import os import string import math import random import xml.etree.ElementTree as et import jsonlines import uuid import pandas as pd # set random seed for shuffling random.seed(1) # column names of the reference answers file FILE_NUMBER_COL = 'file_number' REFERENCE_ANSWER_COL = 'reference_answer' # column names of the files with the data QUESTION_COL = 'Frage' ANSWER_COL = 'Antwort' SCORE_COL = 'Score' ERROR_CLASS_COL = 'Fehlerklasse' FEEDBACK_COL = 'Feedback' # labels for verification_feedback CORRECT_LABEL = 'Correct' PARTIALLY_CORRECT_LABEL = 'Partially correct' INCORRECT_LABEL = 'Incorrect' def convert_xlsx_to_jsonl( path_to_dataset, path_to_reference_answers_file, dir, filename, train_split=None): """ Utility function used for conversion of .xlsx files from the dataset into JSON lines Params: path_to_dataset (string): path to the folder containing the dataset (in .xlsx format) path_to_reference_answers_file (string): path to the folder containing the reference answers (in .xlsx format) dir (string): name of the directory where the JSON lines file will be stored filename (string): name of the JSON lines file that will store the dataset train_split (float or None): if not None, defines which percentage of the dataset to use for the train and validation splits Returns: None: the file is saved JSON lines format in the specified location """ def return_verification_feedback(score): if math.isclose(score, 1.0): return CORRECT_LABEL elif math.isclose(score, 0.0): return INCORRECT_LABEL else: return PARTIALLY_CORRECT_LABEL data = [] # get reference answers from file reference_answers_df = pd.read_excel(path_to_reference_answers_file) # the keys of the dictionary are the number of the files padded with zeroes # so that it has two digits, and the values are the reference answers themselves reference_answers = { f'{row[FILE_NUMBER_COL]:02}': row[REFERENCE_ANSWER_COL].strip() for _, row in reference_answers_df.iterrows()} # loop through all files in directory for f in os.listdir(path_to_dataset): if f.endswith('.xlsx'): # read file file_df = pd.read_excel(os.path.join(path_to_dataset, f)) # get question question = file_df[QUESTION_COL].iat[0].strip() # get reference answer based on file name ref_answer = reference_answers[f.split('.')[0]] # loop through all rows and store the appropriate fields in a list for _, row in file_df.iterrows(): response = row[ANSWER_COL].strip() score = float(row[SCORE_COL]) feedback = str(row[FEEDBACK_COL]).strip() verification_feedback = return_verification_feedback(score) error_class = row[ERROR_CLASS_COL].strip() # create dictionary with the appropriate fields data.append({ 'id': uuid.uuid4().hex, # generate unique id in HEX format 'question': question, 'reference_answer': ref_answer, 'provided_answer': response, 'answer_feedback': feedback, 'verification_feedback': verification_feedback, 'error_class': error_class, 'score': score }) if not os.path.exists(dir): print('Creating directory where JSON file will be stored\n') os.makedirs(dir) if train_split is None: with jsonlines.open(f'{os.path.join(dir, filename)}.jsonl', 'w') as writer: writer.write_all(data) else: # shuffle data and divide it into train and validation splits random.shuffle(data) train_data = data[: int(train_split * (len(data) - 1))] val_data = data[int(train_split * (len(data) - 1)) :] # write JSON lines file with train data with jsonlines.open(f'{os.path.join(dir, filename)}-train.jsonl', 'w') as writer: writer.write_all(train_data) # write JSON lines file with validation data with jsonlines.open(f'{os.path.join(dir, filename)}-validation.jsonl', 'w') as writer: writer.write_all(val_data) if __name__ == '__main__': # convert legal domain dataset (german) to JSON lines convert_xlsx_to_jsonl( 'data/training', 'data/reference_answers.xlsx', 'data/json', 'saf-legal-domain-german', train_split=0.8) convert_xlsx_to_jsonl( 'data/unseen_answers', 'data/reference_answers.xlsx', 'data/json', 'saf-legal-domain-german-unseen-answers') convert_xlsx_to_jsonl( 'data/unseen_questions', 'data/reference_answers.xlsx', 'data/json', 'saf-legal-domain-german-unseen-questions')