from datasets import load_dataset from huggingface_hub import create_repo, Repository, upload_file import os import typer def main(language_label): raw_data = load_dataset("AmazonScience/massive", language_label) raw_data = raw_data.rename_column("utt", "text") raw_data = raw_data.rename_column("intent", "label") raw_data = raw_data.remove_columns(["locale", "partition", "scenario", "annot_utt", "slot_method", "worker_id", "judgments"]) #to get labels labels = raw_data["train"].features["label"] #for uploading to hub repo_name = "amazon_massive_intent_" + language_label create_repo(repo_name, organization="SetFit", repo_type="dataset") for split, dataset in raw_data.items(): dataset = dataset.map(lambda x: {"label_text": labels.int2str(x["label"])}, num_proc=4) dataset.to_json(f"{split}.jsonl") upload_file(f"{split}.jsonl", path_in_repo=f"{split}.jsonl", repo_id="SetFit/" + repo_name, repo_type="dataset") os.system(f"rm {split}.jsonl") upload_file("create_dataset.py", path_in_repo="create_dataset.py", repo_id="SetFit/" + repo_name, repo_type="dataset") if __name__ == "__main__": typer.run(main)