# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import csv import json import os import datasets import pickle # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """""" # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace dataset library don't host the datasets but only point to the original files # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) languages=['python','javascript','java','go'] _URLs = {lang:f'https://funcdef.s3.amazonaws.com/{lang}.tar.gz' for lang in languages} _URLs['all']=_URLs.copy() # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case class FundDefDataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="all", version=VERSION, description="All available data"), datasets.BuilderConfig(name="python", version=VERSION, description="Python data"), datasets.BuilderConfig(name="javascript", version=VERSION, description="Javascript data"), datasets.BuilderConfig(name="java", version=VERSION, description="Java data"), datasets.BuilderConfig(name="go", version=VERSION, description="Go data"), ] DEFAULT_CONFIG_NAME = "all" def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset features = datasets.Features( { "repository_name": datasets.Value("string"), "function_path": datasets.Value("string"), "function_identifier": datasets.Value("string"), "language": datasets.Value("string"), "function": datasets.Sequence(datasets.Value("string")), "docstring": datasets.Value("string"), "function_url": datasets.Value("string"), "license":datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" my_urls = _URLs[self.config.name] if isinstance(my_urls, str): my_urls = {self.config.name:my_urls} data_dir = [os.path.join(lang_dir,lang) for lang,lang_dir in dl_manager.download_and_extract(my_urls).items()] splitpaths={split:os.path.join(lang_dir,f'{split}'.bin) for lang_dir in data_dir for split in ['train','valid','test']} return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['train'], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['test'], "split": "test" }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": splitpaths['valid'], "split": "valid", }, ), ] def _generate_examples( self, filepaths,split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` ): """ Yields examples as (key, example) tuples. """ count=-1 for i,filepath in enumerate(filepaths): loaded_f=pickle.load(open(filepath,'rb')) for j, func in enumerate(loaded_f): count+=1 yield count,{ "repository_name": func['nwo'], "function_path":func['path'], "function_identifier": func['identifier'], "language": func['language'], "function": func['function'], "docstring": func['docstring'], "function_url": func['url'], "license":func['license'], }