y != 0:
if grid.grid[new_y][new_x] == "[":
possible_to_move |= can_move(grid, new_x + 1, new_y, delta_x, delta_y)
else:
possible_to_move |= can_move(grid, new_x - 1, new_y, delta_x, delta_y)
return possible_to_move and can_move(grid, new_x, new_y, delta_x, delta_y)
else:
return can_move(grid, new_x, new_y, delta_x, delta_y)
if grid.is_wall(new_x, new_y):
return False
return False
def wide_move(grid: Grid, x: int, y: int, delta_x: int, delta_y: int) -> bool:
new_x, new_y = x + delta_x, y + delta_y
if grid.is_empty(new_x, new_y):
grid.swap(new_x, new_y, x, y)
return True
if grid.is_box(new_x, new_y):
if delta_y != 0:
if grid.grid[new_y][new_x] == "[":
wide_move(grid, new_x + 1, new_y, delta_x, delta_y)
else:
wide_move(grid, new_x - 1, new_y, delta_x, delta_y)
wide_move(grid, new_x, new_y, delta_x, delta_y)
grid.swap(new_x, new_y, x, y)
return True
if grid.is_box(new_x, new_y):
return False
def part1():
grid, moves = parse()
for robot_move in moves:
x, y = grid.get_robot_pos()
delta_x, delta_y = (1 if robot_move == ">" else -1 if robot_move == "<" else 0, 1 if robot_move == "v" else -1 if robot_move == "^" else 0)
if move(grid, x, y, delta_x, delta_y):
grid.set_robot_pos(x + delta_x, y + delta_y)
print(grid)
coords = [100 * y + x if grid.is_box(x, y) else 0 for y in range(len(grid.grid)) for x in range(len(grid.grid[y]))]
print(sum(coords))
def part2():
grid, moves = parse()
new_grid = [[]]
for idx, row in enumerate(grid.grid):
new_grid.append([])
for val in row:
if val == "#":
new_grid[idx].append("#")
new_grid[idx].append("#")
elif val == "O":
new_grid[idx].append("[")
new_grid[idx].append("]")
elif val == ".":
new_grid[idx].append(".")
new_grid[idx].append(".")
elif val == "@":
new_grid[idx].append("@")
new_grid[idx].append(".")
grid.grid = new_grid
for robot_move in moves:
x, y = grid.get_robot_pos()
delta_x, delta_y = (1 if robot_move == ">" else -1 if robot_move == "<" else 0, 1 if robot_move == "v" else -1 if robot_move == "^" else 0)
if can_move(grid, x, y, delta_x, delta_y):
if wide_move(grid, x, y, delta_x, delta_y):
grid.set_robot_pos(x + delta_x, y + delta_y)
# print(grid)
print(grid)
coords = [100 * y + x if grid.grid[y][x] == "[" else 0 for y in range(len(grid.grid)) for x in range(len(grid.grid[y]))]
print(sum(coords))
part2() | python |
2024 | 15 | 2 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates?
Your puzzle answer was 1499739.
--- Part Two ---
The lanternfish use your information to find a safe moment to swim in and turn off the malfunctioning robot! Just as they start preparing a festival in your honor, reports start coming in that a second warehouse's robot is also malfunctioning.
This warehouse's layout is surprisingly similar to the one you just helped. There is one key difference: everything except the robot is twice as wide! The robot's list of movements doesn't change.
To get the wider warehouse's map, start with your original map and, for each tile, make the following changes:
If the tile is #, the new map contains ## instead.
If the tile is O, the new map contains [] instead.
If the tile is ., the new map contains .. instead.
If the tile is @, the new map contains @. instead.
This will produce a new warehouse map which is twice as wide and with wide boxes that are represented by []. (The robot does not change size.)
The larger example from before would now look like this:
####################
##....[]....[]..[]##
##............[]..##
##..[][]....[]..[]##
##....[]@.....[]..##
##[]##....[]......##
##[]....[]....[]..##
##..[][]..[]..[][]##
##........[]......##
####################
Because boxes are now twice as wide but the robot is still the same size and speed, boxes can be aligned such that they directly push two other boxes at once. For example, consider this situation:
#######
#...#.#
#.....#
#..OO@#
#..O..#
#.....#
#######
<vv<<^^<<^^
After appropriately resizing this map, the robot would push around these boxes as follows:
Initial state:
##############
##......##..##
##..........##
##....[][]@.##
##....[]....##
##..........##
##############
Move <:
##############
##......##..##
##..........##
##...[][]@..##
##....[]....##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[].@..##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.......@..##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##......@...##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.....@....##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##....@.....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##...@......##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##...@[]....##
##..........##
##..........##
##############
Move ^:
##############
##...[].##..##
##...@.[]...##
##....[]....##
##..........##
##..........##
##############
This warehouse also uses GPS to locate the boxes. For these larger boxes, distances are measured from the edge of the map to the closest edge of the box in question. So, the box shown below has a distance of 1 from the top edge of the map and 5 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 5 = 105.
##########
##...[]...
##........
In the scaled-up version of the larger example from above, after the robot has finished all of its moves, the warehouse would look like this:
####################
##[].......[].[][]##
##[]...........[].##
##[]........[][][]##
##[]......[]....[]##
##..##......[]....##
##..[]............##
##..@......[].[][]##
##......[][]..[]..##
####################
The sum of these boxes' GPS coordinates is 9021.
Predict the motion of the robot and boxes in this new, scaled-up warehouse. What is the sum of all boxes' final GPS coordinates? | 1522215 | def get_next(pos, move):
move_dict = {'^': (-1, 0), '>': (0, 1), 'v': (1, 0), '<': (0, -1)}
return tuple(map(sum, zip(pos, move_dict[move])))
def get_chars(c):
if c == '@':
return '@.'
elif c == 'O':
return '[]'
else:
return c + c
def can_push(grid, pos, move):
if move in ['<', '>']:
next_pos = get_next(get_next(pos, move), move)
if grid[next_pos[0]][next_pos[1]] == '.':
return True
if grid[next_pos[0]][next_pos[1]] in ['[', ']']:
return can_push(grid, next_pos, move)
return False
if move in ['^', 'v']:
if grid[pos[0]][pos[1]] == '[':
left, right = (pos, (pos[0], pos[1] + 1))
else:
left, right = ((pos[0], pos[1] - 1), pos)
next_left = get_next(left, move)
next_right = get_next(right, move)
if grid[next_left[0]][next_left[1]] == '#' or grid[next_right[0]][next_right[1]] == '#':
return False
return (grid[next_left[0]][next_left[1]] == '.' or can_push(grid, next_left, move)) and (grid[next_right[0]][next_right[1]] == '.' or can_push(grid, next_right, move))
def push(grid, pos, move):
if move in ['<', '>']:
j = pos[1]
while grid[pos[0]][j] != '.':
_, j = get_next((pos[0], j), move)
if j < pos[1]:
grid[pos[0]][j:pos[1]] = grid[pos[0]][j+1:pos[1]+1]
else:
grid[pos[0]][pos[1]+1:j+1] = grid[pos[0]][pos[1]:j]
if move in ['^', 'v']:
if grid[pos[0]][pos[1]] == '[':
left, right = (pos, (pos[0], pos[1] + 1))
else:
left, right = ((pos[0], pos[1] - 1), pos)
next_left = get_next(left, move)
next_right = get_next(right, move)
if grid[next_left[0]][next_left[1]] == '[':
push(grid, next_left, move)
else:
if grid[next_left[0]][next_left[1]] == ']':
push(grid, next_left, move)
if grid[next_right[0]][next_right[1]] == '[':
push(grid, next_right, move)
grid[next_left[0]][next_left[1]] = '['
grid[next_right[0]][next_right[1]] = ']'
grid[left[0]][left[1]] = '.'
grid[right[0]][right[1]] = '.'
def print_grid(grid):
for line in grid:
print("".join(line))
grid = []
moves = []
with open('input.txt') as f:
for line in f.read().splitlines():
if line.startswith("#"):
row = ""
for c in line:
row += get_chars(c)
grid += [[c for c in row]]
elif not line == "":
moves += [c for c in line]
for i in range(len(grid)):
for j in range(len(grid[i])):
if grid[i][j] == '@':
robot_pos = (i, j)
break
for move in moves:
next_i, next_j = get_next(robot_pos, move)
if grid[next_i][next_j] == '.':
grid[robot_pos[0]][robot_pos[1]] = '.'
grid[next_i][next_j] = '@'
robot_pos = (next_i, next_j)
elif grid[next_i][next_j] in ['[', ']']:
if can_push(grid, (next_i, next_j), move):
push(grid, (next_i, next_j), move)
grid[robot_pos[0]][robot_pos[1]] = '.'
grid[next_i][next_j] = '@'
robot_pos = (next_i, next_j)
total = 0
for i in range(len(grid)):
for j in range(len(grid[i])):
if grid[i][j] == '[':
total += 100 * i + j
print(total) | python |
2024 | 15 | 2 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates?
Your puzzle answer was 1499739.
--- Part Two ---
The lanternfish use your information to find a safe moment to swim in and turn off the malfunctioning robot! Just as they start preparing a festival in your honor, reports start coming in that a second warehouse's robot is also malfunctioning.
This warehouse's layout is surprisingly similar to the one you just helped. There is one key difference: everything except the robot is twice as wide! The robot's list of movements doesn't change.
To get the wider warehouse's map, start with your original map and, for each tile, make the following changes:
If the tile is #, the new map contains ## instead.
If the tile is O, the new map contains [] instead.
If the tile is ., the new map contains .. instead.
If the tile is @, the new map contains @. instead.
This will produce a new warehouse map which is twice as wide and with wide boxes that are represented by []. (The robot does not change size.)
The larger example from before would now look like this:
####################
##....[]....[]..[]##
##............[]..##
##..[][]....[]..[]##
##....[]@.....[]..##
##[]##....[]......##
##[]....[]....[]..##
##..[][]..[]..[][]##
##........[]......##
####################
Because boxes are now twice as wide but the robot is still the same size and speed, boxes can be aligned such that they directly push two other boxes at once. For example, consider this situation:
#######
#...#.#
#.....#
#..OO@#
#..O..#
#.....#
#######
<vv<<^^<<^^
After appropriately resizing this map, the robot would push around these boxes as follows:
Initial state:
##############
##......##..##
##..........##
##....[][]@.##
##....[]....##
##..........##
##############
Move <:
##############
##......##..##
##..........##
##...[][]@..##
##....[]....##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[].@..##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.......@..##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##......@...##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.....@....##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##....@.....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##...@......##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##...@[]....##
##..........##
##..........##
##############
Move ^:
##############
##...[].##..##
##...@.[]...##
##....[]....##
##..........##
##..........##
##############
This warehouse also uses GPS to locate the boxes. For these larger boxes, distances are measured from the edge of the map to the closest edge of the box in question. So, the box shown below has a distance of 1 from the top edge of the map and 5 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 5 = 105.
##########
##...[]...
##........
In the scaled-up version of the larger example from above, after the robot has finished all of its moves, the warehouse would look like this:
####################
##[].......[].[][]##
##[]...........[].##
##[]........[][][]##
##[]......[]....[]##
##..##......[]....##
##..[]............##
##..@......[].[][]##
##......[][]..[]..##
####################
The sum of these boxes' GPS coordinates is 9021.
Predict the motion of the robot and boxes in this new, scaled-up warehouse. What is the sum of all boxes' final GPS coordinates? | 1522215 | def pprint(robot_x, robot_y, width, height):
for y in range(height):
for x in range(width):
if (x, y) in walls:
print("#", end="")
elif (x, x + 1, y) in boxes:
print("[]", end="")
elif (x - 1, x, y) in boxes:
continue
elif robot_x == x and robot_y == y:
print("@", end="")
else:
print(".", end="")
print()
def can_move(x, y, move, width, height, to_move):
x += move[0]
y += move[1]
if x < 0 or x >= width or y < 0 or y >= height:
return False
if (x, y) in walls:
return False
# horizontal move:
if move[1] == 0:
# left move:
if move[0] == -1:
if (x + move[0], x, y) in boxes:
# need to move (x + move[0], x, y) box to left
to_move.add((x + move[0], x, y))
return can_move(x + move[0], y, move, width, height, to_move)
# right move
else:
if (x, x + move[0], y) in boxes:
to_move.add((x, x + move[0], y))
return can_move(x + move[0], y, move, width, height, to_move)
# vertical move:
if move[0] == 0:
if (x - 1, x, y) in boxes:
to_move.add((x - 1, x, y))
return can_move(x - 1, y, move, width, height, to_move) and can_move(x, y, move, width, height, to_move)
if (x, x + 1, y) in boxes:
to_move.add((x, x + 1, y))
return can_move(x, y, move, width, height, to_move) and can_move(x + 1, y, move, width, height, to_move)
return True
def move_robot(x, y, width, height):
for move in moves:
to_move = set()
if can_move(x, y, move, width, height, to_move):
for each in to_move:
boxes.remove(each)
for each in to_move:
boxes.add((each[0] + move[0], each[1] + move[0], each[2] + move[1]))
x += move[0]
y += move[1]
def main():
warehouse_done = False
robot_x = 0
robot_y = 0
width = 0
height = 0
y = 0
with open("15_input.txt", "r") as f:
for line in f:
line = line.strip()
if line != "":
if warehouse_done:
moves.extend([char_map[c] for c in line])
else:
x = 0
for char in line:
if char == '#':
walls.append((x, y))
walls.append((x + 1, y))
elif char == "O":
boxes.add((x, x + 1, y))
elif char == "@":
robot_x = x
robot_y = y
x += 2
if x > width:
width = x
else:
warehouse_done = True
if not warehouse_done:
y += 1
if y > height:
height = y
move_robot(robot_x, robot_y, width, height)
result = 0
for box in boxes:
result += 100 * box[2] + box[0]
print(result)
char_map = {"^": (0, -1),
">": (1, 0),
"<": (-1, 0),
"v": (0, 1)}
walls = []
boxes = set()
moves = []
if __name__ == "__main__":
main() | python |
2024 | 15 | 2 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates?
Your puzzle answer was 1499739.
--- Part Two ---
The lanternfish use your information to find a safe moment to swim in and turn off the malfunctioning robot! Just as they start preparing a festival in your honor, reports start coming in that a second warehouse's robot is also malfunctioning.
This warehouse's layout is surprisingly similar to the one you just helped. There is one key difference: everything except the robot is twice as wide! The robot's list of movements doesn't change.
To get the wider warehouse's map, start with your original map and, for each tile, make the following changes:
If the tile is #, the new map contains ## instead.
If the tile is O, the new map contains [] instead.
If the tile is ., the new map contains .. instead.
If the tile is @, the new map contains @. instead.
This will produce a new warehouse map which is twice as wide and with wide boxes that are represented by []. (The robot does not change size.)
The larger example from before would now look like this:
####################
##....[]....[]..[]##
##............[]..##
##..[][]....[]..[]##
##....[]@.....[]..##
##[]##....[]......##
##[]....[]....[]..##
##..[][]..[]..[][]##
##........[]......##
####################
Because boxes are now twice as wide but the robot is still the same size and speed, boxes can be aligned such that they directly push two other boxes at once. For example, consider this situation:
#######
#...#.#
#.....#
#..OO@#
#..O..#
#.....#
#######
<vv<<^^<<^^
After appropriately resizing this map, the robot would push around these boxes as follows:
Initial state:
##############
##......##..##
##..........##
##....[][]@.##
##....[]....##
##..........##
##############
Move <:
##############
##......##..##
##..........##
##...[][]@..##
##....[]....##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[].@..##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.......@..##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##......@...##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.....@....##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##....@.....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##...@......##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##...@[]....##
##..........##
##..........##
##############
Move ^:
##############
##...[].##..##
##...@.[]...##
##....[]....##
##..........##
##..........##
##############
This warehouse also uses GPS to locate the boxes. For these larger boxes, distances are measured from the edge of the map to the closest edge of the box in question. So, the box shown below has a distance of 1 from the top edge of the map and 5 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 5 = 105.
##########
##...[]...
##........
In the scaled-up version of the larger example from above, after the robot has finished all of its moves, the warehouse would look like this:
####################
##[].......[].[][]##
##[]...........[].##
##[]........[][][]##
##[]......[]....[]##
##..##......[]....##
##..[]............##
##..@......[].[][]##
##......[][]..[]..##
####################
The sum of these boxes' GPS coordinates is 9021.
Predict the motion of the robot and boxes in this new, scaled-up warehouse. What is the sum of all boxes' final GPS coordinates? | 1522215 | INPUT_FILE = "input.txt"
WALL = "#"
ROBOT = "@"
BOX = "O"
BOX_LEFT = "["
BOX_RIGHT = "]"
MOVES = {"<": (-1, 0), ">": (1, 0), "^": (0, -1), "v": (0, 1)}
class Warehouse:
def __init__(self, width):
self.width = width
self.robot_location = (0, 0)
self.walls = []
self.boxes = {}
self.moves = []
def print(self):
for y in range(self.height):
for x in range(self.width):
p = (x, y)
if p == self.robot_location:
print(ROBOT, end="")
elif p in self.boxes:
print(self.boxes[p], end="")
elif p in self.walls:
print(WALL, end="")
else:
print(".", end="")
print()
def add_wall(self, wall):
wall_position = (wall[0] * 2, wall[1])
self.walls.append(wall_position)
self.walls.append((wall_position[0] + 1, wall_position[1]))
def add_box(self, box):
box_position = (box[0] * 2, box[1])
self.boxes[box_position] = BOX_LEFT
self.boxes[(box_position[0] + 1, box_position[1])] = BOX_RIGHT
def set_robot_location(self, location):
self.robot_location = (location[0] * 2, location[1])
def set_height(self, height):
self.height = height
def print_moves(self):
for move in self.moves:
print(move)
def move(self, move):
dx, dy = MOVES[move]
new_location = (self.robot_location[0] + dx, self.robot_location[1] + dy)
if new_location in self.walls:
return
if new_location in self.boxes:
self.move_box(new_location, move)
if new_location in self.boxes or new_location in self.walls:
return
self.robot_location = new_location
def move_box(self, box, move):
dx, dy = MOVES[move]
if self.boxes[box] == BOX_RIGHT:
box_left = (box[0] - 1, box[1])
box_right = box
new_box_left = (box_left[0] + dx, box_left[1] + dy)
new_box_right = (box_right[0] + dx, box_right[1] + dy)
else:
box_left = box
box_right = (box[0] + 1, box[1])
new_box_left = (box_left[0] + dx, box_left[1] + dy)
new_box_right = (box_right[0] + dx, box_right[1] + dy)
# if horizontal
if move == "<" or move == ">":
if self.boxes[box] == BOX_RIGHT:
if new_box_left in self.walls or new_box_right in self.walls:
return False
if new_box_right != box_left:
if new_box_left in self.boxes or new_box_right in self.boxes:
if not self.move_box(new_box_left, move):
return False
if new_box_left in self.boxes:
if not self.move_box(new_box_left, move):
return False
self.boxes.pop(box_left)
self.boxes.pop(box_right)
self.boxes[new_box_left] = BOX_LEFT
self.boxes[new_box_right] = BOX_RIGHT
elif self.boxes[box] == BOX_LEFT:
if new_box_left in self.walls or new_box_right in self.walls:
return False
if new_box_left != box_right:
if new_box_left in self.boxes or new_box_right in self.boxes:
if not self.move_box(new_box_right, move):
return False
if new_box_right in self.boxes:
if not self.move_box(new_box_right, move):
return False
self.boxes.pop(box_left)
self.boxes.pop(box_right)
self.boxes[new_box_left] = BOX_LEFT
self.boxes[new_box_right] = BOX_RIGHT
else:
if self.collision_check(box, move):
return False
if new_box_left in self.walls or new_box_right in self.walls:
return False
if new_box_left in self.boxes:
if not self.move_box(new_box_left, move):
return False
if new_box_right in self.boxes:
if not self.move_box(new_box_right, move):
return False
self.boxes.pop(box_left)
self.boxes.pop(box_right)
self.boxes[new_box_left] = BOX_LEFT
self.boxes[new_box_right] = BOX_RIGHT
return True
def collision_check(self, box, move):
collision = False
dx, dy = MOVES[move]
if self.boxes[box] == BOX_RIGHT:
box_left = (box[0] - 1, box[1])
box_right = box
new_box_left = (box_left[0] + dx, box_left[1] + dy)
new_box_right = (box_right[0] + dx, box_right[1] + dy)
else:
box_left = box
box_right = (box[0] + 1, box[1])
new_box_left = (box_left[0] + dx, box_left[1] + dy)
new_box_right = (box_right[0] + dx, box_right[1] + dy)
if new_box_left in self.walls or new_box_right in self.walls:
return True
if new_box_left in self.boxes:
if self.collision_check(new_box_left, move):
return True
if new_box_right in self.boxes:
if self.collision_check(new_box_right, move):
return True
return collision
def run(self):
for move in self.moves:
self.move(move)
def sum_of_box_locations(self):
result = 0
for x, y in self.boxes:
if self.boxes[(x, y)] == BOX_LEFT:
result += x + 100 * y
return result
def read_file():
with open(INPUT_FILE, "r") as f:
lines = f.readlines()
width = len(lines[0].strip()) * 2
warehouse = Warehouse(width)
moves = []
for y, line in enumerate(lines):
if line[0] == "#":
for x, c in enumerate(line.strip()):
p = (x, y)
if c == WALL:
warehouse.add_wall(p)
elif c == ROBOT:
warehouse.set_robot_location(p)
elif c == BOX:
warehouse.add_box(p)
elif line[0] == "\n":
warehouse.set_height(y)
else:
for move in line.strip():
moves.append(move)
warehouse.moves = moves
return warehouse
warehouse = read_file()
warehouse.print()
warehouse.run()
print(warehouse.sum_of_box_locations()) | python |
2024 | 15 | 2 | --- Day 15: Warehouse Woes ---
You appear back inside your own mini submarine! Each Historian drives their mini submarine in a different direction; maybe the Chief has his own submarine down here somewhere as well?
