File size: 987 Bytes
a21d053
 
e7891f1
 
 
a21d053
 
 
 
1a22090
 
 
 
 
 
 
 
 
 
 
a21d053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
license: mit
configs:
- config_name: dataset
  data_files: "dataset.csv"
---
# Description
Subcellular Localization prediction is a 10-class classification task  to predict where a protein locates in the cell, where each input protein *x* is mapped to a label *y* ∈ {0, 1, ..., 9}.

# Splits

**Structure type:** AF2

The dataset is from [**DeepLoc: prediction of protein subcellular localization using deep learning**](https://academic.oup.com/bioinformatics/article/33/21/3387/3931857). We employ all proteins (proteins that lack AF2 structures are removed), and split them based on 70% structure similarity (see [ProteinShake](https://github.com/BorgwardtLab/proteinshake/tree/main)), with the number of training, validation and test set shown below:

- Train: 10414
- Valid: 1368
- Test:  1368

# Label

0: Nucleus

1: Cytoplasm

2: Extracellular

3: Mitochondrion

4: Cell.membrane

5: Endoplasmic.reticulum

6: Plastid

7: Golgi.apparatus

8: Lysosome/Vacuole

9: Peroxisome