import csv import datasets _CITATION = """\ @article{hendryckstest2021, title={Measuring Massive Multitask Language Understanding}, author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt}, journal={Proceedings of the International Conference on Learning Representations (ICLR)}, year={2021} } """ _DESCRIPTION = """\ Psycholinguistics word datasets """ _HOMEPAGE = "To Add" _URL = "data.tar" _SUBJECTS = [ "SimCat-TASLP2018", "SimLex999-COLI2015" ] class MyDataset(datasets.GeneratorBasedBuilder): """Psycholinguistics word datasets""" # # 从 YAML 文件加载配置 # with open("dataset_infos.yaml", "r") as f: # configs = yaml.safe_load(f)["configs"] BUILDER_CONFIGS = [ datasets.BuilderConfig( name=sub, version=datasets.Version("1.0.0"), description=f"Psycholinguistics Volcabulary Datasets {sub}" ) for sub in _SUBJECTS # MyDatasetConfig( # name=config["name"], # version=datasets.Version(config["version"]), # description=config["description"], # data_files=config["data_files"] # ) # for config in configs ] def _info(self): features = datasets.Features( { "word": datasets.Value("string"), "category": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" archive = dl_manager.download(_URL) return [ datasets.SplitGenerator( name=datasets.Split.TEST, # 传递给 _generate_examples 方法的参数 gen_kwargs={"iter_archive": dl_manager.iter_archive(archive), "split": "test"}, ), ] def _generate_examples(self, iter_archive, split): """Yields examples as (key, example) tuples.""" n_yielded_files = 0 for id_file, (path, file) in enumerate(iter_archive): # For example, we iterate through the data folder and find a file with the path "data/test" if f"data/{split}/" in path: # For example, SimCat-TASLP2018_test.csv if f"{self.config.name}_{split}.csv" in path: n_yielded_files += 1 lines = (line.decode("utf-8") for line in file) reader = csv.reader(lines) for id_line, data in enumerate(reader): yield f"{id_file}_{id_line}", {"Word": data[0], "Category": data[1]} if n_yielded_files == 8: break