You look up to see a vast school of lanternfish swimming past you. On closer inspection, they seem quite anxious, so you drive your mini submarine over to see if you can help.
Because lanternfish populations grow rapidly, they need a lot of food, and that food needs to be stored somewhere. That's why these lanternfish have built elaborate warehouse complexes operated by robots!
These lanternfish seem so anxious because they have lost control of the robot that operates one of their most important warehouses! It is currently running amok, pushing around boxes in the warehouse with no regard for lanternfish logistics or lanternfish inventory management strategies.
Right now, none of the lanternfish are brave enough to swim up to an unpredictable robot so they could shut it off. However, if you could anticipate the robot's movements, maybe they could find a safe option.
The lanternfish already have a map of the warehouse and a list of movements the robot will attempt to make (your puzzle input). The problem is that the movements will sometimes fail as boxes are shifted around, making the actual movements of the robot difficult to predict.
For example:
##########
#..O..O.O#
#......O.#
#.OO..O.O#
#..O@..O.#
#O#..O...#
#O..O..O.#
#.OO.O.OO#
#....O...#
##########
<vv>^<v^>v>^vv^v>v<>v^v<v<^vv<<<^><<><>>v<vvv<>^v^>^<<<><<v<<<v^vv^v>^
vvv<<^>^v^^><<>>><>^<<><^vv^^<>vvv<>><^^v>^>vv<>v<<<<v<^v>^<^^>>>^<v<v
><>vv>v^v^<>><>>>><^^>vv>v<^^^>>v^v^<^^>v^^>v^<^v>v<>>v^v^<v>v^^<^^vv<
<<v<^>>^^^^>>>v^<>vvv^><v<<<>^^^vv^<vvv>^>v<^^^^v<>^>vvvv><>>v^<<^^^^^
^><^><>>><>^^<<^^v>>><^<v>^<vv>>v>>>^v><>^v><<<<v>>v<v<v>vvv>^<><<>^><
^>><>^v<><^vvv<^^<><v<<<<<><^v<<<><<<^^<v<^^^><^>>^<v^><<<^>>^v<v^v<v^
>^>>^v>vv>^<<^v<>><<><<v<<v><>v<^vv<<<>^^v^>^^>>><<^v>>v^v><^^>>^<>vv^
<><^^>^^^<><vvvvv^v<v<<>^v<v>v<<^><<><<><<<^^<<<^<<>><<><^^^>^^<>^>v<>
^^>vv<^v^v<vv>^<><v<^v>^^^>>>^^vvv^>vvv<>>>^<^>>>>>^<<^v>^vvv<>^<><<v>
v^^>>><<^^<>>^v^<v^vv<>v^<<>^<^v^v><^<<<><<^<v><v<>vv>>v><v^<vv<>v^<<^
As the robot (@) attempts to move, if there are any boxes (O) in the way, the robot will also attempt to push those boxes. However, if this action would cause the robot or a box to move into a wall (#), nothing moves instead, including the robot. The initial positions of these are shown on the map at the top of the document the lanternfish gave you.
The rest of the document describes the moves (^ for up, v for down, < for left, > for right) that the robot will attempt to make, in order. (The moves form a single giant sequence; they are broken into multiple lines just to make copy-pasting easier. Newlines within the move sequence should be ignored.)
Here is a smaller example to get started:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
<^^>>>vv<v>>v<<
Were the robot to attempt the given sequence of moves, it would push around the boxes as follows:
Initial state:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move <:
########
#..O.O.#
##@.O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move ^:
########
#.@O.O.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#..@OO.#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move >:
########
#...@OO#
##..O..#
#...O..#
#.#.O..#
#...O..#
#......#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##..@..#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.@...#
#...O..#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#..@O..#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#...@O.#
#.#.O..#
#...O..#
#...O..#
########
Move >:
########
#....OO#
##.....#
#....@O#
#.#.O..#
#...O..#
#...O..#
########
Move v:
########
#....OO#
##.....#
#.....O#
#.#.O@.#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
Move <:
########
#....OO#
##.....#
#.....O#
#.#O@..#
#...O..#
#...O..#
########
The larger example has many more moves; after the robot has finished those moves, the warehouse would look like this:
##########
#.O.O.OOO#
#........#
#OO......#
#OO@.....#
#O#.....O#
#O.....OO#
#O.....OO#
#OO....OO#
##########
The lanternfish use their own custom Goods Positioning System (GPS for short) to track the locations of the boxes. The GPS coordinate of a box is equal to 100 times its distance from the top edge of the map plus its distance from the left edge of the map. (This process does not stop at wall tiles; measure all the way to the edges of the map.)
So, the box shown below has a distance of 1 from the top edge of the map and 4 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 4 = 104.
#######
#...O..
#......
The lanternfish would like to know the sum of all boxes' GPS coordinates after the robot finishes moving. In the larger example, the sum of all boxes' GPS coordinates is 10092. In the smaller example, the sum is 2028.
Predict the motion of the robot and boxes in the warehouse. After the robot is finished moving, what is the sum of all boxes' GPS coordinates?
Your puzzle answer was 1499739.
--- Part Two ---
The lanternfish use your information to find a safe moment to swim in and turn off the malfunctioning robot! Just as they start preparing a festival in your honor, reports start coming in that a second warehouse's robot is also malfunctioning.
This warehouse's layout is surprisingly similar to the one you just helped. There is one key difference: everything except the robot is twice as wide! The robot's list of movements doesn't change.
To get the wider warehouse's map, start with your original map and, for each tile, make the following changes:
If the tile is #, the new map contains ## instead.
If the tile is O, the new map contains [] instead.
If the tile is ., the new map contains .. instead.
If the tile is @, the new map contains @. instead.
This will produce a new warehouse map which is twice as wide and with wide boxes that are represented by []. (The robot does not change size.)
The larger example from before would now look like this:
####################
##....[]....[]..[]##
##............[]..##
##..[][]....[]..[]##
##....[]@.....[]..##
##[]##....[]......##
##[]....[]....[]..##
##..[][]..[]..[][]##
##........[]......##
####################
Because boxes are now twice as wide but the robot is still the same size and speed, boxes can be aligned such that they directly push two other boxes at once. For example, consider this situation:
#######
#...#.#
#.....#
#..OO@#
#..O..#
#.....#
#######
<vv<<^^<<^^
After appropriately resizing this map, the robot would push around these boxes as follows:
Initial state:
##############
##......##..##
##..........##
##....[][]@.##
##....[]....##
##..........##
##############
Move <:
##############
##......##..##
##..........##
##...[][]@..##
##....[]....##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[].@..##
##..........##
##############
Move v:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.......@..##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##......@...##
##############
Move <:
##############
##......##..##
##..........##
##...[][]...##
##....[]....##
##.....@....##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##....[]....##
##.....@....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##....@.....##
##..........##
##############
Move <:
##############
##......##..##
##...[][]...##
##....[]....##
##...@......##
##..........##
##############
Move ^:
##############
##......##..##
##...[][]...##
##...@[]....##
##..........##
##..........##
##############
Move ^:
##############
##...[].##..##
##...@.[]...##
##....[]....##
##..........##
##..........##
##############
This warehouse also uses GPS to locate the boxes. For these larger boxes, distances are measured from the edge of the map to the closest edge of the box in question. So, the box shown below has a distance of 1 from the top edge of the map and 5 from the left edge of the map, resulting in a GPS coordinate of 100 * 1 + 5 = 105.
##########
##...[]...
##........
In the scaled-up version of the larger example from above, after the robot has finished all of its moves, the warehouse would look like this:
####################
##[].......[].[][]##
##[]...........[].##
##[]........[][][]##
##[]......[]....[]##
##..##......[]....##
##..[]............##
##..@......[].[][]##
##......[][]..[]..##
####################
The sum of these boxes' GPS coordinates is 9021.
Predict the motion of the robot and boxes in this new, scaled-up warehouse. What is the sum of all boxes' final GPS coordinates? | 1522215 | input = open("day_15\input.txt", "r").read().splitlines()
warehouse_map = []
movements = ""
cur_pos = (0,0)
total = 0
movement_dict = {
"v": (1, 0),
"^": (-1, 0),
">": (0, 1),
"<": (0, -1)
}
def move_horizontally(pos, move):
while True:
pos = tuple(map(sum, zip(pos, move)))
pos_value = warehouse_map[pos[0]][pos[1]]
if pos_value == "#": return False
elif pos_value == ".":
if move[1] == 1:
warehouse_map[pos[0]][pos[1]] = "]"
else: warehouse_map[pos[0]][pos[1]] = "["
while warehouse_map[pos[0]][pos[1] - move[1]] != "@":
pos = (pos[0], pos[1] - move[1])
warehouse_map[pos[0]][pos[1]] = "]" if warehouse_map[pos[0]][pos[1]] == "[" else "["
return True
def move_vertically(positions, move):
involved_boxes = set(positions)
next_positions = set(positions)
while True:
involved_boxes |= next_positions
if len(next_positions) == 0:
boxes_dict = {(x,y): warehouse_map[x][y] for (x,y) in involved_boxes}
for box in involved_boxes:
if not (box[0] - move[0], box[1]) in boxes_dict:
warehouse_map[box[0]][box[1]] = "."
warehouse_map[box[0] + move[0]][box[1]] = boxes_dict[box]
return True
positions = next_positions.copy()
next_positions.clear()
for pos in positions:
next_pos = tuple(map(sum, zip(pos, move)))
next_pos_value = warehouse_map[next_pos[0]][next_pos[1]]
if next_pos_value == "[":
next_positions.add(next_pos)
next_positions.add((next_pos[0], next_pos[1] + 1))
elif next_pos_value == "]":
next_positions.add(next_pos)
next_positions.add((next_pos[0], next_pos[1] - 1))
elif next_pos_value == "#":
return False
i = 0
while input[i] != "":
modified_input = []
for char in input[i]:
if char == "#":
modified_input += ["#", "#"]
elif char == "O":
modified_input += ["[", "]"]
elif char == ".":
modified_input += [".", "."]
else:
modified_input += ["@", "."]
cur_pos = (i, modified_input.index("@"))
warehouse_map.append(modified_input)
i += 1
i += 1
while i < len(input):
movements += input[i]
i += 1
for move in movements:
destination = tuple(map(sum, zip(cur_pos, movement_dict[move])))
destination_value = warehouse_map[destination[0]][destination[1]]
if destination_value == "[" or destination_value == "]":
if move == "<" or move == ">":
open_spot = move_horizontally(destination, movement_dict[move])
else:
if destination_value == "[":
open_spot = move_vertically([destination, (destination[0], destination[1] + 1)], movement_dict[move])
else: open_spot = move_vertically([destination, (destination[0], destination[1] - 1)], movement_dict[move])
if open_spot:
warehouse_map[destination[0]][destination[1]] = "@"
warehouse_map[cur_pos[0]][cur_pos[1]] = "."
cur_pos = destination
elif destination_value == ".":
warehouse_map[destination[0]][destination[1]] = "@"
warehouse_map[cur_pos[0]][cur_pos[1]] = "."
cur_pos = destination
for i in range(len(warehouse_map)):
for j in range(len(warehouse_map[i])):
if warehouse_map[i][j] == "[":
total += 100 * i + j
print(f"The sum of all boxes' final GPS coordinates is {total}") | python |
2024 | 16 | 1 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get? | 94444 | from heapq import heappop, heappush
def get_lowest_score(maze):
m = len(maze)
n = len(maze[0])
start = (-1, -1)
end = (-1, -1)
for i in range(m):
for j in range(n):
if maze[i][j] == 'S':
start = (i, j)
elif maze[i][j] == 'E':
end = (i, j)
maze[end[0]][end[1]] = '.'
dirs = [(0, 1), (1, 0), (0, -1), (-1, 0)]
visited = set()
heap = [(0, 0, *start)]
while heap:
score, dI, i, j = heappop(heap)
if (i, j) == end:
break
if (dI, i, j) in visited:
continue
visited.add((dI, i, j))
x = i + dirs[dI][0]
y = j + dirs[dI][1]
if maze[x][y] == '.' and (dI, x, y) not in visited:
heappush(heap, (score + 1, dI, x, y))
left = (dI - 1) % 4
if (left, i, j) not in visited:
heappush(heap, (score + 1000, left, i, j))
right = (dI + 1) % 4
if (right, i, j) not in visited:
heappush(heap, (score + 1000, right, i, j))
return score
if __name__ == "__main__":
# Open file 'day16-1.txt' in read mode
with open('day16-1.txt', 'r') as f:
maze = []
for line in f:
line = line.strip()
maze.append(list(line))
print("Lowest Score:", get_lowest_score(maze)) | python |
2024 | 16 | 1 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get? | 94444 | import heapq
def dijkstra(grid):
for i in range(len(grid)):
for j in range(len(grid[i])):
if grid[i][j] == 'S':
start = ((i, j), (0, 1))
pq = [(0, start)]
costs = { start: 0 }
while len(pq) > 0:
cost, (pos, direction) = heapq.heappop(pq)
if grid[pos[0]][pos[1]] == 'E':
return cost
turns = [(1000, (pos, turn)) for turn in [(direction[1] * i, direction[0] * i) for i in [-1,1]]]
step = tuple(map(sum, zip(pos, direction)))
neighbors = turns + ([(1, (step, direction))] if grid[step[0]][step[1]] != '#' else [])
for neighbor in neighbors:
next_cost = cost + neighbor[0]
if next_cost < costs.get(neighbor[1], float('inf')):
heapq.heappush(pq, (next_cost, neighbor[1]))
costs[neighbor[1]] = next_cost
print("Could not find min path")
return None
with open('input.txt') as f:
grid = [[c for c in line] for line in f.read().splitlines()]
print(dijkstra(grid)) | python |
2024 | 16 | 1 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get? | 94444 | # Python heap implementation
from heapq import heappush, heappop
with open("./day_16.in") as fin:
grid = fin.read().strip().split("\n")
n = len(grid)
for i in range(n):
for j in range(n):
if grid[i][j] == "S":
start = (i, j)
elif grid[i][j] == "E":
end = (i, j)
dd = [[0, 1], [1, 0], [0, -1], [-1, 0]]
# DIjkstra's
q = [(0, 0, *start)]
seen = set()
while len(q) > 0:
top = heappop(q)
cost, d, i, j = top
if (d, i, j) in seen:
continue
seen.add((d, i, j))
if grid[i][j] == "#":
continue
if grid[i][j] == "E":
print(cost)
break
ii = i + dd[d][0]
jj = j + dd[d][1]
for nbr in [(cost + 1, d, ii, jj),
(cost + 1000, (d + 1) % 4, i, j),
(cost + 1000, (d + 3) % 4, i, j)]:
if nbr[1:] in seen:
continue
heappush(q, nbr) | python |
2024 | 16 | 1 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get? | 94444 | import re
from typing import List, Tuple
import heapq
def parse_input(file_path: str):
"""
Parse the input file to extract the data.
Args:
file_path (str): The path to the input file.
Returns:
List[str]: A list of strings representing the data from the file.
"""
with open(file_path, 'r') as file:
return [line.strip() for line in file]
def find_starting_position(grid: List[str]) -> Tuple[int, int]:
"""
Find the starting position marked as 'S' in the grid.
Args:
grid (List[str]): A list of strings representing the grid.
Returns:
Tuple[int, int]: A tuple containing the row and column indices of the starting position.
"""
for i, row in enumerate(grid):
for j, cell in enumerate(row):
if cell == 'S':
return i, j
return -1, -1
# given a grid and a current position as well as a direction,
# return the list of next possible moves either moving forward in the current direction or turning left or right
def get_possible_moves(grid: List[str], i: int, j: int, direction: str) -> List[Tuple[int, int, str]]:
"""
Get the possible moves from the current position in the grid.
Args:
grid (List[str]): A list of strings representing the grid.
i (int): The row index of the current position.
j (int): The column index of the current position.
direction (str): The current direction ('N', 'E', 'S', 'W').
Returns:
List[Tuple[int, int, str]]: A list of tuples where each tuple contains the row index, column index, and the direction of the possible moves.
"""
rows, cols = len(grid), len(grid[0])
moves = {'N': (-1, 0), 'E': (0, 1), 'S': (1, 0), 'W': (0, -1)}
left_turns = {'N': 'W', 'E': 'N', 'S': 'E', 'W': 'S'}
right_turns = {'N': 'E', 'E': 'S', 'S': 'W', 'W': 'N'}
possible_moves = []
# Check forward move
dx, dy = moves[direction]
new_i, new_j = i + dx, j + dy
if 0 <= new_i < rows and 0 <= new_j < cols and grid[new_i][new_j] != '#':
possible_moves.append((new_i, new_j, direction))
# Check left turn
left_direction = left_turns[direction]
left_dx, left_dy = moves[left_direction]
left_i, left_j = i + left_dx, j + left_dy
if 0 <= left_i < rows and 0 <= left_j < cols and grid[left_i][left_j] != '#':
possible_moves.append((i, j, left_direction))
# Check right turn
right_direction = right_turns[direction]
right_dx, right_dy = moves[right_direction]
right_i, right_j = i + right_dx, j + right_dy
if 0 <= right_i < rows and 0 <= right_j < cols and grid[right_i][right_j] != '#':
possible_moves.append((i, j, right_direction))
return possible_moves
def find_lowest_score(grid: List[str], i: int, j: int, direction: str) -> int:
"""
Finds the shortest path in a grid from a starting position (i, j) in a given direction.
Args:
grid (List[str]): A 2D grid represented as a list of strings.
i (int): The starting row index.
j (int): The starting column index.
direction (str): The initial direction of movement.
Returns:
int: The shortest path score to reach the target 'E' in the grid. If the target is not reachable, returns float('inf').
"""
visited = set()
heap = [(0, i, j, direction)] # (score, row, col, direction)
while heap:
score, i, j, direction = heapq.heappop(heap)
if (i, j, direction) in visited:
continue
visited.add((i, j, direction))
if grid[i][j] == 'E':
return score
for new_i, new_j, new_direction in get_possible_moves(grid, i, j, direction):
new_score = score + 1 if new_direction == direction else score + 1000
heapq.heappush(heap, (new_score, new_i, new_j, new_direction))
return float('inf')
if __name__ == "__main__":
file_path = 'input.txt'
parsed_data = parse_input(file_path)
i, j = find_starting_position(parsed_data)
score = find_lowest_score(parsed_data, i, j, 'E')
print(score) | python |
2024 | 16 | 1 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get? | 94444 | # Python heap implementation
from heapq import heappush, heappop
from collections import defaultdict
with open("16.in") as fin:
grid = fin.read().strip().split("\n")
n = len(grid)
for i in range(n):
for j in range(n):
if grid[i][j] == "S":
start = (i, j)
elif grid[i][j] == "E":
end = (i, j)
dd = [[0, 1], [1, 0], [0, -1], [-1, 0]]
# Dijkstra's
q = [(0, 0, *start, 0, *start)]
cost = {}
deps = defaultdict(list)
while len(q) > 0:
top = heappop(q)
c, d, i, j, pd, pi, pj = top
if (d, i, j) in cost:
if cost[(d, i, j)] == c:
deps[(d, i, j)].append((pd, pi, pj))
continue
never_seen_pos = True
for newd in range(4):
if (newd, i, j) in cost:
never_seen_pos = True
break
if never_seen_pos:
deps[(d, i, j)].append((pd, pi, pj))
cost[(d, i, j)] = c
if grid[i][j] == "#":
continue
if grid[i][j] == "E":
end_dir = d
print(c)
break
ii = i + dd[d][0]
jj = j + dd[d][1]
for nbr in [(c + 1, d, ii, jj, d, i, j),
(c + 1000, (d + 1) % 4, i, j, d, i, j),
(c + 1000, (d + 3) % 4, i, j, d, i, j)]:
heappush(q, nbr) | python |
2024 | 16 | 2 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get?
Your puzzle answer was 94444.
--- Part Two ---
Now that you know what the best paths look like, you can figure out the best spot to sit.
