# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Iterator, Optional from functools import cached_property import datasets import pandas as pd import pyarrow as pa import pyarrow.parquet as pq from gluonts.dataset.field_names import FieldName _CITATION = """\ @article{woo2023pushing, title={Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain}, author={Woo, Gerald and Liu, Chenghao and Kumar, Akshat and Sahoo, Doyen}, journal={arXiv preprint arXiv:2310.05063}, year={2023} } """ _URLS = { "azure_vm_traces_2017": "azure_vm_traces_2017.parquet", "borg_cluster_data_2011": "borg_cluster_data_2011.parquet", "alibaba_cluster_trace_2018": "alibaba_cluster_trace_2018.parquet", } _CONFIGS = { "azure_vm_traces_2017": { "optional_fields": ( FieldName.FEAT_STATIC_CAT, FieldName.FEAT_STATIC_REAL, FieldName.PAST_FEAT_DYNAMIC_REAL, ), "prediction_length": 48, "freq": "5T", "stride": 48, "univariate": True, "multivariate": False, "rolling_evaluations": 12, "test_split_date": pd.Period( year=2016, month=12, day=13, hour=15, minute=55, freq="5T" ), "_feat_static_cat_cardinalities": { "train_test": ( ("vm_id", 17568), ("subscription_id", 2713), ("deployment_id", 3255), ("vm_category", 3), ), "pretrain": ( ("vm_id", 177040), ("subscription_id", 5514), ("deployment_id", 15208), ("vm_category", 3), ), }, "target_dim": 1, "feat_static_real_dim": 3, "past_feat_dynamic_real_dim": 2, }, "borg_cluster_data_2011": { "optional_fields": ( FieldName.FEAT_STATIC_CAT, FieldName.PAST_FEAT_DYNAMIC_REAL, ), "prediction_length": 48, "freq": "5T", "stride": 48, "univariate": False, "multivariate": True, "rolling_evaluations": 12, "test_split_date": pd.Period( year=2011, month=5, day=28, hour=18, minute=55, freq="5T" ), "_feat_static_cat_cardinalities": { "train_test": ( ("job_id", 850), ("task_id", 11117), ("user", 282), ("scheduling_class", 4), ("logical_job_name", 718), ), "pretrain": ( ("job_id", 6072), ("task_id", 154503), ("user", 518), ("scheduling_class", 4), ("logical_job_name", 3899), ), }, "target_dim": 2, "past_feat_dynamic_real_dim": 5, }, "alibaba_cluster_trace_2018": { "optional_fields": ( FieldName.FEAT_STATIC_CAT, FieldName.PAST_FEAT_DYNAMIC_REAL, ), "prediction_length": 48, "freq": "5T", "stride": 48, "univariate": False, "multivariate": True, "rolling_evaluations": 12, "test_split_date": pd.Period( year=2018, month=1, day=8, hour=11, minute=55, freq="5T" ), "_feat_static_cat_cardinalities": { "train_test": ( ("container_id", 6048), ("app_du", 1292), ), "pretrain": ( ("container_id", 64457), ("app_du", 9484), ), }, "target_dim": 2, "past_feat_dynamic_real_dim": 6, }, } PRETRAIN = datasets.splits.NamedSplit("pretrain") TRAIN_TEST = datasets.splits.NamedSplit("train_test") Cardinalities = tuple[tuple[str, int], ...] @dataclass class AIOpsTSFConfig(datasets.BuilderConfig): """BuilderConfig for AIOpsTSF.""" # load_dataset kwargs train_test: bool = field(default=True, init=False) pretrain: bool = field(default=False, init=False) _include_metadata: tuple[str, ...] = field(default_factory=tuple, init=False) # builder kwargs prediction_length: int = field(default=None) freq: str = field(default=None) stride: int = field(default=None) univariate: bool = field(default=None) multivariate: bool = field(default=None) optional_fields: tuple[str, ...] = field(default=None) rolling_evaluations: int = field(default=None) test_split_date: pd.Period = field(default=None) _feat_static_cat_cardinalities: dict[str, Cardinalities] = field( default_factory=dict ) target_dim: int = field(default=1) feat_static_real_dim: int = field(default=0) past_feat_dynamic_real_dim: int = field(default=0) METADATA = [ "freq", "prediction_length", "stride", "rolling_evaluations", ] @property def include_metadata(self) -> tuple[str, ...]: return