|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import ( |
|
DEFAULT_SEACROWD_VIEW_NAME, |
|
DEFAULT_SOURCE_VIEW_NAME, |
|
Tasks, |
|
) |
|
|
|
_DATASETNAME = "parallel_id_nyo" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind", "abl"] |
|
|
|
_CITATION = """\ |
|
@article{Abidin_2021, |
|
doi = {10.1088/1742-6596/1751/1/012036}, |
|
url = {https://dx.doi.org/10.1088/1742-6596/1751/1/012036}, |
|
year = {2021}, |
|
month = {jan}, |
|
publisher = {IOP Publishing}, |
|
volume = {1751}, |
|
number = {1}, |
|
pages = {012036}, |
|
author = {Z Abidin and Permata and I Ahmad and Rusliyawati}, |
|
title = {Effect of mono corpus quantity on statistical machine translation |
|
Indonesian - Lampung dialect of nyo}, |
|
journal = {Journal of Physics: Conference Series}, |
|
abstract = {Lampung Province is located on the island of Sumatera. For the |
|
immigrants in Lampung, they have difficulty in |
|
communicating with the indigenous people of Lampung. As an alternative, both |
|
immigrants and the indigenous people of Lampung speak Indonesian. |
|
This research aims to build a language model from Indonesian language and a |
|
translation model from the Lampung language dialect of nyo, both models will |
|
be combined in a Moses decoder. |
|
This research focuses on observing the effect of adding mono corpus to the |
|
experimental statistical machine translation of |
|
Indonesian - Lampung dialect of nyo. |
|
This research uses 3000 pair parallel corpus in Indonesia language and |
|
Lampung language dialect of nyo as source language |
|
and uses 3000 mono corpus sentences in Lampung language |
|
dialect of nyo as target language. The results showed that the accuracy |
|
value in bilingual evalution under-study score when using 1000 sentences, |
|
2000 sentences, 3000 sentences mono corpus |
|
show the accuracy value of the bilingual evaluation under-study, |
|
respectively, namely 40.97 %, 41.80 % and 45.26 %.} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dataset that contains Indonesian - Lampung language pairs. |
|
|
|
The original data should contains 3000 rows, unfortunately, |
|
not all of the instances in the original data is aligned perfectly. |
|
Thus, this data only have the aligned ones, which only contain 1727 pairs. |
|
""" |
|
|
|
_HOMEPAGE = "https://drive.google.com/drive/folders/1oNpybrq5OJ_4Ne0HS5w9eHqnZlZASpmC?usp=sharing" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
|
|
_URLs = { |
|
"train": "https://raw.githubusercontent.com/haryoa/IndoData/main/data_ind_lampung_1729_line.csv" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
COL_INDONESIA = "indo" |
|
COL_LAMPUNG = "lampung" |
|
|
|
|
|
class ParallelIdNyo(datasets.GeneratorBasedBuilder): |
|
"""Dataset that contains Indonesian - Lampung language pairs.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="parallel_id_nyo_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Parallel Id-Nyo source schema", |
|
schema="source", |
|
subset_id="parallel_id_nyo", |
|
), |
|
SEACrowdConfig( |
|
name="parallel_id_nyo_seacrowd_t2t", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Parallel Id-Nyo Nusantara schema", |
|
schema="seacrowd_t2t", |
|
subset_id="parallel_id_nyo", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ted_en_id_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
path = Path(dl_manager.download_and_extract(_URLs["train"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": path}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
|
|
df = pd.read_csv(filepath).reset_index() |
|
|
|
if self.config.schema == "source": |
|
for idx, row in df.iterrows(): |
|
ex = { |
|
"id": str(idx), |
|
"text": str(row[COL_INDONESIA]).rstrip(), |
|
"label": str(row[COL_LAMPUNG]).rstrip(), |
|
} |
|
yield idx, ex |
|
elif self.config.schema == "seacrowd_t2t": |
|
for idx, row in df.iterrows(): |
|
ex = { |
|
"id": str(idx), |
|
"text_1": str(row[COL_INDONESIA]).rstrip(), |
|
"text_2": str(row[COL_LAMPUNG]).rstrip(), |
|
"text_1_name": "ind", |
|
"text_2_name": "abl", |
|
} |
|
yield idx, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|