Every non-wall tile (S, ., or E) is equipped with places to sit along the edges of the tile. While determining which of these tiles would be the best spot to sit depends on a whole bunch of factors (how comfortable the seats are, how far away the bathrooms are, whether there's a pillar blocking your view, etc.), the most important factor is whether the tile is on one of the best paths through the maze. If you sit somewhere else, you'd miss all the action!
So, you'll need to determine which tiles are part of any best path through the maze, including the S and E tiles.
In the first example, there are 45 tiles (marked O) that are part of at least one of the various best paths through the maze:
###############
#.......#....O#
#.#.###.#.###O#
#.....#.#...#O#
#.###.#####.#O#
#.#.#.......#O#
#.#.#####.###O#
#..OOOOOOOOO#O#
###O#O#####O#O#
#OOO#O....#O#O#
#O#O#O###.#O#O#
#OOOOO#...#O#O#
#O###.#.#.#O#O#
#O..#.....#OOO#
###############
In the second example, there are 64 tiles that are part of at least one of the best paths:
#################
#...#...#...#..O#
#.#.#.#.#.#.#.#O#
#.#.#.#...#...#O#
#.#.#.#.###.#.#O#
#OOO#.#.#.....#O#
#O#O#.#.#.#####O#
#O#O..#.#.#OOOOO#
#O#O#####.#O###O#
#O#O#..OOOOO#OOO#
#O#O###O#####O###
#O#O#OOO#..OOO#.#
#O#O#O#####O###.#
#O#O#OOOOOOO..#.#
#O#O#O#########.#
#O#OOO..........#
#################
Analyze your map further. How many tiles are part of at least one of the best paths through the maze? | 502 | # Python heap implementation
from heapq import heappush, heappop
from collections import defaultdict
with open("16.in") as fin:
grid = fin.read().strip().split("\n")
n = len(grid)
for i in range(n):
for j in range(n):
if grid[i][j] == "S":
start = (i, j)
elif grid[i][j] == "E":
end = (i, j)
dd = [[0, 1], [1, 0], [0, -1], [-1, 0]]
# Dijkstra's
q = [(0, 0, *start, 0, *start)]
cost = {}
deps = defaultdict(list)
while len(q) > 0:
top = heappop(q)
c, d, i, j, pd, pi, pj = top
if (d, i, j) in cost:
if cost[(d, i, j)] == c:
deps[(d, i, j)].append((pd, pi, pj))
continue
never_seen_pos = True
for newd in range(4):
if (newd, i, j) in cost:
never_seen_pos = True
break
if never_seen_pos:
deps[(d, i, j)].append((pd, pi, pj))
cost[(d, i, j)] = c
if grid[i][j] == "#":
continue
if grid[i][j] == "E":
end_dir = d
break
ii = i + dd[d][0]
jj = j + dd[d][1]
for nbr in [(c + 1, d, ii, jj, d, i, j),
(c + 1000, (d + 1) % 4, i, j, d, i, j),
(c + 1000, (d + 3) % 4, i, j, d, i, j)]:
heappush(q, nbr)
# Go back through deps
stack = [(end_dir, *end)]
seen = set()
seen_pos = set()
while len(stack) > 0:
top = stack.pop()
if top in seen:
continue
seen.add(top)
seen_pos.add(top[1:])
for nbr in deps[top]:
stack.append(nbr)
print(len(seen_pos)) | python |
2024 | 16 | 2 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get?
Your puzzle answer was 94444.
--- Part Two ---
Now that you know what the best paths look like, you can figure out the best spot to sit.
Every non-wall tile (S, ., or E) is equipped with places to sit along the edges of the tile. While determining which of these tiles would be the best spot to sit depends on a whole bunch of factors (how comfortable the seats are, how far away the bathrooms are, whether there's a pillar blocking your view, etc.), the most important factor is whether the tile is on one of the best paths through the maze. If you sit somewhere else, you'd miss all the action!
So, you'll need to determine which tiles are part of any best path through the maze, including the S and E tiles.
In the first example, there are 45 tiles (marked O) that are part of at least one of the various best paths through the maze:
###############
#.......#....O#
#.#.###.#.###O#
#.....#.#...#O#
#.###.#####.#O#
#.#.#.......#O#
#.#.#####.###O#
#..OOOOOOOOO#O#
###O#O#####O#O#
#OOO#O....#O#O#
#O#O#O###.#O#O#
#OOOOO#...#O#O#
#O###.#.#.#O#O#
#O..#.....#OOO#
###############
In the second example, there are 64 tiles that are part of at least one of the best paths:
#################
#...#...#...#..O#
#.#.#.#.#.#.#.#O#
#.#.#.#...#...#O#
#.#.#.#.###.#.#O#
#OOO#.#.#.....#O#
#O#O#.#.#.#####O#
#O#O..#.#.#OOOOO#
#O#O#####.#O###O#
#O#O#..OOOOO#OOO#
#O#O###O#####O###
#O#O#OOO#..OOO#.#
#O#O#O#####O###.#
#O#O#OOOOOOO..#.#
#O#O#O#########.#
#O#OOO..........#
#################
Analyze your map further. How many tiles are part of at least one of the best paths through the maze? | 502 | #d16 part 2
from heapq import heappop, heappush
def part2(puzzle_input):
grid = puzzle_input.split('\n')
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if grid[i][j] == 'S':
start = (i, j)
elif grid[i][j] == 'E':
end = (i, j)
grid[end[0]] = grid[end[0]].replace('E', '.')
def can_visit(d, i, j, score):
prev_score = visited.get((d, i, j))
if prev_score and prev_score < score:
return False
visited[(d, i, j)] = score
return True
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
heap = [(0, 0, *start, {start})]
visited = {}
lowest_score = None
winning_paths = set()
while heap:
score, d, i, j, path = heappop(heap)
if lowest_score and lowest_score < score:
break
if (i, j) == end:
lowest_score = score
winning_paths |= path
continue
if not can_visit(d, i, j, score):
continue
x = i + directions[d][0]
y = j + directions[d][1]
if grid[x][y] == '.' and can_visit(d, x, y, score+1):
heappush(heap, (score + 1, d, x, y, path | {(x, y)}))
left = (d - 1) % 4
if can_visit(left, i, j, score + 1000):
heappush(heap, (score + 1000, left, i, j, path))
right = (d + 1) % 4
if can_visit(right, i, j, score + 1000):
heappush(heap, (score + 1000, right, i, j, path))
return len(winning_paths)
with open(r'16.txt','r') as f:
input_text = f.read()
res = part2(input_text)
res | python |
2024 | 16 | 2 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get?
Your puzzle answer was 94444.
--- Part Two ---
Now that you know what the best paths look like, you can figure out the best spot to sit.
Every non-wall tile (S, ., or E) is equipped with places to sit along the edges of the tile. While determining which of these tiles would be the best spot to sit depends on a whole bunch of factors (how comfortable the seats are, how far away the bathrooms are, whether there's a pillar blocking your view, etc.), the most important factor is whether the tile is on one of the best paths through the maze. If you sit somewhere else, you'd miss all the action!
So, you'll need to determine which tiles are part of any best path through the maze, including the S and E tiles.
In the first example, there are 45 tiles (marked O) that are part of at least one of the various best paths through the maze:
###############
#.......#....O#
#.#.###.#.###O#
#.....#.#...#O#
#.###.#####.#O#
#.#.#.......#O#
#.#.#####.###O#
#..OOOOOOOOO#O#
###O#O#####O#O#
#OOO#O....#O#O#
#O#O#O###.#O#O#
#OOOOO#...#O#O#
#O###.#.#.#O#O#
#O..#.....#OOO#
###############
In the second example, there are 64 tiles that are part of at least one of the best paths:
#################
#...#...#...#..O#
#.#.#.#.#.#.#.#O#
#.#.#.#...#...#O#
#.#.#.#.###.#.#O#
#OOO#.#.#.....#O#
#O#O#.#.#.#####O#
#O#O..#.#.#OOOOO#
#O#O#####.#O###O#
#O#O#..OOOOO#OOO#
#O#O###O#####O###
#O#O#OOO#..OOO#.#
#O#O#O#####O###.#
#O#O#OOOOOOO..#.#
#O#O#O#########.#
#O#OOO..........#
#################
Analyze your map further. How many tiles are part of at least one of the best paths through the maze? | 502 | import heapq
from sys import maxsize
maze = open("16.txt").read().splitlines()
seen = [[[maxsize for _ in range(4)] for x in range(len(maze[0]))] for y in range(len(maze))]
velocities = [(-1, 0), (0, 1), (1, 0), (0, -1)]
start_pos = None
end_pos = None
for j, r in enumerate(maze):
for i, c in enumerate(r):
if c == 'S':
start_pos = (j, i)
if c == 'E':
end_pos = (j, i)
# TODO For C, need a better track of path than shoving it all into a list lmao
# I saw on da reddit a lot of folks searching backwards through the maze scores
# for all scores where score is -1 or -1001 from current, starting at end.
pq = [(0, (*start_pos, 1), [start_pos])] # start facing EAST
paths = []
best_score = maxsize
while pq and pq[0][0] <= best_score:
score, (y, x, dir), path = heapq.heappop(pq)
if (y, x) == end_pos:
best_score = score
paths.append(path)
continue
if seen[y][x][dir] < score:
continue
seen[y][x][dir] = score
for i in range(4):
dy, dx = velocities[i]
ny, nx = y + dy, x + dx
if maze[ny][nx] != '#' and (ny, nx) not in path:
cost = 1 if i == dir else 1001
heapq.heappush(pq, (score + cost, (ny, nx, i), path + [(ny, nx)]))
seats = set()
for path in paths:
seats |= set(path)
print(len(seats)) | python |
2024 | 16 | 2 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get?
Your puzzle answer was 94444.
--- Part Two ---
Now that you know what the best paths look like, you can figure out the best spot to sit.
Every non-wall tile (S, ., or E) is equipped with places to sit along the edges of the tile. While determining which of these tiles would be the best spot to sit depends on a whole bunch of factors (how comfortable the seats are, how far away the bathrooms are, whether there's a pillar blocking your view, etc.), the most important factor is whether the tile is on one of the best paths through the maze. If you sit somewhere else, you'd miss all the action!
So, you'll need to determine which tiles are part of any best path through the maze, including the S and E tiles.
In the first example, there are 45 tiles (marked O) that are part of at least one of the various best paths through the maze:
###############
#.......#....O#
#.#.###.#.###O#
#.....#.#...#O#
#.###.#####.#O#
#.#.#.......#O#
#.#.#####.###O#
#..OOOOOOOOO#O#
###O#O#####O#O#
#OOO#O....#O#O#
#O#O#O###.#O#O#
#OOOOO#...#O#O#
#O###.#.#.#O#O#
#O..#.....#OOO#
###############
In the second example, there are 64 tiles that are part of at least one of the best paths:
#################
#...#...#...#..O#
#.#.#.#.#.#.#.#O#
#.#.#.#...#...#O#
#.#.#.#.###.#.#O#
#OOO#.#.#.....#O#
#O#O#.#.#.#####O#
#O#O..#.#.#OOOOO#
#O#O#####.#O###O#
#O#O#..OOOOO#OOO#
#O#O###O#####O###
#O#O#OOO#..OOO#.#
#O#O#O#####O###.#
#O#O#OOOOOOO..#.#
#O#O#O#########.#
#O#OOO..........#
#################
Analyze your map further. How many tiles are part of at least one of the best paths through the maze? | 502 | import heapq
from typing import Dict, List, Tuple
class MinHeap:
"""
Min heap implementation using heapq library
"""
def __init__(self):
self.heap = []
def insert(self, element: Tuple[int, str]):
heapq.heappush(self.heap, element)
def extract_min(self) -> Tuple[int, str]:
return heapq.heappop(self.heap)
def size(self) -> int:
return len(self.heap)
DIRECTIONS = [
{"x": 1, "y": 0},
{"x": 0, "y": 1},
{"x": -1, "y": 0},
{"x": 0, "y": -1},
]
def dijkstra(
graph: Dict[str, Dict[str, int]], start: Dict[str, int], directionless: bool
) -> Dict[str, int]:
queue = MinHeap()
distances = {}
starting_key = (
f"{start['x']},{start['y']},0"
if not directionless
else f"{start['x']},{start['y']}"
)
queue.insert((0, starting_key))
distances[starting_key] = 0
while queue.size() > 0:
current_score, current_node = queue.extract_min()
if distances[current_node] < current_score:
continue
if current_node not in graph:
continue
for next_node, weight in graph[current_node].items():
new_score = current_score + weight
if next_node not in distances or distances[next_node] > new_score:
distances[next_node] = new_score
queue.insert((new_score, next_node))
return distances
def parse_grid(grid: List[str]):
width, height = len(grid[0]), len(grid)
start = {"x": 0, "y": 0}
end = {"x": 0, "y": 0}
forward = {}
reverse = {}
for y in range(height):
for x in range(width):
if grid[y][x] == "S":
start = {"x": x, "y": y}
if grid[y][x] == "E":
end = {"x": x, "y": y}
if grid[y][x] != "#":
for i, direction in enumerate(DIRECTIONS):
position = {"x": x + direction["x"], "y": y + direction["y"]}
key = f"{x},{y},{i}"
move_key = f"{position['x']},{position['y']},{i}"
if (
0 <= position["x"] < width
and 0 <= position["y"] < height
and grid[position["y"]][position["x"]] != "#"
):
forward.setdefault(key, {})[move_key] = 1
reverse.setdefault(move_key, {})[key] = 1
for rotate_key in [
f"{x},{y},{(i + 3) % 4}",
f"{x},{y},{(i + 1) % 4}",
]:
forward.setdefault(key, {})[rotate_key] = 1000
reverse.setdefault(rotate_key, {})[key] = 1000
for i in range(len(DIRECTIONS)):
key = f"{end['x']},{end['y']}"
rotate_key = f"{end['x']},{end['y']},{i}"
forward.setdefault(rotate_key, {})[key] = 0
reverse.setdefault(key, {})[rotate_key] = 0
return {"start": start, "end": end, "forward": forward, "reverse": reverse}
def tilesApartFromMaze() -> int:
with open("input.txt") as file:
con = file.read()
grid = con.strip().split("\n")
parsed = parse_grid(grid)
from_start = dijkstra(parsed["forward"], parsed["start"], False)
to_end = dijkstra(parsed["reverse"], parsed["end"], True)
end_key = f"{parsed['end']['x']},{parsed['end']['y']}"
target = from_start[end_key]
spaces = set()
for position in from_start:
if (
position != end_key
and from_start[position] + to_end.get(position, float("inf")) == target
):
x, y, *_ = position.split(",") # Unpack and ignore direction in the key
spaces.add(f"{x},{y}")
print(len(spaces))
tilesApartFromMaze() | python |
2024 | 16 | 2 | --- Day 16: Reindeer Maze ---
It's time again for the Reindeer Olympics! This year, the big event is the Reindeer Maze, where the Reindeer compete for the lowest score.
You and The Historians arrive to search for the Chief right as the event is about to start. It wouldn't hurt to watch a little, right?
The Reindeer start on the Start Tile (marked S) facing East and need to reach the End Tile (marked E). They can move forward one tile at a time (increasing their score by 1 point), but never into a wall (#). They can also rotate clockwise or counterclockwise 90 degrees at a time (increasing their score by 1000 points).
To figure out the best place to sit, you start by grabbing a map (your puzzle input) from a nearby kiosk. For example:
###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############
There are many paths through this maze, but taking any of the best paths would incur a score of only 7036. This can be achieved by taking a total of 36 steps forward and turning 90 degrees a total of 7 times:
###############
#.......#....E#
#.#.###.#.###^#
#.....#.#...#^#
#.###.#####.#^#
#.#.#.......#^#
#.#.#####.###^#
#..>>>>>>>>v#^#
###^#.#####v#^#
#>>^#.....#v#^#
#^#.#.###.#v#^#
#^....#...#v#^#
#^###.#.#.#v#^#
#S..#.....#>>^#
###############
Here's a second example:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################
In this maze, the best paths cost 11048 points; following one such path would look like this:
#################
#...#...#...#..E#
#.#.#.#.#.#.#.#^#
#.#.#.#...#...#^#
#.#.#.#.###.#.#^#
#>>v#.#.#.....#^#
#^#v#.#.#.#####^#
#^#v..#.#.#>>>>^#
#^#v#####.#^###.#
#^#v#..>>>>^#...#
#^#v###^#####.###
#^#v#>>^#.....#.#
#^#v#^#####.###.#
#^#v#^........#.#
#^#v#^#########.#
#S#>>^..........#
#################
Note that the path shown above includes one 90 degree turn as the very first move, rotating the Reindeer from facing East to facing North.
Analyze your map carefully. What is the lowest score a Reindeer could possibly get?
Your puzzle answer was 94444.
--- Part Two ---
Now that you know what the best paths look like, you can figure out the best spot to sit.
Every non-wall tile (S, ., or E) is equipped with places to sit along the edges of the tile. While determining which of these tiles would be the best spot to sit depends on a whole bunch of factors (how comfortable the seats are, how far away the bathrooms are, whether there's a pillar blocking your view, etc.), the most important factor is whether the tile is on one of the best paths through the maze. If you sit somewhere else, you'd miss all the action!
So, you'll need to determine which tiles are part of any best path through the maze, including the S and E tiles.
