Datasets:
File size: 6,884 Bytes
6b5c5a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import csv
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{romadhona2022brcc,
title={BRCC and SentiBahasaRojak: The First Bahasa Rojak Corpus for Pretraining and Sentiment Analysis Dataset},
author={Romadhona, Nanda Putri and Lu, Sin-En and Lu, Bo-Han and Tsai, Richard Tzong-Han},
booktitle={Proceedings of the 29th International Conference on Computational Linguistics},
pages={4418--4428},
year={2022},
organization={International Committee on Computational Linguistics},
address={Taiwan},
email={nandadona61@gmail.com, {alznn, lu110522028, thtsai}@g.ncu.edu.tw}
}
"""
_DATASETNAME = "senti_bahasa_rojak"
_DESCRIPTION = """\
This dataset contains reviews for products, movies, and stocks in the Bahasa Rojak dialect,
a popular dialect in Malaysia that consists of English, Malay, and Chinese.
Each review is manually annotated as positive (bullish for stocks) or negative (bearish for stocks).
Reviews are generated through data augmentation using English and Malay sentiment analysis datasets.
"""
_HOMEPAGE = "https://data.depositar.io/dataset/brcc_and_sentibahasarojak/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd"
_LANGUAGES = ["zlm", "eng", "cmn"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_URLS = {
_DATASETNAME: "https://data.depositar.io/dataset/304d1572-27d6-4549-8292-b1c8f5e9c086/resource/8a558f64-98ff-4922-a751-0ce2ce8447bd/download/BahasaRojak_Datasets.zip",
}
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class SentiBahasaRojakDataset(datasets.GeneratorBasedBuilder):
"""The BRCC (Bahasa Rojak Crawled Corpus) is a novel dataset designed for the study of Bahasa Rojak,
a code-mixed dialect combining English, Malay, and Chinese, prevalent in Malaysia.
This corpus is intended for pre-training language models and sentiment analysis,
addressing the unique challenges of processing code-mixed languages."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
subsets = ["movie", "product", "stock"]
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}.{sub}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME}.{sub} source schema", schema="source", subset_id=f"{_DATASETNAME}.{sub}",) for sub in subsets] + [
SEACrowdConfig(
name=f"{_DATASETNAME}.{sub}_seacrowd_text",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME}.{sub} SEACrowd schema",
schema="seacrowd_text",
subset_id=f"{_DATASETNAME}.{sub}",
)
for sub in subsets
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}.movie_source"
LABELS = ["positive", "negative"]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.ClassLabel(names=self.LABELS),
}
)
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(self.LABELS)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
data_dir = os.path.join(data_dir, "BahasaRojak Datasets", "SentiBahasaRojak")
subset = self.config.name.split(".")[-1].split("_")[0]
subset_dir = os.path.join(data_dir, f"SentiBahasaRojak-{subset.capitalize()}")
filepath = {}
if subset == "stock":
for split in ["train", "valid", "test"]:
filepath[split] = os.path.join(subset_dir, f"{split}_labeled.tsv")
else:
for split in ["train", "valid", "test"]:
filepath[split] = os.path.join(subset_dir, f"mix.{split}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": filepath["test"],
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": filepath["valid"],
"split": "valid",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if filepath.endswith(".tsv"):
with open(filepath, encoding="utf-8") as file:
reader = csv.reader(file, delimiter="\t", quoting=csv.QUOTE_NONE)
for row_idx, row in enumerate(reader):
if self.config.schema == "source":
yield row_idx, {
"text": row[0],
"label": "positive" if row[1] == 1 else "negative",
}
elif self.config.schema == "seacrowd_text":
yield row_idx, {
"id": row_idx,
"text": row[0],
"label": "positive" if row[1] == 1 else "negative",
}
else:
labelpath = filepath + ".label"
with open(filepath, encoding="utf-8") as file, open(labelpath, encoding="utf-8") as label_file:
for row_idx, (text, label) in enumerate(zip(file, label_file)):
if self.config.schema == "source":
yield row_idx, {
"text": text.strip(),
"label": label.strip(),
}
elif self.config.schema == "seacrowd_text":
yield row_idx, {
"id": row_idx,
"text": text.strip(),
"label": label.strip(),
}
|