Datasets:
Languages:
English
Multilinguality:
monolingual
Size Categories:
1M<n<10M
Language Creators:
crowdsourced
Annotations Creators:
lexyr
Source Datasets:
original
License:
cc-by-4.0
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The SocialGrep dataset loader base.""" | |
import csv | |
import os | |
import datasets | |
DATASET_NAME = "the-reddit-nft-dataset" | |
DATASET_TITLE = "the-reddit-nft-dataset" | |
DATASET_DESCRIPTION = """\ | |
A comprehensive dataset of Reddit's NFT discussion. | |
""" | |
_HOMEPAGE = f"https://socialgrep.com/datasets/{DATASET_NAME}" | |
_LICENSE = "CC-BY v4.0" | |
URL_TEMPLATE = "https://exports.socialgrep.com/download/public/{dataset_file}.zip" | |
DATASET_FILE_TEMPLATE = "{dataset}-{type}.csv" | |
_DATASET_FILES = { | |
'posts': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="posts"), | |
'comments': DATASET_FILE_TEMPLATE.format(dataset=DATASET_NAME, type="comments"), | |
} | |
_CITATION = f"""\ | |
@misc{{socialgrep:{DATASET_NAME}, | |
title = {{{DATASET_TITLE}}}, | |
author={{Lexyr Inc. | |
}}, | |
year={{2022}} | |
}} | |
""" | |
class theredditnftdataset(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="posts", version=VERSION, description="The dataset posts."), | |
datasets.BuilderConfig(name="comments", version=VERSION, description="The dataset comments."), | |
] | |
def _info(self): | |
if self.config.name == "posts": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"type": datasets.Value("string"), | |
"id": datasets.Value("string"), | |
"subreddit.id": datasets.Value("string"), | |
"subreddit.name": datasets.Value("string"), | |
"subreddit.nsfw": datasets.Value("bool"), | |
"created_utc": datasets.Value("timestamp[s,tz=utc]"), | |
"permalink": datasets.Value("string"), | |
"domain": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"selftext": datasets.Value("large_string"), | |
"title": datasets.Value("string"), | |
"score": datasets.Value("int32"), | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"type": datasets.ClassLabel(num_classes=2, names=['post', 'comment']), | |
"id": datasets.Value("string"), | |
"subreddit.id": datasets.Value("string"), | |
"subreddit.name": datasets.Value("string"), | |
"subreddit.nsfw": datasets.Value("bool"), | |
"created_utc": datasets.Value("timestamp[s,tz=utc]"), | |
"permalink": datasets.Value("string"), | |
"body": datasets.Value("large_string"), | |
"sentiment": datasets.Value("float32"), | |
"score": datasets.Value("int32"), | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=DATASET_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
my_urls = [URL_TEMPLATE.format(dataset_file=_DATASET_FILES[self.config.name])] | |
data_dir = dl_manager.download_and_extract(my_urls)[0] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, _DATASET_FILES[self.config.name]), | |
"split": "train", | |
}, | |
) | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
""" Yields examples as (key, example) tuples. """ | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
bool_cols = ["subreddit.nsfw"] | |
int_cols = ["score", "created_utc"] | |
float_cols = ["sentiment"] | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f) | |
for row in reader: | |
for col in bool_cols: | |
if col in row: | |
if row[col]: | |
row[col] = (row[col] == "true") | |
else: | |
row[col] = None | |
for col in int_cols: | |
if col in row: | |
if row[col]: | |
row[col] = int(row[col]) | |
else: | |
row[col] = None | |
for col in float_cols: | |
if col in row: | |
if row[col]: | |
row[col] = float(row[col]) | |
else: | |
row[col] = None | |
if row["type"] == "post": | |
key = f"t3_{row['id']}" | |
if row["type"] == "comment": | |
key = f"t1_{row['id']}" | |
yield key, row | |
if __name__ == "__main__": | |
print("Please use the HuggingFace dataset library, or") | |
print("download from https://socialgrep.com/datasets.") |