In the first example, there are 45 tiles (marked O) that are part of at least one of the various best paths through the maze:
###############
#.......#....O#
#.#.###.#.###O#
#.....#.#...#O#
#.###.#####.#O#
#.#.#.......#O#
#.#.#####.###O#
#..OOOOOOOOO#O#
###O#O#####O#O#
#OOO#O....#O#O#
#O#O#O###.#O#O#
#OOOOO#...#O#O#
#O###.#.#.#O#O#
#O..#.....#OOO#
###############
In the second example, there are 64 tiles that are part of at least one of the best paths:
#################
#...#...#...#..O#
#.#.#.#.#.#.#.#O#
#.#.#.#...#...#O#
#.#.#.#.###.#.#O#
#OOO#.#.#.....#O#
#O#O#.#.#.#####O#
#O#O..#.#.#OOOOO#
#O#O#####.#O###O#
#O#O#..OOOOO#OOO#
#O#O###O#####O###
#O#O#OOO#..OOO#.#
#O#O#O#####O###.#
#O#O#OOOOOOO..#.#
#O#O#O#########.#
#O#OOO..........#
#################
Analyze your map further. How many tiles are part of at least one of the best paths through the maze? | 502 | import time
from collections import deque
POSSIBLE_DIRS = (1, -1, 1j, -1j)
def calculate_min_scores(
start: complex, walls: set[complex]
) -> dict[complex, dict[complex, int]]:
scores = {1: {start: 0}, -1: {}, 1j: {}, -1j: {}}
points = deque([(start, 1)])
while points:
p, d = points.popleft()
score = scores[d][p]
for move, dir, cost in [(p + d, d, 1), (p, d * -1j, 1000), (p, d * 1j, 1000)]:
if move in walls:
continue
if move in scores[dir] and scores[dir][move] <= score + cost:
continue
scores[dir][move] = score + cost
points.append((move, dir))
return scores
def parse(text: str):
walls: set[complex] = set()
start: complex = 0j
end: complex = 0j
for y, row in enumerate(text.splitlines()):
for x, c in enumerate(row):
match c:
case "#":
walls.add(complex(x, y))
case "S":
start = complex(x, y)
case "E":
end = complex(x, y)
case _:
pass
return start, end, walls
def solve_part_2(text: str):
start, end, walls = parse(text)
scores = calculate_min_scores(start, walls)
path: set[complex] = {start, end}
cost = min(scores[dir][end] for dir in POSSIBLE_DIRS if end in scores[dir])
points = deque(
[
(end, dir, cost)
for dir in POSSIBLE_DIRS
if end in scores[dir] and scores[dir][end] == cost
]
)
while points:
p, d, cost = points.popleft()
for move, dir, c1 in [
(p - d, d, cost - 1),
(p, d * 1j, cost - 1000),
(p, d * -1j, cost - 1000),
]:
if move in scores[dir] and scores[dir][move] == c1:
path.add(move)
points.append((move, dir, c1))
return len(path)
if __name__ == "__main__":
with open("input.txt", "r") as f:
quiz_input = f.read()
p_2_solution = int(solve_part_2(quiz_input)) | python |
2024 | 17 | 1 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string? | 7,5,4,3,4,5,3,4,6 | ADV = 0
BXL = 1
BST = 2
JNZ = 3
BXC = 4
OUT = 5
BDV = 6
CDV = 7
def get_combo_operand(operand, reg):
if 0 <= operand <= 3:
return operand
if 4 <= operand <= 6:
return reg[chr(ord('A') + operand - 4)]
raise ValueError(f"Unexpected operand {operand}")
with open('input.txt') as f:
lines = f.read().splitlines()
reg = { 'A': int(lines[0].split(": ")[1]), 'B': int(lines[1].split(": ")[1]), 'C': int(lines[2].split(": ")[1])}
instructions = list(map(int, lines[4].split(": ")[1].split(",")))
output = []
instr_ptr = 0
while instr_ptr < len(instructions):
jump = False
opcode, operand = instructions[instr_ptr:instr_ptr + 2]
if opcode == ADV:
reg['A'] = reg['A'] // (2 ** get_combo_operand(operand, reg))
elif opcode == BXL:
reg['B'] = reg['B'] ^ operand
elif opcode == BST:
reg['B'] = get_combo_operand(operand, reg) % 8
elif opcode == JNZ:
if reg['A'] != 0:
instr_ptr = operand
jump = True
elif opcode == BXC:
reg['B'] = reg['B'] ^ reg['C']
elif opcode == OUT:
output += [get_combo_operand(operand, reg) % 8]
elif opcode == BDV:
reg['B'] = reg['A'] // (2 ** get_combo_operand(operand, reg))
elif opcode == CDV:
reg['C'] = reg['A'] // (2 ** get_combo_operand(operand, reg))
else:
raise ValueError(f"Unexpected opcode {opcode}")
if not jump:
instr_ptr += 2
print(",".join(map(str, output))) | python |
2024 | 17 | 1 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string? | 7,5,4,3,4,5,3,4,6 | from collections.abc import Generator
def get_out(a: int) -> int:
b = (a % 8) ^ 1
return (b ^ (a // 2**b) ^ 4) % 8
def get_all_out(a: int) -> list[int]:
out: list[int] = []
while a > 0:
out.append(get_out(a))
a = a // 8
return out
def next_A(seq: int, a: int) -> Generator[int]:
while True:
out = get_out(a)
if out == seq:
yield a
a += 1
def main() -> None:
seq: list[int] = [0, 3, 5, 5, 3, 0, 4, 1, 7, 4, 5, 7, 1, 1, 4, 2]
a: int = 0
steps: dict[int, Generator[int]] = {}
i = 1
while True:
if i == len(seq) + 1:
break
s = seq[i - 1]
if i not in steps:
steps[i] = next_A(s, a)
a = next(steps[i])
out = get_all_out(a)
if out == list(reversed(seq[:i])):
i += 1
a *= 8
print(a // 8)
if __name__ == "__main__":
main() | python |
2024 | 17 | 1 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string? | 7,5,4,3,4,5,3,4,6 | #!/usr/bin/python3
def combo_operand(op:int) -> int:
combo_operands = {4:"A",5:"B",6:"C"}
return op if op < 4 else registers[combo_operands[op]]
def adv(op:int) -> int:
return int(registers["A"] / 2 ** combo_operand(op))
def bxl(op:int) -> int:
return registers["B"] ^ op
def bst(op:int) -> int:
return combo_operand(op) % 8
def jnz(inst_pointer:int, op:int) -> int:
return op if registers["A"] != 0 else inst_pointer + 2
def bxc(op:int) -> int:
return registers["B"] ^ registers["C"]
def out(op:int) -> str:
return str(combo_operand(op) % 8)
def bdv(op:int) -> int:
return adv(op)
def cdv(op:int) -> int:
return adv(op)
with open("input.txt") as file:
registers = {}
for line in file:
if "Register" in line:
line = line.strip().split()
registers[line[1].strip(":")] = int(line[2])
elif "Program" in line:
line = line.strip("Program: ")
program = [int(n) for n in line.strip().split(",")]
instruction_pointer = 0
output = []
while instruction_pointer < len(program):
opcode = program[instruction_pointer]
operand = program[instruction_pointer + 1]
if opcode == 0:
registers["A"] = adv(operand)
elif opcode == 1:
registers["B"] = bxl(operand)
elif opcode == 2:
registers["B"] = bst(operand)
elif opcode == 3:
instruction_pointer = jnz(instruction_pointer, operand)
continue
elif opcode == 4:
registers["B"] = bxc(operand)
elif opcode == 5:
output.append(out(operand))
elif opcode == 6:
registers["B"] = bdv(operand)
elif opcode == 7:
registers["C"] = cdv(operand)
instruction_pointer += 2
print("Program output:", ",".join(output)) | python |
2024 | 17 | 1 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string? | 7,5,4,3,4,5,3,4,6 | output = ""
i = 0
def get_result_string(regs, instructions):
global output
n = len(instructions)
global i
def get_combo(operand):
if 0 <= operand < 4:
return operand
elif operand == 4:
return regs['a']
elif operand == 5:
return regs['b']
elif operand == 6:
return regs['c']
return 0
def adv(operand):
operand = get_combo(operand)
regs['a'] = int(regs['a'] // (2**operand))
return
def bxl(operand):
regs['b'] = int(regs['b'] ^ operand)
return
def bst(operand):
operand = get_combo(operand)
regs['b'] = int(operand % 8)
return
def jnz(operand):
global i
if regs['a'] != 0:
i = int(operand) - 1
return
def bxc(operand):
regs['b'] = int(regs['b'] ^ regs['c'])
return
def out(operand):
global output
operand = get_combo(operand)
output += str(operand % 8)
return
def bdv(operand):
operand = get_combo(operand)
regs['b'] = int(regs['a'] // (2**operand))
return
def cdv(operand):
operand = get_combo(operand)
regs['c'] = int(regs['a'] // (2**operand))
return
while i < n:
curr = instructions[i]
if curr[0] == 0:
adv(curr[1])
elif curr[0] == 1:
bxl(curr[1])
elif curr[0] == 2:
bst(curr[1])
elif curr[0] == 3:
jnz(curr[1])
elif curr[0] == 4:
bxc(curr[1])
elif curr[0] == 5:
out(curr[1])
elif curr[0] == 6:
bdv(curr[1])
elif curr[0] == 7:
cdv(curr[1])
i += 1
return ','.join(list(output))
if __name__ == "__main__":
regs = {}
instructions = []
# Open file 'day17-1.txt' in read mode
with open('day17-1.txt', 'r') as f:
for line in f:
line = line.strip()
if regs.get('a') is None:
regs['a'] = int(line[line.find(':') + 2:])
elif regs.get('b') is None:
regs['b'] = int(line[line.find(':') + 2:])
elif regs.get('c') is None:
regs['c'] = int(line[line.find(':') + 2:])
else:
instructions = [int(val) for val in line[line.find(':') + 2:].split(',') if len(val) == 1]
instructions = [(instructions[i], instructions[i + 1]) for i in range(0, len(instructions), 2)]
print("Result String:", get_result_string(regs, instructions)) | python |
2024 | 17 | 1 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string? | 7,5,4,3,4,5,3,4,6 | import re
instr_map = {
0: lambda operand: adv(operand),
1: lambda operand: bxl(operand),
2: lambda operand: bst(operand),
3: lambda operand: jnz(operand),
4: lambda operand: bxc(operand),
5: lambda operand: out(operand),
6: lambda operand: bdv(operand),
7: lambda operand: cdv(operand)
}
def combo(operand):
global reg_a, reg_b, reg_c
if 0 <= operand <= 3:
return operand
elif operand == 4:
return reg_a
elif operand == 5:
return reg_b
elif operand == 6:
return reg_c
def adv(operand):
global reg_a
reg_a = reg_a // (2 ** combo(operand))
def bxl(operand):
global reg_b
reg_b = reg_b ^ operand
def bst(operand):
global reg_b
reg_b = combo(operand) % 8
def bxc(operand):
global reg_b, reg_c
reg_b = reg_b ^ reg_c
def out(operand):
print(f'{combo(operand) % 8},', end='')
def bdv(operand):
global reg_a, reg_b
reg_b = reg_a // (2 ** combo(operand))
def cdv(operand):
global reg_a, reg_c
reg_c = reg_a // (2 ** combo(operand))
def jnz(operand):
global ip, reg_a
if reg_a != 0:
ip = operand
ip -= 2
def main():
global reg_a, reg_b, reg_c, ip
with open("17_input.txt", "r") as f:
reg_a = int(re.search(r"(\d+)", f.readline())[0])
reg_b = int(re.search(r"(\d+)", f.readline())[0])
reg_c = int(re.search(r"(\d+)", f.readline())[0])
f.readline()
program = [int(opcode) for opcode in re.findall(r"(\d+)", f.readline())]
print(f'{reg_a=}, {reg_b=}, {reg_c=}, {program=}')
while 0 <= ip < len(program):
instr_map[program[ip]](program[ip+1])
ip += 2
reg_a: int = 0
reg_b: int = 0
reg_c: int = 0
ip: int = 0
if __name__ == '__main__':
main() | python |
2024 | 17 | 2 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string?
Your puzzle answer was 7,5,4,3,4,5,3,4,6.
--- Part Two ---
Digging deeper in the device's manual, you discover the problem: this program is supposed to output another copy of the program! Unfortunately, the value in register A seems to have been corrupted. You'll need to find a new value to which you can initialize register A so that the program's output instructions produce an exact copy of the program itself.
For example:
Register A: 2024
Register B: 0
Register C: 0
Program: 0,3,5,4,3,0
This program outputs a copy of itself if register A is instead initialized to 117440. (The original initial value of register A, 2024, is ignored.)
What is the lowest positive initial value for register A that causes the program to output a copy of itself? | 164278899142333 | def run(regs, instructions):
n = len(instructions)
i = 0
output = []
def get_combo(operand):
if 0 <= operand < 4:
return operand
elif operand == 4:
return regs['a']
elif operand == 5:
return regs['b']
elif operand == 6:
return regs['c']
return 0
while i < n:
curr = instructions[i]
operand = instructions[i + 1]
if curr == 0:
regs['a'] //= 2**get_combo(operand)
elif curr == 1:
regs['b'] ^= operand
elif curr == 2:
regs['b'] = get_combo(operand) % 8
elif curr == 3:
if regs['a']:
i = operand
continue
elif curr == 4:
regs['b'] ^= regs['c']
elif curr == 5:
output.append(get_combo(operand) % 8)
elif curr == 6:
regs['b'] = regs['a'] // 2**get_combo(operand)
elif curr == 7:
regs['c'] = regs['a'] // 2**get_combo(operand)
i += 2
return list(output)
def get_lowest_a(regs, instructions):
regs['a'] = 0
j = 1
iFloor = 0
while j <= len(instructions) and j >= 0:
regs['a'] <<= 3
for i in range(iFloor, 8):
regsCopy = regs.copy()
regsCopy['a'] += i
if instructions[-j:] == run(regsCopy, instructions):
break
else:
j -= 1
regs['a'] >>= 3
iFloor = regs['a'] % 8 + 1
regs['a'] >>= 3
continue
j += 1
regs['a'] += i
iFloor = 0
return regs['a']
if __name__ == "__main__":
regs = {}
instructions = []
# Open file 'day17-2.txt' in read mode
with open('day17-2.txt', 'r') as f:
for line in f:
line = line.strip()
if regs.get('a') is None:
regs['a'] = 0
elif regs.get('b') is None:
regs['b'] = int(line[line.find(':') + 2:])
elif regs.get('c') is None:
regs['c'] = int(line[line.find(':') + 2:])
else:
instructions = [int(val) for val in line[line.find(':') + 2:].split(',') if len(val) == 1]
print("Lowest value of Register A:", get_lowest_a(regs, instructions)) | python |
2024 | 17 | 2 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string?
Your puzzle answer was 7,5,4,3,4,5,3,4,6.
--- Part Two ---
Digging deeper in the device's manual, you discover the problem: this program is supposed to output another copy of the program! Unfortunately, the value in register A seems to have been corrupted. You'll need to find a new value to which you can initialize register A so that the program's output instructions produce an exact copy of the program itself.
For example:
Register A: 2024
Register B: 0
Register C: 0
Program: 0,3,5,4,3,0
This program outputs a copy of itself if register A is instead initialized to 117440. (The original initial value of register A, 2024, is ignored.)
What is the lowest positive initial value for register A that causes the program to output a copy of itself? | 164278899142333 | from part1 import parse_input
def run(program, regs):
"""
Executes a given program with specified registers.
Args:
program (list of int): A list of integers representing the program's opcodes and operands.
regs (list of int): A list of initial values for the registers.
Yields:
int: The result of the operation specified by opcode 5, modulo 8.
The program supports the following opcodes:
0: Divide the value in reg_a by 2 raised to the power of the value in the register specified by operand.
1: XOR the value in reg_b with the operand.
2: Set reg_b to the value in the register specified by operand, modulo 8.
3: If the value in reg_a is non-zero, set the instruction pointer to operand - 2.
4: XOR the value in reg_b with the value in reg_c.
5: Yield the value in the register specified by operand, modulo 8.
6: Set reg_b to the value in reg_a divided by 2 raised to the power of the value in the register specified by operand.
7: Set reg_c to the value in reg_a divided by 2 raised to the power of the value in the register specified by operand.
"""
reg_a, reg_b, reg_c = range(4, 7)
ip = 0
combo = [0, 1, 2, 3, *regs]
while ip < len(program):
opcode, operand = program[ip:ip + 2]
if opcode == 0:
combo[reg_a] //= 2 ** combo[operand]
elif opcode == 1:
combo[reg_b] ^= operand
elif opcode == 2:
combo[reg_b] = combo[operand] % 8
elif opcode == 3:
if combo[reg_a]:
ip = operand - 2
elif opcode == 4:
combo[reg_b] ^= combo[reg_c]
elif opcode == 5:
yield combo[operand] % 8
elif opcode == 6:
combo[reg_b] = combo[reg_a] // (2 ** combo[operand])
elif opcode == 7:
combo[reg_c] = combo[reg_a] // (2 ** combo[operand])
ip += 2
def expect(program, target_output, prev_a=0):
"""
Tries to find an integer 'a' such that when the 'program' is run with inputs derived from 'a',
it produces the 'target_output' sequence.
Args:
program (iterable): The program to be run, which yields outputs based on inputs.
target_output (list): The desired sequence of outputs that the program should produce.
prev_a (int, optional): The previous value of 'a' used in the recursive calls. Defaults to 0.
Returns:
int or None: The integer 'a' that produces the 'target_output' when the program is run,
or None if no such 'a' can be found.
"""
def helper(program, target_output, prev_a):
if not target_output:
return prev_a
for a in range(1 << 10):
if a >> 3 == prev_a & 127 and next(run(program, (a, 0, 0))) == target_output[-1]:
result = helper(program, target_output[:-1], (prev_a << 3) | (a % 8))
if result is not None:
return result
return None
return helper(program, target_output, prev_a)
if __name__ == "__main__":
file_path = 'input.txt'
registers, program = parse_input(file_path)
# Example target output
target_output = program.copy()
initial_value = expect(program, target_output)
if initial_value is not None:
print(f"The initial value for register A that produces the target output is: {initial_value}")
else:
print("No initial value found that produces the target output within the given attempts.") | python |
2024 | 17 | 2 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string?
Your puzzle answer was 7,5,4,3,4,5,3,4,6.
--- Part Two ---
Digging deeper in the device's manual, you discover the problem: this program is supposed to output another copy of the program! Unfortunately, the value in register A seems to have been corrupted. You'll need to find a new value to which you can initialize register A so that the program's output instructions produce an exact copy of the program itself.
For example:
Register A: 2024
Register B: 0
Register C: 0
Program: 0,3,5,4,3,0
This program outputs a copy of itself if register A is instead initialized to 117440. (The original initial value of register A, 2024, is ignored.)
What is the lowest positive initial value for register A that causes the program to output a copy of itself? | 164278899142333 | with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
program = [int(x) for x in input_text[4].removeprefix("Program: ").split(",")]
a = 0
position = 0
offsets = [0]
while position < len(program):
if program[-1 - position] == ((a % 8) ^ 5 ^ 6 ^ (a // (2 ** ((a % 8) ^ 5)))) % 8:
a *= 8
position += 1
offsets.append(0)
elif offsets[-1] < 7:
a += 1
offsets[-1] += 1
else:
while offsets[-1] >= 7 and position > 0:
a //= 8
offsets.pop(-1)
position -= 1
a += 1
offsets[-1] += 1
print(a // 8) | python |
2024 | 17 | 2 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string?
Your puzzle answer was 7,5,4,3,4,5,3,4,6.
--- Part Two ---
Digging deeper in the device's manual, you discover the problem: this program is supposed to output another copy of the program! Unfortunately, the value in register A seems to have been corrupted. You'll need to find a new value to which you can initialize register A so that the program's output instructions produce an exact copy of the program itself.
For example:
Register A: 2024
Register B: 0
Register C: 0
Program: 0,3,5,4,3,0
This program outputs a copy of itself if register A is instead initialized to 117440. (The original initial value of register A, 2024, is ignored.)
What is the lowest positive initial value for register A that causes the program to output a copy of itself? | 164278899142333 | import re
with open("17.txt") as i:
input = [x.strip() for x in i.readlines()]
test_data = """Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0""".split("\n")
# input = test_data
a, b, c = 0, 0, 0
program = None
for l in input:
if l.startswith("Register "):
r, v = re.match(r"Register (A|B|C): (\d+)", l).groups()
if r == "A": a = int(v)
elif r == "B": b = int(v)
elif r == "C": c = int(v)
elif l.startswith("Program: "):
program = [int(x) for x in l[9:].split(",")]
def run_program(program: list[int], aa: int, bb: int, cc: int) -> list[int]:
output = []
a, b, c = aa, bb, cc
ip = 0
while ip < len(program):
i = program[ip]
op = program[ip+1]
cop = None
if op == 4: cop = a
elif op == 5: cop = b
elif op == 6: cop = c
else: cop = op
if i == 0: # adv
a = a // (2**cop)
elif i == 1: # bxl
b = b ^ op
elif i == 2: #bst
b = cop % 8
elif i == 3: # jnz
if a != 0:
ip = op
continue
elif i == 4: # bxc
b = b ^ c
elif i == 5: # out
output.append(cop%8)
elif i == 6: # bdv
b = a // (2**cop)
elif i == 7: # cdv
c = a // (2**cop)
ip += 2
return output
current = len(program)
solutions = [0]
while current>0:
next_solutions = []
for aa in solutions:
for i in range(8):
r = run_program(program, (aa<<3) | i, b, c)
if r[0] == program[current-1]:
next_solutions.append((aa << 3) | i)
current = current - 1
solutions = next_solutions
part2 = min(solutions)
print(part2) | python |
2024 | 17 | 2 | --- Day 17: Chronospatial Computer ---
The Historians push the button on their strange device, but this time, you all just feel like you're falling.
"Situation critical", the device announces in a familiar voice. "Bootstrapping process failed. Initializing debugger...."
The small handheld device suddenly unfolds into an entire computer! The Historians look around nervously before one of them tosses it to you.
This seems to be a 3-bit computer: its program is a list of 3-bit numbers (0 through 7), like 0,1,2,3. The computer also has three registers named A, B, and C, but these registers aren't limited to 3 bits and can instead hold any integer.
The computer knows eight instructions, each identified by a 3-bit number (called the instruction's opcode). Each instruction also reads the 3-bit number after it as an input; this is called its operand.
A number called the instruction pointer identifies the position in the program from which the next opcode will be read; it starts at 0, pointing at the first 3-bit number in the program. Except for jump instructions, the instruction pointer increases by 2 after each instruction is processed (to move past the instruction's opcode and its operand). If the computer tries to read an opcode past the end of the program, it instead halts.
So, the program 0,1,2,3 would run the instruction whose opcode is 0 and pass it the operand 1, then run the instruction having opcode 2 and pass it the operand 3, then halt.
There are two types of operands; each instruction specifies the type of its operand. The value of a literal operand is the operand itself. For example, the value of the literal operand 7 is the number 7. The value of a combo operand can be found as follows:
Combo operands 0 through 3 represent literal values 0 through 3.
Combo operand 4 represents the value of register A.
Combo operand 5 represents the value of register B.
Combo operand 6 represents the value of register C.
Combo operand 7 is reserved and will not appear in valid programs.
The eight instructions are as follows:
The adv instruction (opcode 0) performs division. The numerator is the value in the A register. The denominator is found by raising 2 to the power of the instruction's combo operand. (So, an operand of 2 would divide A by 4 (2^2); an operand of 5 would divide A by 2^B.) The result of the division operation is truncated to an integer and then written to the A register.
The bxl instruction (opcode 1) calculates the bitwise XOR of register B and the instruction's literal operand, then stores the result in register B.
The bst instruction (opcode 2) calculates the value of its combo operand modulo 8 (thereby keeping only its lowest 3 bits), then writes that value to the B register.
The jnz instruction (opcode 3) does nothing if the A register is 0. However, if the A register is not zero, it jumps by setting the instruction pointer to the value of its literal operand; if this instruction jumps, the instruction pointer is not increased by 2 after this instruction.
The bxc instruction (opcode 4) calculates the bitwise XOR of register B and register C, then stores the result in register B. (For legacy reasons, this instruction reads an operand but ignores it.)
The out instruction (opcode 5) calculates the value of its combo operand modulo 8, then outputs that value. (If a program outputs multiple values, they are separated by commas.)
The bdv instruction (opcode 6) works exactly like the adv instruction except that the result is stored in the B register. (The numerator is still read from the A register.)
The cdv instruction (opcode 7) works exactly like the adv instruction except that the result is stored in the C register. (The numerator is still read from the A register.)
