import os from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks from seacrowd.utils import schemas import csv _CITATION = """\ @article{nurlaila2018classification, title={CLASSIFICATION OF CUSTOMERS EMOTION USING NA{\"I}VE BAYES CLASSIFIER (Case Study: Natasha Skin Care)}, author={Nurlaila, Afifah and Wiranto, Wiranto and Saptono, Ristu}, journal={ITSMART: Jurnal Teknologi dan Informasi}, volume={6}, number={2}, pages={92--97}, year={2018} } """ _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _DATASETNAME = "sentiment_nathasa_review" _DESCRIPTION = """\ Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions. """ _HOMEPAGE = "https://jurnal.uns.ac.id/itsmart/article/viewFile/17328/15082" _LICENSE = "Unknown" _URLS = { _DATASETNAME: "https://drive.google.com/uc?id=1D1pHX7CxrI-eIl2bAvIp1bWQeucyUGw0", } _SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class SentimentNathasaReview(datasets.GeneratorBasedBuilder): """Customer Review (Natasha Skincare) is a customers emotion dataset, with amounted to 19,253 samples with the division for each class is 804 joy, 43 surprise, 154 anger, 61 fear, 287 sad, 167 disgust, and 17736 no-emotions.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="sentiment_nathasa_review_source", version=datasets.Version(_SOURCE_VERSION), description="sentiment_nathasa_review source schema", schema="source", subset_id="sentiment_nathasa_review", ), SEACrowdConfig( name="sentiment_nathasa_review_seacrowd_text", version=datasets.Version(_SEACROWD_VERSION), description="sentiment_nathasa_review Nusantara schema", schema="seacrowd_text", subset_id="sentiment_nathasa_review", ), ] DEFAULT_CONFIG_NAME = "sentiment_nathasa_review_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "usr": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_text": features = schemas.text_features(['NOEMOTION', 'SURPRISE', 'SAD', 'JOY', 'FEAR', 'DISGUST', 'ANGER']) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: data_dir = Path(dl_manager.download(_URLS[_DATASETNAME])) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": data_dir, "split": "test", }, ), ] def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: if self.config.schema == "source": with open(filepath, "r") as F: csvreader = csv.reader(F) for row in csvreader: try: row_data = eval(row[0].replace(';',','))[0] except: continue if split == "train" and row_data[3] == "DATA LATIH": ex = { "id": row_data[0], "usr": row_data[1], "text": row_data[4], "label": row_data[2], } yield row_data[0], ex elif split == "test" and row_data[3] == "DATA UJI": ex = { "id": row_data[0], "usr": row_data[1], "text": row_data[4], "label": row_data[2], } yield row_data[0], ex elif self.config.schema == "seacrowd_text": with open(filepath, "r") as F: csvreader = csv.reader(F) for row in csvreader: try: row_data = eval(row[0].replace(';',','))[0] except: continue if split == "train" and row_data[3] == "DATA LATIH": ex = { "id": row_data[0], "text": row_data[4], "label": row_data[2], } yield row_data[0], ex elif split == "test" and row_data[3] == "DATA UJI": ex = { "id": row_data[0], "text": row_data[4], "label": row_data[2], } yield row_data[0], ex else: raise ValueError(f"Invalid config: {self.config.name}")