self._include_metadata @include_metadata.setter def include_metadata(self, value: tuple[str, ...]): assert all([v in self.METADATA for v in value]), ( f"Metadata: {value} is not supported, each item should be one of" f" {self.METADATA}" ) self._include_metadata = value @cached_property def feat_static_cat_cardinalities(self) -> Optional[list[int]]: if FieldName.FEAT_STATIC_CAT not in self.optional_fields: return None if self.pretrain: split = "pretrain" elif self.train_test: split = "train_test" else: raise ValueError( "At least one of `train_test` and `pretrain` should be True" ) return [c[1] for c in self._feat_static_cat_cardinalities[split]] class AIOpsTSF(datasets.ArrowBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [] for dataset, config in _CONFIGS.items(): BUILDER_CONFIGS.append( AIOpsTSFConfig(name=dataset, version=VERSION, description="", **config) ) def _info(self) -> datasets.DatasetInfo: def sequence_feature(dtype: str, univar: bool) -> datasets.Sequence: if univar: return datasets.Sequence(datasets.Value(dtype)) return datasets.Sequence(datasets.Sequence(datasets.Value(dtype))) features = { FieldName.START: datasets.Value("timestamp[s]"), FieldName.TARGET: sequence_feature("float32", self.config.univariate), FieldName.ITEM_ID: datasets.Value("string"), } CAT_FEATS = ( FieldName.FEAT_STATIC_CAT, FieldName.FEAT_DYNAMIC_CAT, FieldName.PAST_FEAT_DYNAMIC, ) REAL_FEATS = ( FieldName.FEAT_STATIC_REAL, FieldName.FEAT_DYNAMIC_REAL, FieldName.PAST_FEAT_DYNAMIC_REAL, ) STATIC_FEATS = (FieldName.FEAT_STATIC_CAT, FieldName.FEAT_STATIC_REAL) DYNAMIC_FEATS = ( FieldName.FEAT_DYNAMIC_CAT, FieldName.FEAT_DYNAMIC_REAL, FieldName.PAST_FEAT_DYNAMIC, FieldName.PAST_FEAT_DYNAMIC_REAL, ) for ts_field in self.config.optional_fields: # Determine field dtype if ts_field in CAT_FEATS: dtype = "int32" elif ts_field in REAL_FEATS: dtype = "float32" else: raise ValueError(f"Invalid field: {ts_field}") # Determine field shape if ts_field in STATIC_FEATS: univar = True elif ts_field in DYNAMIC_FEATS: univar = False else: raise ValueError(f"Invalid field: {ts_field}") features[ts_field] = sequence_feature(dtype, univar) for metadata in self.config.include_metadata: if metadata == "freq": features[metadata] = datasets.Value("string") elif metadata in ("prediction_length", "stride", "rolling_evaluations"): features[metadata] = datasets.Value("int32") else: raise ValueError(f"Invalid metadata: {metadata}") features = datasets.Features(features) return datasets.DatasetInfo( features=features, citation=_CITATION, ) def _split_generators(self, dl_manager) -> list[datasets.SplitGenerator]: split = 'train_test' if self.config.train_test else 'pretrain' url = _URLS[self.config.name] + f'/split={split}' downloaded_files = dl_manager.download(url) generators = [ datasets.SplitGenerator( name=TRAIN_TEST if self.config.train_test else PRETRAIN, gen_kwargs={"filepath": downloaded_files} ) ] return generators def _generate_tables(self, filepath: str) -> Iterator[pa.Table]: table = pq.read_table(filepath) for batch in table.to_batches(): columns = batch.columns schema = batch.schema if self.config.include_metadata: freq = pa.array([self.config.freq] * len(batch)) prediction_length = pa.array([self.config.prediction_length] * len(batch)) rolling_evaluations = pa.array([self.config.rolling_evaluations] * len(batch)) stride = pa.array([self.config.stride] * len(batch)) columns += [freq, prediction_length, rolling_evaluations, stride] for pa_field in [pa.field('freq', pa.string()), pa.field('prediction_length', pa.int32()), pa.field('rolling_evaluations', pa.int32()), pa.field('stride', pa.int32())]: schema = schema.append(pa_field) yield batch[FieldName.ITEM_ID].to_pylist(), pa.Table.from_arrays(columns, schema=schema)