Here are some examples of instruction operation:
If register C contains 9, the program 2,6 would set register B to 1.
If register A contains 10, the program 5,0,5,1,5,4 would output 0,1,2.
If register A contains 2024, the program 0,1,5,4,3,0 would output 4,2,5,6,7,7,7,7,3,1,0 and leave 0 in register A.
If register B contains 29, the program 1,7 would set register B to 26.
If register B contains 2024 and register C contains 43690, the program 4,0 would set register B to 44354.
The Historians' strange device has finished initializing its debugger and is displaying some information about the program it is trying to run (your puzzle input). For example:
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0
Your first task is to determine what the program is trying to output. To do this, initialize the registers to the given values, then run the given program, collecting any output produced by out instructions. (Always join the values produced by out instructions with commas.) After the above program halts, its final output will be 4,6,3,5,6,3,5,2,1,0.
Using the information provided by the debugger, initialize the registers to the given values, then run the program. Once it halts, what do you get if you use commas to join the values it output into a single string?
Your puzzle answer was 7,5,4,3,4,5,3,4,6.
--- Part Two ---
Digging deeper in the device's manual, you discover the problem: this program is supposed to output another copy of the program! Unfortunately, the value in register A seems to have been corrupted. You'll need to find a new value to which you can initialize register A so that the program's output instructions produce an exact copy of the program itself.
For example:
Register A: 2024
Register B: 0
Register C: 0
Program: 0,3,5,4,3,0
This program outputs a copy of itself if register A is instead initialized to 117440. (The original initial value of register A, 2024, is ignored.)
What is the lowest positive initial value for register A that causes the program to output a copy of itself? | 164278899142333 | # day 17
import os
def reader():
return open(f"17.txt", 'r').read().splitlines()
def simulate(program, A):
l = [0, 1, 2, 3, A, 0, 0, -1]
out = []
i = 0
while i < len(program):
op = program[i]
operand = program[i + 1]
if op == 0:
l[4] = int(l[4] / (2 ** l[operand]))
elif op == 1:
l[5] = l[5] ^ operand
elif op == 2:
l[5] = l[operand] % 8
elif op == 3:
if l[4] != 0:
i = operand
continue
elif op == 4:
l[5] = l[5] ^ l[6]
elif op == 5:
out.append(l[operand] % 8)
elif op == 6:
l[5] = int(l[4] / (2 ** l[operand]))
elif op == 7:
l[6] = int(l[4] / (2 ** l[operand]))
i += 2
return out
def part2():
f = reader()
program = list(map(int, f[4][(f[4].find(': ') + 2):].split(',')))
def backtrack(A=0, j=-1):
if -j > len(program):
return A
m = float('inf')
for i in range(8):
t = (A << 3) | i
if simulate(program, t)[j:] == program[j:]:
m = min(m, backtrack(t, j - 1))
return m
print(backtrack())
part2() | python |
2024 | 18 | 1 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit? | 506 | from heapq import heapify, heappop, heappush
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
grid_size = 70
num_fallen = 1024
bytes = set()
for byte in input_text[:num_fallen]:
byte_x, byte_y = byte.split(",")
bytes.add((int(byte_x), int(byte_y)))
movements = ((-1, 0), (1, 0), (0, 1), (0, -1))
explored = set()
discovered = [(0, 0, 0)]
heapify(discovered)
while True:
distance, byte_x, byte_y = heappop(discovered)
if (byte_x, byte_y) not in explored:
explored.add((byte_x, byte_y))
if byte_x == byte_y == grid_size:
print(distance)
break
for movement in movements:
new_position = (byte_x + movement[0], byte_y + movement[1])
if (
new_position not in bytes
and new_position not in explored
and all(0 <= coord <= grid_size for coord in new_position)
):
heappush(discovered, (distance + 1, *new_position)) | python |
2024 | 18 | 1 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit? | 506 | from collections import deque
from typing import List, Tuple
def parse_input(file_path: str) -> List[Tuple[int, int]]:
"""
Parses the input file and returns a list of tuples containing integer pairs.
Args:
file_path (str): The path to the input file.
Returns:
List[Tuple[int, int]]: A list of tuples, where each tuple contains two integers
parsed from a line in the input file. Each line in the file should contain two
integers separated by a comma.
"""
with open(file_path, 'r') as file:
return [tuple(map(int, line.strip().split(','))) for line in file]
def initialize_grid(size: int) -> List[List[str]]:
"""
Initializes a square grid of the given size with all cells set to '.'.
Args:
size (int): The size of the grid (number of rows and columns).
Returns:
List[List[str]]: A 2D list representing the initialized grid.
"""
return [['.' for _ in range(size)] for _ in range(size)]
def simulate_falling_bytes(grid: List[List[str]], byte_positions: List[Tuple[int, int]], num_bytes: int):
"""
Simulates the falling of bytes in a grid.
Args:
grid (List[List[str]]): A 2D list representing the grid where bytes will fall.
byte_positions (List[Tuple[int, int]]): A list of tuples representing the (x, y) positions of bytes.
num_bytes (int): The number of bytes to simulate falling.
Returns:
None
"""
for x, y in byte_positions[:num_bytes]:
grid[y][x] = '#'
def find_shortest_path(grid: List[List[str]]) -> int:
"""
Finds the shortest path in a grid from the top-left corner to the bottom-right corner.
The grid is represented as a list of lists of strings, where '.' represents an open cell
and any other character represents an obstacle.
Args:
grid (List[List[str]]): The grid to search, where each element is a string representing a cell.
Returns:
int: The number of steps in the shortest path from the top-left to the bottom-right corner.
Returns -1 if no such path exists.
"""
size = len(grid)
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
queue = deque([(0, 0, 0)]) # (x, y, steps)
visited = set([(0, 0)])
while queue:
x, y, steps = queue.popleft()
if (x, y) == (size - 1, size - 1):
return steps
for dx, dy in directions:
nx, ny = x + dx, y + dy
if 0 <= nx < size and 0 <= ny < size and grid[ny][nx] == '.' and (nx, ny) not in visited:
visited.add((nx, ny))
queue.append((nx, ny, steps + 1))
return -1 # No path found
if __name__ == "__main__":
file_path = 'input.txt'
byte_positions = parse_input(file_path)
grid_size = 71 # For the actual problem, use 71; for the example, use 7
grid = initialize_grid(grid_size)
simulate_falling_bytes(grid, byte_positions, 1024)
steps = find_shortest_path(grid)
print(f"Minimum number of steps needed to reach the exit: {steps}") | python |
2024 | 18 | 1 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit? | 506 | from heapq import heappop, heappush
def in_bounds(i, j, n):
return 0 <= i < n and 0 <= j < n
def navigate(maze, n):
start = (0, 0)
end = (n - 1, n - 1)
heap = [(0, start[0], start[1])]
visited = set()
while heap:
score, i, j = heappop(heap)
if (i, j) == end:
break
if (i, j) in visited:
continue
visited.add((i, j))
if in_bounds(i, j+1, n) and maze[i][j+1] not in visited and maze[i][j+1] == '.':
heappush(heap, (score + 1, i, j+1))
if in_bounds(i+1, j, n) and maze[i+1][j] not in visited and maze[i+1][j] == '.':
heappush(heap, (score + 1, i+1, j))
if in_bounds(i, j-1, n) and maze[i][j-1] not in visited and maze[i][j-1] == '.':
heappush(heap, (score + 1, i, j-1))
if in_bounds(i-1, j, n) and maze[i-1][j] not in visited and maze[i-1][j] == '.':
heappush(heap, (score + 1, i-1, j))
return score
def init_maze(bytes, n, numBytes):
maze = [['.' for _ in range(n)] for _ in range(n)]
for byte in bytes[:numBytes]:
maze[byte[1]][byte[0]] = '#'
return maze
def get_min_steps(bytes):
n = 71
numBytes = 1024
maze = init_maze(bytes, n, numBytes)
return navigate(maze, n)
if __name__ == "__main__":
# Open file 'day18-1.txt' in read mode
with open('day18-1.txt', 'r') as f:
bytes = []
for line in f:
line = line.strip()
x, y = line.split(',')
bytes.append((int(x), int(y)))
print("Minimum steps:", get_min_steps(bytes)) | python |
2024 | 18 | 1 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit? | 506 | def bfs(byte_locs, x_len, y_len):
start = (0, 0)
end = (x_len - 1, y_len - 1)
visited = set()
frontier = [[start]]
while len(frontier) > 0:
path = frontier.pop(0)
cur = path[-1]
if cur == end:
return path
visited.add(cur)
neighbors = [tuple(map(sum, zip(cur, direction))) for direction in [(1, 0), (-1, 0), (0, 1), (0, -1)]]
neighbors = [pos for pos in neighbors if pos[0] in range(x_len) and pos[1] in range(y_len) and pos not in byte_locs]
for neighbor in neighbors:
if neighbor not in visited:
frontier.append(path + [neighbor])
visited.add(neighbor)
print("no path found")
return None
with open('input.txt') as f:
lines = f.read().splitlines()
byte_locs = [tuple(map(int, line.split(","))) for line in lines]
x_len = 71
y_len = 71
print(len(bfs(set(byte_locs[0:1024]), x_len, y_len)) - 1) | python |
2024 | 18 | 1 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit? | 506 | from heapq import heappush, heappop
with open("./day_18.in") as fin:
lines = fin.read().strip().split("\n")
coords = set([tuple(map(int, line.split(","))) for line in lines][:1024])
dd = [[1, 0], [0, 1], [-1, 0], [0, -1]]
N = 70
# Heuristic for A*
def h(i, j):
return abs(N - i) + abs(N - j)
def in_grid(i, j):
return 0 <= i <= N and 0 <= j <= N and (i, j) not in coords
q = [(h(0, 0), 0, 0)]
cost = {}
while len(q) > 0:
c, i, j = heappop(q)
if (i, j) in cost:
continue
cost[(i, j)] = c - h(i, j)
if (i, j) == (N, N):
print(cost[(i, j)])
break
for di, dj in dd:
ii, jj = i + di, j + dj
if in_grid(ii, jj):
heappush(q, (cost[(i, j)] + 1 + h(ii, jj), ii, jj)) | python |
2024 | 18 | 2 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit?
Your puzzle answer was 506.
--- Part Two ---
The Historians aren't as used to moving around in this pixelated universe as you are. You're afraid they're not going to be fast enough to make it to the exit before the path is completely blocked.
To determine how fast everyone needs to go, you need to determine the first byte that will cut off the path to the exit.
In the above example, after the byte at 1,1 falls, there is still a path to the exit:
O..#OOO
O##OO#O
O#OO#OO
OOO#OO#
###OO##
.##O###
#.#OOOO
However, after adding the very next byte (at 6,1), there is no longer a path to the exit:
...#...
.##..##
.#..#..
...#..#
###..##
.##.###
#.#....
So, in this example, the coordinates of the first byte that prevents the exit from being reachable are 6,1.
Simulate more of the bytes that are about to corrupt your memory space. What are the coordinates of the first byte that will prevent the exit from being reachable from your starting position? (Provide the answer as two integers separated by a comma with no other characters.) | 62,6 | from heapq import heapify, heappop, heappush
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
grid_size = 70
bytes_list = []
for byte in input_text:
byte_x, byte_y = byte.split(",")
bytes_list.append((int(byte_x), int(byte_y)))
movements = ((-1, 0), (1, 0), (0, 1), (0, -1))
bytes_needed_lower = 0
bytes_needed_upper = len(bytes_list) - 1
while bytes_needed_lower < bytes_needed_upper:
mid = (bytes_needed_lower + bytes_needed_upper) // 2
bytes = set(bytes_list[:mid])
explored = set()
discovered = [(0, 0, 0)]
heapify(discovered)
while discovered:
distance, byte_x, byte_y = heappop(discovered)
if (byte_x, byte_y) not in explored:
explored.add((byte_x, byte_y))
if byte_x == byte_y == grid_size:
break
for movement in movements:
new_position = (byte_x + movement[0], byte_y + movement[1])
if (
new_position not in bytes
and new_position not in explored
and all(0 <= coord <= grid_size for coord in new_position)
):
heappush(discovered, (distance + 1, *new_position))
else:
bytes_needed_upper = mid
continue
bytes_needed_lower = mid + 1
print(",".join([str(x) for x in bytes_list[bytes_needed_lower - 1]])) | python |
2024 | 18 | 2 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit?
Your puzzle answer was 506.
--- Part Two ---
The Historians aren't as used to moving around in this pixelated universe as you are. You're afraid they're not going to be fast enough to make it to the exit before the path is completely blocked.
To determine how fast everyone needs to go, you need to determine the first byte that will cut off the path to the exit.
In the above example, after the byte at 1,1 falls, there is still a path to the exit:
O..#OOO
O##OO#O
O#OO#OO
OOO#OO#
###OO##
.##O###
#.#OOOO
However, after adding the very next byte (at 6,1), there is no longer a path to the exit:
...#...
.##..##
.#..#..
...#..#
###..##
.##.###
#.#....
So, in this example, the coordinates of the first byte that prevents the exit from being reachable are 6,1.
Simulate more of the bytes that are about to corrupt your memory space. What are the coordinates of the first byte that will prevent the exit from being reachable from your starting position? (Provide the answer as two integers separated by a comma with no other characters.) | 62,6 | def bfs(byte_locs, x_len, y_len):
start = (0, 0)
end = (x_len - 1, y_len - 1)
visited = set()
frontier = [[start]]
while len(frontier) > 0:
path = frontier.pop(0)
cur = path[-1]
if cur == end:
return path
visited.add(cur)
neighbors = [tuple(map(sum, zip(cur, direction))) for direction in [(1, 0), (-1, 0), (0, 1), (0, -1)]]
neighbors = [pos for pos in neighbors if pos[0] in range(x_len) and pos[1] in range(y_len) and pos not in byte_locs]
for neighbor in neighbors:
if neighbor not in visited:
frontier.append(path + [neighbor])
visited.add(neighbor)
return None
with open('input.txt') as f:
lines = f.read().splitlines()
byte_locs = [tuple(map(int, line.split(","))) for line in lines]
x_len = 71
y_len = 71
lower = 0
upper = len(byte_locs) - 1
while lower <= upper:
mid = (lower + upper) // 2
test = bfs(set(byte_locs[0:mid]), x_len, y_len)
if test is None:
upper = mid - 1
print("not reachable at", byte_locs[mid-1])
else:
print("reachable at", byte_locs[mid-1])
lower = mid + 1
print(byte_locs[mid]) | python |
2024 | 18 | 2 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit?
Your puzzle answer was 506.
--- Part Two ---
The Historians aren't as used to moving around in this pixelated universe as you are. You're afraid they're not going to be fast enough to make it to the exit before the path is completely blocked.
To determine how fast everyone needs to go, you need to determine the first byte that will cut off the path to the exit.
In the above example, after the byte at 1,1 falls, there is still a path to the exit:
O..#OOO
O##OO#O
O#OO#OO
OOO#OO#
###OO##
.##O###
#.#OOOO
However, after adding the very next byte (at 6,1), there is no longer a path to the exit:
...#...
.##..##
.#..#..
...#..#
###..##
.##.###
#.#....
So, in this example, the coordinates of the first byte that prevents the exit from being reachable are 6,1.
Simulate more of the bytes that are about to corrupt your memory space. What are the coordinates of the first byte that will prevent the exit from being reachable from your starting position? (Provide the answer as two integers separated by a comma with no other characters.) | 62,6 | from heapq import heappush, heappop
with open("./day_18.in") as fin:
lines = fin.read().strip().split("\n")
coords = [tuple(map(int, line.split(","))) for line in lines]
dd = [[1, 0], [0, 1], [-1, 0], [0, -1]]
N = 70
# Heuristic for A*
def h(i, j):
return abs(N - i) + abs(N - j)
def doable(idx):
# Can we get to the index with first `idx` coords blocked?
def in_grid(i, j):
return 0 <= i <= N and 0 <= j <= N and (i, j) not in coords[:idx]
q = [(h(0, 0), 0, 0)]
cost = {}
while len(q) > 0:
c, i, j = heappop(q)
if (i, j) in cost:
continue
cost[(i, j)] = c - h(i, j)
if (i, j) == (N, N):
return True
for di, dj in dd:
ii, jj = i + di, j + dj
if in_grid(ii, jj):
heappush(q, (cost[(i, j)] + 1 + h(ii, jj), ii, jj))
return False
# Binary search for first coord that is not doable
lo = 0
hi = len(coords) - 1
while hi > lo:
mid = (lo + hi) // 2
if doable(mid):
lo = mid + 1
else:
hi = mid
print(",".join(map(str, coords[lo-1]))) | python |
2024 | 18 | 2 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit?
Your puzzle answer was 506.
--- Part Two ---
The Historians aren't as used to moving around in this pixelated universe as you are. You're afraid they're not going to be fast enough to make it to the exit before the path is completely blocked.
To determine how fast everyone needs to go, you need to determine the first byte that will cut off the path to the exit.
In the above example, after the byte at 1,1 falls, there is still a path to the exit:
O..#OOO
O##OO#O
O#OO#OO
OOO#OO#
###OO##
.##O###
#.#OOOO
However, after adding the very next byte (at 6,1), there is no longer a path to the exit:
...#...
.##..##
.#..#..
...#..#
###..##
.##.###
#.#....
So, in this example, the coordinates of the first byte that prevents the exit from being reachable are 6,1.
Simulate more of the bytes that are about to corrupt your memory space. What are the coordinates of the first byte that will prevent the exit from being reachable from your starting position? (Provide the answer as two integers separated by a comma with no other characters.) | 62,6 | from collections import deque
l = open("18.txt").read().splitlines()
l = [list(map(int, x.split(","))) for x in l]
max_x = max(coord[0] for coord in l)
max_y = max(coord[1] for coord in l)
def P2():
for find in range(1024,len(l)):
grid = [["." for _ in range(max_y + 1)] for _ in range(max_x + 1)]
for i in range(find):
x,y = l[i]
grid[x][y] = "#"
def bfs(grid, start, end):
rows, cols = len(grid), len(grid[0])
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
queue = deque([(start, 0)])
visited = set()
while queue:
(x, y), dist = queue.popleft()
if (x, y) == end:
return dist
if (x, y) in visited or grid[x][y] == "#":
continue
visited.add((x, y))
for dx, dy in directions:
nx, ny = x + dx, y + dy
if 0 <= nx < rows and 0 <= ny < cols and (nx, ny) not in visited:
queue.append(((nx, ny), dist + 1))
return -1
if bfs(grid, (0,0), (max_x, max_y)) == -1:
return l[find-1]
print(P2()) | python |
2024 | 18 | 2 | --- Day 18: RAM Run ---
You and The Historians look a lot more pixelated than you remember. You're inside a computer at the North Pole!
Just as you're about to check out your surroundings, a program runs up to you. "This region of memory isn't safe! The User misunderstood what a pushdown automaton is and their algorithm is pushing whole bytes down on top of us! Run!"
The algorithm is fast - it's going to cause a byte to fall into your memory space once every nanosecond! Fortunately, you're faster, and by quickly scanning the algorithm, you create a list of which bytes will fall (your puzzle input) in the order they'll land in your memory space.
Your memory space is a two-dimensional grid with coordinates that range from 0 to 70 both horizontally and vertically. However, for the sake of example, suppose you're on a smaller grid with coordinates that range from 0 to 6 and the following list of incoming byte positions:
5,4
4,2
4,5
3,0
2,1
6,3
2,4
1,5
0,6
3,3
2,6
5,1
1,2
5,5
2,5
6,5
1,4
0,4
6,4
1,1
6,1
1,0
0,5
1,6
2,0
Each byte position is given as an X,Y coordinate, where X is the distance from the left edge of your memory space and Y is the distance from the top edge of your memory space.
You and The Historians are currently in the top left corner of the memory space (at 0,0) and need to reach the exit in the bottom right corner (at 70,70 in your memory space, but at 6,6 in this example). You'll need to simulate the falling bytes to plan out where it will be safe to run; for now, simulate just the first few bytes falling into your memory space.
As bytes fall into your memory space, they make that coordinate corrupted. Corrupted memory coordinates cannot be entered by you or The Historians, so you'll need to plan your route carefully. You also cannot leave the boundaries of the memory space; your only hope is to reach the exit.
In the above example, if you were to draw the memory space after the first 12 bytes have fallen (using . for safe and # for corrupted), it would look like this:
...#...
..#..#.
....#..
...#..#
..#..#.
.#..#..
#.#....
You can take steps up, down, left, or right. After just 12 bytes have corrupted locations in your memory space, the shortest path from the top left corner to the exit would take 22 steps. Here (marked with O) is one such path:
OO.#OOO
.O#OO#O
.OOO#OO
...#OO#
..#OO#.
.#.O#..
#.#OOOO
Simulate the first kilobyte (1024 bytes) falling onto your memory space. Afterward, what is the minimum number of steps needed to reach the exit?
Your puzzle answer was 506.
--- Part Two ---
The Historians aren't as used to moving around in this pixelated universe as you are. You're afraid they're not going to be fast enough to make it to the exit before the path is completely blocked.
