File size: 6,884 Bytes
6b5c5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import csv
import os
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{romadhona2022brcc,
  title={BRCC and SentiBahasaRojak: The First Bahasa Rojak Corpus for Pretraining and Sentiment Analysis Dataset},
  author={Romadhona, Nanda Putri and Lu, Sin-En and Lu, Bo-Han and Tsai, Richard Tzong-Han},
  booktitle={Proceedings of the 29th International Conference on Computational Linguistics},
  pages={4418--4428},
  year={2022},
  organization={International Committee on Computational Linguistics},
  address={Taiwan},
  email={nandadona61@gmail.com, {alznn, lu110522028, thtsai}@g.ncu.edu.tw}
}
"""

_DATASETNAME = "senti_bahasa_rojak"

_DESCRIPTION = """\
This dataset contains reviews for products, movies, and stocks in the Bahasa Rojak dialect,
a popular dialect in Malaysia that consists of English, Malay, and Chinese.
Each review is manually annotated as positive (bullish for stocks) or negative (bearish for stocks).
Reviews are generated through data augmentation using English and Malay sentiment analysis datasets.
"""

_HOMEPAGE = "https://data.depositar.io/dataset/brcc_and_sentibahasarojak/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd"

_LANGUAGES = ["zlm", "eng", "cmn"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)

_LICENSE = Licenses.UNKNOWN.value

_LOCAL = False

_URLS = {
    _DATASETNAME: "https://data.depositar.io/dataset/304d1572-27d6-4549-8292-b1c8f5e9c086/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd/download/BahasaRojak_Datasets.zip",
}

_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class SentiBahasaRojakDataset(datasets.GeneratorBasedBuilder):
    """The BRCC (Bahasa Rojak Crawled Corpus) is a novel dataset designed for the study of Bahasa Rojak,
    a code-mixed dialect combining English, Malay, and Chinese, prevalent in Malaysia.
    This corpus is intended for pre-training language models and sentiment analysis,
    addressing the unique challenges of processing code-mixed languages."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    subsets = ["movie", "product", "stock"]

    BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}.{sub}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME}.{sub} source schema", schema="source", subset_id=f"{_DATASETNAME}.{sub}",) for sub in subsets] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}.{sub}_seacrowd_text",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME}.{sub} SEACrowd schema",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}.{sub}",
        )
        for sub in subsets
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}.movie_source"
    LABELS = ["positive", "negative"]

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "label": datasets.ClassLabel(names=self.LABELS),
                }
            )
        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(self.LABELS)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)
        data_dir = os.path.join(data_dir, "BahasaRojak Datasets", "SentiBahasaRojak")

        subset = self.config.name.split(".")[-1].split("_")[0]
        subset_dir = os.path.join(data_dir, f"SentiBahasaRojak-{subset.capitalize()}")
        filepath = {}
        if subset == "stock":
            for split in ["train", "valid", "test"]:
                filepath[split] = os.path.join(subset_dir, f"{split}_labeled.tsv")
        else:
            for split in ["train", "valid", "test"]:
                filepath[split] = os.path.join(subset_dir, f"mix.{split}")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": filepath["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": filepath["test"],
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": filepath["valid"],
                    "split": "valid",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        if filepath.endswith(".tsv"):
            with open(filepath, encoding="utf-8") as file:
                reader = csv.reader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
                for row_idx, row in enumerate(reader):
                    if self.config.schema == "source":
                        yield row_idx, {
                            "text": row[0],
                            "label": "positive" if row[1] == 1 else "negative",
                        }
                    elif self.config.schema == "seacrowd_text":
                        yield row_idx, {
                            "id": row_idx,
                            "text": row[0],
                            "label": "positive" if row[1] == 1 else "negative",
                        }
        else:
            labelpath = filepath + ".label"
            with open(filepath, encoding="utf-8") as file, open(labelpath, encoding="utf-8") as label_file:
                for row_idx, (text, label) in enumerate(zip(file, label_file)):
                    if self.config.schema == "source":
                        yield row_idx, {
                            "text": text.strip(),
                            "label": label.strip(),
                        }
                    elif self.config.schema == "seacrowd_text":
                        yield row_idx, {
                            "id": row_idx,
                            "text": text.strip(),
                            "label": label.strip(),
                        }