# coding=utf-8 # Copyright 2020 HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """ Arguement Mining Dataset created by Stab , Gurevych et. al. CL 2017 """ import datasets import os _CITATION = """\ @article{stab2017parsing, title={Parsing argumentation structures in persuasive essays}, author={Stab, Christian and Gurevych, Iryna}, journal={Computational Linguistics}, volume={43}, number={3}, pages={619--659}, year={2017}, publisher={MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info~…} } """ _DESCRIPTION = """\ tokens along with chunk id. Begining of arguement denoted by Arg_B,inside arguement denoted by Arg_I, other chunks are O Orginial train,test split as used by the paper is provided """ _URL = "https://raw.githubusercontent.com/Sam131112/Argument-Mining-Dataset/main/" _TRAINING_FILE = "train.txt" _TEST_FILE = "test.txt" class ArguementMiningCL2017Config(datasets.BuilderConfig): """BuilderConfig for CL2017""" def __init__(self, **kwargs): """BuilderConfig forCl2017. Args: **kwargs: keyword arguments forwarded to super. """ super(ArguementMiningCL2017Config, self).__init__(**kwargs) class ArguementMiningCL2017(datasets.GeneratorBasedBuilder): """CL2017 dataset.""" BUILDER_CONFIGS = [ ArguementMiningCL2017Config(name="cl2017", version=datasets.Version("1.0.0"), description="Cl2017 dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "chunk_tags":datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "Arg_B", "Arg_I", ] ) ), } ), supervised_keys=None, homepage="https://direct.mit.edu/coli/article/43/3/619/1573/Parsing-Argumentation-Structures-in-Persuasive", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): print("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: guid = 0 tokens = [] pos_tags = [] chunk_tags = [] ner_tags = [] for line in f: if line == "\n": if tokens: yield guid, { "id": str(guid), "tokens": tokens, "chunk_tags": chunk_tags, } guid += 1 tokens = [] chunk_tags = [] else: # cl2017 tokens are space separated line=line.strip('\n') splits = line.split("\t") #print(splits) tokens.append(splits[0]) chunk_tags.append(splits[1]) #print({"id": str(guid),"tokens": tokens,"chunk_tags": chunk_tags,}) # last example yield guid, { "id": str(guid), "tokens": tokens, "chunk_tags": chunk_tags, }