To determine how fast everyone needs to go, you need to determine the first byte that will cut off the path to the exit.
In the above example, after the byte at 1,1 falls, there is still a path to the exit:
O..#OOO
O##OO#O
O#OO#OO
OOO#OO#
###OO##
.##O###
#.#OOOO
However, after adding the very next byte (at 6,1), there is no longer a path to the exit:
...#...
.##..##
.#..#..
...#..#
###..##
.##.###
#.#....
So, in this example, the coordinates of the first byte that prevents the exit from being reachable are 6,1.
Simulate more of the bytes that are about to corrupt your memory space. What are the coordinates of the first byte that will prevent the exit from being reachable from your starting position? (Provide the answer as two integers separated by a comma with no other characters.) | 62,6 | #!/usr/bin/env python3
import re
from collections import defaultdict, deque
myfile = open("18.in", "r")
lines = myfile.read().strip().splitlines()
myfile.close()
blocks = [tuple(map(int, re.findall(r"\d+", line))) for line in lines]
part_one = 0
part_two = 0
height = width = 70
def search(block_count):
grid = defaultdict(str)
for x in range(width + 1):
for y in range(height + 1):
grid[(x, y)] = "."
grid[(width, height)] = "$"
for x, y in blocks[: block_count + 1]:
grid[(x, y)] = ""
visited = set()
scores = defaultdict(lambda: float("inf"))
scores[(0, 0)] = 0
q = deque([(0, 0)])
while q:
pos = q.popleft()
visited.add(pos)
if grid[pos] == "$":
return scores[pos]
next_score = scores[pos] + 1
for dir in [(1, 0), (0, -1), (-1, 0), (0, 1)]:
next_pos = (pos[0] + dir[0], pos[1] + dir[1])
if next_pos not in visited and next_score < scores[next_pos]:
if grid[next_pos] != "":
scores[next_pos] = next_score
q.append(next_pos)
return -1
unblocked, blocked = 1024, len(blocks)
while blocked - unblocked > 1:
mid = (unblocked + blocked) // 2
result = search(mid)
if result == -1:
blocked = mid
else:
unblocked = mid
part_two = ",".join(map(str, blocks[blocked]))
print("Part Two:", part_two) | python |
2024 | 19 | 1 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible? | 267 | from pprint import pprint
WHITE = "w"
BLUE = "u"
BLACK = "b"
RED = "r"
GREEN = "g"
INPUT_FILE = "test.txt"
read_file = open(INPUT_FILE, "r")
lines = read_file.readlines()
available_towels = lines[0].strip().split(", ")
designs = []
for line in lines[2:]:
designs.append(line.strip())
def find_first_pattern(design, start_index=0):
for i in range(len(design), 0, -1):
if design[start_index:i] in available_towels:
return (i, design[start_index:i])
return (None, None)
def find_last_pattern(design, end_index):
for i in range(len(design)):
if design[i:end_index] in available_towels:
return (i, design[i:end_index])
return (None, None)
def find_largest_from_start(design, start=0):
largest_pattern_match = None
end = 0
for i in range(1 + start, len(design)):
sub_string = design[start:i]
print(sub_string)
if sub_string in available_towels:
largest_pattern_match = sub_string
end = i
return (largest_pattern_match, end)
results = []
impossible_designs = []
def can_build_word(target, patterns):
def can_build(remaining, memo=None):
if memo is None:
memo = {}
# Base cases
if not remaining: # Successfully used all letters
return True
if remaining in memo: # Already tried this combo
return memo[remaining]
# Try each pattern at the start of our remaining string
# We can reuse patterns, so no need to track what we've used
for pattern in patterns:
if remaining.startswith(pattern):
new_remaining = remaining[len(pattern) :]
if can_build(new_remaining, memo):
memo[remaining] = True
print(memo)
return True
memo[remaining] = False
return False
return can_build(target)
can_build_count = 0
for design in designs:
if can_build_word(design, available_towels):
can_build_count += 1
print(can_build_count)
quit()
for design in designs:
patterns = {}
result = 0
pattern_found = False
while True:
(result, pattern) = find_first_pattern(design, result)
patterns[pattern] = patterns.get(pattern, 0) + 1
if not result:
pattern_found = False
break
if design[:result] == design:
pattern_found = True
break
if pattern_found:
results.append((design, patterns))
else:
patterns = {}
result = len(design)
pattern_found = False
while True:
(result, pattern) = find_last_pattern(design, result)
patterns[pattern] = patterns.get(pattern, 0) + 1
if result == None:
pattern_found = False
break
if result == 0:
pattern_found = True
break
if pattern_found:
results.append((design, patterns))
else:
impossible_designs.append(design) | python |
2024 | 19 | 1 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible? | 267 | from functools import cache
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
towels_trie = {}
for towel in input_text[0].split(", "):
inner_dict = towels_trie
for letter in list(towel):
if letter not in inner_dict:
inner_dict[letter] = {}
inner_dict = inner_dict[letter]
inner_dict[None] = None
@cache
def pattern_possible(pattern):
if not pattern:
return True
patterns_needed = []
trie = towels_trie
for i, letter in enumerate(pattern):
if letter in trie:
trie = trie[letter]
if None in trie:
patterns_needed.append(pattern[i + 1 :])
else:
break
return any(pattern_possible(sub_pattern) for sub_pattern in patterns_needed)
print(sum(pattern_possible(pattern) for pattern in input_text[2:])) | python |
2024 | 19 | 1 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible? | 267 | def is_pattern_possible(pattern, towels, visited):
if pattern == "":
return True
visited.add(pattern)
return any([pattern.startswith(t) and pattern[len(t):] not in visited and is_pattern_possible(pattern[len(t):], towels, visited) for t in towels])
with open('input.txt') as f:
lines = f.read().splitlines()
towels = [s.strip() for s in lines[0].split(",")]
patterns = lines[2:]
print(sum([is_pattern_possible(p, towels, set()) for p in patterns])) | python |
2024 | 19 | 1 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible? | 267 | from pprint import pprint
WHITE = "w"
BLUE = "u"
BLACK = "b"
RED = "r"
GREEN = "g"
INPUT_FILE = "test.txt"
read_file = open(INPUT_FILE, "r")
lines = read_file.readlines()
available_towels = lines[0].strip().split(", ")
designs = []
for line in lines[2:]:
designs.append(line.strip())
def find_first_pattern(design, start_index=0):
for i in range(len(design), 0, -1):
if design[start_index:i] in available_towels:
return (i, design[start_index:i])
return (None, None)
def find_last_pattern(design, end_index):
for i in range(len(design)):
if design[i:end_index] in available_towels:
return (i, design[i:end_index])
return (None, None)
def find_largest_from_start(design, start=0):
largest_pattern_match = None
end = 0
for i in range(1 + start, len(design)):
sub_string = design[start:i]
print(sub_string)
if sub_string in available_towels:
largest_pattern_match = sub_string
end = i
return (largest_pattern_match, end)
results = []
impossible_designs = []
def can_build_pattern(target, patterns):
def can_build(remaining, memo=None):
if memo is None:
memo = {}
# Base cases
if not remaining: # Successfully used all letters
return True
if remaining in memo: # Already tried this combo
return memo[remaining]
# Try each pattern at the start of our remaining string
# We can reuse patterns, so no need to track what we've used
for pattern in patterns:
if remaining.startswith(pattern):
new_remaining = remaining[len(pattern) :]
if can_build(new_remaining, memo):
memo[remaining] = True
print(memo)
return True
memo[remaining] = False
return False
return can_build(target)
can_build_count = 0
for design in designs:
if can_build_pattern(design, available_towels):
can_build_count += 1
print(can_build_count)
quit()
for design in designs:
patterns = {}
result = 0
pattern_found = False
while True:
(result, pattern) = find_first_pattern(design, result)
patterns[pattern] = patterns.get(pattern, 0) + 1
if not result:
pattern_found = False
break
if design[:result] == design:
pattern_found = True
break
if pattern_found:
results.append((design, patterns))
else:
patterns = {}
result = len(design)
pattern_found = False
while True:
(result, pattern) = find_last_pattern(design, result)
patterns[pattern] = patterns.get(pattern, 0) + 1
if result == None:
pattern_found = False
break
if result == 0:
pattern_found = True
break
if pattern_found:
results.append((design, patterns))
else:
impossible_designs.append(design) | python |
2024 | 19 | 1 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible? | 267 | with open("./day_19.in") as fin:
lines = fin.read().strip().split("\n")
units = lines[0].split(", ")
designs = lines[2:]
def possible(design):
n = len(design)
dp = [False] * len(design)
for i in range(n):
if design[:i+1] in units:
dp[i] = True
continue
for u in units:
if design[i-len(u)+1:i+1] == u and dp[i - len(u)]:
# print(" ", i, u, design[-len(u):], dp[i - len(u)])
dp[i] = True
break
# print(design, dp)
return dp[-1]
ans = 0
for d in designs:
if possible(d):
print(d)
ans += 1
print(ans) | python |
2024 | 19 | 2 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible?
Your puzzle answer was 267.
--- Part Two ---
The staff don't really like some of the towel arrangements you came up with. To avoid an endless cycle of towel rearrangement, maybe you should just give them every possible option.
Here are all of the different ways the above example's designs can be made:
brwrr can be made in two different ways: b, r, wr, r or br, wr, r.
bggr can only be made with b, g, g, and r.
gbbr can be made 4 different ways:
g, b, b, r
g, b, br
gb, b, r
gb, br
rrbgbr can be made 6 different ways:
r, r, b, g, b, r
r, r, b, g, br
r, r, b, gb, r
r, rb, g, b, r
r, rb, g, br
r, rb, gb, r
bwurrg can only be made with bwu, r, r, and g.
brgr can be made in two different ways: b, r, g, r or br, g, r.
ubwu and bbrgwb are still impossible.
Adding up all of the ways the towels in this example could be arranged into the desired designs yields 16 (2 + 1 + 4 + 6 + 1 + 2).
They'll let you into the onsen as soon as you have the list. What do you get if you add up the number of different ways you could make each design? | 796449099271652 | def check_count(towels, pattern, cache):
if pattern == "":
return 1
if (block := cache.get(pattern, None)) is not None:
return block
result = 0
for towel in towels:
if towel == pattern[:len(towel)]:
result += check_count(towels, pattern[len(towel):], cache)
cache[pattern] = result
return result
def get_num_achievable_patterns(towels, patterns):
return sum([check_count(towels, pattern, {}) for pattern in patterns])
if __name__ == "__main__":
towels = []
patterns = []
# Open file 'day19-2.txt' in read mode
with open('day19-2.txt', 'r') as f:
vals = []
for line in f:
line = line.strip()
if len(line) == 0:
continue
if len(towels) == 0:
towels = line.split(', ')
else:
patterns.append(line)
print("Number of ways to acheive patterns:", get_num_achievable_patterns(towels, patterns)) | python |
2024 | 19 | 2 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible?
Your puzzle answer was 267.
--- Part Two ---
The staff don't really like some of the towel arrangements you came up with. To avoid an endless cycle of towel rearrangement, maybe you should just give them every possible option.
Here are all of the different ways the above example's designs can be made:
brwrr can be made in two different ways: b, r, wr, r or br, wr, r.
bggr can only be made with b, g, g, and r.
gbbr can be made 4 different ways:
g, b, b, r
g, b, br
gb, b, r
gb, br
rrbgbr can be made 6 different ways:
r, r, b, g, b, r
r, r, b, g, br
r, r, b, gb, r
r, rb, g, b, r
r, rb, g, br
r, rb, gb, r
bwurrg can only be made with bwu, r, r, and g.
brgr can be made in two different ways: b, r, g, r or br, g, r.
ubwu and bbrgwb are still impossible.
Adding up all of the ways the towels in this example could be arranged into the desired designs yields 16 (2 + 1 + 4 + 6 + 1 + 2).
They'll let you into the onsen as soon as you have the list. What do you get if you add up the number of different ways you could make each design? | 796449099271652 | def num_possible_patterns(pattern, towels, memo):
if pattern == "":
return 1
if pattern in memo:
return memo[pattern]
res = sum([num_possible_patterns(pattern[len(t):], towels, memo) if pattern.startswith(t) else 0 for t in towels])
memo[pattern] = res
return res
with open('input.txt') as f:
lines = f.read().splitlines()
towels = [s.strip() for s in lines[0].split(",")]
patterns = lines[2:]
print(sum([num_possible_patterns(p, towels, dict()) for p in patterns])) | python |
2024 | 19 | 2 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible?
Your puzzle answer was 267.
--- Part Two ---
The staff don't really like some of the towel arrangements you came up with. To avoid an endless cycle of towel rearrangement, maybe you should just give them every possible option.
Here are all of the different ways the above example's designs can be made:
brwrr can be made in two different ways: b, r, wr, r or br, wr, r.
bggr can only be made with b, g, g, and r.
gbbr can be made 4 different ways:
g, b, b, r
g, b, br
gb, b, r
gb, br
rrbgbr can be made 6 different ways:
r, r, b, g, b, r
r, r, b, g, br
r, r, b, gb, r
r, rb, g, b, r
r, rb, g, br
r, rb, gb, r
bwurrg can only be made with bwu, r, r, and g.
brgr can be made in two different ways: b, r, g, r or br, g, r.
ubwu and bbrgwb are still impossible.
Adding up all of the ways the towels in this example could be arranged into the desired designs yields 16 (2 + 1 + 4 + 6 + 1 + 2).
They'll let you into the onsen as soon as you have the list. What do you get if you add up the number of different ways you could make each design? | 796449099271652 | from functools import cache
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
towels_trie = {}
for towel in input_text[0].split(", "):
inner_dict = towels_trie
for letter in list(towel):
if letter not in inner_dict:
inner_dict[letter] = {}
inner_dict = inner_dict[letter]
inner_dict[None] = None
@cache
def pattern_possible(pattern):
if not pattern:
return 1
patterns_needed = []
trie = towels_trie
for i, letter in enumerate(pattern):
if letter in trie:
trie = trie[letter]
if None in trie:
patterns_needed.append(pattern[i + 1 :])
else:
break
return sum(pattern_possible(sub_pattern) for sub_pattern in patterns_needed)
print(sum(pattern_possible(pattern) for pattern in input_text[2:])) | python |
2024 | 19 | 2 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible?
Your puzzle answer was 267.
--- Part Two ---
The staff don't really like some of the towel arrangements you came up with. To avoid an endless cycle of towel rearrangement, maybe you should just give them every possible option.
Here are all of the different ways the above example's designs can be made:
brwrr can be made in two different ways: b, r, wr, r or br, wr, r.
bggr can only be made with b, g, g, and r.
gbbr can be made 4 different ways:
g, b, b, r
g, b, br
gb, b, r
gb, br
rrbgbr can be made 6 different ways:
r, r, b, g, b, r
r, r, b, g, br
r, r, b, gb, r
r, rb, g, b, r
r, rb, g, br
r, rb, gb, r
bwurrg can only be made with bwu, r, r, and g.
brgr can be made in two different ways: b, r, g, r or br, g, r.
ubwu and bbrgwb are still impossible.
Adding up all of the ways the towels in this example could be arranged into the desired designs yields 16 (2 + 1 + 4 + 6 + 1 + 2).
They'll let you into the onsen as soon as you have the list. What do you get if you add up the number of different ways you could make each design? | 796449099271652 | from typing import List, Tuple
from collections import defaultdict
from part1 import parse_input
def count_ways_to_construct_design(design: str, towel_patterns: List[str]) -> int:
"""
Counts the number of ways to construct a given design using a list of towel patterns.
Args:
design (str): The design string that needs to be constructed.
towel_patterns (List[str]): A list of towel patterns that can be used to construct the design.
Returns:
int: The number of ways to construct the design using the given towel patterns.
"""
n = len(design)
dp = defaultdict(int)
dp[0] = 1 # Base case: there's one way to construct an empty design
for i in range(1, n + 1):
for pattern in towel_patterns:
if i >= len(pattern) and design[i - len(pattern):i] == pattern:
dp[i] += dp[i - len(pattern)]
return dp[n]
def total_ways_to_construct_designs(towel_patterns: List[str], desired_designs: List[str]) -> int:
"""
Calculate the total number of ways to construct each design in the desired designs list
using the given towel patterns.
Args:
towel_patterns (List[str]): A list of available towel patterns.
desired_designs (List[str]): A list of desired designs to be constructed.
Returns:
int: The total number of ways to construct all the desired designs using the towel patterns.
"""
return sum(count_ways_to_construct_design(design, towel_patterns) for design in desired_designs)
if __name__ == "__main__":
file_path = 'input.txt'
towel_patterns, desired_designs = parse_input(file_path)
result = total_ways_to_construct_designs(towel_patterns, desired_designs)
print(result) | python |
2024 | 19 | 2 | --- Day 19: Linen Layout ---
Today, The Historians take you up to the hot springs on Gear Island! Very suspiciously, absolutely nothing goes wrong as they begin their careful search of the vast field of helixes.
Could this finally be your chance to visit the onsen next door? Only one way to find out.
After a brief conversation with the reception staff at the onsen front desk, you discover that you don't have the right kind of money to pay the admission fee. However, before you can leave, the staff get your attention. Apparently, they've heard about how you helped at the hot springs, and they're willing to make a deal: if you can simply help them arrange their towels, they'll let you in for free!
Every towel at this onsen is marked with a pattern of colored stripes. There are only a few patterns, but for any particular pattern, the staff can get you as many towels with that pattern as you need. Each stripe can be white (w), blue (u), black (b), red (r), or green (g). So, a towel with the pattern ggr would have a green stripe, a green stripe, and then a red stripe, in that order. (You can't reverse a pattern by flipping a towel upside-down, as that would cause the onsen logo to face the wrong way.)
The Official Onsen Branding Expert has produced a list of designs - each a long sequence of stripe colors - that they would like to be able to display. You can use any towels you want, but all of the towels' stripes must exactly match the desired design. So, to display the design rgrgr, you could use two rg towels and then an r towel, an rgr towel and then a gr towel, or even a single massive rgrgr towel (assuming such towel patterns were actually available).
To start, collect together all of the available towel patterns and the list of desired designs (your puzzle input). For example:
r, wr, b, g, bwu, rb, gb, br
brwrr
bggr
gbbr
rrbgbr
ubwu
bwurrg
brgr
bbrgwb
The first line indicates the available towel patterns; in this example, the onsen has unlimited towels with a single red stripe (r), unlimited towels with a white stripe and then a red stripe (wr), and so on.
After the blank line, the remaining lines each describe a design the onsen would like to be able to display. In this example, the first design (brwrr) indicates that the onsen would like to be able to display a black stripe, a red stripe, a white stripe, and then two red stripes, in that order.
Not all designs will be possible with the available towels. In the above example, the designs are possible or impossible as follows:
brwrr can be made with a br towel, then a wr towel, and then finally an r towel.
bggr can be made with a b towel, two g towels, and then an r towel.
gbbr can be made with a gb towel and then a br towel.
rrbgbr can be made with r, rb, g, and br.
ubwu is impossible.
bwurrg can be made with bwu, r, r, and g.
brgr can be made with br, g, and r.
bbrgwb is impossible.
In this example, 6 of the eight designs are possible with the available towel patterns.
To get into the onsen as soon as possible, consult your list of towel patterns and desired designs carefully. How many designs are possible?
Your puzzle answer was 267.
--- Part Two ---
The staff don't really like some of the towel arrangements you came up with. To avoid an endless cycle of towel rearrangement, maybe you should just give them every possible option.
Here are all of the different ways the above example's designs can be made:
brwrr can be made in two different ways: b, r, wr, r or br, wr, r.
bggr can only be made with b, g, g, and r.
gbbr can be made 4 different ways:
g, b, b, r
g, b, br
gb, b, r
gb, br
rrbgbr can be made 6 different ways:
r, r, b, g, b, r
r, r, b, g, br
r, r, b, gb, r
r, rb, g, b, r
r, rb, g, br
r, rb, gb, r
bwurrg can only be made with bwu, r, r, and g.
brgr can be made in two different ways: b, r, g, r or br, g, r.
ubwu and bbrgwb are still impossible.
Adding up all of the ways the towels in this example could be arranged into the desired designs yields 16 (2 + 1 + 4 + 6 + 1 + 2).
