import os from pathlib import Path from typing import Dict, List, Tuple import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import Tasks _DATASETNAME = "medisco" _LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data) _LOCAL = False _CITATION = """\ @INPROCEEDINGS{8629259, author={Qorib, Muhammad Reza and Adriani, Mirna}, booktitle={2018 International Conference on Asian Language Processing (IALP)}, title={Building MEDISCO: Indonesian Speech Corpus for Medical Domain}, year={2018}, volume={}, number={}, pages={133-138}, keywords={Training;Automatic speech recognition;Medical services;Writing;Buildings;Computer science;Indonesian Automatic Speech Recognition;Medical Speech Corpus;Text Corpus}, doi={10.1109/IALP.2018.8629259} } """ _DESCRIPTION = "MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours" _HOMEPAGE = "https://mrqorib.github.io/2018/02/01/building-medisco.html" _LICENSE = "GNU General Public License v3.0 (gpl-3.0)" _URLs = { "medisco": { "train": { "audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/audio.tar.gz", "text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/train/annotation/sentences.txt", }, "test": {"audio": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/audio.tar.gz", "text": "https://huggingface.co/datasets/mrqorib/MEDISCO/resolve/main/MEDISCO/test/annotation/sentences.txt"}, } } _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" class Medisco(datasets.GeneratorBasedBuilder): "MEDISCO is a medical Indonesian speech corpus that contains 731 medical terms and consists of 4,680 utterances with total duration 10 hours" BUILDER_CONFIGS = [ SEACrowdConfig( name="medisco_source", version=datasets.Version(_SOURCE_VERSION), description="MEDISCO source schema", schema="source", subset_id="medisco", ), SEACrowdConfig( name="medisco_seacrowd_sptext", version=datasets.Version(_SEACROWD_VERSION), description="MEDISCO seacrowd schema", schema="seacrowd_sptext", subset_id="medisco", ), ] DEFAULT_CONFIG_NAME = "medisco_source" def _info(self): if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "path": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=44_100), "text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_sptext": features = schemas.speech_text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: base_path = _URLs["medisco"] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["train"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["train"]["text"]), "split": "train"}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": dl_manager.download_and_extract(base_path["test"]["audio"]), "text_path": dl_manager.download_and_extract(base_path["test"]["text"]), "split": "test"}, ), ] def _generate_examples(self, filepath: Path, text_path: Path, split: str) -> Tuple[int, Dict]: with open(text_path, encoding="utf-8") as f: texts = f.readlines() # contains trailing \n for speaker_id in os.listdir(filepath): speaker_path = os.path.join(filepath, speaker_id) if not os.path.isdir(speaker_path): continue for audio_id in os.listdir(speaker_path): audio_idx = int(audio_id.split(".", 1)[0]) - 1 # get 0-based index audio_path = os.path.join(speaker_path, audio_id) key = "{}_{}_{}".format(split, speaker_id, audio_idx) example = { "id": key, "speaker_id": speaker_id, "path": audio_path, "audio": audio_path, "text": texts[audio_idx].strip(), } if self.config.schema == "seacrowd_sptext": gender = speaker_id.split("-", 1)[0] example["metadata"] = { "speaker_gender": gender, "speaker_age": None, } yield key, example