from pathlib import Path import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """ @article{thoma2018wili, title={The WiLI benchmark dataset for written language identification}, author={Thoma, Martin}, journal={arXiv preprint arXiv:1801.07779}, year={2018} } """ _DATASETNAME = "wili_2018" _DESCRIPTION = """ WiLI-2018 is a Wikipedia language identification benchmark dataset. It contains 235000 paragraphs from 235 languages. The dataset is balanced, and a train-test split is provided. """ _HOMEPAGE = "https://zenodo.org/records/841984" _LANGUAGES = ["nrm", "jav", "min", "lao", "mya", "pag", "ind", "cbk", "tet", "tha", "ceb", "tgl", "bjn", "bcl", "vie"] _LICENSE = Licenses.ODBL.value _LOCAL = False _URLS = { _DATASETNAME: {"train": "https://drive.google.com/uc?export=download&id=1ZzlIQvw1KNBG97QQCfdatvVrrbeLaM1u", "test": "https://drive.google.com/uc?export=download&id=1Xx4kFc1Xdzz8AhDasxZ0cSa-a35EQSDZ"}, } _SUPPORTED_TASKS = [Tasks.LANGUAGE_IDENTIFICATION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _CLASSES = [ "cdo", "glk", "jam", "lug", "san", "rue", "wol", "new", "mwl", "bre", "ara", "hye", "xmf", "ext", "cor", "yor", "div", "asm", "lat", "cym", "hif", "ace", "kbd", "tgk", "rus", "nso", "mya", "msa", "ava", "cbk", "urd", "deu", "swa", "pus", "bxr", "udm", "csb", "yid", "vro", "por", "pdc", "eng", "tha", "hat", "lmo", "pag", "jav", "chv", "nan", "sco", "kat", "bho", "bos", "kok", "oss", "mri", "fry", "cat", "azb", "kin", "hin", "sna", "dan", "egl", "mkd", "ron", "bul", "hrv", "som", "pam", "nav", "ksh", "nci", "khm", "sgs", "srn", "bar", "cos", "ckb", "pfl", "arz", "roa-tara", "fra", "mai", "zh-yue", "guj", "fin", "kir", "vol", "hau", "afr", "uig", "lao", "swe", "slv", "kor", "szl", "srp", "dty", "nrm", "dsb", "ind", "wln", "pnb", "ukr", "bpy", "vie", "tur", "aym", "lit", "zea", "pol", "est", "scn", "vls", "stq", "gag", "grn", "kaz", "ben", "pcd", "bjn", "krc", "amh", "diq", "ltz", "ita", "kab", "bel", "ang", "mhr", "che", "koi", "glv", "ido", "fao", "bak", "isl", "bcl", "tet", "jpn", "kur", "map-bms", "tyv", "olo", "arg", "ori", "lim", "tel", "lin", "roh", "sqi", "xho", "mlg", "fas", "hbs", "tam", "aze", "lad", "nob", "sin", "gla", "nap", "snd", "ast", "mal", "mdf", "tsn", "nds", "tgl", "nno", "sun", "lzh", "jbo", "crh", "pap", "oci", "hak", "uzb", "zho", "hsb", "sme", "mlt", "vep", "lez", "nld", "nds-nl", "mrj", "spa", "ceb", "ina", "heb", "hun", "que", "kaa", "mar", "vec", "frp", "ell", "sah", "eus", "ces", "slk", "chr", "lij", "nep", "srd", "ilo", "be-tarask", "bod", "orm", "war", "glg", "mon", "gle", "min", "ibo", "ile", "epo", "lav", "lrc", "als", "mzn", "rup", "fur", "tat", "myv", "pan", "ton", "kom", "wuu", "tcy", "tuk", "kan", "ltg", ] class Wili2018Dataset(datasets.GeneratorBasedBuilder): """A benchmark dataset for language identification and contains 235000 paragraphs of 235 languages.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=_DATASETNAME, ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_text", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_text", subset_id=_DATASETNAME, ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "sentence": datasets.Value("string"), "label": datasets.ClassLabel(names=_CLASSES), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features(_CLASSES) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir, "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir, "split": "test"}, ), ] def _generate_examples(self, filepath: Path, split: str) -> tuple[int, dict]: if self.config.schema == "source": with open(filepath[split], encoding="utf-8") as f: for i, line in enumerate(f): text, label = line.rsplit(",", 1) text = text.strip('"') label = int(label.strip()) yield i, {"sentence": text, "label": _CLASSES[label - 1]} elif self.config.schema == "seacrowd_text": with open(filepath[split], encoding="utf-8") as f: for i, line in enumerate(f): text, label = line.rsplit(",", 1) text = text.strip('"') label = int(label.strip()) yield i, {"id": str(i), "text": text, "label": _CLASSES[label - 1]}