They'll let you into the onsen as soon as you have the list. What do you get if you add up the number of different ways you could make each design? | 796449099271652 | from collections import defaultdict
def nb_possible_arrangements(design: str, towels: list[str]) -> int:
cache: defaultdict[str, int] = defaultdict(lambda: 0)
cache[""] = 1
for i in range(1, len(design) + 1):
design_i = design[-i:]
cache[design_i] = 0
for towel in towels:
if design_i.startswith(towel):
sub_design = design_i[len(towel) :]
cache[design_i] += cache[sub_design]
return cache[design]
def main() -> None:
towels: list[str] = []
designs: list[str] = []
with open("input.txt") as data:
towels = data.readline().strip().split(", ")
assert data.readline() == "\n"
for line in data:
designs.append(line.strip())
count = 0
for i, design in enumerate(designs):
nb = nb_possible_arrangements(design, towels)
count += nb
print(count)
if __name__ == "__main__":
main() | python |
2024 | 21 | 1 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 157908 | from itertools import permutations
keypadSequences = open('input.txt').read().splitlines()
keypad = {
'7': (0, 0), '8': (0, 1), '9': (0, 2),
'4': (1, 0), '5': (1, 1), '6': (1, 2),
'1': (2, 0), '2': (2, 1), '3': (2, 2),
'#': (3, 0), '0': (3, 1), 'A': (3, 2)
}
keypadBadPosition = (3,0)
startKeypad = (3, 2)
directionalpad = {
'#': (0, 0), '^': (0, 1), 'A': (0, 2),
'<': (1, 0), 'v': (1, 1), '>': (1, 2)
}
directionalpadBadPosition = (0,0)
startdirectionalpad = (0, 2)
def getNumericPart(code):
return ''.join([elem for elem in code if elem.isdigit()])
def getdirections(drow, dcol):
res = []
if drow > 0:
res.append('v'*drow)
elif drow < 0:
res.append('^'*abs(drow))
if dcol > 0:
res.append('>'*dcol)
elif dcol < 0:
res.append('<'*abs(dcol))
return ''.join(res)
def getPossiblePermutations(pos, directions, position):
perms = set(permutations(directions))
validPerms = []
for perm in perms:
if validatepath(pos, perm, position):
validPerms.append(''.join(perm))
return validPerms
def validatepath(pos, directions, position):
_pos = pos
for direction in directions:
if direction == 'v':
_pos = (_pos[0] + 1, _pos[1])
elif direction == '^':
_pos = (_pos[0] - 1, _pos[1])
elif direction == '>':
_pos = (_pos[0], _pos[1] + 1)
elif direction == '<':
_pos = (_pos[0], _pos[1] - 1)
if _pos == position:
return False
return True
def getDirectionToWriteCode(input):
pos = startKeypad
result = []
for elem in input:
nextPos = keypad[elem]
drow = nextPos[0] - pos[0]
dcol = nextPos[1] - pos[1]
directions = getdirections(drow, dcol)
validPaths = getPossiblePermutations(pos, directions, keypadBadPosition)
if len(result) == 0:
for path in validPaths:
result.append(path + 'A')
elif len(result) >= 1:
temp = []
for res in result:
for path in validPaths:
temp.append(res + path + 'A')
result = temp
pos = nextPos
return result
def getDirectionToWriteDirection(input):
pos = startdirectionalpad
result = []
for elem in input:
nextPos = directionalpad[elem]
drow = nextPos[0] - pos[0]
dcol = nextPos[1] - pos[1]
directions = getdirections(drow, dcol)
validPaths = getPossiblePermutations(pos, directions, directionalpadBadPosition)
if len(result) == 0:
for path in validPaths:
result.append(path + 'A')
elif len(result) >= 1:
temp = []
for res in result:
for path in validPaths:
temp.append(res + path + 'A')
result = temp
pos = nextPos
min_length = min(len(r) for r in result)
return [r for r in result if len(r) == min_length]
def getDirectionToWriteDirectionSample(input):
pos = startdirectionalpad
result = []
for elem in input:
nextPos = directionalpad[elem]
drow = nextPos[0] - pos[0]
dcol = nextPos[1] - pos[1]
directions = getdirections(drow, dcol)
validPaths = getPossiblePermutations(pos, directions, directionalpadBadPosition)[0]
result.append(validPaths)
result.append('A')
pos = nextPos
return ''.join(result)
def calculateComplexity(code):
sol1 = getDirectionToWriteCode(code)
sol2 = [elem for sol in sol1 for elem in getDirectionToWriteDirection(sol)]
sol3 = [getDirectionToWriteDirectionSample(elem) for elem in sol2]
print(sol3[0])
print(sol2[0])
print(sol1[0])
print(code)
min_length = min(len(r) for r in sol3)
num = getNumericPart(code)
print(f"Code: Numeric: {num}, minimum length: {min_length}")
return min_length * int(num)
total = 0
for code in keypadSequences:
score = calculateComplexity(code)
total += score
print()
print(total)
# <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
# <<vAA>A>^AvAA<^A>A<<vA>>^AvA^A<vA>^A<<vA>^A>AAvA^A<<vA>A>^AAAvA<^A>A
# code = '029A'
# sol1 = getDirectionToWriteCode(code)
# sol2 = getDirectionToWriteDirection(sol1)
# sol3 = getDirectionToWriteDirection(sol2)
# print(sol3)
# print(sol2)
# print(sol1)
# print(code)
# print(calculateComplexity("029A")) | python |
2024 | 21 | 1 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 157908 | NUMS = {
'0': (3, 1),
'1': (2, 0),
'2': (2, 1),
'3': (2, 2),
'4': (1, 0),
'5': (1, 1),
'6': (1, 2),
'7': (0, 0),
'8': (0, 1),
'9': (0, 2),
'A': (3, 2),
'': (3, 0)
}
ARROWS = {
'^': (0, 1),
'A': (0, 2),
'<': (1, 0),
'v': (1, 1),
'>': (1, 2),
'': (0, 0)
}
DIR_TO_ARROW_MAP = {
(-1, 0): '^',
(1, 0): 'v',
(0, -1): '<',
(0, 1): '>'
}
def get_shortest(keys, sequence):
path = []
for i in range(len(sequence) - 1):
cur, target = keys[sequence[i]], keys[sequence[i + 1]]
next_path = []
dirs = []
for y in range(cur[1] - 1, target[1] - 1, -1):
next_path.append((cur[0], y))
dirs.append((0, -1))
for x in range(cur[0] + 1, target[0] + 1):
next_path.append((x, cur[1]))
dirs.append((1, 0))
for x in range(cur[0] - 1, target[0] - 1, -1):
next_path.append((x, cur[1]))
dirs.append((-1, 0))
for y in range(cur[1] + 1, target[1] + 1):
next_path.append((cur[0], y))
dirs.append((0, 1))
if keys[''] in next_path:
dirs = list(reversed(dirs))
path += [DIR_TO_ARROW_MAP[d] for d in dirs] + ['A']
return "".join(path)
with open('input.txt') as f:
lines = f.read().splitlines()
total_complexity = 0
for line in lines:
l1 = get_shortest(NUMS, 'A' + line)
l2 = get_shortest(ARROWS, 'A' + l1)
l3 = get_shortest(ARROWS, 'A' + l2)
total_complexity += int(line[0:-1]) * len(l3)
print(total_complexity) | python |
2024 | 21 | 1 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 157908 | from abc import ABC
import argparse
from functools import cache
from itertools import product
from typing import Optional
g_verbose = False
CHR_A = ord('A')
UP = ord('^')
DOWN = ord('v')
LEFT = ord('<')
RIGHT = ord('>')
CHR_0 = ord('0')
CHR_1 = ord('1')
CHR_2 = ord('2')
CHR_3 = ord('3')
CHR_4 = ord('4')
CHR_5 = ord('5')
CHR_6 = ord('6')
CHR_7 = ord('7')
CHR_8 = ord('8')
CHR_9 = ord('9')
def get_dir_h(dx: int) -> int:
return LEFT if dx < 0 else RIGHT
def get_dir_v(dy: int) -> int:
return UP if dy < 0 else DOWN
class RobotPad(ABC):
id: int = 0
dir_cache: dict[tuple[int, int], list[list[int]]]
pos_cache: dict[tuple[int, int], int]
child: Optional['RobotPad'] = None
@cache
def cost_press_once(self, snapshot: tuple[int, ...]):
my_id = self.id
if not self.child:
assert len(snapshot) == 1
return 1, snapshot
g_verbose and print(f'{" " * my_id}bot #{my_id} request parent press')
cost_moving, new_snapshot = self.child.cost_moving(CHR_A, snapshot[1:])
cost_press, new_snapshot = self.child.cost_press_once(new_snapshot)
return cost_moving + cost_press, (snapshot[0], *new_snapshot)
@cache
def cost_moving(self, target_button: int, snapshot: tuple[int, ...]):
my_id = self.id
current_button = snapshot[0]
g_verbose and print(f'{" " * my_id}bot #{my_id} plan {chr(current_button)} -> {chr(target_button)}')
if current_button == target_button:
g_verbose and print(f'{" " * my_id}bot #{my_id} not moving, already at {chr(target_button)}')
return 0, snapshot
# Last layer
distance = self.pos_cache[current_button, target_button]
if not self.child:
g_verbose and print(f'{" " * my_id}bot #{my_id} move to {chr(target_button)}, cost={distance}')
assert len(snapshot) == 1
return distance, (target_button,)
# Move parent node to the direction I want
tracking = []
for possible_routes in self.dir_cache[current_button, target_button]:
route_cost = 0
route_snapshot = snapshot[1:]
for next_direction in possible_routes:
cost_moving, route_snapshot = self.child.cost_moving(next_direction, route_snapshot)
cost_press, route_snapshot = self.child.cost_press_once(route_snapshot)
route_cost += cost_moving + cost_press
tracking.append((route_cost, (target_button, *route_snapshot)))
best_cost, best_snapshot = min(tracking, key=lambda x: x[0])
g_verbose and print(f'{" " * my_id}bot #{my_id} move to {chr(target_button)}, cost={best_cost}')
return best_cost, best_snapshot
def move(self, dst: int, snapshot: tuple[int, ...]):
return self.cost_moving(dst, snapshot)
class NumPad(RobotPad):
def __init__(self, bot_id: int):
self.id = bot_id
self.board = [
[0x37, 0x38, 0x39],
[0x34, 0x35, 0x36],
[0x31, 0x32, 0x33],
[0x00, 0x30, 0x41]
]
self.pos_cache = {}
self.board_lookup = {value: (x, y) for y, row in enumerate(self.board) for x, value in enumerate(row) if value}
dir_cache: dict[tuple[int, int], list[list[int]]] = {}
for ((a, (x1, y1)), (b, (x2, y2))) in product(self.board_lookup.items(), repeat=2):
if a == b: continue
# Find the direction of move from a to b
dx = x2 - x1
dy = y2 - y1
x_count = abs(dx)
y_count = abs(dy)
# Only move in one direction
if dx == 0 or dy == 0:
dir_cache[a, b] = [[get_dir_h(dx) if dx else get_dir_v(dy)] * (x_count + y_count)]
elif a in (CHR_0, CHR_A) and b in (CHR_1, CHR_4, CHR_7):
# Can only move up and then left
dir_cache[a, b] = [[UP] * y_count + [LEFT] * x_count]
elif a in (CHR_1, CHR_4, CHR_7) and b in (CHR_0, CHR_A):
# Can only move right and then down
dir_cache[a, b] = [[RIGHT] * x_count + [DOWN] * y_count]
else:
# Can move both horizontally and vertically, any order
dir_h = get_dir_h(dx)
dir_v = get_dir_v(dy)
dir_cache[a, b] = [[dir_h] * x_count + [dir_v] * y_count, [dir_v] * y_count + [dir_h] * x_count]
self.pos_cache[a, b] = abs(dx) + abs(dy)
self.dir_cache = dir_cache
class DirectionPad(RobotPad):
def __init__(self, bot_id: int):
self.id = bot_id
self.board = [
[0x00, UP, CHR_A],
[LEFT, DOWN, RIGHT],
]
self.board_lookup = {value: (x, y) for y, row in enumerate(self.board) for x, value in enumerate(row) if value}
self.pos_cache = {}
dir_cache: dict[tuple[int, int], list[list[int]]] = {}
for ((a, (x1, y1)), (b, (x2, y2))) in product(self.board_lookup.items(), repeat=2):
# Find the direction of move from a to b
dx = x2 - x1
dy = y2 - y1
self.pos_cache[a, b] = abs(dx) + abs(dy)
x_count = abs(dx)
y_count = abs(dy)
# Only move in one direction
if dx == 0 or dy == 0:
dir_cache[a, b] = [[get_dir_h(dx) if dx else get_dir_v(dy)] * (x_count + y_count)]
elif a == LEFT and b in (UP, CHR_A):
# Can only move right and then UP
dir_cache[a, b] = [[RIGHT] * x_count + [UP] * y_count]
elif a in (UP, CHR_A) and b == LEFT:
# Can only move down and then left
dir_cache[a, b] = [[DOWN] * y_count + [LEFT] * x_count]
else:
# Can move both horizontally and vertically, any order
dir_h = get_dir_h(dx)
dir_v = get_dir_v(dy)
dir_cache[a, b] = [[dir_h] * x_count + [dir_v] * y_count, [dir_v] * y_count + [dir_h] * x_count]
self.dir_cache = dir_cache
def solve_ex(codes: list[str], count: int) -> int:
root = NumPad(0)
node = root
for i in range(count):
bot = DirectionPad(i + 1)
node.child = bot
node = bot
snapshot_init = tuple([CHR_A] * (count + 1))
result = 0
for code in codes:
snapshot = snapshot_init
total_cost = 0
for current_chr in map(ord, code):
prev_char = snapshot[0]
cost, snapshot = root.cost_moving(current_chr, snapshot)
cost_press, snapshot = root.cost_press_once(snapshot)
g_verbose and print(
f"** move {chr(prev_char)} -> {chr(current_chr)} cost={cost + cost_press} pos={''.join(map(chr, snapshot))}")
total_cost += cost + cost_press
numeric_part = int(code[:-1])
print(f"{code} -> {total_cost} * {numeric_part}")
result += total_cost * numeric_part
return result
def solve(input_path: str, /, **_kwargs):
with open(input_path, "r", encoding='utf-8') as file:
input_text = file.read().strip().replace('\r', '').splitlines()
p1 = solve_ex(input_text, 2)
print(f'p1: {p1}')
def main():
global g_verbose
parser = argparse.ArgumentParser()
parser.add_argument("input", nargs="?", default="sample.txt")
parser.add_argument("-v", "--verbose", action="store_true")
parser.add_argument("--threshold", type=int, default=50, help="Threshold (p2)")
args = parser.parse_args()
g_verbose = args.verbose
solve(args.input)
if __name__ == "__main__":
main() | python |
2024 | 21 | 1 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 157908 | import functools
from typing import List, Tuple, Optional
# Define the number pad and the direction pad
number_pad = [
"789",
"456",
"123",
" 0A"
]
direction_pad = [
" ^A",
"<v>"
]
def parse_input(file_path: str) -> List[Tuple[str, int]]:
"""
Parses the input file and returns a list of tuples.
Each tuple contains a string (the stripped line) and an integer (the first three characters of the line).
Args:
file_path (str): The path to the input file.
Returns:
List[Tuple[str, int]]: A list of tuples where each tuple contains a string and an integer.
"""
with open(file_path) as file:
return [(line.strip(), int(line[:3])) for line in file]
def find_position(pad: List[str], char: str) -> Optional[Tuple[int, int]]:
"""
Find the position of a character in a 2D list (pad).
Args:
pad (List[str]): A 2D list representing the pad where each element is a string.
char (str): The character to find in the pad.
Returns:
Optional[Tuple[int, int]]: A tuple containing the x and y coordinates of the character if found,
otherwise None.
"""
for y, row in enumerate(pad):
for x, cell in enumerate(row):
if cell == char:
return x, y
return None
def generate_path(pad: List[str], from_char: str, to_char: str) -> str:
"""
Generate the shortest path from `from_char` to `to_char` in the given pad.
The path is represented as a string of direction changes:
- '<' for left
- '>' for right
- '^' for up
- 'v' for down
- 'A' for arrival at the target position
Args:
pad (List[str]): A 2D list representing the pad where each element is a character.
from_char (str): The character representing the starting position.
to_char (str): The character representing the target position.
Returns:
str: The shortest path from `from_char` to `to_char` based on the number of direction changes.
"""
from_x, from_y = find_position(pad, from_char)
to_x, to_y = find_position(pad, to_char)
def move(x: int, y: int, path: str):
# If the current position is the target position, yield the path with 'A' appended
if (x, y) == (to_x, to_y):
yield path + 'A'
# Move left if possible and the target is to the left
if to_x < x and pad[y][x - 1] != ' ':
yield from move(x - 1, y, path + '<')
# Move up if possible and the target is above
if to_y < y and pad[y - 1][x] != ' ':
yield from move(x, y - 1, path + '^')
# Move down if possible and the target is below
if to_y > y and pad[y + 1][x] != ' ':
yield from move(x, y + 1, path + 'v')
# Move right if possible and the target is to the right
if to_x > x and pad[y][x + 1] != ' ':
yield from move(x + 1, y, path + '>')
# Return the shortest path based on the number of direction changes
return min(move(from_x, from_y, ""), key=lambda p: sum(a != b for a, b in zip(p, p[1:])))
@functools.lru_cache(None)
def solve(sequence: str, level: int, max_level: int = 2) -> int:
"""
Solve the problem recursively.
Args:
sequence (str): The input sequence to process.
level (int): The current recursion level.
max_level (int, optional): The maximum recursion depth. Defaults to 2.
Returns:
int: The result of the recursive computation.
"""
if level > max_level:
return len(sequence)
pad = direction_pad if level else number_pad
return sum(solve(generate_path(pad, from_char, to_char), level + 1, max_level) for from_char, to_char in zip('A' + sequence, sequence))
if __name__ == "__main__":
input_data = parse_input('input.txt')
result = sum(solve(sequence, 0) * multiplier for sequence, multiplier in input_data)
print(result) | python |
2024 | 21 | 1 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 157908 | from functools import cache
with open("input.txt") as input_file:
input_text = input_file.read().splitlines()
@cache
def num_keypad_paths(start, end):
output = []
x_diff = abs(end[0] - start[0])
y_diff = abs(end[1] - start[1])
horiz_char = ">" if end[0] > start[0] else "<"
vert_char = "v" if end[1] > start[1] else "^"
for path in {
tuple([horiz_char] * x_diff + [vert_char] * y_diff),
tuple([vert_char] * y_diff + [horiz_char] * x_diff),
}:
if not (
(start == (0, 0) and path[:3] == ("v", "v", "v"))
or (start == (0, 1) and path[:2] == ("v", "v"))
or (start == (0, 2) and path[:1] == ("v",))
or (start == (1, 3) and path[:1] == ("<",))
or (start == (2, 3) and path[:2] == ("<", "<"))
):
output.append(list(path) + ["A"])
return output
@cache
def dir_keypad_paths(start, end):
output = []
x_diff = abs(end[0] - start[0])
y_diff = abs(end[1] - start[1])
horiz_char = ">" if end[0] > start[0] else "<"
vert_char = "v" if end[1] > start[1] else "^"
for path in {
tuple([horiz_char] * x_diff + [vert_char] * y_diff),
tuple([vert_char] * y_diff + [horiz_char] * x_diff),
}:
if not (
(start == (1, 0) and path[:1] == ("<",))
or (start == (2, 0) and path[:2] == ("<", "<"))
or (start == (0, 1) and path[:1] == ("^",))
):
output.append(list(path) + ["A"])
return output
num_keypad = {
"7": (0, 0),
"8": (1, 0),
"9": (2, 0),
"4": (0, 1),
"5": (1, 1),
"6": (2, 1),
"1": (0, 2),
"2": (1, 2),
"3": (2, 2),
"0": (1, 3),
"A": (2, 3),
}
directional_keypad = {"^": (1, 0), "A": (2, 0), "<": (0, 1), "v": (1, 1), ">": (2, 1)}
total = 0
for code in input_text:
current_pos = (2, 3)
solutions = [[]]
for character in code:
new_pos = num_keypad[character]
solutions = [
solution + path
for solution in solutions
for path in num_keypad_paths(current_pos, new_pos)
]
current_pos = new_pos
solutions_2_outer = []
for solution in solutions:
current_pos = (2, 0)
solutions_2 = [[]]
for character in solution:
new_pos = directional_keypad[character]
solutions_2 = [
partial_solution + path
for partial_solution in solutions_2
for path in dir_keypad_paths(current_pos, new_pos)
]
current_pos = new_pos
solutions_2_outer += solutions_2
solutions_3_outer = []
for solution in solutions_2_outer:
current_pos = (2, 0)
solutions_3 = [[]]
for character in solution:
new_pos = directional_keypad[character]
solutions_3 = [
partial_solution + path
for partial_solution in solutions_3
for path in dir_keypad_paths(current_pos, new_pos)
]
current_pos = new_pos
solutions_3_outer += solutions_3
total += min(len(x) for x in solutions_3_outer) * int(code[:3])
print(total) | python |
2024 | 21 | 2 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list?
Your puzzle answer was 157908.
--- Part Two ---
Just as the missing Historian is released, The Historians realize that a second member of their search party has also been missing this entire time!
A quick life-form scan reveals the Historian is also trapped in a locked area of the ship. Due to a variety of hazards, robots are once again dispatched, forming another chain of remote control keypads managing robotic-arm-wielding robots.
This time, many more robots are involved. In summary, there are the following keypads:
One directional keypad that you are using.
25 directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
The keypads form a chain, just like before: your directional keypad controls a robot which is typing on a directional keypad which controls a robot which is typing on a directional keypad... and so on, ending with the robot which is typing on the numeric keypad.
