from dataclasses import dataclass from typing import Any, Dict, List, Union import torch import torchaudio import random @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any decoder_start_token_id: int apply_augmentation: bool = False n_fft_choices: List[int] = (400, 800, 1024) hop_length_choices: List[int] = (160, 320, 512) apply_noise_injection: bool = False # Toggle for noise injection noise_profiles: List[str] = ('white', 'pink', 'environmental') # Example noise profiles def add_adaptive_noise(self, audio, noise_type='white', base_intensity=0.005): amplitude = audio.abs().mean() noise_intensity = base_intensity * amplitude # Scale noise intensity based on amplitude noise = torch.randn_like(audio) * noise_intensity if noise_type == 'pink': noise = torchaudio.functional.highpass_biquad(noise, sample_rate=16000, cutoff_freq=200) elif noise_type == 'environmental': # Load an example environmental noise file noise, _ = torchaudio.load('environmental_noise.wav') noise = torch.nn.functional.interpolate(noise.unsqueeze(0), size=audio.size()).squeeze() * noise_intensity return audio + noise def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: input_features = [] labels_list = [] dec_input_features = [] for feature in features: audio = feature["input_features"] if self.apply_augmentation: # Randomly select n_fft and hop_length for augmentation n_fft = random.choice(self.n_fft_choices) hop_length = random.choice(self.hop_length_choices) if self.apply_noise_injection: noise_type = random.choice(self.noise_profiles) audio = self.add_adaptive_noise(audio, noise_type=noise_type) else: # Use default values if augmentation is not applied n_fft = 1024 hop_length = 512 # Apply MelSpectrogram transformation with the selected parameters mel_spectrogram = torchaudio.transforms.MelSpectrogram( sample_rate=16000, # Sample rate is assumed; update if necessary n_fft=n_fft, hop_length=hop_length, n_mels=80 )(torch.tensor(audio)) log_mel_spectrogram = torch.log(mel_spectrogram + 1e-9) input_features.append({"input_features": log_mel_spectrogram}) label = feature["labels"] label_tokens = [self.processor.tokenizer.bos_token_id] + self.processor.tokenizer.encode(label) + [self.processor.tokenizer.eos_token_id] dec_input_feature = label_tokens[:-1] label = label_tokens[1:] labels_list.append({"input_ids": label}) dec_input_features.append({"input_ids": dec_input_feature}) batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") labels_batch = self.processor.tokenizer.pad(labels_list, return_tensors="pt") dec_input_batch = self.processor.tokenizer.pad(dec_input_features, return_tensors="pt") labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels dec_input_features = dec_input_batch["input_ids"] if (dec_input_features[:, 0] == self.decoder_start_token_id).all().cpu().item(): dec_input_features = dec_input_features[:, 1:] batch["dec_input_features"] = dec_input_features return batch # example usage data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, apply_augmentation=True, # Enable augmentation apply_noise_injection=True # Enable adaptive noise injection ) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator) for batch in dataloader: # Pass the batch to your model outputs = model(batch)