--- dataset_info: features: - name: prompt dtype: string - name: messages list: - name: role dtype: string - name: content dtype: string splits: - name: train_douban_sft num_bytes: 5567696 num_examples: 3086 - name: train_human_value_sft num_bytes: 806635 num_examples: 1007 - name: train_logi_qa_sft num_bytes: 666517 num_examples: 421 - name: train_ruozhiba_sft num_bytes: 228494 num_examples: 240 - name: train_segmentfault_sft num_bytes: 1068526 num_examples: 458 - name: train_wiki_sft num_bytes: 27611061 num_examples: 10603 - name: train_wikihow_sft num_bytes: 11069103 num_examples: 1485 - name: train_xhs_sft num_bytes: 2551884 num_examples: 1508 - name: train_zhihu_sft num_bytes: 13986060 num_examples: 5631 - name: train_sft num_bytes: 63555976 num_examples: 24439 - name: test_sft num_bytes: 228494 num_examples: 240 download_size: 67916523 dataset_size: 127340446 configs: - config_name: default data_files: - split: train_douban_sft path: data/train_douban_sft-* - split: train_human_value_sft path: data/train_human_value_sft-* - split: train_logi_qa_sft path: data/train_logi_qa_sft-* - split: train_ruozhiba_sft path: data/train_ruozhiba_sft-* - split: train_segmentfault_sft path: data/train_segmentfault_sft-* - split: train_wiki_sft path: data/train_wiki_sft-* - split: train_wikihow_sft path: data/train_wikihow_sft-* - split: train_xhs_sft path: data/train_xhs_sft-* - split: train_zhihu_sft path: data/train_zhihu_sft-* - split: train_sft path: data/train_sft-* - split: test_sft path: data/test_sft-* task_categories: - question-answering language: - zh pretty_name: e size_categories: - 10K<n<100K --- # COIG-CQIA-sft: COIG-CQIA for sft in alignment-handbook 数据完全来自于[COIG-CQIA](https://huggingface.co/datasets/m-a-p/COIG-CQIA)。 暂时忽略了chinese_traditional,coig_pc,exam,finance这些转换麻烦或者语义上不适合当QA数据集的subset。 其中train_sft是全集,test_sft是ruozhiba,以便代码能够跑通。 经过reformat的本数据集可以直接使用[alignment-handbook](https://github.com/huggingface/alignment-handbook) 进行sft。 可以使用[zephyr-7b-beta/sft/config_qlora.yaml](https://github.com/huggingface/alignment-handbook/blob/main/recipes/zephyr-7b-beta/sft/config_qlora.yaml)进行尝试,模型和数据集都可以使用本地文件夹。 ```bibtex @misc{bai2024coig, title={COIG-CQIA: Quality is All You Need for Chinese Instruction Fine-tuning}, author={Bai, Yuelin and Du, Xinrun and Liang, Yiming and Jin, Yonggang and Liu, Ziqiang and Zhou, Junting and Zheng, Tianyu and Zhang, Xincheng and Ma, Nuo and Wang, Zekun and others}, year={2024}, eprint={2403.18058}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```