# coding=utf-8 from pathlib import Path from typing import Dict, List, Tuple import datasets import pandas as pd from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Licenses, Tasks _CITATION = """\ @InProceedings{nguyen2022viheathqa, author="Nguyen, Nhung Thi-Hong and Ha, Phuong Phan-Dieu and Nguyen, Luan Thanh and Van Nguyen, Kiet and Nguyen, Ngan Luu-Thuy", title="SPBERTQA: A Two-Stage Question Answering System Based on Sentence Transformers for Medical Texts", booktitle="Knowledge Science, Engineering and Management", year="2022", publisher="Springer International Publishing", address="Cham", pages="371--382", isbn="978-3-031-10986-7" } """ _DATASETNAME = "vihealthqa" _DESCRIPTION = """\ Vietnamese Visual Question Answering (ViVQA) consist of 10328 images and 15000 question-answer pairs in Vietnamese for evaluating Vietnamese VQA models. This dataset is built based on 10328 randomly selected images from MS COCO dataset. The question-answer pairs were based on the COCO-QA dataset that was automatically translated from English to Vietnamese. """ _HOMEPAGE = "https://huggingface.co/datasets/tarudesu/ViHealthQA" _LANGUAGES = ["vie"] _LICENSE = Licenses.UNKNOWN.value _PAPER_URL = "https://link.springer.com/chapter/10.1007/978-3-031-10986-7_30" _LOCAL = False _URLS = { "vihealthqa": { "train": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/train.csv", "val": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/val.csv", "test": "https://huggingface.co/datasets/tarudesu/ViHealthQA/raw/main/test.csv", } } _SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class ViHealthQADataset(datasets.GeneratorBasedBuilder): ''' This is a SeaCrowed dataloader for dataset Vietnamese Visual Question Answering (ViVQA), which consists of 10328 images and 15000 question-answer pairs in Vietnamese for evaluating Vietnamese VQA models. ''' SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=SOURCE_VERSION, description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_qa", version=SEACROWD_VERSION, description=f"{_DATASETNAME} SEACrowd schema", schema="seacrowd_qa", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "link": datasets.Value("string") } ) elif self.config.schema == "seacrowd_qa": features = schemas.qa_features features["meta"] = {"link": datasets.Value("string")} else: raise ValueError(f"No schema matched for {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS["vihealthqa"] data_dir = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir["train"], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": data_dir["val"], "split": "val", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir["test"], "split": "test", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" raw_examples = pd.read_csv(filepath) for eid, exam in raw_examples.iterrows(): assert len(exam) == 4 exam_id, exam_quest, exam_answer, exam_link = exam if self.config.schema == "source": yield eid, {"id": str(exam_id), "question": exam_quest, "answer": exam_answer, "link": exam_link} elif self.config.schema == "seacrowd_qa": yield eid, { "id": str(eid), "question_id": exam_id, "document_id": str(eid), "question": exam_quest, "type": None, "choices": [], "context": exam_link, "answer": [exam_answer], "meta": { "link": exam_link, }, }