The door codes are the same this time around; only the number of robots and directional keypads has changed.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 196910339808654 | import sys
from collections import Counter
from functools import cache
def test_input():
_input = """029A
980A
179A
456A
379A""".strip().split('\n')
assert part_1(_input) == 126384
class Pad:
LOOKUPS = {}
def inputs(self, sequence: str):
inputs = []
def _inputs(result, current, sequence):
if len(sequence) == 0:
inputs.append(result)
return
for move in self._inputs(current, sequence[0]):
_inputs(result + move, sequence[0], sequence[1:])
_inputs('', 'A', sequence)
return inputs
def _inputs(self, start: str, end: str):
sx, sy = self.LOOKUPS[start]
ex, ey = self.LOOKUPS[end]
dx, dy = ex - sx, ey - sy
x_str = '<' * -dx if dx < 0 else '>' * dx
y_str = '^' * -dy if dy < 0 else 'v' * dy
value = []
if dy != 0 and (sx, sy + dy) != self.LOOKUPS[' ']:
value.append(f'{y_str}{x_str}A')
if dx != 0 and (sx + dx, sy) != self.LOOKUPS[' ']:
value.append(f'{x_str}{y_str}A')
if dx == dy == 0:
value.append('A')
return value
class Numpad(Pad):
"""
A class representing a numpad with a specific layout.
The numpad layout is as follows:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Attributes:
LOOKUPS (dict): A dictionary containing lookup values for the numpad.
"""
LOOKUPS = {
'7': (0, 0),
'8': (1, 0),
'9': (2, 0),
'4': (0, 1),
'5': (1, 1),
'6': (2, 1),
'1': (0, 2),
'2': (1, 2),
'3': (2, 2),
' ': (0, 3),
'0': (1, 3),
'A': (2, 3),
}
class Dirpad(Pad):
"""
A class representing a direction pad with a specific layout.
The direction pad layout is as follows:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
Attributes:
LOOKUPS (dict): A dictionary containing lookup values for the direction pad.
"""
LOOKUPS = {
' ': (0, 0),
'^': (1, 0),
'A': (2, 0),
'<': (0, 1),
'v': (1, 1),
'>': (2, 1),
}
def read_input(path: str) -> list[str]:
with open(path) as input_file:
return [line.strip() for line in input_file]
@cache
def shortest(sequence: str, depth: int):
dirpad = Dirpad()
if depth == 0:
return len(sequence)
total = 0
for sub in sequence.split('A')[:-1]:
sequences = dirpad.inputs(sub + 'A')
total += min(shortest(seq, depth - 1) for seq in sequences)
return total
def score_at_depth(input_data: list[str], depth: int) -> int:
total = 0
numpad = Numpad()
for code in input_data:
numcode = numpad.inputs(code)
min_len = min(shortest(nc, depth) for nc in numcode)
total += min_len * int(code[:-1])
return total
def part_1(input_data: list[str]) -> int:
return score_at_depth(input_data, 2)
def part_2(input_data: list[str]) -> int:
return score_at_depth(input_data, 25)
def main():
input_data = read_input(sys.argv[1])
print(f'Part 1: {part_1(input_data)}')
print(f'Part 2: {part_2(input_data)}')
if __name__ == '__main__':
main() | python |
2024 | 21 | 2 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list?
Your puzzle answer was 157908.
--- Part Two ---
Just as the missing Historian is released, The Historians realize that a second member of their search party has also been missing this entire time!
A quick life-form scan reveals the Historian is also trapped in a locked area of the ship. Due to a variety of hazards, robots are once again dispatched, forming another chain of remote control keypads managing robotic-arm-wielding robots.
This time, many more robots are involved. In summary, there are the following keypads:
One directional keypad that you are using.
25 directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
The keypads form a chain, just like before: your directional keypad controls a robot which is typing on a directional keypad which controls a robot which is typing on a directional keypad... and so on, ending with the robot which is typing on the numeric keypad.
The door codes are the same this time around; only the number of robots and directional keypads has changed.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 196910339808654 | from collections import defaultdict, Counter
NUMS = {
'0': (3, 1),
'1': (2, 0),
'2': (2, 1),
'3': (2, 2),
'4': (1, 0),
'5': (1, 1),
'6': (1, 2),
'7': (0, 0),
'8': (0, 1),
'9': (0, 2),
'A': (3, 2),
'': (3, 0)
}
ARROWS = {
'^': (0, 1),
'A': (0, 2),
'<': (1, 0),
'v': (1, 1),
'>': (1, 2),
'': (0, 0)
}
DIR_TO_ARROW_MAP = {
(-1, 0): '^',
(1, 0): 'v',
(0, -1): '<',
(0, 1): '>'
}
memo = dict()
def get_shortest(keys, sequence):
path = []
for i in range(len(sequence) - 1):
cur, target = keys[sequence[i]], keys[sequence[i + 1]]
next_path = []
dirs = []
for y in range(cur[1] - 1, target[1] - 1, -1):
next_path.append((cur[0], y))
dirs.append((0, -1))
for x in range(cur[0] + 1, target[0] + 1):
next_path.append((x, cur[1]))
dirs.append((1, 0))
for x in range(cur[0] - 1, target[0] - 1, -1):
next_path.append((x, cur[1]))
dirs.append((-1, 0))
for y in range(cur[1] + 1, target[1] + 1):
next_path.append((cur[0], y))
dirs.append((0, 1))
if keys[''] in next_path:
dirs = list(reversed(dirs))
to_append = [DIR_TO_ARROW_MAP[d] for d in dirs] + ['A']
path += to_append
return "".join(path).split("A")[0:-1]
def count_parts(path):
return Counter([s +"A" for s in path])
with open('input.txt') as f:
lines = f.read().splitlines()
total_complexity = 0
for line in lines:
counts = count_parts(get_shortest(NUMS, 'A' + line))
for i in range(25):
next_counts = defaultdict(int)
for seq, count in counts.items():
for k, v in count_parts(get_shortest(ARROWS, 'A' + seq)).items():
next_counts[k] += count * v
counts = next_counts
length = sum([len(k) * v for k, v in counts.items()])
total_complexity += int(line[0:-1]) * length
print(total_complexity) | python |
2024 | 21 | 2 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list?
Your puzzle answer was 157908.
--- Part Two ---
Just as the missing Historian is released, The Historians realize that a second member of their search party has also been missing this entire time!
A quick life-form scan reveals the Historian is also trapped in a locked area of the ship. Due to a variety of hazards, robots are once again dispatched, forming another chain of remote control keypads managing robotic-arm-wielding robots.
This time, many more robots are involved. In summary, there are the following keypads:
One directional keypad that you are using.
25 directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
The keypads form a chain, just like before: your directional keypad controls a robot which is typing on a directional keypad which controls a robot which is typing on a directional keypad... and so on, ending with the robot which is typing on the numeric keypad.
The door codes are the same this time around; only the number of robots and directional keypads has changed.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 196910339808654 | import functools
with open("21.txt") as i:
input = [x.strip() for x in i.readlines()]
test_data = """029A
980A
179A
456A
379A""".split("\n")
# input = test_data
# +---+---+---+
# | 7 | 8 | 9 |
# +---+---+---+
# | 4 | 5 | 6 |
# +---+---+---+
# | 1 | 2 | 3 |
# +---+---+---+
# | 0 | A |
# +---+---+
numeric_keys = {
"7": (0, 0), "8": (1, 0), "9": (2, 0),
"4": (0, 1), "5": (1, 1), "6": (2, 1),
"1": (0, 2), "2": (1, 2), "3": (2, 2),
"0": (1, 3), "A": (2, 3),
}
# +---+---+
# | ^ | A |
#+---+---+---+
#| < | v | > |
#+---+---+---+
directional_keys = {
"^": (1, 0), "A": (2, 0),
"<": (0, 1), "v": (1, 1), ">": (2,1)
}
allowed_num_pos = [v for v in numeric_keys.values()]
allowed_dir_pos = [v for v in directional_keys.values()]
pos = (2,3)
x, y = pos
def find_keystrokes(src, target, directional):
if src == target: return ["A"]
if not directional and not src in allowed_num_pos: return []
if directional and not src in allowed_dir_pos: return []
x1, y1 = src
x2, y2 = target
res = []
if x1<x2: res.extend([">"+s for s in find_keystrokes((x1+1, y1), target, directional)])
elif x1>x2: res.extend(["<"+s for s in find_keystrokes((x1-1, y1), target, directional)])
if y1<y2: res.extend(["v"+s for s in find_keystrokes((x1, y1+1), target, directional)])
elif y1>y2: res.extend(["^"+s for s in find_keystrokes((x1, y1-1), target, directional)])
return res
@functools.cache
def find_shortest_to_click(a, b, depth=2):
# Assume we start at A always?
opts = find_keystrokes(directional_keys[a], directional_keys[b], True)
if depth == 1:
return min([len(x) for x in opts])
tmps = []
for o in opts:
tmp = []
tmp.append(find_shortest_to_click("A", o[0], depth-1))
for i in range(1, len(o)):
tmp.append(find_shortest_to_click(o[i-1], o[i], depth-1))
tmps.append(sum(tmp))
return min(tmps)
def find_shortest(code, levels):
pos = numeric_keys["A"]
shortest = 0
for key in code:
possible_key_sequences = find_keystrokes(pos, numeric_keys[key], False)
tmps = []
for sequence in possible_key_sequences:
tmp = []
tmp.append(find_shortest_to_click("A", sequence[0], levels))
for i in range(1, len(sequence)):
tmp.append(find_shortest_to_click(sequence[i-1], sequence[i], levels))
tmps.append(sum(tmp))
pos = numeric_keys[key]
shortest += min(tmps)
return shortest
def find_total_complexity(codes, levels):
complexities = []
for code in input:
s = find_shortest(code, levels)
complexities.append(s*int(code[:-1]))
return sum(complexities)
print(find_total_complexity(input, 25)) | python |
2024 | 21 | 2 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list?
Your puzzle answer was 157908.
--- Part Two ---
Just as the missing Historian is released, The Historians realize that a second member of their search party has also been missing this entire time!
A quick life-form scan reveals the Historian is also trapped in a locked area of the ship. Due to a variety of hazards, robots are once again dispatched, forming another chain of remote control keypads managing robotic-arm-wielding robots.
This time, many more robots are involved. In summary, there are the following keypads:
One directional keypad that you are using.
25 directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
The keypads form a chain, just like before: your directional keypad controls a robot which is typing on a directional keypad which controls a robot which is typing on a directional keypad... and so on, ending with the robot which is typing on the numeric keypad.
The door codes are the same this time around; only the number of robots and directional keypads has changed.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 196910339808654 | #!/usr/bin/env python3
import re
from collections import deque
from itertools import product
myfile = open("21.in", "r")
lines = myfile.read().strip().splitlines()
myfile.close()
part_two = 0
# fmt: off
num_pad = {
(0, 0): "7", (1, 0): "8", (2, 0): "9",
(0, 1): "4", (1, 1): "5", (2, 1): "6",
(0, 2): "1", (1, 2): "2", (2, 2): "3",
(1, 3): "0", (2, 3): "A",
}
num_pad_t = {v: k for k, v in num_pad.items()}
dir_pad = {
(1, 0): "^", (2, 0): "A",
(0, 1): "<", (1, 1): "v", (2, 1): ">",
}
dir_pad_t = {v: k for k, v in dir_pad.items()}
# fmt: on
button_dirs = {"<": (-1, 0), ">": (1, 0), "^": (0, -1), "v": (0, 1)}
def dfs(start, end, use_dir_pad=True):
key_pad = dir_pad if use_dir_pad else num_pad
sequences = set()
seen = set()
q = deque([("", start)])
while q:
sequence, pos = q.popleft()
seen.add(pos)
if pos == end:
sequences.add(sequence + "A")
continue
buttons = ["<", "^", "v", ">"]
for btn in buttons:
d_x, d_y = button_dirs[btn]
next_pos = (pos[0] + d_x, pos[1] + d_y)
if next_pos not in seen and next_pos in key_pad:
q.append((sequence + btn, next_pos))
min_len = min(len(x) for x in sequences)
return {x for x in sequences if len(x) == min_len}
def get_sequences(sequence, use_dir_pad=True):
key_pad_t = dir_pad_t if use_dir_pad else num_pad_t
sub_sequences = []
start = key_pad_t["A"]
for c in sequence:
end = key_pad_t[c]
sub_sequences.append(dfs(start, end, use_dir_pad))
start = end
sequences = {"".join(x) for x in product(*sub_sequences)}
min_len = min(len(x) for x in sequences)
return {x for x in sequences if len(x) == min_len}
memo = {}
def solve(sequence, robots, is_code=False):
if robots == 0:
return len(sequence)
if (sequence, robots) not in memo:
total = 0
sub_sequences = list(re.findall(r".*?A", sequence))
for sub_seq in sub_sequences:
total += min(
solve(s, robots - 1) for s in get_sequences(sub_seq, not is_code)
)
memo[(sequence, robots)] = total
return memo[(sequence, robots)]
for code in lines:
numeric_code = int(code[:-1])
part_two += solve(code, 26, is_code=True) * numeric_code
print("Part Two:", part_two) | python |
2024 | 21 | 2 | --- Day 21: Keypad Conundrum ---
As you teleport onto Santa's Reindeer-class starship, The Historians begin to panic: someone from their search party is missing. A quick life-form scan by the ship's computer reveals that when the missing Historian teleported, he arrived in another part of the ship.
The door to that area is locked, but the computer can't open it; it can only be opened by physically typing the door codes (your puzzle input) on the numeric keypad on the door.
The numeric keypad has four rows of buttons: 789, 456, 123, and finally an empty gap followed by 0A. Visually, they are arranged like this:
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 0 | A |
+---+---+
Unfortunately, the area outside the door is currently depressurized and nobody can go near the door. A robot needs to be sent instead.
The robot has no problem navigating the ship and finding the numeric keypad, but it's not designed for button pushing: it can't be told to push a specific button directly. Instead, it has a robotic arm that can be controlled remotely via a directional keypad.
The directional keypad has two rows of buttons: a gap / ^ (up) / A (activate) on the first row and < (left) / v (down) / > (right) on the second row. Visually, they are arranged like this:
+---+---+
| ^ | A |
+---+---+---+
| < | v | > |
+---+---+---+
When the robot arrives at the numeric keypad, its robotic arm is pointed at the A button in the bottom right corner. After that, this directional keypad remote control must be used to maneuver the robotic arm: the up / down / left / right buttons cause it to move its arm one button in that direction, and the A button causes the robot to briefly move forward, pressing the button being aimed at by the robotic arm.
For example, to make the robot type 029A on the numeric keypad, one sequence of inputs on the directional keypad you could use is:
< to move the arm from A (its initial position) to 0.
A to push the 0 button.
^A to move the arm to the 2 button and push it.
>^^A to move the arm to the 9 button and push it.
vvvA to move the arm to the A button and push it.
In total, there are three shortest possible sequences of button presses on this directional keypad that would cause the robot to type 029A: <A^A>^^AvvvA, <A^A^>^AvvvA, and <A^A^^>AvvvA.
Unfortunately, the area containing this directional keypad remote control is currently experiencing high levels of radiation and nobody can go near it. A robot needs to be sent instead.
When the robot arrives at the directional keypad, its robot arm is pointed at the A button in the upper right corner. After that, a second, different directional keypad remote control is used to control this robot (in the same way as the first robot, except that this one is typing on a directional keypad instead of a numeric keypad).
There are multiple shortest possible sequences of directional keypad button presses that would cause this robot to tell the first robot to type 029A on the door. One such sequence is v<<A>>^A<A>AvA<^AA>A<vAAA>^A.
Unfortunately, the area containing this second directional keypad remote control is currently -40 degrees! Another robot will need to be sent to type on that directional keypad, too.
There are many shortest possible sequences of directional keypad button presses that would cause this robot to tell the second robot to tell the first robot to eventually type 029A on the door. One such sequence is <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A.
Unfortunately, the area containing this third directional keypad remote control is currently full of Historians, so no robots can find a clear path there. Instead, you will have to type this sequence yourself.
Were you to choose this sequence of button presses, here are all of the buttons that would be pressed on your directional keypad, the two robots' directional keypads, and the numeric keypad:
<vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
v<<A>>^A<A>AvA<^AA>A<vAAA>^A
<A^A>^^AvvvA
029A
In summary, there are the following keypads:
One directional keypad that you are using.
Two directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
It is important to remember that these robots are not designed for button pushing. In particular, if a robot arm is ever aimed at a gap where no button is present on the keypad, even for an instant, the robot will panic unrecoverably. So, don't do that. All robots will initially aim at the keypad's A key, wherever it is.
To unlock the door, five codes will need to be typed on its numeric keypad. For example:
029A
980A
179A
456A
379A
For each of these, here is a shortest sequence of button presses you could type to cause the desired code to be typed on the numeric keypad:
029A: <vA<AA>>^AvAA<^A>A<v<A>>^AvA^A<vA>^A<v<A>^A>AAvA^A<v<A>A>^AAAvA<^A>A
980A: <v<A>>^AAAvA^A<vA<AA>>^AvAA<^A>A<v<A>A>^AAAvA<^A>A<vA>^A<A>A
179A: <v<A>>^A<vA<A>>^AAvAA<^A>A<v<A>>^AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
456A: <v<A>>^AA<vA<A>>^AAvAA<^A>A<vA>^A<A>A<vA>^A<A>A<v<A>A>^AAvA<^A>A
379A: <v<A>>^AvA^A<vA<AA>>^AAvA<^A>AAvA^A<vA>^AA<A>A<v<A>A>^AAAvA<^A>A
The Historians are getting nervous; the ship computer doesn't remember whether the missing Historian is trapped in the area containing a giant electromagnet or molten lava. You'll need to make sure that for each of the five codes, you find the shortest sequence of button presses necessary.
The complexity of a single code (like 029A) is equal to the result of multiplying these two values:
The length of the shortest sequence of button presses you need to type on your directional keypad in order to cause the code to be typed on the numeric keypad; for 029A, this would be 68.
The numeric part of the code (ignoring leading zeroes); for 029A, this would be 29.
In the above example, complexity of the five codes can be found by calculating 68 * 29, 60 * 980, 68 * 179, 64 * 456, and 64 * 379. Adding these together produces 126384.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list?
Your puzzle answer was 157908.
--- Part Two ---
Just as the missing Historian is released, The Historians realize that a second member of their search party has also been missing this entire time!
A quick life-form scan reveals the Historian is also trapped in a locked area of the ship. Due to a variety of hazards, robots are once again dispatched, forming another chain of remote control keypads managing robotic-arm-wielding robots.
This time, many more robots are involved. In summary, there are the following keypads:
One directional keypad that you are using.
25 directional keypads that robots are using.
One numeric keypad (on a door) that a robot is using.
The keypads form a chain, just like before: your directional keypad controls a robot which is typing on a directional keypad which controls a robot which is typing on a directional keypad... and so on, ending with the robot which is typing on the numeric keypad.
The door codes are the same this time around; only the number of robots and directional keypads has changed.
Find the fewest number of button presses you'll need to perform in order to cause the robot in front of the door to type each code. What is the sum of the complexities of the five codes on your list? | 196910339808654 | #day 21
import os
from itertools import pairwise
from functools import cache
def reader():
return open(f"input.txt", 'r').read().splitlines()
def getPT(G, chars):
P = {c: (i, j) for i, r in enumerate(G) for j, c in enumerate(r)}
T = {c1: {c2: set() for c2 in chars} for c1 in chars}
for c1 in T:
for c2 in T[c1]:
(x1, y1), (x2, y2) = P[c1], P[c2]
v, vc = 'v' if x1 < x2 else '^', abs(x2 - x1)
h, hc = '>' if y1 < y2 else '<', abs(y2 - y1)
if G[x1][y2] in chars:
T[c1][c2].add(h * hc + v * vc)
if G[x2][y1] in chars:
T[c1][c2].add(v * vc + h * hc)
return P, T
def part2():
f = reader()
G0 = [
['7', '8', '9'],
['4', '5', '6'],
['1', '2', '3'],
['#', '0', 'A'],
]
GC = [
['#', '^', 'A'],
['<', 'v', '>']
]
_, G0T = getPT(G0, '0123456789A')
_, GCT = getPT(GC, '<^>vA')
def r(T, s, i=0, c='A'):
return [[t1] + t2 for t1 in T[c][s[i]] for t2 in r(T, s, i + 1, s[i])] if i < len(s) else [[]]
@cache
def count(c1, c2, M):
return min(sum(count(cc1, cc2, M - 1)
for cc1, cc2 in pairwise('A' + t + 'A')) for t in GCT[c1][c2]) if M > 0 else 1
ans = 0
for s0 in f:
l = min(sum(count(cc1, cc2, 25)
for cc1, cc2 in pairwise('A' + t + 'A')) for t in map(lambda l: 'A'.join(l), r(G0T, s0)))
ans += l * int(s0[:-1])
print(ans)
part2() | python |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.